

ISSN 2414-3146

Received 30 January 2023 Accepted 20 February 2023

Edited by R. J. Butcher, Howard University, USA

Keywords: crystal structure; ruthenium(II); 4methoxypyridine.

CCDC reference: 2243464

Structural data: full structural data are available from iucrdata.iucr.org

trans-Dichloridotetrakis(4-methoxypyridine-*kN*)-ruthenium(II)

Eric W. Reinheimer,^a Rebecca A. Tobias,^b Elisabeth R. Bassel,^b Nicholas A. Cantu^b and Bradley W. Smucker^b*

^aRigaku Americas Corporation, 9009 New Trails Dr., The Woodlands, TX 77381, USA, and ^b900 N Grand Avenue, Suite 61651, Sherman, TX 75090, USA. *Correspondence e-mail: bsmucker@austincollege.edu

The structure of the title complex, $[RuCl_2(C_6H_6NO)_4]$, exhibits point group symmetry $\overline{4}$. The structure exhibits disorder around a $\overline{4}$ axis. The 4-methoxypyridine ligands have a propeller-like arrangement around the Ru^{II} atom at 52.0 (3)° from the RuN₄ plane.

Structure description

The Ru–N distances in the title compound (Fig. 1) are 2.059 (7) and 2.137 (5) Å for N1A and N1B, respectively. These diverge from the Ru–N(pyridyl) distances of 2.090 (3) and 2.092 (3) Å found in the structure of the ruthenium(II) complex containing four 4-methoxypyridine and *trans*-bis(thiocyanato- κN) ligands (Cadranel *et al.*, 2016). The title complex has a propeller-like arrangement of the pyridyl ligands around the ruthenium(II) at 52.0 (3)° from the plane containing the ruthenium and the coordinating nitrogen atoms. This arrangement is typical of Ru^{II} complexes with polypyridyl ligands such as the aforementioned bis(thiocyanato) complex (Cadranel *et al.*, 2016) or Ru(pyrazine- κN)₄Cl₂ (Nesterov *et al.*, 2012). The structure of the title complex has the ruthenium atoms positioned on the $\overline{4}$ axis (Fig. 2), which results in disorder of the chlorido and 4-methoxypyridine ligands.

Synthesis and crystallization

Following the synthetic procedures for *trans*-Ru(4-methoxypyridine- κN)₄Cl₂ (Alborés *et al.*, 2004) and *trans*-Ru(pyrazine- κN)₄Cl₂ (Carlucci *et al.*, 2002), a mixture of 4-meth-oxypyridine (0.5 mL, 5 mmol) and [RuCl₂(dmso)₄] (100 mg, 0.21 mmol) in 17 mL of toluene and 3 mL of butanol were refluxed for 3 h with stirring. After sitting in the cooled

Figure 1

Displacement ellipsoid (50% probability level) representation of the title complex with disorder omitted for clarity.

solution for four days, the solid was filtered in air and washed with 20 mL of toluene to afford 49 mg of the product (39% yield).

Figure 2

Projection of 1 onto the (111) plane. Anisotropic displacement ellipsoids have been set to the 50% probability level. Additional conformations of the molecule generated *via* the disorder around $\overline{4}$ as well as the hydrogen atoms have been removed for the sake of clarity.

Table	1	
Experi	mental	details.

Crystal data	
Chemical formula	$[RuCl_2(C_{12}H_{14}N_2O_2)_2]$
M _r	608.47
Crystal system, space group	Tetragonal, $I4_1/a$
Temperature (K)	293
a, c (Å)	17.2417 (1), 8.7307 (2)
$V(A^3)$	2595.43 (7)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.85
Crystal size (mm)	$0.25 \times 0.12 \times 0.10$
Data collection	
Diffractometer	XtaLAB Mini II
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.901, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	102632, 1494, 1367
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.082, 1.07
No. of reflections	1494
No. of parameters	147
No. of restraints	131
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.38, -0.38

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

Orange prisms were grown from a slow liquid diffusion of tetrahydrofuran into a dichloromethane solution of the title complex.

Refinement

Crystal data, data collection, and refinement details are summarized in Table 1. The asymmetric unit contains one 4-methoxypyridine disordered over two positions around the $\overline{4}$ axis with ratios set to 0.55 and 0.45 between the two conformations. This ratio yielded the highest quality model as judged by the metrics *R*1, *wR*2, as well as resolution of residual electron density. Standard uncertainties were not reported due to the occupancy ratios being fixed. H atoms bound to C atoms were positioned geometrically (C-H = 0.93 or 0.96 Å) and constrained to ride on the parent atom. $U_{\rm iso}$ (H) values were set to a multiple of $U_{\rm eq}$ (C) [1.2 for CH₂ (*sp*²) and 1.5 for CH₃ (*sp*³)]. Twinning by merohedry was resolved by completing the final refinement using the matrix (0 1 0 1 0 0 0 0 $\overline{1}$) twin law.

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College); Jerry Taylor and Nancy Bryant Foundation (gift to the Austin College Science Division).

References

Alborés, P., Slep, L. D., Weyhermüller, T. & Baraldo, L. M. (2004). *Inorg. Chem.* **43**, 6762–6773.

- Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. & Hodak, J. H. (2016). *Dalton Trans.* 45, 5464–5475.
- Carlucci, L., Ciani, G., Porta, F., Proserpio, D. M. & Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907–1911.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Nesterov, V. N., Khan, W., Rangel, A. E. & Smucker, B. W. (2012). *Acta Cryst.* E68, m1193.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2023). 8, x230155 [https://doi.org/10.1107/S2414314623001554]

trans-Dichloridotetrakis(4-methoxypyridine-*kN*)ruthenium(II)

Eric W. Reinheimer, Rebecca A. Tobias, Elisabeth R. Bassel, Nicholas A. Cantu and Bradley W. Smucker

trans-Dichloridotetrakis(4-methoxypyridine-*kN*)ruthenium(II)

Crystal data	
$[RuCl_{2}(C_{12}H_{14}N_{2}O_{2})_{2}]$ $M_{r} = 608.47$ Tetragonal, $I4_{1}/a$ a = 17.2417 (1) Å c = 8.7307 (2) Å V = 2595.43 (7) Å ³ Z = 4 F(000) = 1240	$D_x = 1.557 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 17604 reflections $\theta = 2.4-30.1^{\circ}$ $\mu = 0.85 \text{ mm}^{-1}$ T = 293 K Block, orange $0.25 \times 0.12 \times 0.1 \text{ mm}$
Data collection	
XtaLAB Mini II diffractometer Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source Graphite monochromator Detector resolution: 10.0000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)	$T_{\min} = 0.901, T_{\max} = 1.000$ 102632 measured reflections 1494 independent reflections 1367 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ $h = -22 \rightarrow 22$ $k = -22 \rightarrow 22$ $l = -11 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.082$ S = 1.07 1494 reflections	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 15.430P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Lambda/\sigma)_{max} \le 0.001$
147 parameters	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

Special details

Primary atom site location: dual

131 restraints

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.500000	0.250000	0.875000	0.03156 (14)	
N1B	0.4401 (5)	0.3133 (5)	0.7009 (8)	0.0333 (16)	0.45
C1B	0.3596 (5)	0.3168 (5)	0.6994 (9)	0.031 (2)	0.45
H1B	0.331203	0.293777	0.777710	0.038*	0.45
C2B	0.3214 (4)	0.3547 (7)	0.5807 (11)	0.053 (4)	0.45
H2B	0.267559	0.357028	0.579691	0.064*	0.45
C3B	0.3639 (6)	0.3891 (6)	0.4636 (9)	0.038 (2)	0.45
C4B	0.4444 (6)	0.3857 (5)	0.4652 (8)	0.033 (2)	0.45
H4B	0.472767	0.408712	0.386851	0.040*	0.45
C5B	0.4825 (4)	0.3478 (6)	0.5838 (10)	0.036 (3)	0.45
H5B	0.536412	0.345461	0.584869	0.043*	0.45
Cl1	0.3999 (6)	0.3486 (6)	0.8850 (3)	0.0360 (4)	0.5
O1B	0.3229 (10)	0.4262 (12)	0.3520 (15)	0.052 (4)	0.45
N1A	0.4418 (6)	0.3089 (5)	1.0449 (8)	0.0321 (13)	0.55
C5A	0.4350 (7)	0.3866 (6)	1.0540 (13)	0.045 (3)	0.55
H5A	0.459380	0.415337	0.977769	0.054*	0.55
C2A	0.3646 (7)	0.3066 (7)	1.2771 (14)	0.055 (4)	0.55
H2A	0.341706	0.275510	1.351489	0.066*	0.55
C1A	0.4062 (7)	0.2740 (6)	1.1595 (13)	0.044 (3)	0.55
H1A	0.409791	0.220231	1.160770	0.052*	0.55
C3A	0.3574 (7)	0.3869 (7)	1.2831 (8)	0.038 (2)	0.55
C4A	0.3959 (6)	0.4277 (5)	1.1639 (11)	0.035 (2)	0.55
H4A	0.394618	0.481609	1.160556	0.042*	0.55
C6A	0.2873 (11)	0.3862 (10)	1.5143 (15)	0.077 (5)	0.55
H6AA	0.247065	0.353501	1.474172	0.116*	0.55
H6AB	0.265534	0.421274	1.588180	0.116*	0.55
H6AC	0.326225	0.354836	1.562464	0.116*	0.55
O1A	0.3210 (10)	0.4290 (9)	1.3939 (10)	0.051 (3)	0.55
C6B	0.3627 (9)	0.4650 (8)	0.2338 (13)	0.041 (3)	0.45
H6BA	0.326401	0.493663	0.172646	0.061*	0.45
H6BB	0.389015	0.427743	0.170615	0.061*	0.45
H6BC	0.399952	0.499992	0.277467	0.061*	0.45

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.02965 (17)	0.02965 (17)	0.0354 (3)	0.000	0.000	0.000
N1B	0.034 (3)	0.030 (5)	0.036 (3)	0.004 (3)	0.000 (3)	0.004 (3)
C1B	0.034 (3)	0.026 (6)	0.033 (4)	0.006 (3)	-0.001 (3)	-0.002 (4)
C2B	0.040 (4)	0.056 (10)	0.063 (6)	0.003 (5)	-0.008(4)	0.027 (7)
C3B	0.038 (4)	0.030 (6)	0.047 (5)	0.003 (4)	-0.014 (3)	0.011 (5)
C4B	0.039 (4)	0.041 (6)	0.020 (4)	0.002 (4)	-0.012 (3)	-0.005 (3)
C5B	0.032 (4)	0.048 (7)	0.029 (4)	-0.004(4)	-0.010 (3)	0.007 (4)
Cl1	0.032 (2)	0.042 (3)	0.0339 (8)	0.0063 (6)	-0.0015 (13)	0.0008 (13)
O1B	0.047 (6)	0.055 (9)	0.054 (6)	0.009 (5)	-0.018 (5)	0.022 (6)

data reports

N1A	0.039 (4)	0.023 (3)	0.034 (2)	0.001 (2)	0.001 (2)	0.007 (2)
C5A	0.058 (7)	0.023 (3)	0.053 (5)	-0.001 (3)	0.018 (5)	0.006 (3)
C2A	0.068 (8)	0.035 (3)	0.061 (6)	0.004 (4)	0.029 (6)	0.013 (3)
C1A	0.056 (7)	0.025 (3)	0.049 (4)	0.004 (4)	0.016 (4)	0.013 (3)
C3A	0.050 (6)	0.036 (3)	0.030 (3)	0.003 (3)	-0.005 (3)	0.005 (3)
C4A	0.041 (6)	0.028 (3)	0.034 (3)	0.005 (3)	-0.005 (3)	0.006 (3)
C6A	0.117 (13)	0.070 (9)	0.046 (6)	0.008 (8)	0.029 (7)	0.006 (6)
O1A	0.073 (9)	0.049 (5)	0.032 (4)	0.006 (4)	0.003 (5)	-0.001 (4)
C6B	0.056 (7)	0.029 (5)	0.037 (5)	0.005 (5)	-0.020 (5)	0.003 (4)

Geometric parameters (Å, °)

Ru1—N1B ⁱ	2.137 (5)	C4B—C5B	1.3900
Ru1—N1B ⁱⁱ	2.137 (5)	C5B—H5B	0.9300
Ru1—N1B ⁱⁱⁱ	2.137 (5)	O1B—C6B	1.409 (11)
Ru1—N1B	2.137 (5)	N1A—C5A	1.346 (9)
Ru1—Cl1 ⁱⁱⁱ	2.4235 (15)	N1A—C1A	1.319 (10)
Ru1—Cl1 ⁱⁱ	2.4235 (15)	C5A—H5A	0.9300
Ru1—Cl1 ⁱ	2.4235 (16)	C5A—C4A	1.370 (11)
Ru1—Cl1	2.4236 (15)	C2A—H2A	0.9300
Ru1—N1A	2.059 (7)	C2A—C1A	1.372 (12)
Ru1—N1A ⁱⁱⁱ	2.059 (7)	C2A—C3A	1.391 (11)
Ru1—N1A ⁱ	2.059 (7)	C1A—H1A	0.9300
Ru1—N1A ⁱⁱ	2.059 (7)	C3A—C4A	1.421 (11)
N1B—C1B	1.3900	C3A—O1A	1.363 (7)
N1B—C5B	1.3900	C4A—H4A	0.9300
C1B—H1B	0.9300	С6А—Н6АА	0.9600
C1B—C2B	1.3900	C6A—H6AB	0.9600
C2B—H2B	0.9300	C6A—H6AC	0.9600
C2B—C3B	1.3900	C6A—O1A	1.409 (11)
C3B—C4B	1.3900	C6B—H6BA	0.9600
C3B—O1B	1.363 (7)	C6B—H6BB	0.9600
C4B—H4B	0.9300	C6B—H6BC	0.9600
N1B ⁱ —Ru1—N1B ⁱⁱ	120.4 (3)	N1A ⁱⁱ —Ru1—N1A ⁱ	121.2 (2)
N1B ⁱ —Ru1—N1B	120.4 (3)	N1A—Ru1—N1A ⁱⁱⁱ	121.2 (2)
N1B ⁱⁱ —Ru1—N1B	89.4 (5)	N1A ⁱⁱⁱ —Ru1—N1A ⁱ	87.9 (4)
N1B ⁱⁱⁱ —Ru1—N1B	120.4 (3)	C1B—N1B—Ru1	120.8 (5)
N1B ⁱⁱⁱ —Ru1—Cl1 ⁱⁱ	90.0 (4)	C1B—N1B—C5B	120.0
N1B ⁱⁱⁱ —Ru1—Cl1 ⁱ	136.7 (2)	C5B—N1B—Ru1	119.1 (5)
N1B ⁱ —Ru1—Cl1 ⁱⁱ	87.1 (4)	N1B—C1B—H1B	120.0
N1B ⁱⁱ —Ru1—Cl1 ⁱ	90.0 (4)	N1B—C1B—C2B	120.0
N1B ⁱ —Ru1—Cl1 ⁱ	47.4 (2)	C2B—C1B—H1B	120.0
N1B ⁱⁱ —Ru1—Cl1 ⁱⁱ	47.4 (2)	C1B—C2B—H2B	120.0
N1B ⁱⁱⁱ —Ru1—Cl1	87.1 (4)	C1B—C2B—C3B	120.0
N1B ⁱⁱ —Ru1—Cl1	136.7 (2)	C3B—C2B—H2B	120.0
N1B—Ru1—Cl1 ⁱ	87.1 (4)	C4B—C3B—C2B	120.0
N1B—Ru1—Cl1	47.4 (2)	O1B—C3B—C2B	117.0 (9)

N1B—Ru1—Cl1 ⁱⁱ	136.7 (2)	O1B—C3B—C4B	123.0 (9)
N1B ⁱ —Ru1—Cl1	90.0 (4)	C3B—C4B—H4B	120.0
Cl1 ⁱ —Ru1—Cl1 ⁱⁱ	90.075 (5)	C3B—C4B—C5B	120.0
Cl1 ⁱ —Ru1—Cl1	90.076 (5)	C5B—C4B—H4B	120.0
Cl1 ⁱⁱ —Ru1—Cl1	175.86 (12)	N1B—C5B—H5B	120.0
Cl1 ⁱⁱⁱ —Ru1—Cl1 ⁱⁱ	90.075 (5)	C4B—C5B—N1B	120.0
Cl1 ⁱⁱⁱ —Ru1—Cl1	90.074 (5)	C4B—C5B—H5B	120.0
Cl1 ⁱⁱⁱ —Ru1—Cl1 ⁱ	175.86 (12)	C3B—O1B—C6B	119.6 (13)
N1A—Ru1—N1B ⁱ	59.9 (2)	C5A—N1A—Ru1	125.2 (7)
N1A ⁱ —Ru1—N1B ⁱⁱⁱ	178.8 (3)	C1A—N1A—Ru1	123.2 (6)
N1A ⁱⁱ —Ru1—N1B ⁱⁱⁱ	59.9 (2)	C1A—N1A—C5A	111.6 (7)
N1A ⁱⁱⁱ —Ru1—N1B ⁱⁱ	58.5 (2)	N1A—C5A—H5A	116.6
N1A ⁱⁱ —Ru1—N1B ⁱ	58.5 (2)	N1A—C5A—C4A	126.8 (8)
N1A—Ru1—N1B ⁱⁱ	178.8 (3)	C4A—C5A—H5A	116.6
N1A ⁱⁱ —Ru1—N1B ⁱⁱ	91.40 (18)	C1A—C2A—H2A	120.6
N1A ⁱⁱⁱ —Ru1—N1B ⁱ	178.8 (3)	C1A—C2A—C3A	118.8 (8)
N1A ⁱ —Ru1—N1B ⁱ	91.40 (18)	СЗА—С2А—Н2А	120.6
N1A ⁱ —Ru1—N1B ⁱⁱ	59.9 (2)	N1A—C1A—C2A	128.6 (8)
N1A—Ru1—N1B ⁱⁱⁱⁱ	58.5 (2)	N1A—C1A—H1A	115.7
N1A ⁱⁱⁱ —Ru1—N1B ⁱⁱⁱ	91.40 (18)	C2A—C1A—H1A	115.7
N1A ⁱⁱ —Ru1—Cl1 ⁱⁱⁱ	90.9 (4)	C2A—C3A—C4A	115.1 (8)
N1A—Ru1—Cl1 ⁱⁱ	131.8 (2)	O1A—C3A—C2A	126.7 (11)
N1A ⁱⁱⁱ —Ru1—Cl1 ⁱⁱ	92.0 (4)	O1A—C3A—C4A	118.1 (10)
N1A ⁱ —Ru1—Cl1	92.0 (4)	C5A—C4A—C3A	119.1 (7)
N1A—Ru1—C11	44.0 (2)	C5A—C4A—H4A	120.4
N1A ⁱ —Ru1—Cl1 ⁱⁱ	90.9 (4)	C3A—C4A—H4A	120.4
N1A ⁱⁱ —Ru1—C11	131.9 (2)	Н6АА—С6А—Н6АВ	109.5
N1A ⁱ —Ru1—Cl1 ⁱⁱⁱ	131.8 (2)	Н6АА—С6А—Н6АС	109.5
N1A ⁱⁱⁱ —Ru1—Cl1 ⁱⁱⁱ	44.0 (2)	Н6АВ—С6А—Н6АС	109.5
N1A ⁱⁱ —Ru1—Cl1 ⁱ	92.0 (4)	О1А—С6А—Н6АА	109.5
N1A ⁱⁱⁱ —Ru1—Cl1	90.9 (4)	O1A—C6A—H6AB	109.5
N1A—Ru1—Cl1 ⁱ	90.9 (4)	О1А—С6А—Н6АС	109.5
N1A ⁱⁱ —Ru1—Cl1 ⁱⁱ	44.0 (2)	C3A—O1A—C6A	116.2 (12)
N1A ⁱⁱⁱ —Ru1—Cl1 ⁱ	131.8 (2)	O1B—C6B—H6BA	109.5
N1A—Ru1—Cl1 ⁱⁱⁱ	92.0 (4)	O1B—C6B—H6BB	109.5
N1A ⁱ —Ru1—Cl1 ⁱ	44.0 (2)	O1B—C6B—H6BC	109.5
N1A—Ru1—N1A ⁱⁱ	87.9 (4)	H6BA—C6B—H6BB	109.5
N1A ⁱⁱⁱ —Ru1—N1A ⁱⁱ	121.2 (2)	H6BA—C6B—H6BC	109.5
N1A—Ru1—N1A ⁱ	121.2 (2)	H6BB—C6B—H6BC	109.5
Ru1—N1B—C1B—C2B	-176.5(7)	C5B—N1B—C1B—C2B	0.0
Ru1—N1B—C5B—C4B	176.6 (7)	O1B—C3B—C4B—C5B	179.1 (15)
Ru1—N1A—C5A—C4A	179.0 (9)	N1A—C5A—C4A—C3A	-0.1 (16)
Ru1—N1A—C1A—C2A	-178.7 (10)	C5A—N1A—C1A—C2A	1.3 (14)
N1B—C1B—C2B—C3B	0.0	C2A—C3A—C4A—C5A	1.0 (14)
C1B—N1B—C5B—C4B	0.0	C2A—C3A—O1A—C6A	0 (2)
C1B—C2B—C3B—C4B	0.0	C1A—N1A—C5A—C4A	-1.0 (14)
C1B—C2B—C3B—O1B	-179.2 (14)	C1A—C2A—C3A—C4A	-0.8 (14)
	\ <i>\</i>		- ()

C2B—C3B—C4B—C5B	0.0	C1A—C2A—C3A—O1A	-177.4 (14)
C2B—C3B—O1B—C6B	177.3 (13)	C3A—C2A—C1A—N1A	-0.5 (16)
C3B—C4B—C5B—N1B	0.0	C4A—C3A—O1A—C6A	-176.6 (14)
C4B—C3B—O1B—C6B	-2 (3)	O1A—C3A—C4A—C5A	178.0 (12)

Symmetry codes: (i) y+1/4, -x+3/4, -z+7/4; (ii) -x+1, -y+1/2, z; (iii) -y+3/4, x-1/4, -z+7/4.