metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­[(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)copper(II)] bis­­(tri­fluoro­methane­sulfonate)

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio TX 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio TX 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 18 October 2021; accepted 20 October 2021; online 21 October 2021)

In the centrosymmetric title complex, [Cu2Cl2(C15H11N3)2](CF3O3S)2, the CuII metal center is fivefold coordinated by two chloride ions and three nitro­gen atoms of the terpyridine ligand in a distorted square-pyramidal geometry; two tri­fluoro­methane­sulfonate ions complete the outer coordination sphere. ππ stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns along the a-axis. This structure represents the first example of a binuclear dication of formula [Cu(terpy)2Cl2]2+ with tri­fluoro­methane­sulfonate as counter-ions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Terpyridines are some of the most studied nitro­gen-based tridentate ligands in coordin­ation chemistry, and their metal complexes have found application in catalysis (Wei et al., 2019[Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1-19.]; Choroba et al., 2019[Choroba, K., Machura, B., Kula, S., Raposo, L. R., Fernandes, A. R., Kruszynski, R., Erfurt, K., Shul'pina, L. S., Kozlov, Y. N. & Shul'pin, G. B. (2019). Dalton Trans. 48, 12656-12673.]), supra­molecular chemistry (Wei et al., 2019[Wei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1-19.]), and medicinal chemistry (Glišić et al., 2018[Glišić, B. Đ., Nikodinovic-Runic, J., Ilic-Tomic, T., Wadepohl, H., Veselinović, A., Opsenica, I. M. & Djuran, M. I. (2018). Polyhedron, 139, 313-322.]; Malarz et al., 2021[Malarz, K., Zych, D., Gawecki, R., Kuczak, M., Musioł, R. & Mrozek-Wilczkiewicz, A. (2021). Eur. J. Med. Chem. 212, 113032.]; Li et al., 2020[Li, C., Xu, F., Zhao, Y., Zheng, W., Zeng, W., Luo, Q., Wang, Z., Wu, K., Du, J. & Wang, F. (2020). Front. Chem. 8, 210.]). Recently, copper(II) terpyridine complexes have received much attention due to their remarkable cytotoxicity and ability to inter­act with DNA (Karges et al., 2021[Karges, J., Xiong, K., Blacque, O., Chao, H. & Gasser, G. (2021). Inorg. Chim. Acta, 516, 120137.]); herein, we report the synthesis and structure of the title copper(II) terpyridine complex.

The asymmetric unit of the title compound, depicted in Fig. 1[link], consists of half of a centrosymmetric dication [Cu(terpy)2Cl2]2+ and one tri­fluoro­methane­sulfonate ion completing the outer coordination sphere. The Cu—N, and Cu—Cl distances, as well as, the Cl—Cu—Cl, N—Cu—Cl and N—Cu—N angles are in good agreement with the reported values in similar copper(II) terpyridine complexes currently available in the CSD (version 5.42 with update September 2021; Rojo et al., 1987[Rojo, T., Arriortua, M. I., Ruiz, J., Darriet, J., Villeneuve, G. & Beltran-Porter, D. (1987). J. Chem. Soc. Dalton Trans. pp. 285-291.]; refcode FECJEC; Valdés-Martínez et al., 2002;[Valdés-Martínez, J., Sal­azar-Mendoza, D. & Toscano, R. A. (2002). Acta Cryst. E58, m712-m714.] refcode HULZAP; Gasser et al., 2004[Gasser, G., Labat, G. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m244-m246.]; refcode HULZAP01). All relevant bond lengths and angles involving the Cu atom are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.2265 (5) Cu1—N2 1.9420 (17)
Cu1—Cl1i 2.7660 (6) Cu1—N1 2.0397 (18)
Cu1—N3 2.0278 (19)    
       
Cl1—Cu1—Cl1i 89.944 (18) N2—Cu1—N3 80.39 (7)
N3—Cu1—Cl1i 90.30 (5) N2—Cu1—N1 80.11 (7)
N3—Cu1—Cl1 99.82 (5) N1—Cu1—Cl1 99.60 (5)
N3—Cu1—N1 159.58 (7) N1—Cu1—Cl1i 95.97 (5)
N2—Cu1—Cl1i 90.83 (5) Cu1—Cl1—Cu1i 90.056 (18)
N2—Cu1—Cl1 179.20 (5)    
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry operator for generating equivalent atoms: (i) 1 − x, 1 − y, 1 − z.

In the crystal packing of the title compound, ππ stacking inter­actions between the N1 and N3 pyridyl ring of adjacent mol­ecules are observed, with a centroid-to-centroid (CgCg) distance of 3.658 (1) Å and an offset distance of 1.723 Å. No other supra­molecuar inter­action is present in the crystal packing of the title compound.

Synthesis and crystallization

The title compound was obtained as product of the reaction of 2,2′:6′,2′′-terpyridine (0.100 g, 0.429 mmol) with copper(II) chloride dihydrate (0.073 g, 0.429 mmol) in aceto­nitrile after the addition of silver tri­fluoro­methane­sulfonate (0.110 g, 0.429 mmol) and filtration using a 0.45 µm PTFE syringe filter. Crystals suitable for X-ray diffraction of the title compound were obtained by vapor diffusion of diethyl ether over the resulting aceto­nitrile solution at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in a difference map and refined in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.2Ueq(C) and with a C—H distance of 0.95 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Cl2(C15H11N3)2](CF3O3S)2
Mr 962.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 98
a, b, c (Å) 7.2767 (2), 9.8394 (2), 13.1746 (3)
α, β, γ (°) 106.667 (2), 91.226 (2), 105.453 (2)
V3) 866.08 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.59
Crystal size (mm) 0.47 × 0.17 × 0.1
 
Data collection
Diffractometer XtaLAB AFC12 (RCD3): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.741, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33748, 3982, 3889
Rint 0.047
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.08
No. of reflections 3982
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-chlorido-bis[(2,2':6',2''-terpyridine-κ3N,N',N'')copper(II)] bis(trifluoromethanesulfonate) top
Crystal data top
[Cu2Cl2(C15H11N3)2](CF3O3S)2Z = 1
Mr = 962.65F(000) = 482
Triclinic, P1Dx = 1.846 Mg m3
a = 7.2767 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8394 (2) ÅCell parameters from 14071 reflections
c = 13.1746 (3) Åθ = 3.1–29.5°
α = 106.667 (2)°µ = 1.59 mm1
β = 91.226 (2)°T = 98 K
γ = 105.453 (2)°Block, clear bluish green
V = 866.08 (4) Å30.47 × 0.17 × 0.1 mm
Data collection top
XtaLAB AFC12 (RCD3): Kappa single
diffractometer
3889 reflections with I > 2σ(I)
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray SourceRint = 0.047
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 99
Tmin = 0.741, Tmax = 1.000k = 1212
33748 measured reflectionsl = 1617
3982 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.6752P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
3982 reflectionsΔρmax = 0.55 e Å3
253 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were located in a difference map and refined in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.2Ueq(C) and with a C—H distance of 0.95 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49265 (4)0.41355 (3)0.60172 (2)0.01772 (10)
Cl10.62384 (8)0.36614 (6)0.44902 (4)0.02026 (13)
S10.50126 (8)0.15121 (6)0.79698 (4)0.02142 (13)
F20.7785 (2)0.02432 (18)0.78751 (14)0.0396 (4)
F10.6642 (2)0.06787 (19)0.93864 (12)0.0395 (4)
F30.5041 (2)0.11260 (17)0.80642 (16)0.0478 (4)
O10.6469 (2)0.29199 (17)0.83604 (12)0.0239 (3)
O30.3333 (2)0.1385 (2)0.85354 (15)0.0336 (4)
O20.4661 (3)0.0941 (2)0.68265 (13)0.0360 (4)
N30.2255 (3)0.27262 (19)0.55326 (14)0.0188 (4)
N20.3802 (3)0.45334 (19)0.73563 (14)0.0168 (3)
N10.7290 (3)0.55151 (19)0.70135 (14)0.0184 (4)
C110.1030 (3)0.2851 (2)0.62992 (16)0.0192 (4)
C50.6901 (3)0.6111 (2)0.80261 (16)0.0189 (4)
C100.1958 (3)0.3840 (2)0.73629 (16)0.0186 (4)
C60.4902 (3)0.5499 (2)0.82254 (16)0.0179 (4)
C90.1110 (3)0.4087 (2)0.83124 (17)0.0220 (4)
H90.0192620.3586690.8334570.026*
C150.1555 (3)0.1851 (2)0.45439 (17)0.0220 (4)
H150.2408970.1742520.4010710.026*
C140.0386 (3)0.1094 (2)0.42706 (18)0.0238 (5)
H140.0843050.0476360.3563250.029*
C120.0910 (3)0.2144 (2)0.60811 (17)0.0212 (4)
H120.1739570.2259590.6626700.025*
C130.1631 (3)0.1253 (2)0.50390 (18)0.0231 (4)
H130.2963330.0764250.4864840.028*
C70.4138 (3)0.5820 (2)0.91921 (16)0.0208 (4)
H70.4896300.6517560.9813510.025*
C40.8284 (3)0.7197 (3)0.87846 (17)0.0225 (4)
H40.7985490.7596830.9486700.027*
C80.2229 (3)0.5089 (3)0.92254 (17)0.0237 (5)
H80.1682030.5278110.9881790.028*
C21.0514 (3)0.7057 (3)0.74756 (18)0.0241 (5)
H21.1765480.7357070.7270060.029*
C160.6177 (3)0.0264 (3)0.83346 (19)0.0266 (5)
C10.9066 (3)0.5979 (2)0.67581 (17)0.0216 (4)
H10.9345950.5552080.6056810.026*
C31.0114 (3)0.7691 (3)0.84983 (18)0.0254 (5)
H31.1077110.8453620.8996830.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02295 (16)0.01815 (15)0.01013 (14)0.00641 (11)0.00275 (10)0.00076 (10)
Cl10.0282 (3)0.0213 (2)0.0128 (2)0.0121 (2)0.00591 (19)0.00269 (19)
S10.0221 (3)0.0223 (3)0.0156 (3)0.0060 (2)0.00080 (19)0.0002 (2)
F20.0382 (9)0.0427 (9)0.0461 (9)0.0246 (7)0.0131 (7)0.0132 (7)
F10.0508 (10)0.0437 (9)0.0241 (7)0.0128 (8)0.0061 (7)0.0120 (7)
F30.0458 (10)0.0206 (7)0.0667 (12)0.0001 (7)0.0117 (8)0.0074 (7)
O10.0284 (8)0.0199 (7)0.0201 (8)0.0056 (6)0.0030 (6)0.0021 (6)
O30.0230 (8)0.0371 (10)0.0371 (10)0.0075 (7)0.0075 (7)0.0066 (8)
O20.0400 (10)0.0429 (11)0.0171 (8)0.0111 (9)0.0078 (7)0.0016 (7)
N30.0262 (9)0.0162 (8)0.0132 (8)0.0065 (7)0.0020 (7)0.0028 (7)
N20.0215 (9)0.0152 (8)0.0130 (8)0.0063 (7)0.0008 (6)0.0021 (6)
N10.0239 (9)0.0182 (8)0.0133 (8)0.0075 (7)0.0024 (7)0.0038 (7)
C110.0269 (11)0.0159 (9)0.0149 (9)0.0073 (8)0.0010 (8)0.0037 (8)
C50.0248 (11)0.0190 (10)0.0141 (9)0.0087 (8)0.0032 (8)0.0043 (8)
C100.0237 (10)0.0167 (9)0.0157 (10)0.0073 (8)0.0014 (8)0.0039 (8)
C60.0234 (10)0.0152 (9)0.0144 (9)0.0058 (8)0.0014 (8)0.0030 (8)
C90.0227 (11)0.0225 (10)0.0186 (10)0.0053 (9)0.0042 (8)0.0039 (8)
C150.0332 (12)0.0176 (10)0.0144 (10)0.0080 (9)0.0016 (8)0.0031 (8)
C140.0362 (12)0.0149 (9)0.0167 (10)0.0056 (9)0.0045 (9)0.0011 (8)
C120.0247 (11)0.0182 (10)0.0205 (10)0.0065 (8)0.0017 (8)0.0054 (8)
C130.0259 (11)0.0158 (10)0.0246 (11)0.0040 (8)0.0045 (9)0.0039 (8)
C70.0256 (11)0.0210 (10)0.0122 (9)0.0061 (9)0.0010 (8)0.0000 (8)
C40.0261 (11)0.0241 (11)0.0157 (10)0.0088 (9)0.0031 (8)0.0020 (8)
C80.0282 (12)0.0277 (11)0.0134 (10)0.0087 (9)0.0055 (8)0.0025 (8)
C20.0215 (11)0.0285 (11)0.0233 (11)0.0074 (9)0.0034 (8)0.0093 (9)
C160.0308 (12)0.0197 (10)0.0240 (11)0.0049 (9)0.0022 (9)0.0010 (9)
C10.0266 (11)0.0250 (11)0.0166 (10)0.0114 (9)0.0055 (8)0.0075 (8)
C30.0256 (11)0.0275 (11)0.0198 (11)0.0063 (9)0.0014 (9)0.0036 (9)
Geometric parameters (Å, º) top
Cu1—Cl12.2265 (5)C10—C91.394 (3)
Cu1—Cl1i2.7660 (6)C6—C71.387 (3)
Cu1—N32.0278 (19)C9—H90.9500
Cu1—N21.9420 (17)C9—C81.390 (3)
Cu1—N12.0397 (18)C15—H150.9500
S1—O11.4466 (17)C15—C141.394 (3)
S1—O31.4409 (18)C14—H140.9500
S1—O21.4392 (17)C14—C131.376 (3)
S1—C161.826 (2)C12—H120.9500
F2—C161.331 (3)C12—C131.401 (3)
F1—C161.335 (3)C13—H130.9500
F3—C161.337 (3)C7—H70.9500
N3—C111.362 (3)C7—C81.392 (3)
N3—C151.339 (3)C4—H40.9500
N2—C101.335 (3)C4—C31.391 (3)
N2—C61.336 (3)C8—H80.9500
N1—C51.364 (3)C2—H20.9500
N1—C11.336 (3)C2—C11.384 (3)
C11—C101.481 (3)C2—C31.386 (3)
C11—C121.380 (3)C1—H10.9500
C5—C61.479 (3)C3—H30.9500
C5—C41.388 (3)
Cl1—Cu1—Cl1i89.944 (18)C8—C9—C10117.9 (2)
N3—Cu1—Cl1i90.30 (5)C8—C9—H9121.0
N3—Cu1—Cl199.82 (5)N3—C15—H15118.9
N3—Cu1—N1159.58 (7)N3—C15—C14122.2 (2)
N2—Cu1—Cl1i90.83 (5)C14—C15—H15118.9
N2—Cu1—Cl1179.20 (5)C15—C14—H14120.4
N2—Cu1—N380.39 (7)C13—C14—C15119.1 (2)
N2—Cu1—N180.11 (7)C13—C14—H14120.4
N1—Cu1—Cl199.60 (5)C11—C12—H12120.7
N1—Cu1—Cl1i95.97 (5)C11—C12—C13118.7 (2)
Cu1—Cl1—Cu1i90.056 (18)C13—C12—H12120.7
O1—S1—C16102.05 (10)C14—C13—C12119.2 (2)
O3—S1—O1114.97 (10)C14—C13—H13120.4
O3—S1—C16103.57 (11)C12—C13—H13120.4
O2—S1—O1114.19 (11)C6—C7—H7121.0
O2—S1—O3115.73 (12)C6—C7—C8118.1 (2)
O2—S1—C16103.90 (11)C8—C7—H7121.0
C11—N3—Cu1113.61 (14)C5—C4—H4120.6
C15—N3—Cu1127.30 (15)C5—C4—C3118.8 (2)
C15—N3—C11118.61 (19)C3—C4—H4120.6
C10—N2—Cu1118.38 (14)C9—C8—C7121.0 (2)
C10—N2—C6123.04 (18)C9—C8—H8119.5
C6—N2—Cu1118.58 (14)C7—C8—H8119.5
C5—N1—Cu1113.57 (14)C1—C2—H2120.5
C1—N1—Cu1127.51 (15)C1—C2—C3119.1 (2)
C1—N1—C5118.60 (19)C3—C2—H2120.5
N3—C11—C10114.06 (19)F2—C16—S1111.78 (16)
N3—C11—C12122.2 (2)F2—C16—F1107.3 (2)
C12—C11—C10123.8 (2)F2—C16—F3107.8 (2)
N1—C5—C6114.01 (18)F1—C16—S1110.99 (16)
N1—C5—C4121.9 (2)F1—C16—F3106.5 (2)
C4—C5—C6124.13 (19)F3—C16—S1112.25 (17)
N2—C10—C11113.09 (18)N1—C1—C2122.5 (2)
N2—C10—C9119.91 (19)N1—C1—H1118.7
C9—C10—C11127.0 (2)C2—C1—H1118.7
N2—C6—C5113.29 (18)C4—C3—H3120.5
N2—C6—C7120.03 (19)C2—C3—C4119.1 (2)
C7—C6—C5126.68 (19)C2—C3—H3120.5
C10—C9—H9121.0
Cu1—N3—C11—C107.7 (2)N1—C5—C4—C30.2 (3)
Cu1—N3—C11—C12170.55 (16)C11—N3—C15—C141.5 (3)
Cu1—N3—C15—C14170.07 (15)C11—C10—C9—C8178.6 (2)
Cu1—N2—C10—C110.7 (2)C11—C12—C13—C140.8 (3)
Cu1—N2—C10—C9179.33 (15)C5—N1—C1—C21.1 (3)
Cu1—N2—C6—C51.4 (2)C5—C6—C7—C8177.9 (2)
Cu1—N2—C6—C7179.33 (15)C5—C4—C3—C21.7 (3)
Cu1—N1—C5—C67.0 (2)C10—N2—C6—C5179.27 (18)
Cu1—N1—C5—C4172.78 (16)C10—N2—C6—C70.0 (3)
Cu1—N1—C1—C2171.97 (16)C10—C11—C12—C13178.98 (19)
O1—S1—C16—F260.24 (18)C10—C9—C8—C70.1 (3)
O1—S1—C16—F159.49 (19)C6—N2—C10—C11178.63 (18)
O1—S1—C16—F3178.50 (17)C6—N2—C10—C91.4 (3)
O3—S1—C16—F2179.95 (16)C6—C5—C4—C3179.6 (2)
O3—S1—C16—F160.22 (19)C6—C7—C8—C91.1 (3)
O3—S1—C16—F358.8 (2)C15—N3—C11—C10179.69 (18)
O2—S1—C16—F258.73 (19)C15—N3—C11—C122.1 (3)
O2—S1—C16—F1178.47 (17)C15—C14—C13—C121.5 (3)
O2—S1—C16—F362.5 (2)C12—C11—C10—N2172.60 (19)
N3—C11—C10—N25.6 (3)C12—C11—C10—C97.4 (3)
N3—C11—C10—C9174.4 (2)C4—C5—C6—N2175.9 (2)
N3—C11—C12—C131.0 (3)C4—C5—C6—C74.9 (3)
N3—C15—C14—C130.3 (3)C1—N1—C5—C6178.99 (18)
N2—C10—C9—C81.4 (3)C1—N1—C5—C41.3 (3)
N2—C6—C7—C81.2 (3)C1—C2—C3—C41.9 (3)
N1—C5—C6—N23.8 (3)C3—C2—C1—N10.4 (3)
N1—C5—C6—C7175.3 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information

Funding for this research was provided by: Welch Foundation (award No. BN0032).

References

First citationChoroba, K., Machura, B., Kula, S., Raposo, L. R., Fernandes, A. R., Kruszynski, R., Erfurt, K., Shul'pina, L. S., Kozlov, Y. N. & Shul'pin, G. B. (2019). Dalton Trans. 48, 12656–12673.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGasser, G., Labat, G. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m244–m246.  CSD CrossRef IUCr Journals Google Scholar
First citationGlišić, B. Đ., Nikodinovic-Runic, J., Ilic-Tomic, T., Wadepohl, H., Veselinović, A., Opsenica, I. M. & Djuran, M. I. (2018). Polyhedron, 139, 313–322.  Google Scholar
First citationKarges, J., Xiong, K., Blacque, O., Chao, H. & Gasser, G. (2021). Inorg. Chim. Acta, 516, 120137.  CSD CrossRef Google Scholar
First citationLi, C., Xu, F., Zhao, Y., Zheng, W., Zeng, W., Luo, Q., Wang, Z., Wu, K., Du, J. & Wang, F. (2020). Front. Chem. 8, 210.  CrossRef PubMed Google Scholar
First citationMalarz, K., Zych, D., Gawecki, R., Kuczak, M., Musioł, R. & Mrozek-Wilczkiewicz, A. (2021). Eur. J. Med. Chem. 212, 113032.  CrossRef PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationRojo, T., Arriortua, M. I., Ruiz, J., Darriet, J., Villeneuve, G. & Beltran-Porter, D. (1987). J. Chem. Soc. Dalton Trans. pp. 285–291.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValdés-Martínez, J., Sal­azar-Mendoza, D. & Toscano, R. A. (2002). Acta Cryst. E58, m712–m714.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, C., He, Y., Shi, X. & Song, Z. (2019). Coord. Chem. Rev. 385, 1–19.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds