organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Benzo[a][1,4]benzo­thia­zino[3,2-c]pheno­thia­zine

crossmark logo

aDepartment of Chemistry, Alfaisal, University, Riyadh 15333, Saudi Arabia, bPenn State Scranton, Dunmore, Pennsylvania 18512, USA, cAlfasial University, Riyadh, Saudi Arabia, and dDepartment of Chemistry, The University of Jordan, Amman, Jordan
*Correspondence e-mail: mbader@alfaisal.edu

Edited by S.-L. Zheng, Harvard University, USA (Received 3 April 2024; accepted 19 April 2024; online 30 April 2024)

The title compound, C22H12N2S2, crystallizes in space group P21/c with four mol­ecules in the asymmetric unit. The heterocyclic mol­ecule is quasi-planar with a dihedral angle between the phenyl rings on the periphery of the mol­ecule of 1.73 (19)°. Short H⋯S (2.92 Å) and C—H⋯π [2.836 (3) Å] contacts are observed in the crystal with shorted ππ stacking distances of 3.438 (3) Å along the b axis. Surprisingly, and unlike a closely related material, this mol­ecule readily forms large crystals by sublimation and by slow evaporation from di­chloro­methane. The maximum absorbance in the UV-Vis spectrum is at 533 nm. Emission was measured upon excitation at 533 nm with a fluorescence λmax of 658 nm and cutoff of 900 nm.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Fused heterocyclic aromatic compounds are of inter­est as an alternative to oligoacenes (Spangler et al., 1989[Spangler, C. W., Havelka, K., Bader, M. M., McLean, M. R. & Dalton, L. R. (1989). Proc. SPIE, 1147, 149.]; McLean et al., 1989[McLean, M. R., Bader, M., Dalton, L. R., Devine, L. R. S. & Steier, W. H. (1989). MRS Online Proceedings Library, 173, 563-566. https://doi.org/10.1557/PROC-173-563], 1990[McLean, M. R., Bader, M., Dalton, L. R., Devine, R. S. & Steier, W. H. (1990). J. Phys. Chem. 94, 4386-4387.]; Pham et al., 2008[Pham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968-7971.]). Surprisingly, despite this intensely researched area, structural studies of these materials are scarce. Sulfur-containing fused heterocyclic compounds, such as pheno­thia­zine ladder polymers and oligomers are particularly inter­esting. Pheno­thia­zine systems can be obtained readily by reaction of halo-p-benzo­quinones and amino thio­phenols (Agarwal & Schaefer, 1980[Agarwal, N. L. & Schaefer, W. (1980). J. Org. Chem. 45, 2155-2161.]; Okafor et al., 1988[Okafor, C. O. (1988). Tetrahedron, 44, 1187-1194.]). The title compound was prepared as part of our work in crystalline organic semiconductors and was used in the construction of a single-crystal field effect transistor (Pham et al., 2008[Pham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968-7971.]).

The molecule is quasi-planar (Fig. 1[link]) with a dihedral angle between the C11–C16 and C17–C22 phenyl rings on the periphery of the mol­ecule of 1.73 (19)°. Individual mol­ecules stack along the b axis with ππ distances of 3.438 (3) Å between symmetry-related C3–C8 rings. The shortest inter­actions are H15⋯S1(1 − x, −[{1\over 2}] + y, [{1\over 2}] − z) = 2.92 Å and C—H⋯π [H13⋯C13(2 − x, [{1\over 2}] + z, [{1\over 2}] − z)] of 2.84 Å. The packing of molecules is shown in Fig. 2[link].

[Figure 1]
Figure 1
Structure of title compound with 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing of molecules governed by π-stacking and C—H⋯π contacts (H13⋯C13).

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) on March 28, 2024 revealed no hits for this compound or any closely related structures.

This class of compounds have unique optical and electrical properties (Spangler et al., 1989[Spangler, C. W., Havelka, K., Bader, M. M., McLean, M. R. & Dalton, L. R. (1989). Proc. SPIE, 1147, 149.]; Pham et al., 2008[Pham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968-7971.]; McLean et al., 1990[McLean, M. R., Bader, M., Dalton, L. R., Devine, R. S. & Steier, W. H. (1990). J. Phys. Chem. 94, 4386-4387.]). The uv–vis spectra and florescence spectra are shown in Figs. 3[link] and 4[link]. We note that the fluorescence cutoff spectra extend to 900 nm, which might be of inter­est for non-linear optical and biological applications.

[Figure 3]
Figure 3
Uv–vis spectrum of the title compound in DMF.
[Figure 4]
Figure 4
Emission spectrum of the title compound excited at 533 nm in DMF.

Synthesis and crystallization

The title compound was prepared followed published procedures (Feister et al., 2023[Feister, C., Pham, P.-T. T. & Bradley, A. (2023). MRS Advances, pp. 889-893. https://doi.org/10.1557/s43580-023-00609-y]; Okafor, 1988[Okafor, C. O. (1988). Tetrahedron, 44, 1187-1194.]). In a typical experiment, 2,3-di­chloro-1,4-naphtho­quinone (1 mmol, 1.0693 g) was dissolved in 10 ml DMF. 2-Amino­thio­phenol (2 mmol, 1 ml) was added to the solution. The reaction was then left stirring for 10 h, and the product was vacuum filtered. The product was then dried for 10 h in a vacuum oven, and then recrystallized from a di­chloro­methane solution, resulting in a dark-purple solid (0.7974 g, yield 46%), m.p. 280°C. Suitable crystals were grown either by sublimation or by slow evaporation from di­chloro­methane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C22H12N2S2
Mr 368.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.7365 (5), 3.8149 (2), 35.7260 (15)
β (°) 97.669 (2)
V3) 1585.27 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.25 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker PHOTON-III CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.642, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13015, 3927, 3341
Rint 0.035
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.06
No. of reflections 3927
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.56
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Benzo[a][1,4]benzothiazino[3,2-c]phenothiazine top
Crystal data top
C22H12N2S2F(000) = 760
Mr = 368.46Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7365 (5) ÅCell parameters from 2950 reflections
b = 3.8149 (2) Åθ = 2.3–28.3°
c = 35.7260 (15) ŵ = 0.34 mm1
β = 97.669 (2)°T = 100 K
V = 1585.27 (13) Å3Plate, brown
Z = 40.25 × 0.06 × 0.01 mm
Data collection top
Bruker PHOTON-III CPAD
diffractometer
3341 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.035
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.642, Tmax = 0.746k = 35
13015 measured reflectionsl = 4743
3927 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0466P)2 + 2.0952P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3927 reflectionsΔρmax = 0.52 e Å3
235 parametersΔρmin = 0.56 e Å3
Special details top

Experimental. Prof. M. Bader/ Prof. D. Alvacado / A. Bradley

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54183 (4)0.21127 (14)0.30740 (2)0.01608 (13)
S20.33242 (4)0.20563 (14)0.34472 (2)0.01608 (13)
C10.55313 (16)0.3928 (5)0.35287 (5)0.0133 (4)
C20.66054 (16)0.5414 (5)0.37063 (5)0.0136 (4)
C30.66375 (16)0.6660 (5)0.40993 (5)0.0130 (4)
C40.76638 (17)0.7994 (6)0.42939 (6)0.0161 (4)
H40.8331940.8116980.4170860.019*
C50.77115 (17)0.9132 (6)0.46631 (6)0.0173 (4)
H50.8412161.0014280.4792730.021*
C60.67283 (17)0.8986 (6)0.48468 (6)0.0171 (4)
H60.6760600.9771460.5100330.021*
C70.57106 (17)0.7691 (5)0.46564 (6)0.0158 (4)
H70.5044670.7599880.4780810.019*
C80.56486 (16)0.6513 (5)0.42822 (5)0.0139 (4)
C90.45459 (16)0.5176 (5)0.40854 (5)0.0136 (4)
C100.45630 (16)0.3844 (5)0.37040 (5)0.0131 (4)
N10.75471 (14)0.5822 (5)0.35518 (5)0.0152 (3)
C110.76197 (17)0.4805 (5)0.31800 (6)0.0149 (4)
C120.86667 (17)0.5499 (6)0.30445 (6)0.0174 (4)
H120.9268480.6621860.3204820.021*
C130.88363 (19)0.4577 (6)0.26821 (6)0.0204 (4)
H130.9552120.5056620.2596110.025*
C140.79652 (19)0.2954 (6)0.24432 (6)0.0215 (5)
H140.8086930.2312350.2194670.026*
C150.69185 (19)0.2267 (6)0.25667 (6)0.0186 (4)
H150.6320880.1171800.2402010.022*
C160.67390 (17)0.3185 (5)0.29338 (6)0.0158 (4)
N20.36590 (14)0.5329 (5)0.42687 (5)0.0157 (4)
C170.25691 (17)0.4184 (6)0.41125 (6)0.0160 (4)
C180.16828 (17)0.4541 (6)0.43387 (6)0.0178 (4)
H180.1850080.5536650.4583580.021*
C190.05728 (17)0.3472 (6)0.42117 (6)0.0197 (4)
H190.0011150.3712770.4370180.024*
C200.03085 (18)0.2041 (6)0.38515 (6)0.0210 (4)
H200.0455270.1321180.3763600.025*
C210.11667 (17)0.1672 (6)0.36219 (6)0.0182 (4)
H210.0986930.0713650.3375620.022*
C220.22938 (17)0.2703 (5)0.37509 (6)0.0155 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0154 (2)0.0172 (3)0.0152 (2)0.0022 (2)0.00051 (17)0.00166 (19)
S20.0136 (2)0.0180 (3)0.0160 (2)0.0023 (2)0.00017 (17)0.00226 (19)
C10.0148 (9)0.0119 (9)0.0125 (9)0.0016 (8)0.0013 (7)0.0015 (7)
C20.0138 (9)0.0115 (9)0.0147 (9)0.0007 (8)0.0007 (7)0.0013 (7)
C30.0130 (8)0.0111 (9)0.0140 (9)0.0009 (7)0.0012 (7)0.0011 (7)
C40.0131 (8)0.0160 (10)0.0187 (10)0.0001 (8)0.0001 (7)0.0001 (8)
C50.0158 (9)0.0164 (10)0.0184 (10)0.0021 (8)0.0028 (7)0.0016 (8)
C60.0196 (10)0.0165 (10)0.0145 (9)0.0015 (8)0.0003 (7)0.0014 (8)
C70.0154 (9)0.0156 (10)0.0161 (9)0.0001 (8)0.0015 (7)0.0009 (8)
C80.0136 (9)0.0123 (9)0.0148 (9)0.0013 (8)0.0012 (7)0.0006 (7)
C90.0139 (9)0.0110 (9)0.0150 (9)0.0000 (8)0.0011 (7)0.0017 (7)
C100.0116 (8)0.0104 (9)0.0160 (9)0.0003 (7)0.0025 (7)0.0014 (7)
N10.0137 (8)0.0155 (8)0.0160 (8)0.0002 (7)0.0001 (6)0.0003 (7)
C110.0167 (9)0.0118 (9)0.0163 (9)0.0019 (8)0.0018 (7)0.0019 (7)
C120.0173 (9)0.0137 (10)0.0215 (10)0.0024 (8)0.0035 (8)0.0015 (8)
C130.0223 (10)0.0167 (10)0.0239 (11)0.0020 (9)0.0089 (8)0.0024 (9)
C140.0299 (11)0.0182 (10)0.0175 (10)0.0045 (9)0.0068 (8)0.0023 (8)
C150.0231 (10)0.0153 (10)0.0162 (10)0.0016 (9)0.0013 (8)0.0002 (8)
C160.0185 (9)0.0116 (9)0.0172 (9)0.0008 (8)0.0020 (7)0.0036 (8)
N20.0146 (8)0.0158 (9)0.0162 (8)0.0006 (7)0.0006 (6)0.0002 (7)
C170.0139 (9)0.0148 (10)0.0189 (10)0.0014 (8)0.0007 (7)0.0031 (8)
C180.0168 (9)0.0182 (10)0.0182 (10)0.0006 (8)0.0022 (7)0.0001 (8)
C190.0149 (9)0.0196 (11)0.0254 (11)0.0016 (8)0.0052 (8)0.0032 (9)
C200.0130 (9)0.0235 (11)0.0252 (11)0.0022 (9)0.0021 (8)0.0041 (9)
C210.0162 (9)0.0168 (10)0.0204 (10)0.0020 (8)0.0022 (7)0.0001 (8)
C220.0139 (8)0.0132 (10)0.0187 (9)0.0017 (8)0.0002 (7)0.0028 (8)
Geometric parameters (Å, º) top
S1—C161.740 (2)C11—C121.405 (3)
S1—C11.755 (2)C11—C161.407 (3)
S2—C221.747 (2)C12—C131.382 (3)
S2—C101.751 (2)C12—H120.9500
C1—C101.369 (3)C13—C141.387 (3)
C1—C21.449 (3)C13—H130.9500
C2—N11.309 (2)C14—C151.385 (3)
C2—C31.478 (3)C14—H140.9500
C3—C41.404 (3)C15—C161.400 (3)
C3—C81.407 (3)C15—H150.9500
C4—C51.382 (3)N2—C171.396 (3)
C4—H40.9500C17—C181.406 (3)
C5—C61.403 (3)C17—C221.407 (3)
C5—H50.9500C18—C191.383 (3)
C6—C71.384 (3)C18—H180.9500
C6—H60.9500C19—C201.394 (3)
C7—C81.403 (3)C19—H190.9500
C7—H70.9500C20—C211.389 (3)
C8—C91.479 (3)C20—H200.9500
C9—N21.303 (2)C21—C221.398 (3)
C9—C101.457 (3)C21—H210.9500
N1—C111.398 (3)
C16—S1—C1102.32 (10)C12—C11—C16118.08 (18)
C22—S2—C10102.41 (10)C13—C12—C11121.1 (2)
C10—C1—C2122.38 (18)C13—C12—H12119.4
C10—C1—S1116.71 (15)C11—C12—H12119.4
C2—C1—S1120.91 (14)C12—C13—C14120.25 (19)
N1—C2—C1126.58 (18)C12—C13—H13119.9
N1—C2—C3116.52 (17)C14—C13—H13119.9
C1—C2—C3116.89 (16)C15—C14—C13120.1 (2)
C4—C3—C8119.40 (18)C15—C14—H14120.0
C4—C3—C2119.92 (17)C13—C14—H14120.0
C8—C3—C2120.68 (17)C14—C15—C16120.1 (2)
C5—C4—C3120.62 (18)C14—C15—H15119.9
C5—C4—H4119.7C16—C15—H15119.9
C3—C4—H4119.7C15—C16—C11120.35 (19)
C4—C5—C6120.19 (19)C15—C16—S1117.50 (16)
C4—C5—H5119.9C11—C16—S1122.11 (15)
C6—C5—H5119.9C9—N2—C17122.41 (17)
C7—C6—C5119.59 (19)N2—C17—C18116.65 (18)
C7—C6—H6120.2N2—C17—C22125.35 (18)
C5—C6—H6120.2C18—C17—C22118.00 (18)
C6—C7—C8120.95 (18)C19—C18—C17121.3 (2)
C6—C7—H7119.5C19—C18—H18119.3
C8—C7—H7119.5C17—C18—H18119.3
C7—C8—C3119.24 (18)C18—C19—C20120.15 (19)
C7—C8—C9119.63 (17)C18—C19—H19119.9
C3—C8—C9121.12 (17)C20—C19—H19119.9
N2—C9—C10126.69 (18)C21—C20—C19119.70 (19)
N2—C9—C8116.92 (17)C21—C20—H20120.1
C10—C9—C8116.40 (16)C19—C20—H20120.1
C1—C10—C9122.38 (17)C20—C21—C22120.4 (2)
C1—C10—S2116.83 (15)C20—C21—H21119.8
C9—C10—S2120.79 (14)C22—C21—H21119.8
C2—N1—C11122.00 (17)C21—C22—C17120.46 (18)
N1—C11—C12116.25 (18)C21—C22—S2117.29 (16)
N1—C11—C16125.67 (18)C17—C22—S2122.25 (15)
C16—S1—C1—C10173.32 (16)C1—C2—N1—C110.2 (3)
C16—S1—C1—C27.01 (19)C3—C2—N1—C11178.92 (17)
C10—C1—C2—N1175.1 (2)C2—N1—C11—C12177.87 (19)
S1—C1—C2—N15.3 (3)C2—N1—C11—C161.7 (3)
C10—C1—C2—C33.7 (3)N1—C11—C12—C13179.44 (19)
S1—C1—C2—C3175.95 (14)C16—C11—C12—C130.9 (3)
N1—C2—C3—C43.8 (3)C11—C12—C13—C140.4 (3)
C1—C2—C3—C4177.34 (18)C12—C13—C14—C150.4 (3)
N1—C2—C3—C8176.48 (19)C13—C14—C15—C160.5 (3)
C1—C2—C3—C82.4 (3)C14—C15—C16—C110.1 (3)
C8—C3—C4—C50.5 (3)C14—C15—C16—S1177.97 (17)
C2—C3—C4—C5179.23 (19)N1—C11—C16—C15179.62 (19)
C3—C4—C5—C60.5 (3)C12—C11—C16—C150.8 (3)
C4—C5—C6—C70.1 (3)N1—C11—C16—S11.9 (3)
C5—C6—C7—C80.2 (3)C12—C11—C16—S1178.56 (16)
C6—C7—C8—C30.1 (3)C1—S1—C16—C15176.64 (16)
C6—C7—C8—C9179.42 (19)C1—S1—C16—C115.5 (2)
C4—C3—C8—C70.2 (3)C10—C9—N2—C170.2 (3)
C2—C3—C8—C7179.50 (18)C8—C9—N2—C17179.35 (18)
C4—C3—C8—C9179.07 (19)C9—N2—C17—C18179.1 (2)
C2—C3—C8—C91.2 (3)C9—N2—C17—C221.2 (3)
C7—C8—C9—N23.3 (3)N2—C17—C18—C19179.7 (2)
C3—C8—C9—N2176.02 (19)C22—C17—C18—C190.1 (3)
C7—C8—C9—C10177.15 (18)C17—C18—C19—C200.7 (3)
C3—C8—C9—C103.5 (3)C18—C19—C20—C210.4 (3)
C2—C1—C10—C91.3 (3)C19—C20—C21—C220.5 (3)
S1—C1—C10—C9178.35 (15)C20—C21—C22—C171.1 (3)
C2—C1—C10—S2178.49 (15)C20—C21—C22—S2178.64 (17)
S1—C1—C10—S21.8 (2)N2—C17—C22—C21179.5 (2)
N2—C9—C10—C1177.2 (2)C18—C17—C22—C210.8 (3)
C8—C9—C10—C12.3 (3)N2—C17—C22—S20.8 (3)
N2—C9—C10—S22.6 (3)C18—C17—C22—S2178.90 (16)
C8—C9—C10—S2177.87 (14)C10—S2—C22—C21177.42 (17)
C22—S2—C10—C1176.21 (16)C10—S2—C22—C172.8 (2)
C22—S2—C10—C93.60 (18)
 

Acknowledgements

Research Development Grants and Professional Development Grants from Penn State Scranton (PTP) and inter­nal research grants [Alfaisal University IRG-2020 (MMB)] are highly appreciated. The authors acknowledge Dr Victor Young Jr of the X-ray Crystallographic Laboratory, Department of Chemistry at the University of Minnesota for the data collection.

References

First citationAgarwal, N. L. & Schaefer, W. (1980). J. Org. Chem. 45, 2155–2161.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeister, C., Pham, P.-T. T. & Bradley, A. (2023). MRS Advances, pp. 889–893. https://doi.org/10.1557/s43580-023-00609-y  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcLean, M. R., Bader, M., Dalton, L. R., Devine, R. S. & Steier, W. H. (1990). J. Phys. Chem. 94, 4386–4387.  CrossRef CAS Google Scholar
First citationMcLean, M. R., Bader, M., Dalton, L. R., Devine, L. R. S. & Steier, W. H. (1989). MRS Online Proceedings Library, 173, 563–566. https://doi.org/10.1557/PROC-173-563  Google Scholar
First citationOkafor, C. O. (1988). Tetrahedron, 44, 1187–1194.  CrossRef CAS Google Scholar
First citationPham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968–7971.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpangler, C. W., Havelka, K., Bader, M. M., McLean, M. R. & Dalton, L. R. (1989). Proc. SPIE, 1147, 149.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146