

IUCrData

ISSN 2414-3146

Received 2 November 2021 Accepted 10 November 2021

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; indazol-4-one; Hirshfeld Surface.

CCDC reference: 2121290

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-5-(4-Chlorobenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1*H*-indazol-4-one: crystal structure and Hirshfeld surface analysis

C. Selva Meenatchi,^a S. Athimoolam,^b J. Suresh,^a S. Raja Rubina,^c R. Ranjith Kumar^c and S. R. Bhandari^d*

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bDepartment of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil 629 004, Tamilnadu, India, ^cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^dDepartment of Physics, Bhairahawa M. Campus, Tribhuvan University, Nepal. *Correspondence e-mail: shalikaa.bh@gmail.com

In the title compound, $C_{20}H_{15}CIN_2O$, the non-aromatic six-membered ring adopts a distorted envelope conformation with methylene-C atom nearest to the five-membered ring being the flap atom. The dihedral angle between the phenyl and chlorobenzene rings is 74.5 (1)°. The heterocyclic ring forms dihedral angles of 37.9 (1) and 64.3 (1)° with the phenyl and chlorobenzene rings, respectively. In the crystal, weak C-H···O interactions feature predominantly within the three-dimensional architecture. The intermolecular interactions are further analysed with the calculation of the Hirshfeld surfaces highlighting the prominent role of C-H···O interactions, along with H···H (36.8%) and C···H/H···C (26.5%) contacts.

Structure description

Many heterocyclic compounds are studied for their biological and pharmacological activities. For example, 1,2-diazole derivatives are known to possess anti-depressant, antiviral, anti-inflammatory and anti-cancer activities (Popat *et al.*, 2003; Faisal *et al.*, 2019). The crystal and molecular structure of one such indazole derivative, namely, (*E*)-5-(4chlorobenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1*H*- indazol-4-one, is reported herein.

The non-aromatic six-membered ring adopts a distorted envelope conformation with the methylene-C10 atom being the flap atom, Fig. 1. The heterocyclic ring forms dihedral angles of 37.9 (1) and 64.3 (1)° with the phenyl and chlorobenzene rings, respectively. The

Table 1	
Hydrogen-bond geometry (Å, °)	•

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C14-H14O1	0.93	2.43	2.804 (3)	104
$C5-H5\cdots O1^{i}$	0.93	2.53	3.320 (3)	143
$C7-H7\cdots O1^{ii}$	0.93	2.59	3.493 (3)	163
$C17-H17\cdots O1^{iii}$	0.93	2.40	3.260 (3)	154
$C2-H2\cdots Cl1^{iv}$	0.93	2.90	3.633 (3)	137

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, y, $-z + \frac{1}{2}$; (iii) x, -y + 2, $z + \frac{1}{2}$; (iv) $x - \frac{1}{2}$, $y - \frac{1}{2}$, z - 1.

dihedral angle between the pendant rings is $74.5 (1)^{\circ}$. The molecular structure features a weak intramolecular interaction through C14-H14···O1 (Table 1).

The molecular packing features two ring motifs, viz., $R_2^2(10)$ and $R_2^2(16)$ (Bernstein *et al.*, 1995), each around an inversion centre, through two C-H···O interactions, *i.e.* C7-H7···O1ⁱⁱ and C5-H5···O1ⁱ, respectively, Fig. 2; for symmetry codes, refer to Table 1. The centrosymmetric dimers thus formed are connected through two C-H···X interactions, viz., C17-H17···Oⁱⁱⁱ and C2-H2···Cl^{iv}, leading to chain C(8) and C(15)motifs, respectively. The first named interaction serves to connect the molecules along the along [001] and the latter along [101], Fig. 3. Clearly, the carbonyl-O1 atom plays a pivotal role in the supramolecular assembly.

The intermolecular interactions in the crystal state can be visualized through the calculation of the Hirshfeld surfaces and associated two-dimensional fingerprint plots. These were

Figure 1 The molecular structure of the title compound, showing 50% probability displacement ellipsoids

Figure 2 A view of the unit-cell contents viewed in projection down the *b*-axis.

Figure 3

Views of significant C-H···X interactions (X = O or Cl) shown as dashed lines forming (a) an $R_2^2(10)$ ring motif, (b) an $R_2^2(16)$ ring, (c) a C(8) chain motif and (d) a C(15) chain.

generated by *Crystal Explorer* (Wolff *et al.*, 2012). The Hirshfeld surface is colour-mapped with the normalized contact distance, d_{norm} , *i.e.* from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The different types of intermolecular interactions can be identified by colour-coding distances from the surface to the nearest atom exterior (d_e) or interior (d_i) plots to the surface. The three-dimensional Hirshfeld surfaces and selected two-dimensional fingerprint plots (with percentage contributions) are given in Fig. 4.

The presence of spikes due to $O \cdots H/H \cdots O$ interactions (8.6%) correspond to $C-H \cdots O$ intermolecular interactions, which feature predominantly within the crystalline assembly. The contribution of $C \cdots H/H \cdots C$ contacts (26.5%), leading to a pair of well-defined wings, is also noteworthy. The $H \cdots H$

Figure 4

Hirshfeld three-dimensional surfaces (showing d_{norm} , d_i and d_e) and selected two-dimensional fingerprint plots

interactions contribute 36.8% with widely scattered points of high density, which is consistent with the large number of hydrogen atoms at the surface of the molecule. The Cl···H/ H···Cl contacts also make a notable contribution to the total Hirshfeld surfaces, comprising about 12.9%. The large number of H···H, Cl···H/H···Cl, O···H/H···O interactions suggest that van der Waals interactions play a significant role in the packing in the crystal.

Synthesis and crystallization

A mixture of 1-phenyl-1,5,6,7-tetrahydro-4*H*-indazol-4-one, (1 mmol) and 4-chlorobenzaldehyde (1 mmol) was dissolved in ethanol followed by the addition of NaOH. The resulting mixture was stirred at room temperature for 1 h to afford (*E*)-5-(4-chlorobenzylidene)-1-phenyl-1,5,6,7-tetrahydro-4*H*-ind-azol-4-ones as the precipitate. This was filtered off and recrystallized from ethanol to afford colourless crystals; yield: 95%, m.p. $183-184^{\circ}$ C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

JS thanks the management of Madura College for their constant support and encouragement. The authors' contributions are as follows. Conceptualization, CSM; methodology, CSM, SA; investigation, CSM, RRK; synthesis, ; X-ray analysis, ; validation, SA; writing (original draft), CSM; writing (review and editing of the manuscript), SRB; visualization, JS; resources, RRK, SRR; supervision, JS; project administration, SRB.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Table 2
Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{15}CIN_2O$
M _r	334.79
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	293
a, b, c (Å)	30.4808 (16), 8.6604 (5), 14.0457 (7)
β (°)	115.071 (2)
$V(A^3)$	3358.4 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.24
Crystal size (mm)	$0.22 \times 0.20 \times 0.16$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	-
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	42189, 2949, 2353
R _{int}	0.056
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.146, 1.12
No. of reflections	2949
No. of parameters	218
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.39, -0.44

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL97 and SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020).

- Faisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131(8), 1–30.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). *Indian J. Chem. Sect. B*, 42, 1497–1501.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer*, University of Western Australia, Crawley.

full crystallographic data

IUCrData (2021). **6**, x211195 [https://doi.org/10.1107/S2414314621011950]

(*E*)-5-(4-Chlorobenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1*H*-indazol-4-one: crystal structure and Hirshfeld surface analysis

C. Selva Meenatchi, S. Athimoolam, J. Suresh, S. Raja Rubina, R. Ranjith Kumar and S. R. Bhandari

F(000) = 1392

 $\theta = 2.9 - 23.5^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$

Block, colourless

 $0.22 \times 0.20 \times 0.16 \text{ mm}$

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$

2353 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.056$

 $h = -36 \rightarrow 36$

 $k = -10 \rightarrow 10$

 $l = -16 \rightarrow 16$

 $D_{\rm x} = 1.324 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2246 reflections

(E)-5-(4-Chlorobenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1H-indazol-4-one

Crystal data

C₂₀H₁₅ClN₂O $M_r = 334.79$ Monoclinic, C2/c a = 30.4808 (16) Å b = 8.6604 (5) Å c = 14.0457 (7) Å $\beta = 115.071$ (2)° V = 3358.4 (3) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD
diffractometerRadiation source: fine-focus sealed tube
 ω and φ scans42189 measured reflections2949 independent reflections

Refinement

Refinement on F² H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.0578P)^2 + 3.7997P]$ $R[F^2 > 2\sigma(F^2)] = 0.051$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.146$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.12 $\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$ 2949 reflections 218 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015b), 0 restraints $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Hydrogen site location: inferred from Extinction coefficient: 0.0169 (15) neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were included in their geometrically calculated positions and refined isotropically with C—H = 0.93 or 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.30506 (10)	0.5737 (4)	0.3310(2)	0.0788 (9)
H1	0.3008	0.6269	0.2702	0.095*
C2	0.26559 (11)	0.5226 (5)	0.3465 (3)	0.0966 (12)
H2	0.2345	0.5414	0.2953	0.116*
C3	0.27141 (10)	0.4449 (4)	0.4359 (3)	0.0853 (9)
Н3	0.2445	0.4113	0.4450	0.102*
C4	0.31708 (10)	0.4167 (3)	0.5118 (2)	0.0706 (7)
H4	0.3212	0.3647	0.5729	0.085*
C5	0.35712 (9)	0.4656 (3)	0.49759 (19)	0.0580 (6)
Н5	0.3881	0.4453	0.5487	0.070*
C6	0.35095 (8)	0.5440 (3)	0.40771 (17)	0.0531 (6)
C7	0.43290 (9)	0.6267 (3)	0.30115 (16)	0.0558 (6)
H7	0.4422	0.6301	0.2461	0.067*
C8	0.46319 (8)	0.6698 (3)	0.40535 (15)	0.0466 (5)
С9	0.43539 (8)	0.6472 (2)	0.46043 (15)	0.0447 (5)
C10	0.45229 (8)	0.6841 (3)	0.57428 (15)	0.0490 (5)
H10A	0.4664	0.5931	0.6165	0.059*
H10B	0.4252	0.7178	0.5882	0.059*
C11	0.49020 (8)	0.8128 (3)	0.60228 (17)	0.0536 (6)
H11A	0.4739	0.9090	0.5720	0.064*
H11B	0.5055	0.8254	0.6780	0.064*
C12	0.52910 (8)	0.7832 (3)	0.56429 (16)	0.0460 (5)
C13	0.51238 (8)	0.7266 (3)	0.45363 (16)	0.0480 (5)
C14	0.57663 (8)	0.8010 (3)	0.62150 (17)	0.0503 (5)
H14	0.5962	0.7770	0.5876	0.060*
C15	0.60225 (8)	0.8534 (3)	0.73111 (17)	0.0483 (5)
C16	0.58651 (9)	0.9775 (3)	0.77156 (18)	0.0545 (6)
H16	0.5589	1.0315	0.7278	0.065*
C17	0.61102 (9)	1.0221 (3)	0.87534 (19)	0.0599 (6)
H17	0.6002	1.1056	0.9011	0.072*
C18	0.65138 (9)	0.9423 (3)	0.93968 (19)	0.0617 (7)
C19	0.66861 (9)	0.8207 (3)	0.9027 (2)	0.0666 (7)
H19	0.6962	0.7676	0.9473	0.080*
C20	0.64429 (8)	0.7783 (3)	0.7983 (2)	0.0595 (6)
H20	0.6563	0.6978	0.7725	0.071*
N1	0.39190 (7)	0.5928 (2)	0.39106 (13)	0.0502 (5)
N2	0.39011 (8)	0.5812 (2)	0.29111 (14)	0.0588 (5)
01	0.53879 (6)	0.7264 (2)	0.40725 (12)	0.0669 (5)
Cl1	0.68147 (4)	0.99499 (12)	1.07100 (6)	0.1050 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0585 (16)	0.120 (3)	0.0481 (14)	0.0063 (16)	0.0129 (12)	-0.0020 (15)
C2	0.0489 (15)	0.156 (3)	0.0687 (19)	-0.0017 (18)	0.0097 (14)	-0.014 (2)
C3	0.0570 (16)	0.119 (3)	0.082 (2)	-0.0160 (17)	0.0322 (15)	-0.0208 (19)
C4	0.0634 (16)	0.0813 (19)	0.0700 (17)	-0.0088 (14)	0.0310 (14)	-0.0017 (14)
C5	0.0515 (13)	0.0658 (15)	0.0528 (13)	-0.0032 (11)	0.0185 (11)	-0.0002 (11)
C6	0.0450 (12)	0.0638 (14)	0.0472 (12)	-0.0030 (10)	0.0163 (10)	-0.0126 (11)
C7	0.0719 (16)	0.0620 (14)	0.0346 (11)	-0.0053 (12)	0.0235 (11)	-0.0014 (10)
C8	0.0588 (12)	0.0498 (12)	0.0326 (10)	-0.0014 (10)	0.0205 (9)	-0.0006 (9)
C9	0.0512 (12)	0.0463 (12)	0.0342 (10)	0.0015 (9)	0.0159 (9)	-0.0006 (8)
C10	0.0503 (12)	0.0643 (14)	0.0354 (10)	-0.0041 (10)	0.0208 (9)	-0.0065 (10)
C11	0.0565 (13)	0.0652 (14)	0.0418 (11)	-0.0061 (11)	0.0234 (10)	-0.0131 (10)
C12	0.0542 (12)	0.0478 (12)	0.0389 (11)	-0.0037 (10)	0.0225 (9)	-0.0017 (9)
C13	0.0612 (13)	0.0496 (12)	0.0380 (10)	-0.0013 (10)	0.0256 (10)	0.0011 (9)
C14	0.0583 (13)	0.0526 (13)	0.0458 (12)	-0.0079 (10)	0.0278 (10)	-0.0038 (10)
C15	0.0494 (12)	0.0484 (12)	0.0476 (12)	-0.0080 (10)	0.0211 (10)	-0.0035 (9)
C16	0.0570 (13)	0.0497 (13)	0.0512 (13)	-0.0031 (10)	0.0175 (11)	-0.0019 (10)
C17	0.0673 (15)	0.0550 (14)	0.0565 (14)	-0.0070 (12)	0.0253 (12)	-0.0130 (11)
C18	0.0647 (15)	0.0654 (16)	0.0472 (13)	-0.0158 (12)	0.0162 (12)	-0.0066 (11)
C19	0.0528 (13)	0.0643 (16)	0.0637 (16)	-0.0029 (12)	0.0064 (12)	-0.0019 (13)
C20	0.0498 (13)	0.0578 (14)	0.0671 (15)	-0.0046 (11)	0.0211 (12)	-0.0139 (12)
N1	0.0526 (10)	0.0598 (12)	0.0343 (9)	-0.0020 (9)	0.0146 (8)	-0.0049 (8)
N2	0.0689 (13)	0.0686 (13)	0.0332 (9)	-0.0044 (10)	0.0163 (9)	-0.0038 (9)
01	0.0719 (11)	0.0929 (14)	0.0488 (9)	-0.0152 (10)	0.0382 (9)	-0.0104 (9)
C11	0.1194 (8)	0.1189 (8)	0.0501 (4)	-0.0154 (6)	0.0101 (4)	-0.0184 (4)

Geometric parameters (Å, °)

C1—C6	1.380 (3)	C10—H10B	0.9700
C1—C2	1.383 (4)	C11—C12	1.514 (3)
C1—H1	0.9300	C11—H11A	0.9700
C2—C3	1.367 (5)	C11—H11B	0.9700
С2—Н2	0.9300	C12—C14	1.335 (3)
C3—C4	1.370 (4)	C12—C13	1.498 (3)
С3—Н3	0.9300	C13—O1	1.232 (2)
C4—C5	1.384 (3)	C14—C15	1.472 (3)
C4—H4	0.9300	C14—H14	0.9300
C5—C6	1.375 (3)	C15—C20	1.389 (3)
С5—Н5	0.9300	C15—C16	1.393 (3)
C6—N1	1.428 (3)	C16—C17	1.382 (3)
C7—N2	1.312 (3)	C16—H16	0.9300
С7—С8	1.410 (3)	C17—C18	1.366 (4)
С7—Н7	0.9300	C17—H17	0.9300
С8—С9	1.382 (3)	C18—C19	1.373 (4)
C8—C13	1.445 (3)	C18—C11	1.737 (2)
C9—N1	1.354 (3)	C19—C20	1.384 (3)

data reports

C9—C10	1.492 (3)	С19—Н19	0.9300
C10—C11	1.532 (3)	C20—H20	0.9300
C10—H10A	0.9700	N1—N2	1.385 (2)
C6—C1—C2	118.6 (3)	C10—C11—H11A	108.8
C6—C1—H1	120.7	C12—C11—H11B	108.8
C2-C1-H1	120.7	C10-C11-H11B	108.8
C3—C2—C1	121.3 (3)	H11A—C11—H11B	107.7
С3—С2—Н2	119.4	C14—C12—C13	117.88 (19)
C1—C2—H2	119.4	C14—C12—C11	125.50 (19)
C2—C3—C4	119.7 (3)	C13—C12—C11	116.62 (18)
С2—С3—Н3	120.1	01-C13-C8	122.14 (19)
C4—C3—H3	120.1	01-C13-C12	122.5(2)
C_{3} C_{4} C_{5}	120.0(3)	C8-C13-C12	122.3(2) 115.31(18)
$C_3 - C_4 - H_4$	120.0 (3)	C_{12} C_{14} C_{15}	128.6(2)
$C_5 C_4 H_4$	120.0	C12 $C14$ $C13$	115 7
$C_{5} = C_{4} = 114$	120.0	$C_{12} = C_{14} = 114$	115.7
$C_0 = C_3 = C_4$	119.8 (2)	C13 - C14 - H14	113.7
C6C5H5	120.1	$C_{20} = C_{15} = C_{16}$	117.5(2)
C4—C5—H5	120.1	C20—C15—C14	119.6 (2)
C5—C6—C1	120.5 (2)	C16—C15—C14	122.9 (2)
C5—C6—N1	120.5 (2)	C17—C16—C15	121.3 (2)
C1—C6—N1	119.0 (2)	C17—C16—H16	119.3
N2—C7—C8	112.04 (19)	C15—C16—H16	119.3
N2—C7—H7	124.0	C18—C17—C16	119.3 (2)
С8—С7—Н7	124.0	C18—C17—H17	120.3
C9—C8—C7	104.84 (19)	C16—C17—H17	120.3
C9—C8—C13	123.08 (18)	C17—C18—C19	121.3 (2)
C7—C8—C13	132.08 (19)	C17—C18—Cl1	119.5 (2)
N1—C9—C8	106.97 (18)	C19—C18—Cl1	119.2 (2)
N1—C9—C10	129.34 (19)	C18—C19—C20	119.0 (2)
C8—C9—C10	123.66 (19)	C18—C19—H19	120.5
C9-C10-C11	108 14 (18)	C20-C19-H19	120.5
C9-C10-H10A	110.1	C_{19} C_{20} C_{15} C_{15}	120.3 121.4(2)
C_{11} C_{10} H_{10A}	110.1	C_{19} C_{20} H_{20}	110.3
C_{0} C_{10} H_{10} H_{10}	110.1	$C_{15} = C_{20} = H_{20}$	119.3
C_{11} C_{10} H_{10P}	110.1	$C_{13} = C_{20} = H_{20}$	119.5
	110.1	C9 - N1 - N2	111.14(10) 120.05(17)
	100.4	$C_9 - N_1 - C_0$	129.93 (17)
	113.84 (19)	N2—NI—C6	118.8/(17)
С12—С11—Н11А	108.8	C/—N2—N1	105.00 (17)
C6 C1 C2 C3	0 3 (5)	C11 C12 C13 C8	-151(3)
$C_{1} = C_{2} = C_{3}$	0.5(5)	$C_{11} = C_{12} = C_{13} = C_{03}$	-170.6(2)
$C_1 - C_2 - C_3 - C_4$	-0.6(5)	$C_{13} - C_{12} - C_{14} - C_{13}$	-0.8(4)
$C_2 = C_3 = C_4 = C_5$	0.0(3)	$C_{11} = C_{12} = C_{14} = C_{15} = C_{20}$	0.0(4)
$C_{4} = C_{5} = C_{5} = C_{5}$	0.0 (4)	C12 - C14 - C13 - C20	137.4 (3)
$\begin{array}{c} \mathbf{U}_{4} \\ \mathbf{U}_{5} \\ \mathbf{U}_{6} \\ \mathbf{U}$	-0.4(4)	C12 - C14 - C15 - C16	-45.2 (4)
C4—C5—C6—N1	-1/8.9(2)	C20—C15—C16—C17	-1.6 (3)
C2—C1—C6—C5	-0.1(4)	C14—C15—C16—C17	179.0 (2)
C2-C1-C6-N1	178.3 (3)	C15—C16—C17—C18	-0.3 (4)

N2—C7—C8—C9 N2—C7—C8—C13	0.0 (3) -179.9 (2)	C16—C17—C18—C19 C16—C17—C18—Cl1	1.3 (4) -178.43 (19)
C7—C8—C9—N1	0.5 (2)	C17—C18—C19—C20	-0.3 (4)
C13—C8—C9—N1	-179.6 (2)	Cl1—C18—C19—C20	179.4 (2)
C7—C8—C9—C10	-177.5 (2)	C18—C19—C20—C15	-1.7 (4)
C13—C8—C9—C10	2.3 (3)	C16—C15—C20—C19	2.7 (4)
N1-C9-C10-C11	-150.9 (2)	C14—C15—C20—C19	-177.9 (2)
C8—C9—C10—C11	26.7 (3)	C8—C9—N1—N2	-0.9 (2)
C9—C10—C11—C12	-48.7 (3)	C10—C9—N1—N2	177.0 (2)
C10-C11-C12-C14	-133.4 (2)	C8—C9—N1—C6	176.8 (2)
C10-C11-C12-C13	45.5 (3)	C10—C9—N1—C6	-5.3 (4)
C9—C8—C13—O1	169.9 (2)	C5—C6—N1—C9	-37.2 (4)
C7—C8—C13—O1	-10.2 (4)	C1—C6—N1—C9	144.3 (3)
C9—C8—C13—C12	-9.1 (3)	C5—C6—N1—N2	140.4 (2)
C7—C8—C13—C12	170.7 (2)	C1—C6—N1—N2	-38.1 (3)
C14—C12—C13—O1	-15.3 (3)	C8—C7—N2—N1	-0.5 (3)
C11—C12—C13—O1	165.8 (2)	C9—N1—N2—C7	0.9 (3)
C14—C12—C13—C8	163.8 (2)	C6—N1—N2—C7	-177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
C14—H14…O1	0.93	2.43	2.804 (3)	104
C5—H5…O1 ⁱ	0.93	2.53	3.320 (3)	143
C7—H7····O1 ⁱⁱ	0.93	2.59	3.493 (3)	163
C17—H17···O1 ⁱⁱⁱ	0.93	2.40	3.260 (3)	154
C2—H2···Cl1 ^{iv}	0.93	2.90	3.633 (3)	137

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+1/2; (iii) x, -y+2, z+1/2; (iv) x-1/2, y-1/2, z-1.