ISSN 2414-3146

Received 29 June 2023 Accepted 31 July 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

Keywords: crystal structure; quinoxaline derivative; chiral compound.

CCDC reference: 2285764

Structural data: full structural data are available from iucrdata.iucr.org

6,8-Dichloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)eth-yl]-1,2-dihydroquinoxaline

Frederick P. Malan,^a Ahmed M. Mansour^b and Amanda-Lee E. Manicum^c*

^aDepartment of Chemistry, University of Pretoria, 0002, Pretoria, South Africa, ^bDepartment of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt, and ^cDepartment of Chemistry, Tshwane, University of Technology, 0001, Pretoria, South Africa. *Correspondence e-mail: ManicumAE@tut.ac.za

The crystal structure of the racemic title compound, $C_{20}H_{16}C_{12}N_4$ is described, where the formation of a di-substituted 6,8-dichloro quinoxaline, containing two stereogenic centres, is confirmed.

Structure description

The family of functionalized quinoxaline compounds is an important class of heterocyclic compounds because of their synthetic utility and electroluminescent properties, as well as the different biological properties they have been found to exhibit (Pereira *et al.*, 2015). The gradually expanding library of active compounds has lead to a growing interest into their solid- and solution-state characterization, including single-crystal X-ray diffraction. As part of our studies in this area, we now describe the synthesis and structure of the title compound, $C_{20}H_{16}C_{12}N_4$.

The compound crystallizes in the monoclinic space group P_{21}/c with Z = 4. The asymmetric unit (Fig. 1) contains one molecule, featuring the 6,8-dichloroquinoxaline-based skeleton with two pyridyl-based substituents attached to positions 2 and 3 (atoms C1 and C2, respectively). The compound contains two chiral centres, namely atoms C3 and C14: in the arbitrarily chosen asymmetric unit, these both have an *R* configuration, but crystal symmetry generates a racemic mixture. The quinoxalinyl ring system and the 2-pyridyl groups are close to co-planar $[N3-C9-C1-N1 = -179.61 (14), C8-N1-C1-C9 = 175.17 (13)^{\circ}]$, with the third picolyl-containing substituent more notably rotated out of plane $[C1-C2-C14-C16 = -166.73 (12)^{\circ}]$ with respect to the quinoxalinyl group. In the quinoxaline moiety, partial saturation on C2 (position 3) occurs and C2 is sp^3 -hybridized with bond angles of 113.58 (12)° (N2-C2-C14), 108.58 (12)° (N2-C2-C1) and 112.34 (12)° (C1-C2-C14). This leads C2 to be displaced by 0.383 (3) Å from the quinoxalinyl mean plane. Bonds lengths supporting the partially saturated

Figure 1

Perspective view of the molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

character include: 1.290 (2) Å (N1–C1), 1.522 (2) Å (C1–C2), 1.4586 (19) Å (C2–N2) and 1.550 (2) Å (C2–C14). The remaining C–C, C–Cl, and C–N bond lengths and angles agree well with similar pyridyl-containing quinoxaline systems (Wang *et al.*, 2015). A weak bifurcated intramolecular N– $H \cdots (N,Cl)$ hydrogen bond occurs (Table 1).

In the crystal, the compound packs as layers that extend down the *c*-axis interlinked by weak $C-H\cdots N$ hydrogenbonding interactions (Fig. 2). No aromatic $\pi-\pi$ stacking interactions were observed.

Synthesis and crystallization

Picolylamine (1 mmol), 2-methyl-2-(2-pyridyl)ethylamine (1 mmol) and 3,5-dichlorocyclohexan-1,2-dione (1 mmol)

Figure 2

Packing viewed along the *a*-axis direction. Hydrogen-bonding interactions are indicated by means of cyan lines.

Table 1Hydrogen-bond	Table 1 Hydrogen-bond geometry (Å, °).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$			

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H2···Cl1	0.88	2.64	2.9941 (13)	105
$N2-H2\cdots N4$	0.88	2.50	2.815 (2)	102

Table 2

Experimental details.

Experimental details.	
Crystal data	
Chemical formula	$C_{20}H_{16}Cl_2N_4$
$M_{\rm r}$	383.27
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	8.4245 (3), 20.7040 (6), 10.2055 (3)
β (°)	96.448 (3)
$V(Å^3)$	1768.79 (10)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.38
Crystal size (mm)	$0.27 \times 0.19 \times 0.09$
Data collection	
Diffractometer	XtaLAB Synergy R, DW system, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.576, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29036, 4742, 3981
R _{int}	0.112
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.719
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.137, 1.10
No. of reflections	4742
No. of parameters	236
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.62, -0.58

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

were added to a round-bottom flask with methanol (20 ml). The resulting solution was carefully heated to 50° C for approximately 2 h. The yellow solution was left to crystallize, after which yellow crystals of the title compound (which in this case represents the major product) were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The highest calculated residual electron density is $0.62 \text{ e} \text{ Å}^{-3}$ at 0.91 Å from N2.

Acknowledgements

We would like to acknowledge the National Research Foundation, University of Pretoria and the Tshwane University of Technology for funding and institutional support provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280 to FPM; grant No. 129468 to ALEM).

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). *Eur. J. Med. Chem.* 97, 664–672.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, X.-M., Chen, S. R.-Q., Fan, R. Q., Zhang, F.-Q. & Yang, Y.-L. (2015). *Dalton Trans.* 44, 8107–8125.

full crystallographic data

IUCrData (2023). **8**, x230665 [https://doi.org/10.1107/S241431462300665X]

6,8-Dichloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)ethyl]-1,2-dihydroquinoxaline

F(000) = 792

 $\theta = 2.6 - 31.0^{\circ}$

 $\mu = 0.38 \text{ mm}^{-1}$

Blade, yellow

 $0.27 \times 0.19 \times 0.09 \text{ mm}$

 $T_{\rm min} = 0.576, T_{\rm max} = 1.000$

 $\theta_{\text{max}} = 30.8^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$

29036 measured reflections

4742 independent reflections 3981 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.112$

 $h = -12 \rightarrow 10$

 $k = -28 \longrightarrow 26$ $l = -14 \longrightarrow 13$

 $D_{\rm x} = 1.439 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 18589 reflections

Frederick P. Malan, Ahmed M. Mansour and Amanda-Lee E. Manicum

6,8-Dichloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)ethyl]-1,2-dihydroquinoxaline

Crystal data

 $C_{20}H_{16}Cl_2N_4$ $M_r = 383.27$ Monoclinic, $P2_1/c$ a = 8.4245 (3) Å b = 20.7040 (6) Å c = 10.2055 (3) Å $\beta = 96.448$ (3)° V = 1768.79 (10) Å³ Z = 4

Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2019)

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.047$ H-atom parameters constrained $wR(F^2) = 0.137$ $w = 1/[\sigma^2(F_o^2) + (0.0676P)^2 + 0.7299P]$ S = 1.10where $P = (F_0^2 + 2F_c^2)/3$ 4742 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$ 236 parameters $\Delta \rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl2	1,12383 (5)	0.09926 (2)	0.40380 (4)	0.02882 (13)
Cl1	0.83348 (6)	0.03634 (2)	0.83287 (5)	0.03650 (15)
N1	0.81871 (15)	0.26674 (6)	0.64452 (13)	0.0189 (3)
N2	0.73638 (16)	0.17552 (6)	0.82624 (13)	0.0201 (3)
H2	0.7411	0.1527	0.8994	0.024*
N3	0.59274 (18)	0.36766 (7)	0.83720 (15)	0.0261 (3)
N4	0.45284 (17)	0.14108 (7)	0.93078 (16)	0.0279 (3)
C16	0.37494 (18)	0.18777 (7)	0.85957 (15)	0.0179 (3)
C8	0.85917 (17)	0.20116 (7)	0.63224 (15)	0.0181 (3)
C3	0.81853 (18)	0.15560 (7)	0.72517 (15)	0.0187 (3)
C9	0.69244 (18)	0.35242 (7)	0.74782 (15)	0.0189 (3)
C1	0.72267 (17)	0.28236 (7)	0.72928 (15)	0.0175 (3)
C2	0.64108 (17)	0.23446 (7)	0.81296 (14)	0.0169 (3)
H2A	0.6423	0.2536	0.9030	0.020*
C6	1.00485 (19)	0.12035 (8)	0.52627 (16)	0.0215 (3)
C14	0.46394 (18)	0.22276 (7)	0.75909 (15)	0.0190 (3)
H14	0.4123	0.2659	0.7422	0.023*
C7	0.95056 (18)	0.18329 (8)	0.53247 (15)	0.0205 (3)
H7	0.9755	0.2141	0.4690	0.025*
C10	0.76783 (19)	0.39916 (8)	0.67700 (17)	0.0224 (3)
H10	0.8372	0.3868	0.6142	0.027*
C5	0.96985 (19)	0.07447 (8)	0.61717 (16)	0.0236 (3)
Н5	1.0082	0.0315	0.6126	0.028*
C4	0.8772 (2)	0.09267 (8)	0.71550 (17)	0.0230 (3)
C17	0.2167 (2)	0.20287 (8)	0.87252 (19)	0.0271 (4)
H17	0.1635	0.2360	0.8203	0.033*
C19	0.2179 (2)	0.12117 (8)	1.03820 (18)	0.0263 (3)
H19	0.1672	0.0977	1.1018	0.032*
C20	0.3742 (2)	0.10886 (9)	1.01806 (19)	0.0300 (4)
H20	0.4295	0.0757	1.0688	0.036*
C11	0.7391 (2)	0.46377 (8)	0.70050 (19)	0.0288 (4)
H11	0.7886	0.4965	0.6541	0.035*
C12	0.6367 (2)	0.47994 (9)	0.7931 (2)	0.0325 (4)
H12	0.6154	0.5238	0.8118	0.039*
C13	0.5664 (2)	0.43017 (9)	0.8576 (2)	0.0330 (4)
H13	0.4954	0.4414	0.9199	0.040*
C18	0.1374 (2)	0.16896 (9)	0.9625 (2)	0.0305 (4)
H18	0.0290	0.1784	0.9722	0.037*
C15	0.4450 (2)	0.18517 (10)	0.62926 (16)	0.0290 (4)
H15A	0.4889	0.1416	0.6441	0.044*
H15B	0.5026	0.2076	0.5644	0.044*
H15C	0.3315	0.1822	0.5961	0.044*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0285 (2)	0.0321 (2)	0.0284 (2)	0.00069 (15)	0.01460 (17)	-0.00866 (15)
Cl1	0.0531 (3)	0.0222 (2)	0.0386 (3)	0.00890 (18)	0.0247 (2)	0.00922 (17)
N1	0.0183 (6)	0.0205 (6)	0.0189 (6)	0.0000 (5)	0.0063 (5)	0.0003 (5)
N2	0.0214 (6)	0.0216 (6)	0.0188 (6)	0.0054 (5)	0.0087 (5)	0.0045 (5)
N3	0.0305 (7)	0.0215 (7)	0.0287 (7)	0.0010 (5)	0.0135 (6)	-0.0030(5)
N4	0.0194 (7)	0.0333 (8)	0.0324 (8)	0.0030 (6)	0.0085 (6)	0.0137 (6)
C16	0.0175 (7)	0.0186 (7)	0.0182 (7)	-0.0023(5)	0.0043 (5)	0.0000 (5)
C8	0.0163 (7)	0.0203 (7)	0.0184 (7)	0.0002 (5)	0.0054 (5)	-0.0002(5)
C3	0.0170 (7)	0.0207 (7)	0.0192 (7)	0.0010 (5)	0.0054 (6)	0.0005 (5)
C9	0.0180 (7)	0.0188 (7)	0.0205 (7)	-0.0004 (5)	0.0044 (6)	-0.0006 (5)
C1	0.0159 (7)	0.0192 (7)	0.0179 (7)	-0.0007(5)	0.0040 (5)	0.0012 (5)
C2	0.0168 (7)	0.0176 (7)	0.0172 (7)	0.0008 (5)	0.0056 (5)	0.0006 (5)
C6	0.0195 (7)	0.0256 (8)	0.0206 (7)	0.0008 (6)	0.0074 (6)	-0.0066 (6)
C14	0.0163 (7)	0.0217 (7)	0.0196 (7)	0.0002 (5)	0.0047 (5)	0.0053 (6)
C7	0.0209 (7)	0.0226 (8)	0.0190 (7)	-0.0017 (6)	0.0071 (6)	-0.0016 (6)
C10	0.0205 (7)	0.0220 (8)	0.0254 (8)	-0.0009 (6)	0.0062 (6)	0.0017 (6)
C5	0.0241 (8)	0.0208 (8)	0.0266 (8)	0.0031 (6)	0.0059 (6)	-0.0035 (6)
C4	0.0249 (8)	0.0204 (7)	0.0248 (8)	0.0014 (6)	0.0085 (6)	0.0018 (6)
C17	0.0213 (8)	0.0252 (8)	0.0368 (9)	0.0047 (6)	0.0116 (7)	0.0079 (7)
C19	0.0277 (8)	0.0256 (8)	0.0276 (8)	-0.0060 (6)	0.0120 (7)	0.0010 (6)
C20	0.0239 (8)	0.0332 (9)	0.0337 (9)	0.0010 (7)	0.0068 (7)	0.0146 (7)
C11	0.0287 (9)	0.0221 (8)	0.0361 (9)	-0.0044 (6)	0.0056 (7)	0.0010 (7)
C12	0.0383 (10)	0.0196 (8)	0.0407 (10)	0.0001 (7)	0.0093 (8)	-0.0041 (7)
C13	0.0409 (10)	0.0247 (9)	0.0363 (10)	0.0023 (7)	0.0177 (8)	-0.0053 (7)
C18	0.0231 (8)	0.0275 (9)	0.0442 (10)	0.0020 (6)	0.0176 (7)	0.0059 (7)
C15	0.0264 (8)	0.0428 (10)	0.0181 (7)	-0.0098 (7)	0.0033 (6)	-0.0003 (7)

Geometric parameters (Å, °)

Cl2—C6	1.7432 (16)	C9—C1	1.488 (2)
Cl1—C4	1.7406 (17)	C9—C10	1.402 (2)
N1—C8	1.409 (2)	C1—C2	1.522 (2)
N1-C1	1.290 (2)	C2—C14	1.550 (2)
N2—C3	1.3687 (19)	C6—C7	1.385 (2)
N2—C2	1.4586 (19)	C6—C5	1.382 (2)
N3—C9	1.345 (2)	C14—C15	1.529 (2)
N3—C13	1.333 (2)	C10—C11	1.385 (2)
N4—C16	1.336 (2)	C5—C4	1.391 (2)
N4—C20	1.346 (2)	C17—C18	1.385 (2)
C16—C14	1.520 (2)	C19—C20	1.379 (2)
C16—C17	1.390 (2)	C19—C18	1.385 (3)
C8—C3	1.407 (2)	C11—C12	1.390 (3)
C8—C7	1.394 (2)	C12—C13	1.391 (3)
C3—C4	1.401 (2)		

C1—N1—C8	118.51 (13)	C1—C2—C14	112.34 (12)
C3—N2—C2	120.11 (13)	C7—C6—Cl2	119.20 (13)
C13—N3—C9	117.45 (15)	C5—C6—Cl2	119.49 (12)
C16—N4—C20	118.06 (14)	C5—C6—C7	121.29 (14)
N4—C16—C14	117.53 (13)	C16—C14—C2	111.30 (12)
N4—C16—C17	121.91 (15)	C16—C14—C15	109.31 (13)
C17—C16—C14	120.53 (14)	C15—C14—C2	112.90 (13)
C3—C8—N1	120.43 (13)	C6—C7—C8	119.71 (15)
C7—C8—N1	118.68 (14)	C11—C10—C9	118.64 (16)
C7—C8—C3	120.70 (14)	C6—C5—C4	118.51 (15)
N2—C3—C8	119.20 (14)	C3—C4—Cl1	118.10 (12)
N2—C3—C4	123.06 (14)	C5—C4—Cl1	119.63 (12)
C4—C3—C8	117.49 (14)	C5—C4—C3	122.26 (15)
N3—C9—C1	116.33 (14)	C18—C17—C16	119.20 (15)
N3—C9—C10	122.77 (15)	C20-C19-C18	117.70 (16)
C10—C9—C1	120.88 (14)	N4—C20—C19	123.81 (16)
N1—C1—C9	117.29 (14)	C10-C11-C12	118.95 (17)
N1—C1—C2	124.72 (13)	C11—C12—C13	118.25 (17)
C9—C1—C2	117.98 (13)	N3—C13—C12	123.93 (17)
N2—C2—C1	108.58 (12)	C19—C18—C17	119.30 (16)
N2-C2-C14	113.58 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2…Cl1	0.88	2.64	2.9941 (13)	105
N2—H2…N4	0.88	2.50	2.815 (2)	102