ISSN 2414-3146

Received 19 December 2023
Accepted 20 December 2023

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

Keywords: crystal structure; hydrogen bonding; hydroxycarboxylic acids.

CCDC reference: 2320961

Structural data: full structural data are available from iucrdata.iucr.org

Published under a CC BY 4.0 licence

rac-Hydroxyisovaleric acid

Lukhanyo Dasi, Eric Cyriel Hosten and Richard Betz*

Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa. *Correspondence e-mail: richard.betz@mandela.ac.za

The title compound (systematic name: rac-2-hydroxy-3-methylbutanoic acid), $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$, is the constitutional isomer of α-hydroxybutanoic acid. In the crystal, hydrogen bonds involving the alcoholic hydroxyl group give rise to centrosymmetric dimers that are extended to sheets perpendicular to the crystallographic c axis.

Structure description

The Krebs Cycle - also known as Citric Acid Cycle - is at the centre of metabolic processes in aerobic organisms. It involves a number of hydroxycarboxylic acids that constitute intriguing chelating ligands for a variety of transition metals of pharmaceutical interest (McMurry, 2008). These potential ligands classify as chelate ligands, which have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands (Gade, 1998). Hydroxycarboxylic acids are a particularly interesting class of ligands as they offer two functional groups that, depending on the experimental conditions, can either act as fully neutral, fully anionic or mixed neutral-anionic donors. Upon varying the substitution pattern on the hydrocarbon backbone, the acidity of the respective hydroxyl groups can be fine-tuned over a wide range and they may, thus, serve as probes for establishing the rules in which pK_{a} range coordination to various central atoms can be observed. Furthermore, the steric pretence of potential substituents may give rise to unique coordination and bonding patterns. Given the multidentate nature of hydroxycarboxylic acids encountered in the Krebs Cycle it appears prudent to investigate simpler 'cut outs' with a more limited number of donor sites to avoid complexer mixtures of reaction products in envisioned synthesis procedures, thus prompting the diffraction study of the title compound to allow for comparisons of metrical parameters of the free ligand and the ligand in envisioned coordination compounds. The present study falls into the ambit of our continued interest into structural aspects of alpha-hydroxycarboxylic acids such as 1-hydroxycyclopropanecarboxylic acid (Betz \& Klüfers, 2007a), 1-hydroxycyclobutanecarboxylic acid (Betz \& Klüfers, 2007b), 1-hydroxycyclopentanecarboxylic acid (Betz \&

Table 1
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.84	1.78	2.6143 (9)	169
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	0.84	2.32	2.7069 (10)	108
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {ii }}$	0.84	2.00	2.7597 (11)	150

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $-x+1,-y,-z+1$.

Klüfers, 2007c) or tert-butylglycolic acid (Betz et al., 2007). Furthermore, geometrical data for glycolic acid (Ellison et al., 1971; Pijper, 1971) and L-lactic acid (Schouten et al., 1994; Yang et al., 2021) is apparent in the literature while, to the best of our knowledge, none of the various hydroxy-n-butanoic acids have been subjected to diffraction studies. Only one report provides the crystal and molecular structure for gamma-hydroxybutanoic acid as a solvent molecule in a barium-supported tetraphenylimidodiphosphinato compound (Morales-Juarez et al., 2005).

The asymmetric unit of the title compound is shown in Fig. 1 and contains one complete molecule. $\mathrm{C}-\mathrm{O}$ bond lengths are found to be 1.4175 (11) \AA for the alcoholic hydroxyl group and 1.2064 (12) and 1.3143 (11) \AA for the carboxylic acid group and, thus, lie in the normal range reported for other hydroxycarboxylic acids whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016). The alcoholic hydroxy group adopts a staggered conformation relative to the two terminal methyl groups with the relevant $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsional angles measuring -58.32 (11) and $66.60(12)^{\circ}$.
In the crystal, classical hydrogen bonds of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type (Table 1) are apparent that involve all hydroxyl groups as donors and the oxygen atom of the alcoholic hydroxyl group and the carbonyl oxygen atom as acceptors. The hydrogen bonds supported by the alcoholic hydroxyl group as donor and the carbonyl oxygen atom as acceptor connect the individual molecules into centrosymmetric dimers, which are further extended to sheets perpendicular to the crystallographic c axis by means of the carboxylic acid's hydroxyl group as donor and the alcoholic hydroxyl group's oxygen atom as acceptor. In

Figure 1
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Table 2
Experimental details.
Crystal data
Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\max }$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.035,0.107,1.05$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$

```
C55H
118.13
Orthorhombic, Pbca
200
10.9589 (4), 9.3280 (4), 12.7255 (6)
1300.86 (10)
8
Mo K\alpha
0 . 1 0
0.60\times0.51 \times 0.35
```

Bruker (2010) APEXII CCD
Numerical (SADABS, Krause et
al., 2015)
0.928, 0.990

10603, 1620, 1366
0.017
0.669

1620

1620
79
H-atom parameters constrained $0.35,-0.15$

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008)SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).
terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these hydrogen bonds is $C_{1}^{1}(5) R_{2}^{2}(10)$ on the unary level. A depiction of the hydrogen-bonding pattern is shown in Fig. 2.

Synthesis and crystallization

The compound was obtained commercially (Fluka). Crystals suitable for the diffraction studies were taken directly from the provided material.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2
Intermolecular hydrogen bonds (dotted blue lines), viewed along [001].

Acknowledgements

The authors thank Mrs Alida Gerryts for useful discussions.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Betz, R. \& Klüfers, P. (2007a). Acta Cryst. E63, o3891.
Betz, R. \& Klüfers, P. (2007b). Acta Cryst. E63, o4032.
Betz, R. \& Klüfers, P. (2007c). Acta Cryst. E63, o3932.
Betz, R., Klüfers, P. \& Mangstl, M. M. (2007). Acta Cryst. E63, o4144.
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.
Ellison, R. D., Johnson, C. K. \& Levy, H. A. (1971). Acta Cryst. B27, 333-344.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Gade, L. H. (1998). Koordinationschemie, ed. 1. Weinheim: WileyVCH.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.

McMurry, J. (2008). Org. Chem. 7th ed. Totnes: Thomson Learning.
Morales-Juárez, J., Cea-Olivares, R., Moya-Cabrera, M. M., Jancik, V., García-Montalvo, V. \& Toscano, R. A. (2005). Inorg. Chem. 44, 6924-6926.
Pijper, W. P. (1971). Acta Cryst. B27, 344-348.
Schouten, A., Kanters, J. A. \& van Krieken, J. (1994). J. Mol. Struct. 323, 165-168.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Yang, J., Hu, C. T., Reiter, E. \& Kahr, B. (2021). CrystEngComm, 23, 2644-2647.

full crystallographic data

IUCrData (2024). 9, x231093 [https://doi.org/10.1107/S2414314623010933]

rac-Hydroxyisovaleric acid

Lukhanyo Dasi, Eric Cyriel Hosten and Richard Betz

rac-2-Hydroxy-3-methylbutanoic acid

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$
$M_{r}=118.13$
Orthorhombic, Pbca
$a=10.9589$ (4) \AA
$b=9.3280$ (4) \AA
$c=12.7255(6) \AA$
$V=1300.86(10) \AA^{3}$
$Z=8$
$F(000)=512$

Data collection

Bruker (2010) APEXII CCD diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
(SADABS, Krause et al., 2015)
$T_{\text {min }}=0.928, T_{\text {max }}=0.990$
$D_{\mathrm{x}}=1.206 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4732 reflections
$\theta=3.2-28.1^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Blocks, colourless
$0.60 \times 0.51 \times 0.35 \mathrm{~mm}$

10603 measured reflections
1620 independent reflections
1366 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-11 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.107$
$S=1.05$
1620 reflections
79 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0586 P)^{2}+0.2192 P\right]$
> \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.35$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound H atom of the methine group was placed in a calculated position $(\mathrm{C}-\mathrm{H} 1.00 \AA)$ and was included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$.
The H atoms of the methyl groups were allowed to rotate with a fixed angle around the $\mathrm{C}-\mathrm{C}$ bond to best fit the experimental electron density (HFIX 137 in the $S H E L X$ program suite (Sheldrick, 2008)), with $U(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{C})$. The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the $\mathrm{C}-\mathrm{C}$ bond to best fit the experimental electron density (HFIX 147 in the $S H E L X$ program suite (Sheldrick, 2008)), with $U(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} *^{*} U_{\text {eq }}$
O1	$0.62325(6)$	$0.36594(8)$	$0.47438(7)$	$0.0378(2)$
H1A	0.695518	0.348157	0.492101	$0.066(5)^{*}$
O2	$0.59660(8)$	$0.13436(8)$	$0.51070(8)$	$0.0464(3)$
O3	$0.35374(6)$	$0.15502(8)$	$0.47493(7)$	$0.0341(2)$
H3A	0.394355	0.078645	0.474626	$0.049(4)^{*}$
C1	$0.55798(9)$	$0.24797(10)$	$0.47994(8)$	$0.0288(2)$
C2	$0.42861(8)$	$0.26994(9)$	$0.44097(8)$	$0.0266(2)$
H2	0.396479	0.360413	0.472773	0.032^{*}
C3	$0.42813(9)$	$0.28752(12)$	$0.32116(8)$	$0.0379(3)$
H3	0.486954	0.365679	0.303082	0.046^{*}
C4	$0.47104(15)$	$0.15122(17)$	$0.26654(11)$	$0.0592(4)$
H4A	0.472586	0.166730	0.190382	0.089^{*}
H4B	0.414942	0.072567	0.283046	0.089^{*}
H4C	0.553206	0.126684	0.291045	0.089^{*}
C5	$0.30193(13)$	$0.3343(2)$	$0.28387(12)$	$0.0647(4)$
H5A	0.303823	0.351007	0.207865	0.097^{*}
H5B	0.278457	0.422888	0.319944	0.097^{*}
H5C	0.242457	0.258894	0.299861	0.097^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0214(3)$	$0.0242(4)$	$0.0678(5)$	$-0.0016(3)$	$-0.0083(3)$	$0.0040(3)$
O2	$0.0317(4)$	$0.0245(4)$	$0.0830(6)$	$0.0016(3)$	$-0.0136(4)$	$0.0091(4)$
O3	$0.0187(3)$	$0.0242(4)$	$0.0593(5)$	$0.0019(2)$	$0.0065(3)$	$0.0076(3)$
C1	$0.0218(4)$	$0.0216(4)$	$0.0431(5)$	$0.0010(3)$	$-0.0013(4)$	$-0.0008(3)$
C2	$0.0192(4)$	$0.0190(4)$	$0.0417(5)$	$0.0006(3)$	$0.0001(4)$	$0.0004(3)$
C3	$0.0299(5)$	$0.0418(6)$	$0.0421(6)$	$-0.0069(4)$	$-0.0015(4)$	$0.0056(4)$
C4	$0.0572(8)$	$0.0690(9)$	$0.0514(7)$	$-0.0101(7)$	$0.0171(6)$	$-0.0167(6)$
C5	$0.0441(7)$	$0.0949(12)$	$0.0550(7)$	$0.0007(7)$	$-0.0172(6)$	$0.0153(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C1	$1.3143(11)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.5257(17)$
O1-H1A	0.8400	$\mathrm{C} 3-\mathrm{H} 3$	1.0000
O2-C1	$1.2064(12)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
O3-C2	$1.4175(11)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
O3-H3A	0.8400	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
$\mathrm{C} 1-\mathrm{C} 2$	$1.5159(13)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800

C2-C3	1.5334 (14)	C5-H5B	0.9800
C2-H2	1.0000	C5-H5C	0.9800
C3-C4	1.5234 (18)		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C5-C3-H3	107.7
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	C2-C3-H3	107.7
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	124.19 (9)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	123.57 (9)	C3-C4-H4B	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	112.22 (8)	H4A-C4-H4B	109.5
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	109.83 (7)	C3-C4- H 4 C	109.5
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	112.46 (8)	H4A-C4-H4C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	110.06 (8)	$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2$	108.1	C3-C5-H5A	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	108.1	C3-C5-H5B	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	108.1	H5A-C5-H5B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5$	112.11 (12)	C3-C5-H5C	109.5
C4-C3-C2	111.31 (10)	H5A-C5-H5C	109.5
C5-C3-C2	110.05 (9)	H5B-C5-H5C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	107.7		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	17.39 (14)	O3-C2-C3-C4	-58.32 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-163.81 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	64.49 (11)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-106.95 (12)	O3-C2-C3-C5	66.60 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	71.85 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	-170.59 (10)

Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.78	$2.6143(9)$	169
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 2$	0.84	2.32	$2.7069(10)$	108
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.84	2.00	$2.7597(11)$	150

Symmetry codes: (i) $x+1 / 2,-y+1 / 2,-z+1$; (ii) $-x+1,-y,-z+1$.

