

ISSN 2414-3146

Received 26 July 2023 Accepted 28 July 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; molybdenum cluster; selenide ligand.

CCDC reference: 2285076

Structural data: full structural data are available from iucrdata.iucr.org

Tetra- μ_3 -selenido-1:2:3 κ^3 Se;1:2:4 κ^3 Se;1:3:4 κ^3 Se;-2:3:4 κ^3 Se-tetrakis[(η^5 -methylcyclopentadienyl)-molybdenum(III)](6 *Mo*—*Mo*)

Akito Ouchi, Tsugiko Takase and Shinji Inomata*

Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan. *Correspondence e-mail: inomata@sss.fukushima-u.ac.jp

The title cluster compound, $[Mo_4(\eta^5-C_5H_4Me)_4(\mu_3-Se)_4]$, was synthesized from the reaction of $[Mo(\eta^5-C_5H_4Me)(CO)_3]_2$ with grey selenium in refluxing xylene solution under a nitrogen atmosphere. The complete cluster is generated by a crystallographic twofold axis and contains an Mo_4Se_4 cubane-like core surrounded by four η^5 -methylcyclopentadienyl ligands. In the core, the four molybdenum atoms are connected to each other to form a tetrahedron, with a selenium atom capping each face. The Mo–Mo bond lengths vary from 2.9857 (5) to 3.0083 (3) Å and the Mo–Se separations range from 2.4633 (4) to 2.4693 (5) Å.

Structure description

In comparison to many studies on transition-metal sulfur cubane-type clusters, which contain an M_4S_4 core, those on selenium analogues are relatively rare. One of the reasons for this rarity could be caused by the insolubility of grey selenium to common organic solvents, as well as water, which are employed for synthesis. We found that grey selenium easily reacts with the organometallic molybdenum compound $[Mo(\eta^5-C_5H_4Me)(CO)_3]_2$ in organic media to produce a new molybdenum-selenium cubane-type cluster $[Mo_4(\eta^5-C_5H_4Me)_4(\mu_3-Se)_4]$. We now report the structural details of the cluster. The partially labeled molecular structure of the title compound is shown in Fig. 1. The cluster possess twofold symmetry because of the existence of twofold axis through the cluster. The cluster has a distorted-cubane type Mo_4Se_4 core surrounded by four methylcyclopenta-dienyl ligands. In the core, four molybdenum atoms are connected by each other through six Mo—Mo bonds to give a molybdenum tetrahedron. The distances of the Mo—Mo bonds range from 2.9857 (5) to 3.0083 (3) Å, which are somewhat longer than those in

Figure 1

A view of the molecular structure of the title compound, with the asymmetric atoms labeled; unlabelled atoms are generated by the symmetry operation -x, y, $\frac{3}{2} - z$. Hydrogen atoms are omitted for charity. Displacement ellipsoids are drawn at the 50% probability level.

 $[Mo_4(H_2O)_{12}(\mu_3-Se)_4](MeC_6H_4SO_3)_5\cdot 15H_2O$ [mean value 2.865 (4) Å; Henkel *et al.*, 1990] and $(NH_4)_6[Mo_4(CN)_{12}(\mu_3-Se)_4]\cdot 6H_2O$ [2.886 (4) Å, T_d symmetry; Virovets *et al.*, 2000]. However, the Mo–Mo distances in the title compound are quite close to those in an isoelectronic cluster $[Mo_4(\eta^5-C_5H_4Pr^i)_4(\mu_3-Se)_4]$ (mean value of 2.9870 Å), which was synthesized by the reaction of $[Mo_2(\eta^5-C_5H_4Pr^i)_2(\mu-Cl)_4]$ with LiSeH (Baird *et al.*, 1991). On each face of the Mo tetrahedron, a selenium atom is located. The Mo–Se distances are in the range 2.4633 (4) to 2.4693 (5) Å and are normal.

Synthesis and crystallization

A xylene solution (30 ml) of $[Mo(\eta^5-C_5H_4Me)(CO)_3]_2$ (519 mg, 1.00 mmol) and grey selenium (180 mg, 2.28 mmol) was refluxed for 17 h under a nitrogen atmosphere. The color of the solution gradually changed from red to brown. After removal of excess selenium by filtration, evaporation of the solvent from the filtrate gave a purple–brown solid. Crystallization was performed by use of the mixed solvents CH₂Cl₂/ diethyl ether (1:2 ν/ν). Yield: 300 mg (59%). A single-crystal suitable for X-ray analysis was selected from the crystallized sample.

Table 1	
Experimental details.	
Crystal data	
Chemical formula	$[Mo_4(C_6H_7)_4Se_4]$
$M_{\rm r}$	1016.09
Crystal system, space group	Monoclinic, $C2/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	21.1820 (4), 8.42496 (16), 16.4482 (3)
β (°)	120.6613 (7)
$V(Å^3)$	2524.93 (9)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	7.72
Crystal size (mm)	$0.10\times0.10\times0.10$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Rigaku, 1995)
T_{\min}, T_{\max}	0.201, 0.462
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflec- tions	11868, 2878, 2617
$R_{\rm int}$	0.040
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.051, 1.07
No. of reflections	2878
No. of parameters	147
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.49, -0.79
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (c A)$	0.49, -0.79

Computer programs: RAPID AUTO (Rigaku, 2006), SIR97 (Altomare et al., 1999), SHELXL2018/3 (Sheldrick, 2015) and CrystalStructure (Rigaku, 2010).

Refinement

Crystal data, date collection and structure refinement details are summarized in Table 1.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Baird, P., Bandy, J. A., Green, M. L. H., Hamnett, A., Marseglia, E., Obertelli, D. S., Prout, K. & Qin, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2377–2393.
- Henkel, G., Kampmann, G., Krebs, B., Lamprecht, G. J., Nasreldin, M. & Sykes, A. G. (1990). J. Chem. Soc. Chem. Commun. pp. 1014– 1016.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). RAPID AUTO CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Virovets, A. V., Fedin, V. P., Samsonenko, D. G. & Clegg, W. (2000). Acta Cryst. C56, 272–273.

full crystallographic data

IUCrData (2023). **8**, x230657 [https://doi.org/10.1107/S2414314623006570]

Tetra- μ_3 -selenido-1:2:3 κ^3 Se;1:2:4 κ^3 Se;1:3:4 κ^3 Se;2:3:4 κ^3 Se-tetrakis[(η^5 -methyl-cyclopentadienyl)molybdenum(III)](6 *Mo*—*Mo*)

Akito Ouchi, Tsugiko Takase and Shinji Inomata

Tetra- μ_3 -selenido-1:2:3 κ^3 Se;1:2:4 κ^3 Se;1:3:4 κ^3 Se;2:3:4 κ^3 Se-tetrakis[(η^5 -methylcyclopentadienyl)molybdenum(III)] (6 *Mo*-*Mo*)

Crystal data

 $\begin{bmatrix} Mo_4(C_6H_7)_4Se_4 \end{bmatrix} \\ M_r = 1016.09 \\ Monoclinic, C2/c \\ a = 21.1820 (4) Å \\ b = 8.42496 (16) Å \\ c = 16.4482 (3) Å \\ \beta = 120.6613 (7)^\circ \\ V = 2524.93 (9) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) $T_{\rm min} = 0.201, T_{\rm max} = 0.462$ 11868 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.051$ S = 1.072878 reflections 147 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1904.00 $D_x = 2.673 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 10275 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 7.72 \text{ mm}^{-1}$ T = 296 KPlatelet, brown $0.10 \times 0.10 \times 0.10 \text{ mm}$

2878 independent reflections 2617 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.040$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.3^\circ$ $h = -24 \rightarrow 27$ $k = -10 \rightarrow 10$ $l = -21 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0168P)^2 + 4.2366P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.49$ e Å⁻³ $\Delta\rho_{min} = -0.79$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F². R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

All hydrogen atoms were placed at calculated positions (C—H = 0.96–0.98 Å) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Mo1	-0.05709 (2)	0.36774 (3)	0.77761 (2)	0.01956 (7)
Mo2	0.05898 (2)	0.11729 (3)	0.85272 (2)	0.02062 (7)
Se1	-0.07420 (2)	0.07974 (3)	0.78522 (2)	0.02368 (8)
Se2	0.07609 (2)	0.40514 (3)	0.88225 (2)	0.02324 (8)
C1	-0.16873 (18)	0.4032 (4)	0.7760 (2)	0.0334 (7)
C2	-0.16199 (18)	0.5254 (4)	0.7228 (2)	0.0317 (7)
H1	-0.197372	0.548621	0.656343	0.038*
C3	-0.1002 (2)	0.6197 (4)	0.7834 (2)	0.0344 (7)
H2	-0.086145	0.719615	0.766422	0.041*
C4	-0.0688 (2)	0.5553 (4)	0.8753 (2)	0.0350 (7)
Н3	-0.028235	0.601956	0.932877	0.042*
C5	-0.10922 (19)	0.4220 (4)	0.8715 (2)	0.0332 (7)
H4	-0.101723	0.359419	0.925903	0.040*
C6	0.0722 (2)	-0.0631 (4)	0.9693 (2)	0.0380 (8)
Н5	0.032142	-0.108311	0.975354	0.046*
C7	0.1045 (2)	-0.1336 (4)	0.9208 (2)	0.0362 (8)
H6	0.090569	-0.235528	0.887498	0.043*
C8	0.16702 (18)	-0.0398 (4)	0.9400 (2)	0.0335 (7)
С9	0.1704 (2)	0.0874 (4)	0.9965 (2)	0.0381 (8)
H7	0.209754	0.166436	1.024598	0.046*
C10	0.1123 (2)	0.0738 (4)	1.0150 (2)	0.0401 (9)
H8	0.105439	0.139947	1.058922	0.048*
C11	-0.2285 (2)	0.2840 (5)	0.7442 (3)	0.0524 (10)
Н9	-0.213781	0.202041	0.791047	0.063*
H10	-0.238348	0.238212	0.685470	0.063*
H11	-0.272079	0.334778	0.735713	0.063*
C12	0.2244 (2)	-0.0779 (5)	0.9148 (3)	0.0509 (10)
H12	0.250562	0.017026	0.917858	0.061*
H13	0.201080	-0.120411	0.851841	0.061*
H14	0.258069	-0.154750	0.958472	0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Mo1	0.02236 (13)	0.01507 (12)	0.01911 (12)	0.00142 (9)	0.00902 (10)	-0.00024 (9)

Mo2	0.02366 (13)	0.01577 (12)	0.01921 (12)	0.00191 (9)	0.00860 (10)	0.00260 (9)
Se1	0.02711 (16)	0.01821 (15)	0.02549 (15)	-0.00290 (11)	0.01325 (12)	0.00020 (11)
Se2	0.02603 (16)	0.01916 (14)	0.01959 (14)	-0.00302 (11)	0.00805 (12)	-0.00285 (11)
C1	0.0301 (17)	0.0359 (18)	0.0375 (17)	0.0050 (14)	0.0196 (14)	-0.0026 (14)
C2	0.0305 (17)	0.0322 (17)	0.0314 (16)	0.0127 (14)	0.0151 (13)	0.0036 (14)
C3	0.042 (2)	0.0175 (14)	0.0447 (19)	0.0097 (14)	0.0232 (16)	0.0006 (14)
C4	0.0388 (19)	0.0307 (17)	0.0322 (16)	0.0051 (14)	0.0157 (14)	-0.0109 (14)
C5	0.0404 (19)	0.0358 (18)	0.0283 (15)	0.0116 (15)	0.0210 (14)	0.0031 (14)
C6	0.044 (2)	0.0360 (19)	0.0345 (17)	0.0073 (15)	0.0200 (15)	0.0200 (15)
C7	0.046 (2)	0.0199 (15)	0.0370 (17)	0.0100 (14)	0.0169 (16)	0.0127 (13)
C8	0.0306 (17)	0.0340 (18)	0.0287 (15)	0.0130 (14)	0.0099 (13)	0.0145 (14)
C9	0.0344 (19)	0.0376 (19)	0.0261 (15)	0.0056 (15)	0.0036 (14)	0.0067 (14)
C10	0.051 (2)	0.041 (2)	0.0208 (14)	0.0139 (17)	0.0122 (15)	0.0095 (14)
C11	0.039 (2)	0.055 (2)	0.068 (3)	-0.0036 (19)	0.031 (2)	-0.006 (2)
C12	0.046 (2)	0.052 (2)	0.052 (2)	0.0155 (19)	0.0230 (19)	0.0129 (19)

Geometric parameters (Å, °)

Mo1—C3	2.332 (3)	C2—C3	1.416 (5)
Mo1—C2	2.339 (3)	C2—H1	0.9800
Mo1—C4	2.355 (3)	C3—C4	1.413 (5)
Mo1—C5	2.356 (3)	C3—H2	0.9800
Mo1—C1	2.370 (3)	C4—C5	1.394 (5)
Mo1—Se2	2.4633 (4)	C4—H3	0.9800
Mo1—Se1	2.4659 (4)	С5—Н4	0.9800
Mo1—Se2 ⁱ	2.4689 (3)	C6—C10	1.402 (5)
Mo1—Mo1 ⁱ	2.9857 (5)	C6—C7	1.419 (5)
Mo1—Mo2	2.9875 (3)	С6—Н5	0.9800
Mo1—Mo2 ⁱ	2.9935 (3)	С7—С8	1.432 (5)
Mo2—C10	2.337 (3)	С7—Н6	0.9800
Mo2—C6	2.350 (3)	C8—C9	1.396 (5)
Mo2—C9	2.352 (3)	C8—C12	1.506 (5)
Mo2—C7	2.356 (3)	C9—C10	1.414 (5)
Mo2—C8	2.387 (3)	С9—Н7	0.9800
Mo2—Se2	2.4635 (4)	C10—H8	0.9800
Mo2—Se1	2.4691 (4)	С11—Н9	0.9600
Mo2—Se1 ⁱ	2.4692 (4)	C11—H10	0.9600
Mo2—Mo2 ⁱ	3.0083 (5)	C11—H11	0.9600
C1—C2	1.404 (5)	C12—H12	0.9600
C1—C5	1.435 (5)	C12—H13	0.9600
C1—C11	1.487 (5)	C12—H14	0.9600
C3—Mo1—C2	35.30 (12)	C7—Mo2—Mo1 ⁱ	145.65 (9)
C3—Mo1—C4	35.09 (12)	C8—Mo2—Mo1 ⁱ	118.70 (8)
C2—Mo1—C4	58.11 (11)	Se2—Mo2—Mo1 ⁱ	52.718 (9)
C3—Mo1—C5	58.16 (12)	Se1—Mo2—Mo1 ⁱ	99.982 (11)
C2—Mo1—C5	58.09 (11)	Se1 ⁱ —Mo2—Mo1 ⁱ	52.606 (9)
C4—Mo1—C5	34.41 (12)	Mo1-Mo2-Mo1 ⁱ	59.894 (10)

C3—Mo1—C1	58.43 (12)	C10—Mo2—Mo2 ¹	157.50 (10)
C2—Mo1—C1	34.69 (12)	C6—Mo2—Mo2 ⁱ	127.01 (9)
C4—Mo1—C1	58.08 (12)	C9—Mo2—Mo2 ⁱ	164.17 (9)
C5—Mo1—C1	35.36 (11)	C7—Mo2—Mo2 ⁱ	115.98 (9)
C3—Mo1—Se2	100.84 (9)	C8—Mo2—Mo2 ⁱ	131.90 (8)
C2—Mo1—Se2	136.14 (9)	Se2—Mo2—Mo2 ⁱ	100.132 (8)
C4—Mo1—Se2	85.36 (9)	Se1—Mo2—Mo2 ⁱ	52.472 (10)
C5—Mo1—Se2	105.65 (9)	Se1 ⁱ —Mo2—Mo2 ⁱ	52.471 (10)
C1—Mo1—Se2	140.55 (8)	Mo1—Mo2—Mo2 ⁱ	59.902 (8)
C3—Mo1—Se1	145.37 (9)	$Mo1^{i}$ — $Mo2$ — $Mo2^{i}$	59.705 (8)
C2—Mo1—Se1	116 29 (9)	Mo1—Se1—Mo2	74 510 (12)
C4—Mo1—Sel	123 79 (9)	$Mo1$ —Se1— $Mo2^i$	74 684 (11)
C5_Mo1_Sel	91 58 (9)	$Mo2$ —Se1— $Mo2^i$	75.060 (13)
C1_Mo1_Sel	87 30 (8)	Mo2 = Se1 = Mo2 $Mo1 = Se2 = Mo2$	75.000 (15)
S_{2} Mol Sel	103.651.(13)	$Mo1 Se2 Mo1^{i}$	74.000 (12)
$C_2 = M_0 I = S_2 I$	105.051(15) 04.16(0)	Mo2 Se2 Mo1i	74.307(12)
$C_2 = Mo1 = So2i$	94.10(9)	102 - 322 - 101	106.8(2)
C_2 —Mo1—Se2	64.67(6)	$C_2 - C_1 - C_3$	100.8(3)
C4—Mo1—Se2	128.63 (9)		128.0 (3)
C5—Mo1—Se2 ¹	142.82 (8)		125.1 (3)
C1—Mo1—Se2 ¹	110.62 (8)	C2—C1—Mol	71.44 (19)
Se2—Mo1—Se2 ¹	103.560 (13)	C5—C1—Mo1	71.77 (18)
Se1—Mo1—Se2 ¹	103.372 (13)	C11—C1—Mo1	125.8 (2)
C3—Mo1—Mo1 ⁱ	114.04 (9)	C1—C2—C3	108.9 (3)
C2—Mo1—Mo1 ⁱ	129.84 (8)	C1—C2—Mo1	73.87 (18)
C4—Mo1—Mo1 ⁱ	126.24 (9)	C3—C2—Mo1	72.07 (17)
C5-Mo1-Mo1 ⁱ	157.28 (9)	C1—C2—H1	125.4
C1-Mo1-Mo1 ⁱ	162.73 (8)	С3—С2—Н1	125.4
Se2—Mo1—Mo1 ⁱ	52.834 (10)	Mo1—C2—H1	125.4
Se1—Mo1—Mo1 ⁱ	100.268 (9)	C4—C3—C2	107.4 (3)
Se2 ⁱ —Mo1—Mo1 ⁱ	52.659 (10)	C4—C3—Mo1	73.37 (18)
C3—Mo1—Mo2	152.01 (9)	C2—C3—Mo1	72.64 (17)
C2—Mo1—Mo2	168.55 (9)	C4—C3—H2	126.0
C4—Mo1—Mo2	122.87 (8)	С2—С3—Н2	126.0
C5—Mo1—Mo2	115.34 (8)	Mo1—C3—H2	126.0
C1—Mo1—Mo2	134.39 (8)	C5—C4—C3	108.5 (3)
Se2—Mo1—Mo2	52.676 (10)	C5-C4-Mo1	72.81 (18)
Sel—Mol—Mo2	52,794 (10)	$C_3 - C_4 - Mol$	71 54 (17)
Se ²ⁱ —Mo1—Mo2	100 565 (11)	C5-C4-H3	125.6
$Mo1^{i}$ Mo1 Mo2	60 153 (8)	C3_C4_H3	125.6
C_3 Mol Mo2 ⁱ	1/3 02 (0)	Mol C4 H3	125.6
$C_2 = Mo_1 = Mo_2^{i}$	1+3.92(9) 117 47(9)	$C_{4} = C_{5} = C_{1}$	123.0 108.4(2)
C_2 —Mo1—Mo2	117.47(0)	C4 = C5 = Mc1	106.4(3)
$C_{4} = \frac{1}{100} \frac{1}{1$	1/3.03(9) 140.04(0)	C_{+} C_{-} C_{-} M_{01}	12.10(10)
$C_{1} = M_{01} = M_{02}$	140.04 (9)	$C_1 = C_2 = W_1 O_1$	12.0/(1/)
$C_1 - W_{101} - W_{102}$	113.38 (8)	C4 - C5 - H4	123.0
$Se2-Mo1-Mo2^{4}$	100.539 (11)	CI	125.6
Sel—Mol—Mo2 ¹	52.709 (9)	Mo1—C5—H4	125.6
$Se2^{i}$ —Mo1—Mo2 ⁱ	52.551 (9)	C10—C6—C7	108.1 (3)
$Mo1^{i}$ — $Mo1$ — $Mo2^{i}$	59.954 (8)	C10—C6—Mo2	72.11 (18)

Mo2—Mo1—Mo2 ⁱ	60.394 (10)	C7—C6—Mo2	72.68 (17)
C10—Mo2—C6	34.82 (13)	С10—С6—Н5	125.8
С10—Мо2—С9	35.10 (13)	С7—С6—Н5	125.8
C6—Mo2—C9	57.92 (13)	Mo2—C6—H5	125.8
C10—Mo2—C7	58.26 (13)	C6—C7—C8	107.6 (3)
C6—Mo2—C7	35.11 (12)	C6—C7—Mo2	72.22 (18)
C9—Mo2—C7	57.88 (13)	C8—C7—Mo2	73.65 (18)
C10—Mo2—C8	57.94 (12)	С6—С7—Н6	126.0
C6—Mo2—C8	58.10 (12)	С8—С7—Н6	126.0
C9—Mo2—C8	34.26 (12)	Мо2—С7—Н6	126.0
C7—Mo2—C8	35.14 (12)	C9—C8—C7	107.3 (3)
C10—Mo2—Se2	89.56 (9)	C9—C8—C12	125.0 (3)
C6—Mo2—Se2	122.11 (9)	C7—C8—C12	127.4 (3)
C9—Mo2—Se2	86.33 (9)	C9—C8—Mo2	71.47 (18)
C7—Mo2—Se2	143.71 (9)	C7—C8—Mo2	71.21 (18)
C8—Mo2—Se2	115.33 (9)	C12—C8—Mo2	127.8 (2)
C10—Mo2—Se1	105.64 (10)	C8—C9—C10	109.1 (3)
C6—Mo2—Se1	85.26 (9)	C8—C9—Mo2	74.27 (18)
C9—Mo2—Se1	140.23 (9)	C10—C9—Mo2	71.88 (18)
C7—Mo2—Se1	101.27 (9)	С8—С9—Н7	125.3
C8—Mo2—Se1	136.41 (9)	С10—С9—Н7	125.3
Se2—Mo2—Se1	103.549 (13)	Mo2—C9—H7	125.3
C10-Mo2-Sel ⁱ	144.67 (10)	C6—C10—C9	107.9 (3)
C6—Mo2—Se1 ⁱ	130.55 (9)	C6-C10-Mo2	73.08 (18)
C9—Mo2—Sel ⁱ	112.09 (9)	C9—C10—Mo2	73.01 (18)
C7—Mo2—Sel ⁱ	96.22 (9)	С6—С10—Н8	125.8
C8—Mo2—Sel ⁱ	86.98 (8)	С9—С10—Н8	125.8
Se2—Mo2—Se1 ⁱ	103.434 (13)	Mo2—C10—H8	125.8
Se1—Mo2—Se1 ⁱ	103.004 (13)	С1—С11—Н9	109.5
C10—Mo2—Mo1	113.56 (9)	C1—C11—H10	109.5
C6—Mo2—Mo1	121.66 (9)	H9—C11—H10	109.5
C9—Mo2—Mo1	133.12 (9)	C1—C11—H11	109.5
C7—Mo2—Mo1	151.79 (9)	H9—C11—H11	109.5
C8—Mo2—Mo1	167.07 (9)	H10-C11-H11	109.5
Se2—Mo2—Mo1	52.668 (10)	C8—C12—H12	109.5
Se1—Mo2—Mo1	52.696 (9)	C8—C12—H13	109.5
Sel ⁱ —Mo2—Mo1	100.141 (11)	H12—C12—H13	109.5
C10—Mo2—Mo1 ⁱ	138.65 (10)	C8—C12—H14	109.5
C6—Mo2—Mo1 ⁱ	173.27 (10)	H12—C12—H14	109.5
C9—Mo2—Mo1 ⁱ	115.84 (9)	H13—C12—H14	109.5
C5—C1—C2—C3	-0.5 (4)	C10—C6—C7—C8	1.8 (4)
C11—C1—C2—C3	174.6 (3)	Mo2—C6—C7—C8	65.7 (2)
Mo1—C1—C2—C3	-64.0 (2)	C10—C6—C7—Mo2	-63.8 (2)
C5-C1-C2-Mo1	63.5 (2)	C6—C7—C8—C9	-2.0 (3)
C11—C1—C2—Mo1	-121.4 (4)	Mo2-C7-C8-C9	62.8 (2)
C1—C2—C3—C4	-0.5 (4)	C6—C7—C8—C12	171.5 (3)
Mo1—C2—C3—C4	-65.7 (2)	Mo2-C7-C8-C12	-123.7 (3)

C1-C2-C3-Mo1	65.2 (2)	C6—C7—C8—Mo2	-64.7 (2)	
C2—C3—C4—C5	1.3 (4)	C7—C8—C9—C10	1.3 (3)	
Mo1-C3-C4-C5	-63.9 (2)	C12-C8-C9-C10	-172.4 (3)	
C2-C3-C4-Mo1	65.2 (2)	Mo2-C8-C9-C10	63.9 (2)	
C3—C4—C5—C1	-1.6 (4)	C7—C8—C9—Mo2	-62.6 (2)	
Mo1-C4-C5-C1	-64.7 (2)	C12—C8—C9—Mo2	123.7 (3)	
C3-C4-C5-Mo1	63.0 (2)	C7—C6—C10—C9	-1.0 (4)	
C2-C1-C5-C4	1.3 (4)	Mo2-C6-C10-C9	-65.2 (2)	
C11—C1—C5—C4	-173.9 (3)	C7—C6—C10—Mo2	64.2 (2)	
Mo1-C1-C5-C4	64.6 (2)	C8—C9—C10—C6	-0.2(4)	
C2-C1-C5-Mo1	-63.3 (2)	Mo2-C9-C10-C6	65.3 (2)	
C11-C1-C5-Mo1	121.4 (3)	C8—C9—C10—Mo2	-65.5 (2)	

Symmetry code: (i) -x, y, -z+3/2.