ISSN 2414-3146

Received 16 January 2024
Accepted 12 March 2024

Edited by M. Zeller, Purdue University, USA

Keywords: manganese; coordination compound; crystal structure; heteroleptic complex; herringbone pattern; polymorphism.

CCDC reference: 2322181

Structural data: full structural data are available from iucrdata.iucr.org

trans-Dibromidotetrakis(5-methyl-1H-pyrazoleκN^{2})manganese(II)

Manikumar Athan, ${ }^{\text {a }}$ Soundararajan Krishnan ${ }^{\mathrm{b}}$ and Nagarajan Loganathan ${ }^{\mathrm{a}, \mathrm{C} *}$

${ }^{\text {a }}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620024 , Tamilnadu, India, ${ }^{\text {b }}$ Department of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India, and ${ }^{\text {c }}$ UGCFaculty Recharge Programme, University Grant Commission, New Delhi, India. *Correspondence e-mail: I.nagarajan@bdu.ac.in

The title compound, trans-dibromidotetrakis(5-methyl-1H-pyrazole- κN^{2}) manganese(II), $\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$ or $\left[\mathrm{Mn}(3-\mathrm{MePzH})_{4} \mathrm{Br}_{2}\right](\mathbf{1})$ crystallizes in the triclinic $P \overline{1}$ space group with the cell parameters $a=7.6288$ (3), $b=8.7530$ (4), c $=9.3794$ (4) \AA and $\alpha=90.707$ (4), $\beta=106.138$ (4), $\gamma=114.285(5)^{\circ}, V=$ $542.62(5) \AA^{3}, T=120 \mathrm{~K}$. The asymmetric unit contains only half the molecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an $A A B B$ type manner with two methyl groups pointing up and the other two down. The supramolecular architecture is characterized by several intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$, and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Earlier, a polymorphic structure of $\left[\mathrm{Mn}(3-\mathrm{MePzH})_{4} \mathrm{Br}_{2}\right]$ (2) with a similar geometry and also an $A A B B$ arrangement for the pyrazole ligands was described [Reedijk et al. (1971). Inorg. Chem. 10, 2594-2599; $a=8.802$ (6), $b=$ 9.695 (5), $c=7.613$ (8) \AA and $\alpha=105.12$ (4), $\beta=114.98$ (4), $\gamma=92.90(3)^{\circ}, V=$ $\left.558.826(5) \AA^{3}, T=295 \mathrm{~K}\right]$. A varying supramolecular pattern was reported, with the structure of $\mathbf{1}$ featuring a herringbone type pattern while that of structure $\mathbf{2}$ shows a pillared network type of arrangement along the a axis. A nickel complex $\left[\mathrm{Ni}(3-\mathrm{MePzH})_{4} \mathrm{Br}_{2}\right]$ isomorphic to $\mathbf{1}$ and the analogous chloro derivatives of $\mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ are also known.

Structure description

Earth-abundant transition metals such as manganese have received much attention owing to their numerous applications in biological, industrial, and material sciences (Constable et al., 2021; Rice et al., 2017; Zhang et al., 2007; Dell, 2000). Apart from these applications, several mixed-valent multinuclear manganese cages have been assembled to understand their single molecular magnetism (SMM) behavior (Zabala-Lekuona et al.,

Figure 1
The molecular structure of the title compound $\mathbf{1}$ with 50% probability displacement ellipsoids. The unlabeled atoms are related by symmetry.
2021). In addition, the famous Jacobson catalyst consisting of an $\mathrm{Mn}^{\mathrm{II}}$-salen complex was developed for the enantioselective epoxidation of alkenes (Zhang et al., 1990) while Mn^{I} carbonyls containing imidazolyl-based ligands have been used for the electrocatalytic-disproportionation of CO_{2} (Myren et al., 2020). Likewise, many Mn^{I} carbonyls containing various N heterocyclic ligands were developed as biomimicking models for hydrogenase enzymes (Xu et al., 2016; Pan et al., 2020.) and as CO-releasing molecules (Mann, 2012; Cheng \& Hu, 2021). Pyrazoles are one of the important classes of organic ligands used in many facets of coordination and organometallic chemistry (Trofimenko, 1972; Halcrow, 2009).

We aim to synthesize various CO-releasing molecules of the manganese family containing pyrazoles as primary ligands. In one such an attempt, a simple room-temperature stirring reaction involving the combination of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}$, 5-methyl$1 H$-pyrazole and triethylamine base (1:2:4) was found to release all CO molecules and afforded yellow-colored crystals suitable for single-crystal X-ray diffraction analysis (SCXRD) from a dichloromethane-ethanol mixture (1:1) in quantitative yield. The SCXRD analysis reveals that it is trans-dibromo tetrakis(5-methyl-1H-pyrazole- $\kappa^{2} N$)manganese(II) (1). In other words, Mn^{I} was oxidized in situ to $\mathrm{Mn}^{\mathrm{II}}$ and an octahedral heteroleptic complex containing two bromo ligands trans to each other in the axial position and four neutral 5-methyl-1H-pyrazoles in the equatorial position was obtained (Fig. 1). The asymmetric unit contains half the molecule with the manganese atom located on a crystallographic inversion center. The $3-\mathrm{MePzH}$ ligands of the asymmetric unit are arranged in an $A A B B$ pattern with two neighboring pyrazole pointing upwards and the other two (their counterparts by inversion) downwards. The analysis reveals that it is a distorted octahedral complex with the axial distances to the larger bromine atoms $[\mathrm{Mn} 1-\mathrm{Br} 1=2.7274$ (3) \AA] longer than the equatorial distances $[\mathrm{Mn} 1-\mathrm{N} 1=2.251(2) \AA$ and $\mathrm{Mn} 1-\mathrm{N} 3=2.261$ (2) \AA]. Angles at the manganese atom are

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 2-\mathrm{C} 4$ and $\mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 5-\mathrm{C} 7$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1$	$0.84(3)$	$2.70(3)$	$3.343(2)$	$134(2)$
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.98	3.11	$3.951(3)$	145
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1$	$0.84(3)$	$2.70(3)$	$3.343(2)$	$134(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.84(3)$	$3.05(3)$	$3.704(2)$	$137(2)$
$\mathrm{N} 4-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.80(3)$	$3.00(3)$	$3.636(2)$	$138(3)$
$\mathrm{N} 4-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\mathrm{iii}}$	$0.80(3)$	$2.76(3)$	$3.351(2)$	$132(3)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 4^{\text {iv }}$	0.95	2.76	$3.659(3)$	158
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N}^{\mathrm{v}}$	0.98	2.86	$3.744(3)$	151
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Cg} 1^{\mathrm{v}}$	0.98	2.61	$3.586(3)$	173
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cg} 2^{\text {vi }}$	0.95	2.84	$3.667(4)$	146

Symmetry codes: (i) $-x+2,-y,-z$; (ii) $x-1, y, z$; (iii) $-x+1,-y,-z$; (iv) $x, y-1, z$; (v) $-x+1,-y,-z+1$; (vi) $-x+1,-y+1,-z+1$.
close to $90^{\circ}\left[\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Br} 1=89.10(5)^{\circ}\right.$ and $\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{Br} 1$ $=91.45(5)^{\circ}$] and neighboring $3-\mathrm{MePzH}$ rings are mutually perpendicular to each other with the dihedral angle between their planes being $87.08(2)^{\circ}$.

Earlier, many transition-metal pyrazoles were reported (Reedijk et al., 1971; Bieller et al., 2006; Cotton et al., 2002; Nelana et al., 2004; Khan et al., 2014; Al Isawi et al., 2023). In particular, Reedijk et al. (1971) synthesized many of the first transition-metal 5-methyl-1H-pyrazole complexes, including a polymorphic form of the title compound [$\mathrm{Mn}(3-\mathrm{MePzH})_{4} \mathrm{Br}_{2}$] (2), which was synthesized using MnBr_{2} and ethyl orthoformate as a dehydrating agent. It is interesting to note that the crystal data for compound $\mathbf{1}$ were collected at 120 K [$a=$ 7.6288 (3), $b=8.7530$ (4), $c=9.3794$ (4) \AA and $\alpha=90.707$ (4), $\left.\beta=106.138(4), \gamma=114.285(5)^{\circ}, V=542.62(5) \AA^{3}\right]$ while compound 2 data were collected at $295 \mathrm{~K}[a=8.802$ (6), $b=$ 9.695 (5), $c=7.613$ (8) \AA and $\alpha=105.12$ (4), $\beta=114.98$ (4), $\gamma=$ $\left.92.90(3)^{\circ}, V=558.826(5) \AA^{3}\right]$. A root-mean-square (r.m.s.) overlay of the molecules of $\mathbf{1}$ and $\mathbf{2}$ using Mercury 4.0 (Macrae et al., 2020) is shown in Fig. 2 and reveals that in Reedijk's polymorphic form, the $3-\mathrm{MePzH}$ units are also placed in an

Figure 2
Overlay of the compounds $\mathbf{1}$ and $\mathbf{2}$ showing a slight deviation of $0.0612 \AA$ (Mercury; Macrae et al., 2020).

Figure 3
Perspective view of the supramolecular pattern of compound $\mathbf{1}$ showing the presence of intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.
$A A B B$ pattern with an r.m.s. deviation of $0.0612 \AA$. The analogous $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$ bromo complexes isomorphic with Reedijk's polymorph 2 were reported (Cotton et al., 2002; Nelana et al., 2004; Khan et al., 2014) and the bond parameters of $\mathbf{1}$ and $\mathbf{2}$ are both in good agreement with those reported structures. Interestingly, the $\mathrm{Ni}^{\mathrm{II}}$ bromo complex (Nelana et al., 2004) is isomorphic with compound 1. It was synthesized using (1,2-dimethoxyethane) $)_{2} \mathrm{NiBr}_{2}$ as the metal source.

Compound 1 contains various intra- and intermolecular interactions in the form of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions as well as $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (see Table 1). A perspective view of the supramolecular architecture of $\mathbf{1}$ is given in Fig. 3, which shows the presence of the various $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, leading to the formation of a

Figure 4
Supramolecular architecture of compound 1. (a) View along the a axis showing a herringbone-type arrangement; (b) and (c) the stacking of $\mathrm{Br}-\mathrm{Mn}-\mathrm{Br}$ along the respective axes.

Figure 5
Supramolecular architecture of compound 2. (a) View along the a axis showing a pillared network arrangement; (b) a view along the b axis showing the zigzag pattern of $\mathrm{Br}-\mathrm{Mn}-\mathrm{Br}$ and (c) a view along the c axis.
herringbone-type of arrangement (Fig. 4a) along the a axis. In contrast, a pillared network along the a axis is seen in the structure of 2 (Fig. 5a). Further investigation reveals that along the b axis, the $\mathrm{Br}-\mathrm{Mn}-\mathrm{Br}$ moieties are stacked one over another in compound $\mathbf{1}$ while in $\mathbf{2}$, they are arranged in a zigzag fashion (Fig. $4 b$ and $5 b$). The view along c axis is also different in both the compounds (Fig. $4 c$ and $5 c$). Overall, the supramolecular architectures clearly distinguish the two polymorphic forms $\mathbf{1}$ and 2.

Synthesis and crystallization

50 mg (0.19 mmol) of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}$ [bromopentacarbonylmanganese(I)] and $30.6 \mu \mathrm{~L}(0.38 \mathrm{mmol})$ of 5-methyl- 1 H pyrazole were dissolved in 20 ml of ethanol. After stirring for a few minutes, $105 \mu \mathrm{~L}$ (0.76 mmol) of triethylamine were added to the reaction mixture and the resultant straw-yellowcolored solution was stirred at room temperature for 20 h . Light-yellow crystals were obtained by the slow evaporation method of a 1:1 dichloromethane-ethanol solvent mixture. Crystal yield 60%. ESI-MS data: $m / z 540.53290[M-H]^{+}$.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

Dr Orbett Alexander, Department of Chemistry, University of Western Cape, South Africa, is thanked for crystallographic software assistance.

Funding information

Funding for this research was provided by: Science and Engineering Research Board, India, Early Career Research Award (award No. ECR/2016/001966 to Nagarajan Loganathan; grant No. EEQ2018/001373); Rashtriya Uchchatar Shiksha Abhiyan, Physical Sciences 2.0 (grant to Nagarajan Loganathan).

References

Al Isawi, W. A., Zeller, M. \& Mezei, G. (2023). Acta Cryst. E79, 11991206.

Bieller, S., Haghiri, A., Bolte, M., Bats, J. W., Wagner, M. \& Lerner, H.-W. (2006). Inorg. Chim. Acta, 359, 1559-1572.

Brandenburg, K., Berndt, M. \& Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cheng, J. \& Hu, J. (2021). ChemMedChem, 16, 3628-3634.
Constable, E. C., Parkin, G. \& Que, L. Jr (2021). Editors. Comprehensive coordination chemistry III, Vol 5. Amsterdam: Elsevier.
Cotton, S. A., Franckevicius, V. \& Fawcett, J. (2002). Polyhedron, 21, 2055-2061.
Dell, R. M. (2000). Solid State Ionics, 134, 139-158.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.
Khan, S. A., Noor, A., Kempe, R., Subhan, H., Shah, A. \& Khan, E. (2014). J. Coord. Chem. 67, 2425-2434.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Mann, B. E. (2012). Organometallics, 31, 5728-5735.
Myren, T. H. T., Alherz, A., Thurston, J. R., Stinson, T. A., Huntzinger, C. G., Musgrave, C. B. \& Luca, O. R. (2020). ACS Catal. 10, 1961-1968.
Nelana, S. M., Darkwa, J., Guzei, I. A. \& Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835-1842.
Pan, H.-J. \& Hu, X. (2020). Angew. Chem. Int. Ed. 59, 4942-4946.
Reedijk, J., Stork-Blaisse, B. A. \& Verschoor, G. C. (1971). Inorg. Chem. 10, 2594-2599.
Rice, D. B., Massie, A. A. \& Jackson, T. A. (2017). Acc. Chem. Res. 50, 2706-2717.
Rigaku OD. (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Trofimenko, S. (1972). Chem. Rev. 72, 497-509.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xu, T., Yin, C. M., Wodrich, M. D., Mazza, S., Schultz, K. M., Scopelliti, R. \& Hu, X. (2016). J. Am. Chem. Soc. 138, 3270-3273.

Table 2
Experimental details.
Crystal data Chemical formula M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.032,0.064,1.04$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$
543.19
Triclinic, $P \overline{1}$
120
$7.6288(3), 8.7530(4), 9.3794(4)$
$90.707(4), 106.138(4), 114.285(5)$
$542.62(5)$
1
$\mathrm{Mo} K \alpha$
4.31
$0.17 \times 0.14 \times 0.12$

XtaLAB AFC12 (RINC): Kappa single
Multi-scan (CrysAlis PRO; Rigaku OD, 2017)
0.706, 1.000

11690, 2574, 2115

0.060

0.680

2574
134
H atoms treated by a mixture of independent and constrained refinement
$0.50,-0.38$

Computer programs: CrysAlis PRO (Rigaku OD, 2017), SHELXT (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b), ORTEP-3 for Windows2020 (Farrugia, 2012), Diamond (Brandenburg et al., 2014) and publCIF (Westrip, 2010).

Zabala-Lekuona, A., Seco, J. M. \& Colacio, E. (2021). Coord. Chem. Rev. 441, 213984.
Zhang, W. \& Cheng, C. Y. (2007). Hydrometallurgy, 89, 137-159.
Zhang, W., Loebach, J. L., Wilson, S. R. \& Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.

full crystallographic data

IUCrData (2024). 9, x240237 [https://doi.org/10.1107/S2414314624002372]

trans-Dibromidotetrakis(5-methyl-1 H -pyrazole- $\kappa \mathrm{N}^{2}$)manganese(II)

Manikumar Athan, Soundararajan Krishnan and Nagarajan Loganathan

trans-Dibromidotetrakis(5-methyl-1H-pyrazole- $\kappa \mathrm{N}^{2}$) \backslash manganese(II)

Crystal data

$\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$
$M_{r}=543.19$
Triclinic, $P \overline{1}$
$a=7.6288$ (3) A
$b=8.7530(4) \AA$
$c=9.3794$ (4) \AA
$\alpha=90.707(4)^{\circ}$
$\beta=106.138(4)^{\circ}$
$\gamma=114.285(5)^{\circ}$
$V=542.62(5) \AA^{3}$

Data collection

XtaLAB AFC12 (RINC): Kappa single diffractometer
Radiation source: fine-focus sealed X-ray tube ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
$T_{\text {min }}=0.706, T_{\text {max }}=1.000$
11690 measured reflections
2574 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.064$
$S=1.04$
2574 reflections
134 parameters
0 restraints
Primary atom site location: dual

$$
\begin{aligned}
& Z=1 \\
& F(000)=271 \\
& D_{\mathrm{x}}=1.662 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4000 \text { reflections } \\
& \theta=3.1-28.0^{\circ} \\
& \mu=4.31 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.17 \times 0.14 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

2115 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=28.9^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 11$
$l=-12 \rightarrow 11$
3 standard reflections every 20 reflections intensity decay: none

Special details

```
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0225 P)^{2}+0.1264 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.50 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.37\) e \(\AA^{-3}\)
```

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} U_{\mathrm{eq}}$
C1	$0.8781(4)$	$-0.4193(4)$	$0.2379(3)$	$0.0248(6)$
H1A	0.841583	-0.535204	0.195589	0.037^{*}
H1B	0.924272	-0.407646	0.347700	0.037^{*}
H1C	0.986772	-0.339348	0.203390	0.037^{*}
C2	$0.6971(4)$	$-0.3823(3)$	$0.1878(3)$	$0.0177(5)$
C3	$0.5014(4)$	$-0.4665(3)$	$0.1909(3)$	$0.0196(6)$
H3	0.443446	-0.571543	0.225950	0.024^{*}
C4	$0.4061(4)$	$-0.3654(3)$	$0.1319(3)$	$0.0191(5)$
H4	0.268506	-0.392289	0.120452	0.023^{*}
C5	$0.6662(4)$	$0.1767(4)$	$0.3552(3)$	$0.0234(6)$
H5	0.803196	0.199834	0.368271	0.028^{*}
C6	$0.5970(4)$	$0.2174(4)$	$0.4670(3)$	$0.0251(6)$
H6	0.675254	0.271808	0.566727	0.030^{*}
C7	$0.3930(4)$	$0.1625(3)$	$0.4026(3)$	$0.0201(6)$
C8	$0.2336(4)$	$0.1681(4)$	$0.4618(3)$	$0.0329(7)$
H8A	0.264306	0.152549	0.567683	0.049^{*}
H8B	0.101977	0.077534	0.404452	0.049^{*}
H8C	0.229412	0.278049	0.452166	0.049^{*}
Br1	$0.91038(4)$	$0.16217(3)$	$0.06734(3)$	$0.01922(10)$
Mn1	0.500000	0.000000	0.000000	$0.01496(13)$
N1	$0.5313(3)$	$-0.2264(3)$	$0.0935(2)$	$0.0169(4)$
N2	$0.7090(3)$	$-0.2395(3)$	$0.1301(2)$	$0.0177(5)$
N3	$0.5156(3)$	$0.1016(3)$	$0.2283(2)$	$0.0175(5)$
N4	$0.3507(3)$	$0.0941(3)$	$0.2610(2)$	$0.0193(5)$
H2	$0.804(4)$	$-0.166(4)$	$0.106(3)$	$0.013(7)^{*}$
H7	$0.244(5)$	$0.058(4)$	$0.196(3)$	$0.025(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0248(15)$	$0.0259(15)$	$0.0293(15)$	$0.0154(13)$	$0.0098(12)$	$0.0085(12)$
C2	$0.0219(13)$	$0.0169(13)$	$0.0145(12)$	$0.0100(11)$	$0.0038(10)$	$0.0005(10)$
C3	$0.0258(14)$	$0.0163(13)$	$0.0177(13)$	$0.0092(11)$	$0.0079(11)$	$0.0036(10)$
C4	$0.0184(13)$	$0.0187(14)$	$0.0208(13)$	$0.0069(11)$	$0.0088(10)$	$0.0018(10)$
C5	$0.0165(13)$	$0.0293(16)$	$0.0253(14)$	$0.0116(12)$	$0.0052(11)$	$0.0054(12)$
C6	$0.0237(14)$	$0.0349(17)$	$0.0161(13)$	$0.0124(13)$	$0.0058(11)$	$0.0008(11)$
C7	$0.0216(14)$	$0.0229(14)$	$0.0165(13)$	$0.0086(11)$	$0.0087(11)$	$0.0027(10)$
C8	$0.0276(16)$	$0.055(2)$	$0.0204(14)$	$0.0201(15)$	$0.0104(12)$	$0.0017(13)$
Br1	$0.01626(14)$	$0.01839(15)$	$0.02480(15)$	$0.00854(11)$	$0.00746(10)$	$0.00161(10)$
Mn1	$0.0161(3)$	$0.0151(3)$	$0.0174(3)$	$0.0090(2)$	$0.0070(2)$	$0.0023(2)$
N1	$0.0180(11)$	$0.0168(11)$	$0.0181(11)$	$0.0106(9)$	$0.0042(9)$	$0.0020(8)$
N2	$0.0148(11)$	$0.0175(12)$	$0.0208(12)$	$0.0061(10)$	$0.0065(9)$	$0.0040(9)$
N3	$0.0163(11)$	$0.0204(12)$	$0.0203(11)$	$0.0098(9)$	$0.0092(9)$	$0.0030(9)$
N4	$0.0159(12)$	$0.0201(12)$	$0.0195(12)$	$0.0054(10)$	$0.0056(10)$	$0.0013(9)$

Geometric parameters (A, ${ }^{\circ}$)

C1-C2	1.497 (3)	C7-N4	1.346 (3)
C1-H1A	0.9800	C7-C8	1.488 (4)
C1-H1B	0.9800	C8-H8A	0.9800
C1-H1C	0.9800	C8-H8B	0.9800
C2-N2	1.348 (3)	C8-H8C	0.9800
C2-C3	1.376 (4)	$\mathrm{Br} 1-\mathrm{Br} 1$	0.0000 (10)
C3-C4	1.391 (4)	$\mathrm{Br} 1-\mathrm{Mn} 1$	2.7274 (3)
C3-H3	0.9500	Mn1-N1	2.251 (2)
$\mathrm{C} 4-\mathrm{N} 1$	1.330 (3)	$\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	2.251 (2)
C4-H4	0.9500	Mn1-N3	2.2612 (19)
C5-N3	1.330 (3)	$\mathrm{Mn} 1-\mathrm{N} 3^{\text {i }}$	2.2613 (19)
C5-C6	1.400 (4)	N1-N2	1.356 (3)
C5-H5	0.9500	N2-H2	0.84 (3)
C6-C7	1.368 (4)	N3-N4	1.352 (3)
C6-H6	0.9500	N4-H7	0.80 (3)
C2-C1-H1A	109.5	N1-Mn1-N3	89.74 (7)
C2-C1-H1B	109.5	N1 ${ }^{\text {i }}$-Mn1-N3	90.26 (7)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3^{\text {i }}$	90.26 (7)
C2-C1-H1C	109.5	N1 ${ }^{\text {i }}$-Mn1- ${ }^{\text {N }}{ }^{\text {i }}$	89.74 (7)
H1A-C1-H1C	109.5	N3-Mn1-N3 ${ }^{\text {i }}$	180.0
H1B-C1-H1C	109.5	N1-Mn1-Br1	89.10 (5)
N2-C2-C3	105.9 (2)	N1 ${ }^{\text {i }}$-Mn1- Br 1	90.90 (5)
N2-C2-C1	121.2 (2)	N3-Mnl-Brl	91.45 (5)
C3-C2-C1	132.9 (2)	N3i-Mn1-Br1	88.55 (5)
C2-C3-C4	105.5 (2)	N1-Mn1-Br1	89.10 (5)
C2-C3-H3	127.3	N1-Mnl-Brl	90.90 (5)
C4-C3-H3	127.3	N3-Mn1-Br1	91.45 (5)
N1-C4-C3	111.7 (2)	N3i-Mn1-Br1	88.55 (5)
N1-C4-H4	124.1	$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 1$	0.000 (16)
C3-C4-H4	124.1	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {i }}$	90.90 (5)
N3-C5-C6	111.3 (2)	$\mathrm{N1}{ }^{\text {i }}-\mathrm{Mnl}-\mathrm{Brl}^{\text {i }}$	89.10 (5)
N3-C5-H5	124.3	N3-Mn1-Br1 ${ }^{\text {i }}$	88.55 (5)
C6- $\mathrm{C} 5-\mathrm{H} 5$	124.3	$\mathrm{N} 3{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{Br}^{\text {i }}$	91.45 (5)
C7-C6-C5	105.6 (2)	$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{1}$	180.0
C7-C6-H6	127.2	$\mathrm{Br} 1-\mathrm{Mn} 1-\mathrm{Br} 1^{\text {i }}$	180.0
C5-C6-H6	127.2	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2$	104.0 (2)
N4-C7-C6	105.9 (2)	C4-N1-Mn1	133.75 (17)
N4-C7-C8	122.0 (2)	N2-N1-Mn1	122.16 (16)
C6-C7-C8	132.1 (2)	C2-N2-N1	112.9 (2)
C7-C8-H8A	109.5	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$	129.5 (18)
C7-C8-H8B	109.5	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2$	117.2 (18)
H8A-C8-H8B	109.5	C5-N3-N4	104.0 (2)
C7-C8- H 8 C	109.5	C5-N3-Mn1	133.35 (17)
H8A-C8-H8C	109.5	N4-N3-Mn1	122.65 (15)
H8B-C8-H8C	109.5	C7-N4-N3	113.2 (2)

$\mathrm{Br} 1-\mathrm{Br} 1-\mathrm{Mn} 1$	$0.00(2)$	$\mathrm{C} 7-\mathrm{N} 4-\mathrm{H} 7$	
$\mathrm{~N} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	180.0	$\mathrm{~N} 3-\mathrm{N} 4-\mathrm{H} 7$	$127(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	$119(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.2(3)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	$-178.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$0.1(3)$	$\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	$0.8(3)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.3(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 3-\mathrm{N} 4$	$178.32(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 4$	$0.0(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 3-\mathrm{Mn} 1$	$-0.4(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-180.0(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 4-\mathrm{N} 3$	$179.66(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2$	$-0.5(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 4-\mathrm{N} 3$	$-0.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{Mn} 1$	$-177.60(16)$	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 7$	$179.7(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	$-0.8(3)$	$\mathrm{Mn} 1-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 7$	$0.4(3)$

Symmetry code: (i) $-x+1,-y,-z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 2-\mathrm{C} 4$ and $\mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 5-\mathrm{C} 7$ rings, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Br} 1$	$0.84(3)$	$2.70(3)$	$3.343(2)$	$134(2)$
$\mathrm{C} 1 — \mathrm{H} 1 C \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.98	3.11	$3.951(3)$	145
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Br} 1$	$0.84(3)$	$2.70(3)$	$3.343(2)$	$134(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{Br} 1^{\mathrm{ii}}$	$0.84(3)$	$3.05(3)$	$3.704(2)$	$137(2)$
$\mathrm{N} 4 — \mathrm{H} 7 \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.80(3)$	$3.00(3)$	$3.636(2)$	$138(3)$
$\mathrm{N} 4 — \mathrm{H} 7 \cdots \mathrm{Br}^{\mathrm{i}}$	$0.80(3)$	$2.76(3)$	$3.351(2)$	$132(3)$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 4^{\mathrm{iv}}$	0.95	2.76	$3.659(3)$	158
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots \mathrm{~N} 2^{\mathrm{v}}$	0.98	2.86	$3.744(3)$	151
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots{ }^{\mathrm{v}} 1^{\mathrm{v}}$	0.98	2.61	$3.586(3)$	173
$\mathrm{C} 3 — \mathrm{H} 3 \cdots C g 2^{\text {vi }}$	0.95	2.84	$3.667(4)$	146

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x+2,-y,-z$; (iii) $x-1, y, z$; (iv) $x, y-1, z$; (v) $-x+1,-y,-z+1$; (vi) $-x+1,-y+1,-z+1$.

