ISSN 2414-3146

Received 14 September 2021 Accepted 15 October 2021

Edited by I. Brito, University of Antofagasta, Chile

Keywords: crystal structure; silver atom; isonicotinamide; trifluoromethanesulfonate ions; acetonitrile; polymeric structure.

CCDC reference: 2116012

Structural data: full structural data are available from iucrdata.iucr.org

Bis(isonicotinamide- κN)silver(I) trifluoromethanesulfonate acetonitrile disolvate

Rafael A. Adrian,^a* Sara J. Ibarra^a and Hadi D. Arman^b

^aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio Texas 78209, USA, and ^bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio Texas 78249, USA. *Correspondence e-mail: adrian@uiwtx.edu

The central Ag^{I} atom of the title salt, $[Ag(INAM)_{2}](CF_{3}SO_{3})\cdot 2CH_{3}CN$, where INAM is isonicotinamide $(C_{6}H_{6}N_{2}O)$, is twofold coordinated by the pyridine N atoms of two isonicotinamide ligands creating a slightly distorted linear molecular geometry. The formation of polymeric chains $\{[Ag(INAM)_{2}]^{+}\}_{n}$, held together by discrete hydrogen bonds through the amide group of the INAM ligand leaves voids for non-coordinating acetonitrile molecules that interact the silver metal center *via* regium bonds.

Structure description

Silver(I) isonicotinamide complexes have been investigated for the ability to form coordination complexes with a variety of molecular geometries due to amide hydrogenbond synthons in their structure (Aakeröy & Beatty, 1998; Aakeröy *et al.*, 1998; Lian *et al.* 2007), luminescent properties (Yeşilel *et al.*, 2012), and antibacterial activity (Abu-Youssef *et al.*, 2007; Yu *et al.*, 2020). Our research group interest currently lies in the synthesis of novel metal complexes with biological activity; as part of our research in this area, herein, we describe the synthesis and structure of the title silver(I) complex.

As depicted in Fig. 1, the asymmetric unit of the title compound shows the Ag^{I} ion in a distorted linear coordination environment defined by two N-bonded isonicotamide ligands. Two acetonitrile molecules and a trifluoromethanesulfonate ion complete the asymmetric unit; the acetonitrile molecules sit at opposite sides of the plane defined by N1-Ag1-N3 with the nitrile group facing the silver(I) metal center. All relevant bond lengths and angles involving the Ag atom are presented in Table 1. The angle N1-Ag1-N3 of 172.78 (7) is within the reported values (174.9, 180, and 171.1) in the comparable silver(I) isonicotinamide structures currently available in the CSD (version 5.42 with

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

update May 2021; Aakeröy & Beatty, 1998; refcode NISNEI; Bhogala *et al.*, 2004; refcode NABYOF; Abu-Youssef *et al.*, 2007; refcode XECZUB01).

Perspective view of the packing structure of the title complex along the crystallographic b axis; H atoms are omitted for clarity.

Capped sticks representation of the title molecule showing hydrogen bonds interactions (violet), regium bonds (light blue), Ag···Ag interactions (light green), and π - π stacking interactions (red).

Table 1
Selected geometric parameters (Å, $^{\circ}$).

Ag1-N3	2.162 (2)	Ag1-N1	2.162 (2)
N1-Ag1-N3 N4-C12-C9	172.78 (7) 118.3 (2)	N2-C6-C3	117.3 (2)

Fable 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N^2 - H^2 A \cdots \Omega^{2^i}$	0.88	2.06	2 898 (3)	160
$N2 - H2B \cdots O3$	0.88	2.00	2.939 (3)	162
$N4-H4A\cdotsO1^{ii}$	0.88	2.05	2.927 (3)	171
$N4-H4B\cdots O5^{iii}$	0.88	2.22	3.033 (3)	154

Symmetry codes: (i) x + 1, y, z - 1; (ii) x - 1, y, z + 1; (iii) -x + 1, -y + 1, -z + 1.

 Table 3

 Experimental details.

-	
Crystal data	
Chemical formula	$[Ag(C_6H_6N_2O)_2](CF_3O_3S)-2C_2H_3N)$
M _r	583.30
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	9.4566 (2), 11.0330 (3), 11.9848 (3)
(α, β, γ)	114.000 (2), 103.9287 (19), 95.129 (2)
$V(Å^3)$	1083.72 (5)
Z	2
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	9.00
Crystal size (mm)	$0.27 \times 0.10 \times 0.07$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.544, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24470, 4387, 4211
R _{int}	0.044
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.631
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.072, 1.08
No. of reflections	4387
No. of parameters	300
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.77, -0.78

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

Two types of hydrogen-bonding motifs are present in the crystal lattice, with numerical values collated in Table 2. In the crystal packing, molecules self-assemble into layers aligned along the *a*-axis direction (Fig. 2) *via* N-H···O interactions. The trifluoromethanesulfonate anions fill the void between the layers and interact with the isonicotinamide ligands through additional N-H···O interactions. The pyridyl rings of the isonicotinamide ligand show π - π stacking interactions with centroid-to-centroid (Cg···Cg) distances ranging from 3.7005 (13) to 3.8503 (14) Å, and offset distances ranging from 1.940 to 2.056 Å, respectively.

Two different supramolecular interactions involving the silver atom are also responsible for the observed crystal packing: an Ag...Ag interaction with a distance between silver atoms of 3.4258 (3) Å, comparable to other silver complexes found in the CSD database (Titov *et al.*, 2018; refcode FINWOR; Titov *et al.*, 2019; refcode PIRCUR); and regium bonds, between the nitrogen of the acetonitrile solvent molecules and the silver atom (Alkorta *et al.*, 2020; Zierkiewicz *et al.*, 2018), with lengths of 2.916 Å for Ag1–N5 and 2.955 Å for Ag1–N6. (Fig. 3)

Synthesis and crystallization

Silver trifluoromethanesulfonate (0.200 g, 0.778 mmol) was added to an acetonitrile solution of isonicotinamide (0.190 g, 1.56 mmol) and stirred for 30 min. The resulting clear solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information

Funding for this research was provided by: The Welch Foundation (award No. BN0032).

References

- Aakeröy, C. B. & Beatty, A. M. (1998). Cryst. Eng. 1, 39-49.
- Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1943–1946.
- Abu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). *Inorg. Chem.* **46**, 5893–5903.
- Alkorta, I., Trujillo, C., Sánchez-Sanz, G. & Elguero, J. (2020). Crystals, 10, 137.
- Bhogala, B. R., Thallapally, P. K. & Nangia, A. (2004). Cryst. Growth Des. 4, 215–218.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Lian, Z. X., Cai, J., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Titov, A. A., Filippov, O. A., Smol'yakov, A. F., Baranova, K. F., Titova, E. M., Averin, A. A. & Shubina, E. S. (2019). *Eur. J. Inorg. Chem.* pp. 821–827.
- Titov, A. A., Smol'yakov, A. F., Baranova, K. F., Filippov, O. A. & Shubina, E. S. (2018). *Mendeleev Commun.* 28, 387–389.
- Yeşilel, O. Z., Günay, G., Semerci, F. & Erkmen, D. (2012). Z. Kristallogr. Cryst. Mater. 227, 694–701.
- Yu, X. Y., Zhang, R., Li, S. L., Yu, S. H., Gao, L., Yan, W. F., Jin, J. & Luo, Y. N. (2020). *Inorg. Chem. Commun.* **116**, 107897.
- Zierkiewicz, W., Michalczyk, M. & Scheiner, S. (2018). Phys. Chem. Chem. Phys. 20, 22498–22509.

full crystallographic data

IUCrData (2021). **6**, x211073 [https://doi.org/10.1107/S2414314621010737]

Bis(isonicotinamide-*k*N)silver(I) trifluoromethanesulfonate acetonitrile disolvate

Rafael A. Adrian, Sara J. Ibarra and Hadi D. Arman

Bis(isonicotinamide-κN)silver(I) trifluoromethanesulfonate acetonitrile disolvate

Crystal data

$[Ag(C_6H_6N_2O)_2](CF_3O_3S) \cdot 2C_2H_3N)$
$M_r = 583.30$
Triclinic, P1
a = 9.4566 (2) Å
b = 11.0330(3) Å
c = 11.9848 (3) Å
$\alpha = 114.000 \ (2)^{\circ}$
$\beta = 103.9287 (19)^{\circ}$
$\gamma = 95.129(2)^{\circ}$
V = 1083.72 (5) A ³

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.072$ S = 1.084387 reflections 300 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 584 $D_x = 1.788 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 12499 reflections $\theta = 4.2-76.2^{\circ}$ $\mu = 9.00 \text{ mm}^{-1}$ T = 100 KPlate, clear colourless $0.27 \times 0.10 \times 0.07 \text{ mm}$

 $T_{\min} = 0.544, T_{\max} = 1.000$ 24470 measured reflections
4387 independent reflections
4211 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{\max} = 76.5^{\circ}, \theta_{\min} = 4.2^{\circ}$ $h = -10 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.7P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.77$ e Å⁻³ $\Delta\rho_{min} = -0.78$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
Agl	0.33026 (2)	0.42666 (2)	0.38452 (2)	0.01913 (7)	
S1	0.80813 (6)	0.92406 (6)	0.27008 (6)	0.01835 (13)	
F1	0.59457 (16)	1.01941 (15)	0.16879 (15)	0.0272 (3)	
F3	0.77762 (19)	1.00737 (17)	0.09034 (15)	0.0314 (4)	
F2	0.80186 (19)	1.16528 (15)	0.27750 (16)	0.0353 (4)	
02	-0.13731 (19)	0.48669 (17)	0.77676 (16)	0.0195 (3)	
01	0.68870 (19)	0.28645 (17)	-0.09989 (16)	0.0209 (4)	
05	0.96843 (19)	0.96695 (17)	0.31236 (17)	0.0238 (4)	
03	0.7525 (2)	0.79175 (17)	0.16192 (18)	0.0263 (4)	
N3	0.1996 (2)	0.40757 (19)	0.50408 (18)	0.0151 (4)	
N1	0.4587 (2)	0.4184 (2)	0.25573 (18)	0.0156 (4)	
04	0.7400 (2)	0.9518 (2)	0.37019 (19)	0.0350 (5)	
N2	0.7732 (2)	0.5144 (2)	-0.0006 (2)	0.0191 (4)	
H2A	0.822879	0.511950	-0.054633	0.023*	
H2B	0.774705	0.592520	0.062122	0.023*	
N4	-0.1246 (2)	0.2695 (2)	0.73398 (19)	0.0184 (4)	
H4A	-0.184009	0.264893	0.779082	0.022*	
H4B	-0.088239	0.198602	0.695256	0.022*	
N6	0.1601 (2)	0.1602 (2)	0.1866 (2)	0.0262 (5)	
N5	0.4275 (3)	0.7251 (2)	0.5268 (2)	0.0325 (5)	
C9	0.0129 (2)	0.3874 (2)	0.6467 (2)	0.0150 (4)	
C3	0.6141 (2)	0.4105 (2)	0.0827 (2)	0.0149 (4)	
C2	0.5905 (3)	0.5331 (2)	0.1669 (2)	0.0164 (5)	
H2	0.627509	0.615873	0.166627	0.020*	
C10	0.0835 (2)	0.5137 (2)	0.6652 (2)	0.0150 (4)	
H10	0.068538	0.594775	0.726905	0.018*	
C8	0.0393 (3)	0.2713 (2)	0.5556 (2)	0.0167 (5)	
H8	-0.005429	0.183595	0.541580	0.020*	
C11	0.1752 (3)	0.5196 (2)	0.5931 (2)	0.0157 (4)	
H11	0.223022	0.606106	0.606713	0.019*	
C12	-0.0895 (3)	0.3837 (2)	0.7243 (2)	0.0158 (4)	
C5	0.4811 (3)	0.3005 (2)	0.1740 (2)	0.0174 (5)	
H5	0.443286	0.219160	0.176380	0.021*	
C6	0.6954 (3)	0.3993 (2)	-0.0140 (2)	0.0165 (5)	
C1	0.5128 (3)	0.5324 (2)	0.2506 (2)	0.0171 (5)	
H1	0.496800	0.616240	0.307082	0.021*	
C4	0.5567 (3)	0.2924 (2)	0.0869 (2)	0.0165 (5)	
H4	0.569408	0.206974	0.030278	0.020*	
C7	0.1313 (3)	0.2857 (2)	0.4862 (2)	0.0166 (5)	
H7	0.147119	0.206188	0.423132	0.020*	
C16	0.0818 (3)	0.1753 (2)	0.1065 (2)	0.0220 (5)	
C17	-0.0166 (3)	0.1959 (3)	0.0045 (3)	0.0261 (5)	
H17A	-0.119652	0.152936	-0.012235	0.039*	
H17B	0.012716	0.155320	-0.073582	0.039*	
H17C	-0.009032	0.293417	0.030980	0.039*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C14	0.5027 (3)	0.8301 (3)	0.5709 (3)	0.0259 (6)
C13	0.7428 (3)	1.0349 (2)	0.1983 (2)	0.0213 (5)
C15	0.6018 (3)	0.9632 (3)	0.6278 (3)	0.0302 (6)
H15A	0.642520	0.973096	0.563323	0.036*
H15B	0.683648	0.971724	0.700319	0.036*
H15C	0.545821	1.034243	0.657809	0.036*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.02101 (11)	0.02377 (11)	0.01987 (11)	0.00738 (7)	0.01347 (7)	0.01206 (8)
S 1	0.0220 (3)	0.0175 (3)	0.0209 (3)	0.0087 (2)	0.0108 (2)	0.0103 (2)
F1	0.0224 (7)	0.0293 (8)	0.0322 (8)	0.0106 (6)	0.0075 (6)	0.0153 (7)
F3	0.0405 (9)	0.0372 (9)	0.0328 (9)	0.0161 (7)	0.0204 (7)	0.0243 (7)
F2	0.0379 (9)	0.0142 (7)	0.0423 (10)	0.0057 (6)	0.0000 (8)	0.0083 (7)
O2	0.0237 (9)	0.0203 (8)	0.0220 (8)	0.0116 (7)	0.0139 (7)	0.0113 (7)
01	0.0266 (9)	0.0191 (8)	0.0220 (9)	0.0069 (7)	0.0151 (7)	0.0093 (7)
O5	0.0220 (9)	0.0198 (8)	0.0302 (10)	0.0066 (7)	0.0069 (7)	0.0117 (7)
O3	0.0290 (10)	0.0154 (8)	0.0335 (10)	0.0036 (7)	0.0094 (8)	0.0100 (8)
N3	0.0163 (9)	0.0182 (9)	0.0141 (9)	0.0071 (7)	0.0076 (7)	0.0080 (8)
N1	0.0157 (9)	0.0194 (9)	0.0153 (9)	0.0062 (7)	0.0073 (8)	0.0092 (8)
O4	0.0402 (12)	0.0530 (13)	0.0336 (11)	0.0270 (10)	0.0243 (9)	0.0294 (10)
N2	0.0229 (10)	0.0198 (10)	0.0190 (10)	0.0041 (8)	0.0137 (8)	0.0089 (8)
N4	0.0220 (10)	0.0187 (10)	0.0229 (10)	0.0086 (8)	0.0154 (8)	0.0116 (8)
N6	0.0259 (11)	0.0295 (11)	0.0251 (11)	0.0045 (9)	0.0108 (9)	0.0125 (10)
N5	0.0456 (15)	0.0285 (13)	0.0290 (12)	0.0141 (11)	0.0177 (11)	0.0133 (10)
C9	0.0143 (11)	0.0192 (11)	0.0139 (11)	0.0049 (9)	0.0044 (9)	0.0093 (9)
C3	0.0132 (10)	0.0173 (11)	0.0165 (11)	0.0050 (8)	0.0047 (9)	0.0092 (9)
C2	0.0174 (11)	0.0175 (11)	0.0178 (11)	0.0058 (9)	0.0069 (9)	0.0098 (9)
C10	0.0163 (11)	0.0156 (10)	0.0135 (10)	0.0061 (8)	0.0054 (9)	0.0058 (9)
C8	0.0178 (11)	0.0167 (11)	0.0184 (11)	0.0047 (9)	0.0075 (9)	0.0091 (9)
C11	0.0161 (11)	0.0164 (11)	0.0164 (11)	0.0052 (8)	0.0053 (9)	0.0085 (9)
C12	0.0151 (11)	0.0198 (11)	0.0147 (11)	0.0057 (9)	0.0055 (9)	0.0088 (9)
C5	0.0175 (11)	0.0171 (11)	0.0200 (12)	0.0040 (9)	0.0074 (9)	0.0094 (9)
C6	0.0143 (10)	0.0207 (11)	0.0180 (11)	0.0068 (9)	0.0057 (9)	0.0107 (9)
C1	0.0184 (11)	0.0183 (11)	0.0174 (11)	0.0060 (9)	0.0072 (9)	0.0091 (9)
C4	0.0177 (11)	0.0169 (11)	0.0162 (11)	0.0054 (9)	0.0074 (9)	0.0070 (9)
C7	0.0201 (11)	0.0161 (11)	0.0158 (11)	0.0059 (9)	0.0082 (9)	0.0072 (9)
C16	0.0253 (13)	0.0204 (11)	0.0227 (13)	0.0038 (10)	0.0143 (11)	0.0081 (10)
C17	0.0293 (14)	0.0265 (13)	0.0261 (13)	0.0082 (11)	0.0116 (11)	0.0131 (11)
C14	0.0328 (14)	0.0335 (15)	0.0226 (13)	0.0188 (12)	0.0154 (11)	0.0170 (12)
C13	0.0243 (12)	0.0169 (11)	0.0247 (13)	0.0077 (9)	0.0091 (10)	0.0095 (10)
C15	0.0310 (15)	0.0315 (14)	0.0327 (15)	0.0113 (12)	0.0126 (12)	0.0162 (12)

Geometric parameters (Å, °)

Ag1—N3	2.162 (2)	C9—C12	1.505 (3)
Ag1—N1	2.162 (2)	C3—C2	1.396 (3)

S1—O5	1.4442 (18)	C3—C6	1.510 (3)
S1—O3	1.4433 (18)	C3—C4	1.390 (3)
S1—O4	1.434 (2)	C2—H2	0.9500
S1—C13	1.831 (2)	C2—C1	1.380 (3)
F1—C13	1.337 (3)	C10—H10	0.9500
F3—C13	1.333 (3)	C10—C11	1.378 (3)
F2—C13	1.331 (3)	С8—Н8	0.9500
O2—C12	1.240 (3)	C8—C7	1.380 (3)
O1—C6	1.235 (3)	C11—H11	0.9500
N3—C11	1.348 (3)	С5—Н5	0.9500
N3—C7	1.347 (3)	C5—C4	1.380 (3)
N1—C5	1.346 (3)	C1—H1	0.9500
N1—C1	1.345 (3)	C4—H4	0.9500
N2—H2A	0.8800	С7—Н7	0.9500
N2—H2B	0.8800	C16—C17	1.459 (4)
N2—C6	1.338 (3)	C17—H17A	0.9800
N4—H4A	0.8800	C17—H17B	0.9800
N4—H4B	0.8800	C17—H17C	0.9800
N4—C12	1.331 (3)	C14—C15	1.460 (4)
N6—C16	1.144 (3)	С15—Н15А	0.9800
N5—C14	1.141 (4)	C15—H15B	0.9800
C9—C10	1.395 (3)	С15—Н15С	0.9800
С9—С8	1.395 (3)		
N1—Ag1—N3	172.78 (7)	O2—C12—C9	118.8 (2)
O5—S1—C13	103.79 (11)	N4—C12—C9	118.3 (2)
O3—S1—O5	113.68 (11)	N1—C5—H5	118.5
O3—S1—C13	101.70 (11)	N1C5C4	122.9 (2)
O4—S1—O5	115.49 (12)	C4—C5—H5	118.5
O4—S1—O3	116.01 (13)	O1—C6—N2	123.2 (2)
O4—S1—C13	103.62 (11)	O1—C6—C3	119.5 (2)
C11—N3—Ag1	119.93 (16)	N2	117.3 (2)
C7—N3—Ag1	121.89 (15)	N1—C1—C2	123.0 (2)
C7—N3—C11	118.0 (2)	N1—C1—H1	118.5
C5—N1—Ag1	122.04 (16)	C2—C1—H1	118.5
C1—N1—Ag1	120.28 (16)	C3—C4—H4	120.3
C1—N1—C5	117.6 (2)	C5—C4—C3	119.4 (2)
H2A—N2—H2B	120.0	С5—С4—Н4	120.3
C6—N2—H2A	120.0	N3—C7—C8	122.9 (2)
C6—N2—H2B	120.0	N3—C7—H7	118.5
H4A—N4—H4B	120.0	С8—С7—Н7	118.5
C12—N4—H4A	120.0	N6-C16-C17	179.3 (3)
C12—N4—H4B	120.0	С16—С17—Н17А	109.5
C10—C9—C12	118.3 (2)	C16—C17—H17B	109.5
C8—C9—C10	118.2 (2)	C16—C17—H17C	109.5
C8—C9—C12	123.5 (2)	H17A—C17—H17B	109.5
C2—C3—C6	123.5 (2)	H17A—C17—H17C	109.5
C4—C3—C2	117.9 (2)	H17B—C17—H17C	109.5

C4—C3—C6	118.5 (2)	N5-C14-C15	178.8 (3)
С3—С2—Н2	120.5	F1—C13—S1	110.99 (17)
C1—C2—C3	119.1 (2)	F3—C13—S1	111.58 (16)
C1—C2—H2	120.5	F3—C13—F1	107.2 (2)
С9—С10—Н10	120.3	F2—C13—S1	111.75 (17)
C11—C10—C9	119.4 (2)	F2—C13—F1	107.49 (19)
C11—C10—H10	120.3	F2—C13—F3	107.6 (2)
С9—С8—Н8	120.5	C14—C15—H15A	109.5
С7—С8—С9	118.9 (2)	C14—C15—H15B	109.5
С7—С8—Н8	120.5	C14—C15—H15C	109.5
N3—C11—C10	122.6 (2)	H15A—C15—H15B	109.5
N3—C11—H11	118.7	H15A—C15—H15C	109.5
C10—C11—H11	118.7	H15B—C15—H15C	109.5
O2—C12—N4	122.8 (2)		
Ag1—N3—C11—C10	174.85 (16)	C2—C3—C4—C5	-0.8 (3)
Ag1—N3—C7—C8	-175.54 (17)	C10—C9—C8—C7	-1.2 (3)
Ag1—N1—C5—C4	176.85 (17)	C10—C9—C12—O2	17.8 (3)
Ag1—N1—C1—C2	-177.40 (17)	C10—C9—C12—N4	-162.0 (2)
O5—S1—C13—F1	-172.06 (16)	C8—C9—C10—C11	0.4 (3)
O5—S1—C13—F3	68.43 (19)	C8—C9—C12—O2	-161.1 (2)
O5—S1—C13—F2	-52.1 (2)	C8—C9—C12—N4	19.1 (3)
O3—S1—C13—F1	69.70 (18)	C11—N3—C7—C8	-0.6 (3)
O3—S1—C13—F3	-49.8 (2)	C12-C9-C10-C11	-178.5 (2)
O3—S1—C13—F2	-170.33 (18)	C12—C9—C8—C7	177.7 (2)
N1—C5—C4—C3	0.6 (3)	C5—N1—C1—C2	-0.7 (3)
O4—S1—C13—F1	-51.0 (2)	C6—C3—C2—C1	179.0 (2)
O4—S1—C13—F3	-170.54 (18)	C6—C3—C4—C5	-179.5 (2)
O4—S1—C13—F2	68.9 (2)	C1—N1—C5—C4	0.2 (3)
C9-C10-C11-N3	0.3 (3)	C4—C3—C2—C1	0.4 (3)
C9—C8—C7—N3	1.3 (3)	C4—C3—C6—O1	11.6 (3)
C3—C2—C1—N1	0.4 (3)	C4—C3—C6—N2	-167.8 (2)
C2-C3-C6-O1	-167.0 (2)	C7—N3—C11—C10	-0.2 (3)
C2-C3-C6-N2	13.6 (3)		

Hydrogen-bond geometry (Å, °)

	D—H	H····A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2A····O2 ⁱ	0.88	2.06	2.898 (3)	160
N2—H2 <i>B</i> ···O3	0.88	2.09	2.939 (3)	162
N4—H4A···O1 ⁱⁱ	0.88	2.05	2.927 (3)	171
N4—H4 <i>B</i> ···O5 ⁱⁱⁱ	0.88	2.22	3.033 (3)	154

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*-1, *y*, *z*+1; (iii) -*x*+1, -*y*+1, -*z*+1.