ISSN 2414-3146

Received 13 December 2022
Accepted 13 February 2023

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; carbonate; allyl group; monomer.

CCDC reference: 2241801

Structural data: full structural data are available from iucrdata.iucr.org

1,4-Phenylene diallyl bis(carbonate)

Delia López-Velázquez, ${ }^{\text {a }}$ Irma Núñez-Méndez, ${ }^{\text {b }}$ Sylvain Bernès, ${ }^{c}$ * Isabel Martínezde la Luz ${ }^{\text {b }}$ and María Ana Pérez-Cruz ${ }^{\text {a }}$

${ }^{\text {a }}$ Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico,
${ }^{\mathbf{b}}$ Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and ${ }^{\text {c Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y } 18 \text { Sur, }}$ 72570 Puebla, Pue., Mexico. *Correspondence e-mail: sylvain_bernes@hotmail.com

The title molecule, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$, is based on a benzene core di-substituted by allyl carbonate groups in the para positions. The molecule is placed on an inversion centre, and the substituents are twisted with respect to the central benzene ring plane. The crystal structure does not include significant intermolecular interactions other than weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts between CH groups in the benzene ring and carbonate O atoms.

Chemical scheme

Structure description

Allylic compounds are common reagents in organic chemistry for obtaining new allyl derivatives and polymeric materials (e.g. Nair et al., 2010). Within this class of compounds, functional allyl aromatic carbonates (Flores Ahuactzin et al., 2009) are also suitable building blocks to produce diallyl carbonate compounds (López et al., 1997), as well as reactive homopolycarbonates or copolymers, obtained by free radical polymerization. Concerning diallyl carbonates, they can be used as cross-linking agents (Nair et al., 2010; López \& Burillo, 1991), and they can also be polymerized to homopolymers or copolymers, such as poly[allyl(p-allylcarbonate)benzoate] (López-V et al., 2011) or poly[1-benzoate-2,3-diallylcarbonate glycerol] (López et al., 1997).

The reaction between allyl chloroformate (ACF) and a diol affords mono allyl carbonate and diallyl carbonate derivatives. The reaction of ACF with hydroquinone gives allyl-4-hydroxyphenyl carbonate (Flores et al., 2009) and 1,4-phenylene diallyl bis(carbonate). Herein, we report the structure of the latter. The title compound represents the first instance of a 1,4-phenylene bis(carbonate) derivative to be characterized by X-ray diffraction.

Figure 1
Molecular structure of the title compound. Non-H atoms are drawn at the 30% probability level. Non-labelled atoms are generated by the symmetry operation $1-x, 1-y,-z$. The inset is the raw material as obtained from the synthesis. The edges of the hexagonal flake have dimensions of $c a 5 \mathrm{~mm}$.

The molecule lies on an inversion centre in space group $P 2_{1} / n$, with the symmetry element coinciding with the centre of the benzene ring (Fig. 1). This ring is disubstituted in the para positions by allyl carbonate groups, which are not coplanar with the ring: the dihedral angle between the mean plane of the benzene and the plane of the carbonate group O4/ C5/O6/O7 is $68.69(4)^{\circ}$, and the dihedral angle between the carbonate group and the allyl group $\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$ is $51.1(2)^{\circ}$. This twisted conformation was previously observed for the four reported X-ray structures bearing a benzene ring substituted by an allyl carbonate group (Flores Ahuactzin et al., 2009; Herrera-González et al., 2009; Li et al., 2019; Schmid et al., 2019). This conformation does not promote strong intermolecular contacts in the crystal structure, as hydrogen bonds or $\pi-\pi$ interactions. The benzene H atoms are, however, engaged in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts with neighbouring molecules. The $\mathrm{C} 1-\mathrm{H} 1$ group makes an almost linear contact with the carbonate O atom O 7 (Table 1, entry 1; Fig. 2), while C2-H2 interacts with the carbonyl O atom O6, forming centrosymmetric $R_{2}^{2}(14)$ ring motifs in the crystal (Table 1, entry 2; Fig. 3).

Synthesis and crystallization

To a three-neck round-bottom flask connected to an addition funnel, hydroquinone ($2.28 \mathrm{~g}, 20.7 \mathrm{mmol}$) was added and

Figure 2
Part of the crystal structure based on $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 7$ interactions (Table 1, entry 1). The asymmetric unit is coloured in grey, while orange, green and magenta moieties are generated by inversion, 2_{1} axis and n glide plane, respectively.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.59	$3.5100(16)$	169
$\mathrm{C} 2-\mathrm{H} 2 \cdots$ O $^{\mathrm{ii}}$	0.93	2.57	$3.4555(16)$	160

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x, y-1, z$.
dissolved in 20 ml of THF under an argon atmosphere. After continuous agitation, a homogeneous phase was observed in the reaction flask, and $\mathrm{NaHCO}_{3}(0.86 \mathrm{~g}, 10.3 \mathrm{mmol})$, previously dissolved in 5 ml of distilled water, was added. Then, the reaction flask was placed in an ice bath and allyl chloroformate ($1.09 \mathrm{ml}, 10.3 \mathrm{mmol}$) was slowly added dropwise, maintaining the agitation. After complete addition, the reaction was left for $5-10$ minutes at 273 K , and then at room temperature for 2 h . After completion of the reaction, the products were extracted in a separation funnel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was filtered and concentrated. The resulting concentrated solution was precipitated into hexane. The precipitate was collected, washed with hexane, and dried in vacuo (yield: $1.152 \mathrm{~g}, 20 \%$). Transparent prismatic single crystals were recovered from this material for X-ray study (see Fig. 1, inset). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ (p.p.m.): $4.75(d, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.34(d$, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(d d, J=17.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(m, 2 \mathrm{H})$, $7.21(s, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (p.p.m.): 69.3 $\left(-\mathrm{CH}_{2}-\right), 119.7\left(=\mathrm{CH}_{2}\right), 122.0$ (benzene), $131.1(=\mathrm{CH}), 148.6$ (benzene), $154.3(\mathrm{C}=\mathrm{O})$; FTIR (ATR, $v, \mathrm{~cm}^{-1}$): 3082 ($\mathrm{Csp}^{2}-$ H), $2960\left(\mathrm{Csp}^{3}-\mathrm{H}\right), 1757(\mathrm{C}=\mathrm{O}), 1649(\mathrm{C}=\mathrm{C}$, allyl), 1602 $\left(\mathrm{C}=\mathrm{C}\right.$, aromatic), 770 (aromatic ring), $730\left(\mathrm{Csp}^{3}-\mathrm{H}\right)$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 3
Part of the crystal structure based on $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 6$ interactions (Table 1, entry 2). Grey fragments are generated from the asymmetric unit by lattice translations, and orange fragments are generated by inversion.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$
M_{r}	278.25
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	253
$a, b, c(\AA)$	$10.2808(13), 5.4764(6)$,
$\beta\left({ }^{\circ}\right)$	$12.7396(15)$
$V\left(\AA^{3}\right)$	$104.070(9)$
Z	$695.74(14)$
Radiation type	2
$\mu\left(\mathrm{~mm}^{-1}\right)$	$\mathrm{Ag} K \alpha, \lambda=0.56083 \AA$
Crystal size (mm)	0.06
	$0.60 \times 0.50 \times 0.50$
Data collection	
Diffractometer	Stoe Stadivari
Absorption correction	$\mathrm{Multi-scan}(X-A R E A ;$ Stoe \& Cie,
	$2018)$
$T_{\text {min }}, T_{\text {max }}$	$0.536,1.000$
No. of measured, independent and	$16744,1620,1305$
observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.029
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.653
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.035,0.102,1.04$
No. of reflections	1620
No. of parameters	98
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	refinement

Computer programs: X-AREA (Stoe \& Cie, 2018), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), XP in SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178; scholarship No. 820488 to I. Martínez-de la Luz; scholarship No. 1003328 to I. Núñez-Méndez); Secretaría de Educación Pública (award No. PROFOCIE 2018-20).

References

Flores Ahuactzin, V. H., López, D. \& Bernès, S. (2009). Acta Cryst. E65, o1603.
Herrera-González, A. M., López-Velázquez, D. \& Bernès, S. (2009). Acta Cryst. E65, o2810-o2811.
Li, M., Chen, H., Zheng, K., Liu, X., Xiao, S. \& Zhang, N. (2019). Inorg. Chim. Acta, 495, 119000.
López, D. \& Burillo, G. (1991). ACS Symp. Ser. 475, 262-270.
López, D., Plata, P., Burillo, G. \& Medina, C. (1997). Radiat. Phys. Chem. 50, 171-173.
López-V, D., Herrera-G, A. M. \& Castillo-Rojas, S. (2011). Radiat. Phys. Chem. 80, 481-486.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Nair, D. P., Cramer, N. B., Scott, T. F., Bowman, C. N. \& Shandas, R. (2010). Polymer, 51, 4383-4389.

Schmid, M., Grossmann, A. S., Mayer, P., Müller, T. \& Magauer, T. (2019). Tetrahedron, 75, 3195-3215.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Stoe \& Cie (2018). X - A REA and X-RED32, Stoe \& Cie, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2023). 8, x230133 [https://doi.org/10.1107/S2414314623001335]

1,4-Phenylene diallyl bis(carbonate)

Delia López-Velázquez, Irma Núñez-Méndez, Sylvain Bernès, Isabel Martínez-de la Luz and María Ana Pérez-Cruz

1,4-Phenylene diallyl bis(carbonate)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$
$M_{r}=278.25$
Monoclinic, $P 2_{1} / n$
$a=10.2808$ (13) \AA
$b=5.4764$ (6) \AA
$c=12.7396(15) \AA$
$\beta=104.070(9)^{\circ}$
$V=695.74(14) \AA^{3}$
$Z=2$

Data collection

Stoe Stadivari diffractometer
Radiation source: Sealed X-ray tube, Axo Astixf Microfocus source
Graded multilayer mirror monochromator
Detector resolution: 5.81 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(X-AREA; Stoe \& Cie, 2018)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.102$
$S=1.04$
1620 reflections
98 parameters
0 restraints
0 constraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
$F(000)=292$
$D_{\mathrm{x}}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Ag} K \alpha$ radiation, $\lambda=0.56083 \AA$
Cell parameters from 19549 reflections
$\theta=2.3-31.6^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=253 \mathrm{~K}$
Prism, colourless
$0.60 \times 0.50 \times 0.50 \mathrm{~mm}$
$T_{\text {min }}=0.536, T_{\text {max }}=1.000$
16744 measured reflections
1620 independent reflections
1305 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=21.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-13 \rightarrow 13$
$k=-7 \rightarrow 7$
$l=-16 \rightarrow 16$

Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0441 P)^{2}+0.1879 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL-2018/3
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.023 (6)

Special details

Refinement. Allyl H atoms ($\mathrm{H} 10 a$ and $\mathrm{H} 10 b$) were refined with free coordinates, and other H atoms were placed on calculated positions. All H atoms were refined with isotropic displacements, calculated as $U_{\text {iso }}(\mathrm{H})=1.2 \times U_{\text {eq }}($ carrier C atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.41290(13)$	$0.3086(2)$	$-0.03895(10)$	$0.0404(3)$
H1	0.354051	0.182011	-0.066169	0.049^{*}
C2	$0.47808(13)$	$0.3163(2)$	$0.06961(10)$	$0.0401(3)$
H2	0.464542	0.194551	0.116732	0.048^{*}
C3	$0.56326(12)$	$0.5078(2)$	$0.1062(9)$	$0.0365(3)$
O4	$0.63189(9)$	$0.50484(17)$	$0.21618(7)$	$0.0450(3)$
C5	$0.59396(12)$	$0.6762(2)$	$0.27902(9)$	$0.0366(3)$
O6	$0.51476(10)$	$0.83464(18)$	$0.24966(7)$	$0.0498(3)$
O7	$0.66007(9)$	$0.63120(18)$	$0.37984(6)$	$0.0440(3)$
C8	$0.62690(13)$	$0.7968(3)$	$0.45975(10)$	$0.0444(3)$
H8A	0.532199	0.785459	0.457866	0.053^{*}
H8B	0.646954	0.964013	0.444160	0.053^{*}
C9	$0.70837(14)$	$0.7236(3)$	$0.56723(10)$	$0.0476(3)$
H9	0.799945	0.700847	0.575414	0.057^{*}
C10	$0.6593(2)$	$0.6888(3)$	$0.65149(13)$	$0.0630(4)$
H10A	$0.7141(18)$	$0.644(4)$	$0.7198(16)$	0.076^{*}
H10B	$0.5653(19)$	$0.700(4)$	$0.6461(14)$	0.076^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0448(6)$	$0.0346(6)$	$0.0399(7)$	$-0.0038(5)$	$0.0063(5)$	$-0.0041(5)$
C2	$0.0516(7)$	$0.0331(6)$	$0.0356(6)$	$0.0008(5)$	$0.0109(5)$	$0.0029(5)$
C3	$0.0409(6)$	$0.0367(6)$	$0.0290(6)$	$0.0076(5)$	$0.0031(4)$	$-0.0027(5)$
O4	$0.0532(5)$	$0.0449(5)$	$0.0309(4)$	$0.0150(4)$	$-0.0012(4)$	$-0.0038(4)$
C5	$0.0368(6)$	$0.0387(6)$	$0.0320(6)$	$0.0025(5)$	$0.0040(4)$	$0.0004(5)$
O6	$0.0567(6)$	$0.0520(6)$	$0.0366(5)$	$0.0203(4)$	$0.0035(4)$	$0.0010(4)$
O7	$0.0472(5)$	$0.0508(5)$	$0.0291(4)$	$0.0135(4)$	$0.0000(3)$	$-0.0038(4)$
C8	$0.0470(7)$	$0.0497(7)$	$0.0343(6)$	$0.0064(6)$	$0.0057(5)$	$-0.0070(5)$
C9	$0.0469(7)$	$0.0544(8)$	$0.0371(7)$	$0.0016(6)$	$0.0019(5)$	$-0.0077(6)$
C10	$0.0770(11)$	$0.0669(10)$	$0.0434(8)$	$0.0006(9)$	$0.0112(7)$	$0.0051(7)$

Geometric parameters $\left({ }^{(},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.3811(17)$	$\mathrm{O} 7-\mathrm{C} 8$	$1.4640(15)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3830(17)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.4763(17)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.3733(18)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 9-\mathrm{C} 10$	$1.306(2)$
$\mathrm{C} 3-\mathrm{O} 4$	$1.4071(14)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300

$\mathrm{O} 4-\mathrm{C} 5$	$1.3513(14)$
$\mathrm{C} 5-\mathrm{O} 6$	$1.1863(14)$
$\mathrm{C} 5-\mathrm{O} 7$	$1.3221(14)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$	$118.84(11)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1$	120.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	120.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.48(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1$	$122.68(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$116.95(11)$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{O} 4$	$120.30(11)$
$\mathrm{C} 5-\mathrm{O} 4-\mathrm{C} 3$	$115.77(9)$
$\mathrm{O} 6-\mathrm{C} 5-\mathrm{O} 7$	$126.45(11)$
$\mathrm{O} 6-\mathrm{C} 5-\mathrm{O} 4$	$126.58(11)$
$\mathrm{O} 7-\mathrm{C} 5-\mathrm{O} 4$	$106.96(9)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.5(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1{ }^{\mathrm{i}}$	$-0.5(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$-177.58(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5$	$-110.62(12)$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5$	$72.25(15)$
$\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 6$	$-4.37(19)$

$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	$0.947(19)$
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	$0.954(18)$

$\mathrm{C} 5-\mathrm{O} 7-\mathrm{C} 8 \quad 114.10$ (9)
O7-C8-C9 107.53 (10)
O7-C8—H8A 110.2
C9—C8—H8A 110.2
O7-C8—H8B 110.2
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \quad 110.2$
H8A-C8-H8B 108.5
C10-C9-C8 123.81 (14)
C10-C9—H9 118.1
C8-C9—H9 118.1
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 122.1$ (12)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 121.3$ (11)
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 116.6$ (16)
$\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 7 \quad 174.50$ (10)
O6-C5-O7-C8 0.88 (19)
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 7-\mathrm{C} 8 \quad-177.99(10)$
$\mathrm{C} 5-\mathrm{O} 7-\mathrm{C} 8-\mathrm{C} 9 \quad-179.91$ (11)
$\mathrm{O} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10 \quad-130.59(16)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.59	$3.5100(16)$	169
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.57	$3.4555(16)$	160

Symmetry codes: (ii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (iii) $x, y-1, z$.

