ISSN 2414-3146

Received 4 January 2023 Accepted 28 January 2023

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; oxopyrrolidine; ring conformation; hydrogen bonds.

CCDC reference: 2238498

Structural data: full structural data are available from iucrdata.iucr.org

## data reports

# *rac*-Ethyl *rel*-(2*R*,3*R*,4*S*)-4-hydroxy-1,2-dimethyl-5oxopyrrolidine-3-carboxylate

Fatin Nur Ain Abdul Rashid,<sup>a</sup> Muhamad Zulfaqar Bacho,<sup>a</sup> Muhamad Azwan Hamali,<sup>b</sup> Alexandra M. Z. Slawin,<sup>c</sup> Mohd Fazli Mohammat,<sup>a</sup> Ruwaida Shamsujunaidi<sup>b</sup> and Mohd Abdul Fatah Abdul Manan<sup>b</sup>\*

<sup>a</sup>Organic Synthesis Research Laboratory, Institute of Science, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia, <sup>b</sup>Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and <sup>c</sup>EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom. \*Correspondence e-mail: abdfatah@uitm.edu.my

The asymmetric unit of the title compound,  $C_9H_{15}NO_4$ , consists of a functionalized pyrrolidine ring having an envelope conformation, synthesized as an ethyl ester. The molecule has three chiral centres and crystallized as a racemic mixture. In the crystal, molecules are linked by pairwise  $O-H\cdots O$  bonds, generating dimers with twofold rotational symmetry.



#### Structure description

The heterocyclic compound 2-oxopyrrolidine and its derivatives have generated a lot of interest because of their practical significance (Pandya & Desai, 2020). These compounds have shown to be effective analgesics, anti-inflammatory (Salgın-Gökşen *et al.*, 2007), antiviral (Tian *et al.*, 2009), antimicrobial (Özkay *et al.*, 2010; Salgın-Gökşen *et al.*, 2007), antitumor (Abdel-Aziz *et al.*, 2021), anticonvulsant (Angelova *et al.*, 2016), anti-depressant (Kulandasamy *et al.*, 2009), cardioprotective (Ghazouani *et al.*, 2019) and antiplatelet agents (Mashayekhi *et al.*, 2013; Ghazouani *et al.*, 2019).

During the course of our study towards pyrrolidine-based iminosugars, we have synthesized the title compound by reduction of 2,3-dioxopyrrolidine (Bacho *et al.*, 2020; Abdul Rashid *et al.*, 2020). The starting material, 2,3-dioxopyrrolidine, was initially prepared *via* a multicomponent reaction, according to a previously reported procedure (Mohammat *et al.*, 2009, 2011).

The title compound crystallizes in the monoclinic crystal system, space group C2/c, with one molecule in the asymmetric unit (Fig. 1). The pyrrolidine ring (C1–C4/N1) adopts an envelope conformation, with atom C4 deviating by 0.180 (1) Å from the mean





Figure 1



plane. There are three chiral centres within the ring, at C4, with a C1–C4–C5–O4 torsion angle of  $-94.04 (11)^{\circ}$ . The methyl and hydroxyl groups, attached to C1 and C3, respectively, are orientated awayfrom the mean plane with C2–N1–C1–C8 and N1–C2–C3–O2 torsion angles of 142.07 (10) and  $-135.48 (10)^{\circ}$ , respectively. Meanwhile, the



Figure 2

The O-H···O hydrogen bonds, indicated by green dashed bonds, forming  $R_2^2(10)$  motifs in the crystal.



Figure 3

The molecular packing of title compound, viewed down the a axis. Intermolecular hydrogen bonds are indicated by green dashed lines.

Table 1Hydrogen-bond geometry (Å, °).

| ,                                                                                                                                                                | , , , , , , , , , , , , , , , , , , , ,  | /                                        |                                                                         |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|
| $D - H \cdots A$                                                                                                                                                 | D-H                                      | $H \cdot \cdot \cdot A$                  | $D \cdot \cdot \cdot A$                                                 | $D - H \cdot \cdot \cdot A$         |
| $\begin{array}{c} 02 - H2 \cdots O1^{i} \\ C1 - H1 \cdots O1^{ii} \\ C9 - H9A \cdots O1^{ii} \\ C9 - H9C \cdots O3^{iii} \\ C7 - H7C \cdots O1^{iv} \end{array}$ | 0.97 (1)<br>1.00<br>0.98<br>0.98<br>0.98 | 1.78 (1)<br>2.62<br>2.51<br>2.54<br>2.58 | 2.7405 (12)<br>3.3953 (14)<br>3.3355 (16)<br>3.5086 (15)<br>3.5134 (17) | 170 (2)<br>134<br>142<br>169<br>160 |

Symmetry codes: (i) -x + 1, y,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii)  $x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z; (iv) x, -y + 1,  $z + \frac{1}{2}$ .

ethyl ester group (O3/C5/O4/C6/C7) occupies the equatorial position on the pyrrolidine ring at C1, C3, and C4, . All bond lengths (Allen *et al.*, 1987) and angles in the molecule show normal values.

In the crystal, the molecules are linked by pairwise O– H···O hydrogen bonds, involving the carbonyl and hydroxy groups, forming centrosymmetric  $R_2^2(10)$  ring motifs (Table 1, entry 1; Fig. 2). The packing also features C–H···O hydrogen bonds (Table 1), forming zigzag motifs propagating along the *c*-axis direction (Fig. 3).

#### Synthesis and crystallization

A solution of 2,3-dioxopyrrolidine (2.00 g, 10.04 mmol) together with Pd-C (10% wt; 1.39 g, 1.31 mmol) and acetic acid (4.59 ml, 80.32 mmol) was stirred in ethanol. The reaction was stirred vigorously under a hydrogen atmosphere to completion (24 h) and then filtered through Celite. After removal of the solvent, the crude product was purified by flash column chromatography on silica gel using ethyl acetate/ petroleum ether (9/1), to afford two compounds; *trans*-hydroxyester **1** as a white solid and *cis*-hydroxyester **2** as a colourless oil. The white solid of *trans*-hydroxyester **1** was recrystallized from methanol solution to give single crystals of the title compound **1** (0.24 g, 12%).

*trans*-hydroxyester 1: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  4.57 (*d*, *J* = 8.5 Hz, 1H), 4.22 (*q*, *J* = 6.9 Hz, 2H), 3.63 (*s*, 1H), 2.82 (*s*, 3H), 2.67 (*t*, *J* = 8.4 Hz, 1H), 1.37 (*d*, *J* = 3.7 Hz, 3H), 1.29 (*t*, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.00 (C=O), 171.54 (C=O), 72.26 (CHOH), 61.71 (OCH<sub>2</sub>), 54.35 (CH), 31.23 (CHCH<sub>3</sub>), 27.33 (CH<sub>3</sub>N), 19.31 (CH<sub>3</sub>), 14.27 (CH<sub>3</sub>); GCMS *m*/*z* (EI, +ve): found: 201.10 ([*M*]<sup>+</sup>), calculated for C<sub>9</sub>H<sub>15</sub>NO<sub>4</sub>: 201.10.

*cis*-hydroxyester **2**: (0.50 g, 25%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  4.44 (*d*, *J* = 7.3 Hz, 1H), 4.19 (*td*, *J* = 7.2, 4.9 Hz, 2H), 3.74 (*t*, *J* = 6.6 Hz, 1H), 3.38 (*t*, *J* = 6.6 Hz, 1H), 2.82 (*s*, 3H), 1.32–1.23 (*m*, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  172.82 (C=O), 169.59 (C=O), 70.88 (CHOH), 61.11 (OCH<sub>2</sub>), 53.06 (CH), 49.21 (CHCH<sub>3</sub>), 27.13 (CH<sub>3</sub>N), 15.28 (CH<sub>3</sub>), 14.37 (CH<sub>3</sub>); GCMS *m*/*z* (EI, +ve): found: 201.10 ([*M*]<sup>+</sup>), calculated for C<sub>9</sub>H<sub>15</sub>NO<sub>4</sub>: 201.10.

#### Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2 Experimental details.

| Crystal data                                                          |                                              |
|-----------------------------------------------------------------------|----------------------------------------------|
| Chemical formula                                                      | $C_9H_{15}NO_4$                              |
| $M_{\rm r}$                                                           | 201.22                                       |
| Crystal system, space group                                           | Monoclinic, C2/c                             |
| Temperature (K)                                                       | 173                                          |
| a, b, c (Å)                                                           | 12.1599 (15), 8.6065 (8), 20.217 (2)         |
| β (°)                                                                 | 101.960 (3)                                  |
| $V(\dot{A}^3)$                                                        | 2069.9 (4)                                   |
| Z                                                                     | 8                                            |
| Radiation type                                                        | Μο Κα                                        |
| $\mu (\text{mm}^{-1})$                                                | 0.10                                         |
| Crystal size (mm)                                                     | $0.2 \times 0.2 \times 0.1$                  |
| Data collection                                                       |                                              |
| Diffractometer                                                        | Rigaku XtaLAB P200                           |
| Absorption correction                                                 | Multi-scan ( <i>REQAB</i> ; Rigaku,<br>1998) |
| T <sub>min</sub> , T <sub>mm</sub>                                    | 0.879. 0.990                                 |
| No. of measured, independent and                                      | 11140, 1874, 1769                            |
| observed $[I > 2\sigma(I)]$ reflections                               | ,,,,,,,                                      |
| Rint                                                                  | 0.019                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                  | 0.603                                        |
| Deference                                                             |                                              |
| Refinement<br>$P[E^2 > 2\pi(E^2)] = P(E^2)$                           | 0.022 0.088 1.04                             |
| K[T > 2O(T)], WK(T), S                                                | 0.055, 0.088, 1.04                           |
| No. of reflections                                                    | 18/4                                         |
| No. of parameters                                                     | 134                                          |
| No. of restraints                                                     | l<br>II stano turcto l bar a mistano af      |
| H-atom treatment                                                      | independent and constrained<br>refinement    |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$ | 0.24, -0.18                                  |

Computer programs: CrystalClear-SM Expert (Rigaku, 2015), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

#### **Funding information**

The authors thank Universiti Teknologi MARA and the Malaysian Government (MOHE) for financial support [grant No. 600-RMC/SRC/5/3 (043/2020)].

| Re | fer | en | ces |
|----|-----|----|-----|
|    |     | ~  | ~~~ |

| References                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abdel-Aziz, A. AM., El-Azab, A. S., AlSaif, N. A., Obaidullah, A. J.,<br>Al-Obaid, A. M. & Al-Suwaidan, I. A. (2021). J. Enzyme Inhib.<br>Med. Chem. 36, 1520–1538.                                            |
| Abdul Rashid, F. N. A., Mohammat, M. F., Bouchamma, F. E.,<br>Shaameri, Z. & Hamzah, A. S. (2020). <i>Russ. J. Org. Chem.</i> 56, 1082–<br>1088.                                                               |
| Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G.<br>& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.                                                                           |
| Angelova, V., Karabeliov, V., Andreeva-Gateva, P. A. & Tcheka-<br>larova, J. (2016). Drug Dev. Res. 77, 379–392.                                                                                               |
| Bacho, M. Z., Mohammat, M. F., Shaameri, Z., Wibowo, A.,<br>Kamarulzaman, F. & Hamzah, A. S. (2020). Orient. J. Chem. 36,<br>309–319.                                                                          |
| Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &<br>Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.                                                                                      |
| Ghazouani, L., Khdhiri, E., Elmufti, A., Feriani, A., Tir, M., Baaziz, I.,<br>Hajji, R., Ben Mansour, H., Ammar, H., Abid, S. & Mnafgui, K.<br>(2019). <i>Can. J. Physiol. Pharmacol.</i> <b>97</b> , 989–998. |
| Kulandasamy, R., Adhikari, A. V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 4376–4384.                                                                                                                    |
| Mashayekhi, V., Haj Mohammad Ebrahim Tehrani, K., Amidi, S. & Kobarfard, F. (2013). <i>Chem. Pharm. Bull.</i> <b>61</b> , 144–150.                                                                             |
| Mohammat, M. F., Najim, N., Mansor, N. S., Sarman, S., Shaameri, Z.,<br>Zain, M. M. & Hamzah, A. S. (2011). Arkivoc, pp. 429–438.                                                                              |
| Mohammat, M. F., Shaameri, Z. & Hamzah, A. S. (2009). <i>Molecules</i> ,<br>14, 250–256.                                                                                                                       |
| Özkay, Y., Tunali, Y., Karaca, H. & Işikdağ, I. (2010). Eur. J. Med. Chem. 45, 3293–3298.                                                                                                                      |
| Pandya, K. M. & Desai, P. S. (2020). Rasayan J. Chem. 13, 1054-1062.                                                                                                                                           |
| Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.                                                                                                                                                        |
| Rigaku (2015). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.                                                                                                                                       |
| Salgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç,<br>E., Işık, Ş., Aktay, G. & Özalp, M. (2007). <i>Bioorg. Med. Chem.</i> 15,<br>5738–5751.                                               |

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162-2167.

# full crystallographic data

*IUCrData* (2023). **8**, x230075 [https://doi.org/10.1107/S2414314623000755]

rac-Ethyl rel-(2R,3R,4S)-4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate

Fatin Nur Ain Abdul Rashid, Muhamad Zulfaqar Bacho, Muhamad Azwan Hamali, Alexandra M. Z. Slawin, Mohd Fazli Mohammat, Ruwaida Shamsujunaidi and Mohd Abdul Fatah Abdul Manan

rac-Ethyl rel-(2R,3R,4S)-4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate

### Crystal data

C<sub>9</sub>H<sub>15</sub>NO<sub>4</sub>  $M_r = 201.22$ Monoclinic, C2/c a = 12.1599 (15) Å b = 8.6065 (8) Å c = 20.217 (2) Å  $\beta = 101.960$  (3)° V = 2069.9 (4) Å<sup>3</sup> Z = 8

### Data collection

Rigaku XtaLAB P200 diffractometer Detector resolution: 5.814 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998)  $T_{\min} = 0.879, T_{\max} = 0.990$ 11140 measured reflections

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.088$ S = 1.041874 reflections 134 parameters 1 restraint Primary atom site location: dual F(000) = 864  $D_x = 1.291 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71075 \text{ Å}$ Cell parameters from 3484 reflections  $\theta = 2.1-27.5^{\circ}$   $\mu = 0.10 \text{ mm}^{-1}$  T = 173 KPrism, colorless  $0.2 \times 0.2 \times 0.1 \text{ mm}$ 

1874 independent reflections 1769 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.019$   $\theta_{max} = 25.4^\circ, \ \theta_{min} = 2.1^\circ$   $h = -14 \rightarrow 14$   $k = -10 \rightarrow 10$  $l = -24 \rightarrow 24$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0452P)^2 + 1.1669P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.24$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.18$  e Å<sup>-3</sup>

### Special details

Refinement. The hydroxyl H atom (H2) was refined with free coordinates and isotropic displacement parameter.

|     | x            | У            | Ζ           | $U_{ m iso}*/U_{ m eq}$ |
|-----|--------------|--------------|-------------|-------------------------|
| 01  | 0.65691 (7)  | 0.16087 (10) | 0.24315 (4) | 0.0360 (2)              |
| O2  | 0.53577 (7)  | 0.18679 (11) | 0.35435 (4) | 0.0388 (2)              |
| O3  | 0.58426 (9)  | 0.59491 (13) | 0.40623 (5) | 0.0556 (3)              |
| O4  | 0.68278 (7)  | 0.49308 (10) | 0.50163 (4) | 0.0348 (2)              |
| N1  | 0.78865 (8)  | 0.29976 (11) | 0.31723 (5) | 0.0282 (2)              |
| C2  | 0.68560 (9)  | 0.24451 (13) | 0.29333 (5) | 0.0275 (3)              |
| C3  | 0.60731 (9)  | 0.30292 (13) | 0.33799 (5) | 0.0278 (3)              |
| Н3  | 0.561557     | 0.391982     | 0.315420    | 0.033*                  |
| C4  | 0.68834 (9)  | 0.35965 (13) | 0.40091 (5) | 0.0259 (3)              |
| H4  | 0.706096     | 0.271938     | 0.433837    | 0.031*                  |
| C1  | 0.79582 (9)  | 0.40440 (13) | 0.37550 (5) | 0.0275 (3)              |
| H1  | 0.789576     | 0.514521     | 0.359380    | 0.033*                  |
| С9  | 0.88156 (10) | 0.28015 (15) | 0.28261 (6) | 0.0359 (3)              |
| H9A | 0.902826     | 0.381524     | 0.267070    | 0.043*                  |
| H9B | 0.858357     | 0.211119     | 0.243670    | 0.043*                  |
| H9C | 0.946000     | 0.234634     | 0.313807    | 0.043*                  |
| C5  | 0.64421 (9)  | 0.49526 (13) | 0.43501 (6) | 0.0294 (3)              |
| C6  | 0.64892 (11) | 0.62159 (15) | 0.54030 (6) | 0.0364 (3)              |
| H6A | 0.566573     | 0.619870     | 0.537083    | 0.044*                  |
| H6B | 0.669524     | 0.722225     | 0.522480    | 0.044*                  |
| C7  | 0.70872 (15) | 0.60126 (19) | 0.61170 (7) | 0.0567 (4)              |
| H7A | 0.790035     | 0.600863     | 0.614059    | 0.068*                  |
| H7B | 0.686220     | 0.502495     | 0.629065    | 0.068*                  |
| H7C | 0.689349     | 0.687011     | 0.639073    | 0.068*                  |
| C8  | 0.90310 (10) | 0.38489 (16) | 0.42851 (6) | 0.0374 (3)              |
| H8A | 0.967321     | 0.419643     | 0.410005    | 0.045*                  |
| H8B | 0.912839     | 0.275194     | 0.441383    | 0.045*                  |
| H8C | 0.898462     | 0.447241     | 0.468402    | 0.045*                  |
| H2  | 0.4729 (10)  | 0.174 (2)    | 0.3162 (6)  | 0.063 (5)*              |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(\mathring{A}^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|------------|------------|------------|-------------|------------|-------------|
| 01 | 0.0353 (5) | 0.0407 (5) | 0.0292 (4) | 0.0041 (4)  | 0.0005 (3) | -0.0061 (4) |
| 02 | 0.0307 (4) | 0.0512 (5) | 0.0333 (5) | -0.0129 (4) | 0.0038 (4) | 0.0043 (4)  |
| 03 | 0.0666 (7) | 0.0579 (7) | 0.0377 (5) | 0.0363 (5)  | 0.0007 (5) | -0.0005 (4) |
| 04 | 0.0418 (5) | 0.0345 (5) | 0.0271 (4) | 0.0084 (4)  | 0.0048 (3) | -0.0033 (3) |
| N1 | 0.0256 (5) | 0.0321 (5) | 0.0274 (5) | 0.0024 (4)  | 0.0067 (4) | 0.0004 (4)  |
| C2 | 0.0280 (5) | 0.0283 (6) | 0.0247 (5) | 0.0033 (4)  | 0.0022 (4) | 0.0041 (4)  |
| C3 | 0.0239 (5) | 0.0324 (6) | 0.0262 (6) | 0.0001 (4)  | 0.0031 (4) | 0.0030 (4)  |
| C4 | 0.0238 (5) | 0.0286 (6) | 0.0247 (5) | 0.0024 (4)  | 0.0034 (4) | 0.0025 (4)  |
| C1 | 0.0257 (5) | 0.0273 (5) | 0.0296 (6) | 0.0003 (4)  | 0.0061 (4) | -0.0003 (4) |
| C9 | 0.0297 (6) | 0.0449 (7) | 0.0353 (6) | 0.0061 (5)  | 0.0118 (5) | 0.0014 (5)  |
| C5 | 0.0248 (5) | 0.0342 (6) | 0.0291 (6) | 0.0029 (5)  | 0.0054 (4) | 0.0014 (5)  |
| C6 | 0.0399 (7) | 0.0341 (6) | 0.0370 (7) | 0.0036 (5)  | 0.0126 (5) | -0.0060(5)  |
|    |            |            |            |             |            |             |

# data reports

| C7 | 0.0757 (10) | 0.0528 (9) | 0.0374 (7) | 0.0168 (8)  | 0.0023 (7) | -0.0136 (6) |
|----|-------------|------------|------------|-------------|------------|-------------|
| C8 | 0.0252 (6)  | 0.0478 (7) | 0.0372 (6) | -0.0010 (5) | 0.0021 (5) | -0.0065 (5) |

Geometric parameters (Å, °)

| 01—C2     | 1.2340 (14) | C1—H1      | 1.0000      |  |
|-----------|-------------|------------|-------------|--|
| O2—C3     | 1.4087 (14) | C1—C8      | 1.5162 (16) |  |
| O2—H2     | 0.973 (5)   | С9—Н9А     | 0.9800      |  |
| O3—C5     | 1.1957 (14) | С9—Н9В     | 0.9800      |  |
| O4—C5     | 1.3313 (14) | С9—Н9С     | 0.9800      |  |
| O4—C6     | 1.4620 (14) | С6—Н6А     | 0.9900      |  |
| N1—C2     | 1.3337 (15) | C6—H6B     | 0.9900      |  |
| N1-C1     | 1.4709 (14) | C6—C7      | 1.4860 (19) |  |
| N1—C9     | 1.4569 (14) | С7—Н7А     | 0.9800      |  |
| C2—C3     | 1.5266 (15) | С7—Н7В     | 0.9800      |  |
| С3—Н3     | 1.0000      | С7—Н7С     | 0.9800      |  |
| C3—C4     | 1.5192 (15) | C8—H8A     | 0.9800      |  |
| C4—H4     | 1.0000      | C8—H8B     | 0.9800      |  |
| C4—C1     | 1.5488 (14) | C8—H8C     | 0.9800      |  |
| C4—C5     | 1.5095 (15) |            |             |  |
|           |             |            |             |  |
| С3—О2—Н2  | 108.5 (10)  | N1—C9—H9B  | 109.5       |  |
| C5—O4—C6  | 116.81 (9)  | N1—C9—H9C  | 109.5       |  |
| C2—N1—C1  | 113.81 (9)  | H9A—C9—H9B | 109.5       |  |
| C2—N1—C9  | 123.27 (10) | Н9А—С9—Н9С | 109.5       |  |
| C9—N1—C1  | 122.17 (9)  | H9B—C9—H9C | 109.5       |  |
| O1-C2-N1  | 126.17 (10) | O3—C5—O4   | 123.63 (11) |  |
| O1—C2—C3  | 125.01 (10) | O3—C5—C4   | 124.81 (10) |  |
| N1—C2—C3  | 108.82 (9)  | O4—C5—C4   | 111.53 (9)  |  |
| O2—C3—C2  | 113.35 (10) | O4—C6—H6A  | 110.3       |  |
| О2—С3—Н3  | 109.8       | O4—C6—H6B  | 110.3       |  |
| O2—C3—C4  | 110.88 (9)  | O4—C6—C7   | 107.16 (10) |  |
| С2—С3—Н3  | 109.8       | H6A—C6—H6B | 108.5       |  |
| C4—C3—C2  | 103.02 (8)  | С7—С6—Н6А  | 110.3       |  |
| С4—С3—Н3  | 109.8       | С7—С6—Н6В  | 110.3       |  |
| C3—C4—H4  | 109.1       | C6—C7—H7A  | 109.5       |  |
| C3—C4—C1  | 104.33 (8)  | С6—С7—Н7В  | 109.5       |  |
| C1-C4-H4  | 109.1       | С6—С7—Н7С  | 109.5       |  |
| C5—C4—C3  | 113.62 (9)  | H7A—C7—H7B | 109.5       |  |
| С5—С4—Н4  | 109.1       | H7A—C7—H7C | 109.5       |  |
| C5—C4—C1  | 111.32 (9)  | H7B—C7—H7C | 109.5       |  |
| N1-C1-C4  | 101.50 (8)  | C1—C8—H8A  | 109.5       |  |
| N1-C1-H1  | 109.4       | C1—C8—H8B  | 109.5       |  |
| N1-C1-C8  | 113.44 (9)  | C1—C8—H8C  | 109.5       |  |
| C4—C1—H1  | 109.4       | H8A—C8—H8B | 109.5       |  |
| C8—C1—C4  | 113.55 (9)  | H8A—C8—H8C | 109.5       |  |
| C8—C1—H1  | 109.4       | H8B—C8—H8C | 109.5       |  |
| N1—C9—H9A | 109.5       |            |             |  |

| 01          | 45.04 (15)   | C1—N1—C2—O1 | 176.42 (11)  |
|-------------|--------------|-------------|--------------|
| O1—C2—C3—C4 | 164.92 (11)  | C1—N1—C2—C3 | -3.06 (12)   |
| O2—C3—C4—C1 | 148.36 (9)   | C1—C4—C5—O3 | 84.29 (14)   |
| O2—C3—C4—C5 | -90.22 (11)  | C1—C4—C5—O4 | -94.04 (11)  |
| N1—C2—C3—O2 | -135.48 (10) | C9—N1—C2—O1 | 6.15 (18)    |
| N1—C2—C3—C4 | -15.60 (12)  | C9—N1—C2—C3 | -173.33 (10) |
| C2—N1—C1—C4 | 19.89 (12)   | C9—N1—C1—C4 | -169.72 (9)  |
| C2—N1—C1—C8 | 142.07 (10)  | C9—N1—C1—C8 | -47.54 (14)  |
| C2—C3—C4—C1 | 26.79 (11)   | C5—O4—C6—C7 | -175.57 (11) |
| C2—C3—C4—C5 | 148.21 (9)   | C5-C4-C1-N1 | -151.06 (9)  |
| C3—C4—C1—N1 | -28.13 (10)  | C5—C4—C1—C8 | 86.83 (11)   |
| C3—C4—C1—C8 | -150.24 (10) | C6—O4—C5—O3 | -0.29 (17)   |
| C3—C4—C5—O3 | -33.14 (16)  | C6—O4—C5—C4 | 178.06 (9)   |
| C3—C4—C5—O4 | 148.53 (9)   |             |              |
|             |              |             |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|-------------------------------------|-------------|----------|--------------|-------------------------|
| O2—H2…O1 <sup>i</sup>               | 0.97 (1)    | 1.78 (1) | 2.7405 (12)  | 170 (2)                 |
| C1—H1···O1 <sup>ii</sup>            | 1.00        | 2.62     | 3.3953 (14)  | 134                     |
| С9—Н9А…О1 <sup>іі</sup>             | 0.98        | 2.51     | 3.3355 (16)  | 142                     |
| C9—H9 <i>C</i> ···O3 <sup>iii</sup> | 0.98        | 2.54     | 3.5086 (15)  | 169                     |
| C7— $H7C$ ···O1 <sup>iv</sup>       | 0.98        | 2.58     | 3.5134 (17)  | 160                     |

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+3/2, y+1/2, -z+1/2; (iii) x+1/2, y-1/2, z; (iv) x, -y+1, z+1/2.