letters to the editor\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

aDepartment of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA, and bDepartment of Chemistry, Middle Tennessee State University, MTSU Box 0395, 1301 East Main Street, Murfreesboro, TN 37132, USA
*Correspondence e-mail: volkov@chem.buffalo.edu, tkoritsa@mtsu.edu, coppens@buffalo.edu

(Received 24 May 1004; accepted 30 June 2004)

A paper was recently published in Acta Crystallographica Section A by Pichon-Pesme et al. (2004[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.]), called PJGL in the following, that deals with the comparison of the experimental databank of aspherical pseudoatom parameters developed by those authors with the relatively new theoretical approach reported recently by us (Koritsanszky et al., 2002[Koritsanszky, T., Volkov, A. & Coppens, P. (2002). Acta Cryst. A58, 464-472.]).

As conclusions, PJGL[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.] list that:

  • (i) `the electron-density maps derived from the two methods [theoretical and experimental] agree qualitatively only';

  • (ii) `[the difference in population parameters] leads to different electrostatic properties';

  • (iii) `the charges of the experimental database are in accordance with chemical intuition';

  • (iv) `the experimental database has been successfully tested on protein high-resolution X-ray data'.

For a reader not very familiar with the field, these conclusions clearly imply that the theoretical approach is rather inferior to the experimental one. The PJGL[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.] paper states that the electrostatic potential derived from theoretical pseudoatoms is similar to that from a `semi-empirical molecular-orbital calculation'. However, a quantitative comparison with more advanced first-principles calculations is more appropriate.

We have recently published a series of papers (Volkov & Coppens, 2004[Volkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921-934.]; Volkov, Li et al., 2004[Volkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283-4300.]; Volkov, Koritsanszky & Coppens, 2004[Volkov, A., Koritsanszky, T. & Coppens, P. (2004). Chem. Phys. Lett. 391, 170-175.]) in which the principles of construction of the theoretical databank are described and comparisons with first-principles calculations, such as the density functional theory (DFT) (Hohenberg & Kohn, 1964[Hohenberg P. & Kohn, W. (1964). Phys. Rev. 136, B864-B871.]; te Velde et al., 2001[Velde, G. te, Bickelhaupt, F. M., van Gisbergen, S. J. A., Fonseca Guerra, C., Baerends, E. J., Snijders, J. G. & Ziegler, T. J. (2001). J. Comput. Chem. 22, 931-967.]), are made, using a large number of electron-density (ED) related properties. These include (i) the total ED, ρ(r); (ii) the deformation density; (iii) the electrostatic potential; (iv) a number of topological properties of the ED (Bader, 1990[Bader, R. F. W. (1990). Atoms in Molecules. A Quantum Theory. New York: Oxford University Press.]) [location of critical points, properties of ρ(r) at the critical points – density, curvatures, Laplacian, ellipticity, topological net atomic charges and higher atomic moments up to the hexadecapolar level]; (v) total molecular moments; and, more importantly, (vi) the intermolecular electrostatic interaction energies, including electrostatic binding energies of molecules in crystals.

The level of accuracy in the prediction of ED properties by the theoretical databank is found to be comparable with that from various first-principles calculations with different Hamiltonians and basis-set expansions of the wavefunction (Volkov, Li et al., 2004[Volkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283-4300.]). As an example, the bonding features of the deformation density maps are predicted within 0.02–0.1 e Å−3, while the magnitude of ρ(r) at critical points is reproduced well within 0.1 e Å−3 when compared to a rather extensive B3LYP/6-311++G(3df,3pd) calculation. Discrep­ancies of similar magnitude are observed, for example, between B3LYP/6-311++G(3df,3pd) and BLYP/TZP calculations. The agreement of the databank-derived topological properties of the ED is noticeably improved when comparison is made with those from DFT calculations in which the Slater-type radial functions (triple-zeta basis, TZP) are used in the basis-set expansion. In fact, significant discrepancies in second derivatives of ρ(r) at the bond critical points between theory and experiment, which in the past have often been attributed to the limited flexibility of the density functions in the pseudoatom model (see, for example, Swaminathan et al., 1984,[Swaminathan, S., Craven, B. M., Spackman, M. A. & Stewart, R. F. (1984). Acta Cryst. B40, 398-404.] and Volkov & Coppens, 2001[Volkov, A. & Coppens, P. (2001). Acta Cryst. A57, 395-405.]), are found to be at least in part due to the different behaviors of the Gaussian- and Slater-type radial functions in the vicinity of critical points (Volkov, Li et al., 2004[Volkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283-4300.]).

In our first studies (Volkov & Coppens, 2004[Volkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921-934.]; Volkov, Li et al., 2004[Volkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283-4300.]), the agreement in electrostatic interaction energies in mol­ecular dimers between DFT calculations, obtained using the Morokuma–Ziegler energy decomposition scheme (Morokuma, 1971[Morokuma, K. (1971). J. Chem. Phys. 55, 1236-1244.]; Ziegler & Rauk, 1977[Ziegler, T. & Rauk, A. (1977). Theor. Chim. Acta, 46, 1-10.]), and the theoretical databank was not very impressive, the root-mean-squared (r.m.s.) deviation from the DFT/BLYP/TZP electrostatic interaction energies being about 25 kJ mol−1. However, these discrepancies were due to the limitation of the multipolar expansion of the electrostatic interaction energy (Buckingham, 1967[Buckingham, A. D. (1967). Adv. Chem. Phys. 12, 107-142.]) and not the problem of the theoretical databank. Subsequent application of the newly developed exact potential and multipole method (EP/MM) (Volkov, Koritsanszky & Coppens, 2004[Volkov, A., Koritsanszky, T. & Coppens, P. (2004). Chem. Phys. Lett. 391, 170-175.]) to the theoretical databank parameters significantly reduces the discrepancies to at most 20 kJ mol−1 (typically below 10 kJ mol−1) and the r.m.s. discrepancy to only 8 kJ mol−1 !

The comparison of individual pseudoatom parameters performed by PJGL[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.] is not relevant as the individual parameters do not have a well defined physical meaning. The PJGL[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.] comment that `the charges of the experimental database are in accordance with chemical intuition' is a rather ill defined statement. A valid test can only be provided by the physical properties calculated from the pseudoatom expansion of the ED. While this point seems to be accepted by PJGL (see §3 of Pichon-Pesme et al., 2004[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.]), much of their paper is still dedicated to the comparison of individual pseudoatom parameters. However, the performance of the theoretical databank has been verified by the thorough comparison with extensive density functional calculations. On the other hand, while the original PJGL[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.] databank dates back as far as 1995 and (as stated) is now complete, to our knowledge, no such studies using the experimental databank have been published yet, with the exception of some deformation density maps (Pichon-Pesme et al., 1995[Pichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem. 99, 6242-6250.]; Jelsch et al., 2000[Jelsch, C., Teeter, M. M., Lamzin, V., Pichon-Pesme, V., Blessing, R. H. & Lecomte, C. (2000). Proc. Natl Acad. Sci. USA, 97, 3171-3176.]) and several two-dimensional maps of the electrostatic potential (Muzet et al., 2003[Muzet, N., Guillot, B., Jelsch, C., Howard, E. & Lecomte, C. (2003). Proc. Natl Acad. Sci. USA, 100, 8742-8747.]; Pichon-Pesme et al., 2004[Pichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204-208.]). In practice, the latter can be reasonably well predicted even by the point-charge model (Williams, 1988[Williams, D. E. (1988) J. Comput. Chem. 9, 745-763.]; Breneman & Wilberg, 1990[Breneman, C. M. & Wilberg, K. B. (1990). J. Comput. Chem. 11, 361-373.]).

Given the good fit with theory of the results obtained with the theoretical databank and the conclusion (ii) that different electrostatic properties are expected from different population parameters, similar tests of the experimental databank appear highly desirable.

We also point out the excellent internal consistency of the the­oretical databank, as the error in prediction of the total molecular electroneutrality of several amino acid and peptide molecules, including Leu-enkephalin, was found to be well under 1% (usually <0.5%) (Volkov, Li et al., 2004[Volkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283-4300.]).

Finally, the extension of the theoretical databank to include additional atom types is straightforward and can be done in a matter of days, compared to the more time-consuming experimental pro­cedure, which is also subject to thermal smearing effects and possible phase ambiguities.

In conclusion, we would like to emphasize that it is not the intent of this letter to criticize the experimental databank, which fulfils a useful function and has indeed been found to be a good starting point for aspherical refinements of macromolecules (Jelsch et al., 1998[Jelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. (1998). Acta Cryst. D54, 1306-1318.], 2000[Jelsch, C., Teeter, M. M., Lamzin, V., Pichon-Pesme, V., Blessing, R. H. & Lecomte, C. (2000). Proc. Natl Acad. Sci. USA, 97, 3171-3176.]; Fernández-Serra et al., 2000[Fernández-Serra, M. V., Junquera, J., Jelsch, C., Lecomte, C. & Artacho, E. (2000). Solid State Commun. 116, 395-400.]; Muzet et al., 2003[Muzet, N., Guillot, B., Jelsch, C., Howard, E. & Lecomte, C. (2003). Proc. Natl Acad. Sci. USA, 100, 8742-8747.]). However, before any conclusions can be drawn on whether or not the experimental databank is superior to the theoretical one, it must be tested in the same manner that the theoretical databank has been scrutinized.

References

First citationBader, R. F. W. (1990). Atoms in Molecules. A Quantum Theory. New York: Oxford University Press.  Google Scholar
First citationBreneman, C. M. & Wilberg, K. B. (1990). J. Comput. Chem. 11, 361–373.  CrossRef CAS Web of Science Google Scholar
First citationBuckingham, A. D. (1967). Adv. Chem. Phys. 12, 107–142.  CrossRef CAS Google Scholar
First citationFernández-Serra, M. V., Junquera, J., Jelsch, C., Lecomte, C. & Artacho, E. (2000). Solid State Commun. 116, 395–400.  Google Scholar
First citationHohenberg P. & Kohn, W. (1964). Phys. Rev. 136, B864–B871.  Google Scholar
First citationJelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. (1998). Acta Cryst. D54, 1306–1318.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJelsch, C., Teeter, M. M., Lamzin, V., Pichon-Pesme, V., Blessing, R. H. & Lecomte, C. (2000). Proc. Natl Acad. Sci. USA, 97, 3171–3176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoritsanszky, T., Volkov, A. & Coppens, P. (2002). Acta Cryst. A58, 464–472.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorokuma, K. (1971). J. Chem. Phys. 55, 1236–1244.  CrossRef CAS Web of Science Google Scholar
First citationMuzet, N., Guillot, B., Jelsch, C., Howard, E. & Lecomte, C. (2003). Proc. Natl Acad. Sci. USA, 100, 8742–8747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPichon-Pesme, V., Jelsch, C., Guillot, B. & Lecomte, C. (2004). Acta Cryst. A60, 204–208.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem. 99, 6242–6250.  CrossRef CAS Web of Science Google Scholar
First citationSwaminathan, S., Craven, B. M., Spackman, M. A. & Stewart, R. F. (1984). Acta Cryst. B40, 398–404.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVelde, G. te, Bickelhaupt, F. M., van Gisbergen, S. J. A., Fonseca Guerra, C., Baerends, E. J., Snijders, J. G. & Ziegler, T. J. (2001). J. Comput. Chem. 22, 931–967.  Web of Science CrossRef Google Scholar
First citationVolkov, A. & Coppens, P. (2001). Acta Cryst. A57, 395–405.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921–934.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVolkov, A., Koritsanszky, T. & Coppens, P. (2004). Chem. Phys. Lett. 391, 170–175.  Web of Science CrossRef CAS Google Scholar
First citationVolkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283–4300.  Web of Science CrossRef CAS Google Scholar
First citationWilliams, D. E. (1988) J. Comput. Chem. 9, 745–763.  CrossRef CAS Web of Science Google Scholar
First citationZiegler, T. & Rauk, A. (1977). Theor. Chim. Acta, 46, 1–10.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds