feature articles
Fascinating quasicrystals
aLaboratory of Crystallography, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
*Correspondence e-mail: steurer@mat.ethz.ch
It took Dan Shechtman more than two years to get his discovery of an Al–Mn phase with icosahedral diffraction symmetry and sharp Bragg reflections published. A paradigm shift had to take place before this novel ordering state of matter – seemingly contradicting crystallographic laws – could be accepted. Today, more than 25 years later, the existence of quasicrystals is beyond doubt. However, not everything is settled yet. All the factors governing formation, growth, stability and structure of quasicrystals are still not fully understood, nor is it resolved whether their structures are strictly or only on average quasiperiodic, and it is still an open question why only quasicrystals with 5-, 8-, 10- and 12-fold rotational symmetry have been experimentally observed so far. These points will be addressed in this review article.
Keywords: decagonal phases; icosahedral phases; n-dimensional approach; photonic quasicrystals; quasicrystals.
1. Introduction
`Go away, Dany. These are twins and that's not terribly interesting.' This was the first reaction of the eminent metallurgist John W. Cahn (NIST) when first faced with Dan Shechtman's electron diffraction patterns of rapidly quenched Al–Mn (La Brecque, 1987/8). John W. Cahn soon changed his mind and co-authored the first publication on the discovery of quasicrystals (Shechtman et al., 1984). Therein the authors explicitly state, demonstrating that they are fully familiar with the laws of crystallography, that crystals `cannot and do not exhibit the icosahedral point group symmetry'. Other early sceptics such as double Nobel laureate Linus Pauling never accepted the reality of quasiperiodic order: `Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals' (Pauling, 1985). However, the increasing quality of quasicrystals and their diffraction data forced him to use continuously larger unit cells for his models, from a mere 1120 (Pauling, 1985) up to a remarkable 19400 atoms per (Pauling, 1989). Linus Pauling and his apologists simply refused to accept the paradigm shift in crystallography transforming three-dimensional non-crystallographic fivefold symmetry into a higher-dimensional crystallographic one. Following custom, we will say that a is crystallographic if it is compatible with a three-dimensional lattice and non-crystallographic otherwise.
The seeds for the understanding of quasicrystals were sown several years before Shechtman's discovery: by Roger Penrose (1974), who found the famous pentagonal tiling, which was popularized by Gardner (1977); by Alan Mackay (1982), who performed optical diffraction experiments on one of the Penrose tilings and obtained the first sharp diffraction pattern with decagonal symmetry; by Nicolaas de Bruijn (1981), who introduced the higher-dimensional approach for quasicrystals by defining vertex selection rules (occupation domains) for the Penrose tiling. Based on these and other works, Levine & Steinhardt (1984) presented the outline of a first theory of quasicrystals only six weeks after the publication of Dan Shechtman's historic paper.
However, if quasicrystals are not multiple twins, what are they? Before answering this question, we should agree on the definition of a crystal. Some years ago, the IUCr Ad Interim Commission on Aperiodic Crystals published a working definition (International Union of Crystallography, 1992): ``by `crystal' we mean any solid having an essentially discrete diffraction diagram, and by aperiodic crystal we mean any crystal in which three-dimensional lattice periodicity can be considered to be absent. As an extension, the latter term will also include those crystals in which three-dimensional periodicity is too weak to describe significant correlations in the atomic configuration, but which can be properly described by crystallographic methods developed for actual aperiodic crystals.'' In other words, the previous key feature of a crystal, its three-dimensional lattice periodicity, was abandoned by this definition. Instead, a pure point Fourier spectrum (reciprocal-space image) was postulated as the necessary and sufficient condition. Consequently, if the experimentally observed quasicrystals are single-phase and single-domain materials, they are aperiodic crystals. Recently, the discussion on the crystal definition has been resumed because the term `essentially discrete diffraction diagram' was found too vague for a definition (see Steurer, 2007a; Lifshitz, 2007; Ben Abraham, 2007; Baake & Frettlöh, 2007; Senechal, 2007; Janssen, 2007; Zimmermann, 2007). For an in-depth introduction into the field of aperiodic crystals, see Janssen et al. (2007).
The wrong assumption that the icosahedral diffraction symmetry of quasicrystals must be the result of multiple ). A six-dimensional hypercubic lattice is invariant under the icosahedral and so is its three-dimensional image which results from proper projection. It is therefore obvious to check whether the three-dimensional diffraction pattern of a can be considered as a projection of a hypothetical six-dimensional one. Indeed, this is possible. According to Fourier theory, a projection in Fourier (reciprocal) space corresponds to a section in structure (direct) space. Consequently, the structure of a can be interpreted as a three-dimensional cut of a hypothetical six-dimensional hypercrystal structure. This is nothing else but the higher-dimensional approach, originally introduced for the description of incommensurately modulated structures (de Wolff, 1974) and later adapted for quasiperiodic structures (de Bruijn, 1981; Janssen, 1986, and references therein). The higher-dimensional approach is illustrated in Fig. 1 on a one-dimensional example, the quasiperiodic Fibonacci sequence.
was based on two premises. The first was that sharp Bragg reflections are the necessary and sufficient sign of lattice symmetry. The second was that a lattice cannot be invariant under the icosahedral The weak point in this argument is the second premise, which is not generally true. Almost 60 years ago, Carl Hermann demonstrated that symmetry operations, which are non-crystallographic for three-dimensional lattices, can become crystallographic in the case of higher-dimensional lattices (Hermann, 1949Thus, quasicrystals are a subclass of the aperiodic crystals with quasiperiodic structures. The term quasiperiodic was first defined for special cases of almost periodic functions by Harald Bohr (1925). A function is quasiperiodic if its Fourier transform is only different from zero on a Fourier module of finite rank (Axel & Gratias, 1995, and references therein). Quasiperiodic structures can be divided into two main classes: those with crystallographic point-group symmetry, to which the long-known incommensurately modulated structures and composite structures belong, and those with non-crystallographic point-group symmetry, to which structures belong. Their common feature is that their diffraction patterns, , can be indexed based on a set of n reciprocal basis vectors , with n > d, d being the dimension of physical space (usually d = 3). In other words, the Fourier module corresponds to a module of rank n in a space of dimension d < n. In the case of periodic structures, d = n. To some extent, structures can be described as incommensurately modulated structures (Steurer, 2000a). This works well for one-dimensional structures as the Fibonacci sequence. However, since this description is based on the existence of a periodic average structure with one-to-one mapping of the vertices of the quasiperiodic structure and lattice nodes of the periodic average structure (Steurer & Haibach, 1999; Cervellino & Steurer, 2002, and references therein), it is less adequate in the case of quasiperiodic structures. The absence of one-to-one mapping for structures with results from the fact that the point-group symmetry of the periodic average structure is lower than that of the structure. Vice versa, it can be adequate to describe an incommensurately modulated structure as a structure if it shows scaling symmetry or results from a phase transformation of a (Steurer, 2005).
In the following, we will use the terms quasicrystal and quasicrystal structure for the class of aperiodic crystals and quasiperiodic structures with non-crystallographic point-group symmetry. This takes into account that the term was coined by Levine & Steinhardt (1984) to distinguish the newly discovered icosahedral Al–Mn phase (Shechtman et al., 1984) from the long-known incommensurately modulated structures.
2. Occurrence of quasicrystals
Quasicrystals have hitherto been found in more than a hundred binary and ternary intermetallic systems. About half of them are metastable and can only be obtained by rapid solidification techniques (such as splat cooling or melt spinning). According to their diffraction symmetry, one distinguishes between N-gonal (octagonal, decagonal, dodecagonal) and icosahedral quasicrystals. More than 20 stable decagonal quasicrystals (DQCs) and more than 50 stable icosahedral quasicrystals (IQCs) are known. The few octagonal quasicrystals discovered so far are metastable, the dodecagonal ones are metastable or of very poor quality (for a comprehensive review, see Steurer, 2004a). Quasicrystals with other rotational symmetries have not been observed so far although, according to the projection model, N could be any integer number theoretically. Why? For the hypothetical case of two-dimensional structures, it has been shown that only quasicrystals based on quadratic irrationalities, (a, b, c rational numbers), should be energetically stable (Levitov, 1988). Accordingly, only QCs with 5-, 8-, 10- and 12-fold symmetries would be allowed. However, as demonstrated by Joshua Socolar (1990), at least weak matching rules exist for all quasiperiodic tilings with N-fold symmetry, where N is any integer not divisible by four. Weak matching rules are local rules ensuring uniformly bound fluctuations in perpendicular space. Consequently, given proper local interactions, quasicrystals with symmetries other than 5-, 8, 10- and 12-fold may be possible.
The predominance of IQCs is not surprising because the icosahedral coordination is the most frequent type of atomic environment in complex intermetallic phases (Daams & Villars, 2000) and because quasiperiodic order apparently allows the best packing of clusters with icosahedral symmetry. While there are no regular or semi-regular three-dimensional polyhedra with rotational symmetry higher than five, three-dimensional axial polyhedra can have any rotational symmetry. Examples for structures with such polyhedra are ternary borides and borocarbides with heptagonal-bipyramidal structure motifs (see Steurer, 2007b). Consequently, it is not unlikely that heptagonal approximants or even quasicrystals will be prepared some day. Stability regions of known DQCs and IQCs are displayed in Fig. 2. Some of them, such as decagonal (d-) Al–Fe–Ni, exist only in a narrow temperature and composition window, while others, such as icosahedral (i-) Cd–Mg–Yb, show large stability ranges.
Recently, a dendrimer-based liquid et al., 2004), showing that is not restricted to intermetallic phases and does not necessarily require electronic stabilization. Additionally, the quasiperiodic phase transforms into a cubic phase upon heating, which indicates that the quasiperiodic state is energetically favoured at low temperature. A model explaining the particular stability of dodecagonal soft quasicrystals has been suggested by Lifshitz & Diamant (2007). They impose two requirements for two different natural length scales and the existence of effective three-body interactions.
with 12-fold symmetry was discovered (Zeng3. Where are the atoms?
This question, which is also part of the title of a paper by Per Bak (1986), is still not fully answered in spite of the many structure analyses that have been performed during the past two decades (see Tables 1 and 2). Why is structure analysis that demanding, such a `monumental job' as Per Bak foresaw it? And what exactly do we want to know about a structure (for a critical discussion, see Steurer, 2004b)?
|
‡Neutron scattering study, otherwise X-ray §Refinement based on CBED data. ¶Combined X-ray and neutron powder diffraction data |
3.1. Structure analysis
The goal of a standard structure analysis is the determination of the atomic parameters for all atoms located in the i.e. the lattice periodicity, is taken for granted. The ultimate goal of structure analysis is to determine both short- and long-range order. This is equivalent to determining the kind of quasiperiodic tiling (quasilattice) underlying the structure and the way the unit tiles (unit cells of the tiling) are decorated by atoms. While the lattice underlying a periodic structure consists of translated copies of a single a quasilattice consists of copies of at least two different unit tiles. Furthermore, while we have to choose between only 14 different three-dimensional point lattices (Bravais lattices) in the case of periodic crystal structures, the number of different three-dimensional quasiperiodic tilings (quasilattices) is infinite. The problem of determining the quasilattice cannot be generally separated from determining the structure. Furthermore, the atomic decoration of the tiles may not be uniform all over the tiling.
in other words, the determination of the short-range order. The long-range order,The following fundamental questions are to be answered by
structure analysis.(i) Is the structure of quasicrystals quasiperiodic in the strict sense with just phononic and phasonic random fluctuations? Is it still quasiperiodic at T = 0 K, i.e. does a quasiperiodic ground state of matter exist? Are there a finite number of well defined clusters decorating a quasilattice, which force via overlap rules, perhaps assisted by a kind of Hume–Rothery mechanism?
(ii) Does, alternatively, the random-tiling model apply (Gähler & Jeong, 1995; Joseph & Baake, 1996; Elser, 1996; Nienhuis, 1998; Ebinger et al., 1998; Gummelt, 2006; Henley, 2006)? A random tiling is probable in the case that the structure formation is governed by short-range atomic interactions only. In this case, the ground state would be periodic.
All quantitative structure analyses performed so far have been based on the presumption that the sharp reflections observed by diffraction methods are Bragg reflections. This implies that the strict random-tiling model (Tang, 1990; Strandburg, 1991; Henley et al., 2000) is ruled out. A few structure determinations have been performed on three-dimensional tiling models, whereas most structure analyses employed the higher-dimensional approach. The important fundamental question on the degree of order/disorder was rarely studied experimentally. When diffuse scattering was investigated, it was usually done only beneath and in the direct surrounding of Bragg reflections (e.g. de Boissieu & Francoual, 2005; de Boissieu et al., 2005) to get a measure for phasonic disorder, but rarely between Bragg reflections for other kinds of disorder (Kobas et al., 2005a,b).
Unfortunately, the most powerful methods developed and used for the solution of periodic structures in the last 50 years, i.e. statistical cannot be applied directly to structures, despite a few not very successful attempts (Fu et al., 1993). Higher-dimensional (Steurer, 1987, 1989) work quite well, especially in combination with the symmetry-minimum function and image-seeking functions (Estermann et al., 2000). Maximum-entropy methods may be used in the final stages of phase determination and particularly for the improvement of electron-density maps (Haibach et al., 2000, and references therein). Techniques that are especially efficient in higher dimensions are the local-density-elimination (LDE) method (Takakura et al., 2006; Yamamoto, Takakura, Ozeki et al., 2004; Yamamoto, Takakura & Tsai 2004) and the charge-flipping method (Katrych et al., 2007, and references therein). The three-dimensional tiling-decoration methods rely on clusters derived from the structure of approximants. Approximants are structurally closely related to quasicrystals. In the higher-dimensional description, they result from rational cuts of the n-dimensional hypercrystals and are called rational approximants. Together with energy-minimization techniques, three-dimensional tiling-decoration methods lead to quite reliable results (Mihalkovic & Mrafko, 1994, 1997; Mihalkovic & Henley, 2004). Their direct link with physical parameters makes these results to some extent superior to those of higher-dimensional structure refinements, which may owe their low reliability factors partly to unphysical fit parameters. For a general discussion of structure analysis, see Steurer (2004b) and Haibach et al. (2000).
Tables 1 and 2 list all structure analyses of quasicrystals hitherto published, which can be considered quantitative for the state of the art of their time. Unfortunately, most publications do not even obey the most basic rules regarding the documentation of crystallographic information. Frequently, essential data are missing, such as chemical composition, preparation conditions, data-collection parameters, n-dimensional metrics, number of refined parameters, refined parameters with their standard deviations, reliability factors and their definition. A detailed statistical structure-factor analysis, Fobs /Fcalc, has hardly ever been performed, although this would be very important due to the large fraction of weak reflections in data sets, as weak reflections carry the information on the deviations of the idealized structure models from real atomic surfaces. This information is crucial if one wants to get indications for the stabilizing factors (chemical/substitutional and/or displacive disorder, distortions of coordination polyhedra, random phason fluctuations, …) from the character of structural ordering. The fact that the strict rules applied for publication of standard structure analyses, which guarantee high-quality structural data, have not been adopted and adapted for may have been a consequence of the only marginal involvement of experienced structural crystallographers in this challenging field.
Anyway, with increasing size and quality of diffraction data sets, the quality of refined structure models could be improved considerably. The most recent ones are approaching the quality of standard structure determinations of complex intermetallic compounds. Consequently, together with the information provided by electron-microscopic methods, we now have quite a clear picture of the average local and global order in several quasicrystals. However, much less is known about the real structure of quasicrystals, i.e. the local deviations from the average structure. The study of diffuse scattering will help to clarify this point.
Umweganregung (multiple diffraction) has been considered a serious problem for structure analysis of quasicrystals from the very beginning (Mackay & Kramer, 1985). Theoretically, Bragg reflections of icosahedral quasicrystals densely fill the Thus, in a diffraction experiment, infinitely many Bragg reflections would be excited simultaneously and would not apply any more. The existence of Umweganregung in quasicrystals has been experimentally demonstrated by Eisenhower & Colella (1998). In a realistic data collection set-up, the number of reflections being close to the at the same time is quite limited (Fig. 3). However, although Umweganregung may occur frequently, its influence on the structure analysis may be negligible owing to the small structure factors of the reflections involved and the usual (105–108) of a diffraction experiment. However, future high-quality data collections should be carried out with corrections for Umweganregung.
3.2. Structure models
DQCs can be structurally classified based on the number of atomic layers per translation period along the tenfold axis. This is only a geometrical ordering principle, as DQCs are not layer compounds in the crystal-chemical meaning. They can be better described as packing of overlapping clusters. All stable DQCs found so far (more than 20) (see Steurer, 2004a, and references therein; Katrych et al., 2007) can be assigned to the following three classes.
(i) Two-layer periodicity (sometimes with twofold superstructure leading to a four-layer period).
d-Al–Co–Ni type: Al–Cu–Me (Me = Co, Rh, Ir), Al–Ni–Me (Me = Co, Fe, Rh, Ru).
d-Zn–Mg–Dy type: Zn–Mg–RE (RE = Y, Dy, Ho, Er, Tm, Lu).
(ii) Six-layer periodicity.
d-Al–Mn–Pd type: Al–Mn–Pd, Al–Mn–Fe–Ge, Ga–Co–Cu, Ga–Cu–Fe–Si, Ga–V–Ni–Si.
(iii) Eight-layer periodicity.
d-Al–Os–Pd type: Al–Ni–Ru, Al–Pd–Me (Me = Fe, Ru, Os), Al–Ir–Os.
Fundamental clusters, which build the structures of quasicrystals, as well as those of their rational approximants, are often used for the classification of IQCs. There are three main types, the Mackay cluster (MC) (Mackay, 1962; Kuo, 2002) (Fig. 4), the Bergman cluster (BC) (Bergman et al., 1957) (Fig. 5) and the Tsai cluster (TC) (Palenzona, 1971; Maezawa et al., 2004) (Fig. 6).
One should keep in mind though that it is not always possible to decide unambiguously whether a i-Al–Mn–Pd demonstrated that it may be equally well covered by MCs (77.1%) and by BCs (72.8%), respectively (Loreto et al., 2003). A similar statistic was found for i-Al–Cu–Fe (Gratias et al., 2001). The physical nature of these clusters, their stability and mechanical properties, is still controversially discussed (see Steurer, 2006; Henley, 2006; Henley et al., 2006; Ponson et al., 2006, and references therein).
structure is mainly built from one or other cluster type. For instance, a detailed analysis of the structure ofThere are typical ratios, , of the quasilattice constant, ar (Elser, 1985), to the average interatomic distance, , for quasicrystals based on MCs (1.65–1.75), TCs (≈1.75) and BCs (≈2.0), respectively (Chen et al., 1987; Guo et al., 2002). Typical values for the optimum electron concentrations (i.e. valence electrons per atom) amount to 1.7–1.9 for the MC type, 2.0–2.1 for the TC type, and 2.0–2.2 for the BC-type QCs (Trambly de Laissadière et al., 2005).
The structures of IQCs can be approximately related to cluster-decorated three-dimensional Penrose tilings with edge lengths of the rhombohedra, τ being the golden mean, . The quasilattice constant and the lattice parameter of the hypercubic lattice, a, are related by . The prototype structures and representatives, based on six-dimensional structure analyses (Yamamoto & Takakura, 2004) and the three cluster types, respectively, are given below.
(i) i-Al–Mn–Pd type: a = 9.14 Å, , .
Three-dimensional Penrose tiling with edge length ar decorated by pseudo-MCs.
Al–Pd–Me (Me = Mn, Re, Ru, Os), Al–Cu–Me (Me = Fe, Ru, Os), Ti–Zr–Ni.
(ii) i-Zn–Mg–Ho type: a = 10.28 Å, , .
Three-dimensional Penrose tiling with edge length ar decorated by pseudo-BCs.
Mg–Zn–RE (RE = Y, Nd, Gd, Ho, Dy, La, Pr, Tb, Ce), Zn–Mg–Hf, Zn–Mg–Zr and Al–Cu–Li, Mg–Ga–Zn, Mg–Al–M (M = Rh, Pd, Pt) with symmetry (i.e. these are disordered variants of the F-type).
(iii) i-Cd–Yb type: a = 5.689 Å, ,
Three-dimensional Penrose tiling with edge length ar decorated by TCs with disordered first shell.
Cd–Me (Me = Ca, Yb), Cd–Mg–Ca, Cd–Mg–RE (RE = Y, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Zn–Me–Sc (Me = Ag, Au, Co, Cu, Fe, Mg, Mn, Ni, Pd, Pt), Cu–Ga–Mg–Sc, Zn–Mg–Ti, Ag–In–(Mg–)Me (Me=Ca,Yb). Zn can be isoelectronically replaced by Cu–Ga in the case of i-Zn–Mg–Sc and Cd by Ag–In in the cases of i-Cd–Ca and i-Cd–Yb.
Two examples of idealized d-Al–Co–Ni (Deloudi & Steurer, 2007) and i-Al–Cu–Fe (Quiquandon & Gratias, 2006), together with their periodic average structures, are shown in Figs. 7 and 8. The periodic average structure can be obtained by oblique projection of the hypercrystal structure onto the physical space (cf. Fig. 1). It is congruent to the infinite three-dimensional quasiperiodic structure modulo the of the periodic average structure. The periodic average structure of the decagonal phase is related to the B2 phase (CsCl-type) (Steurer, 2000b), and that of the icosahedral phase to f.c.c. Al (Steurer & Haibach, 1999).
structure models,The periodic average structure is a measure for the deviation of the quasiperiodic structure from a periodic reference lattice. In the case of the one-dimensional Fibonacci sequence, a quasiperiodic structure with
there exists a one-to-one mapping of its vertices to the reference lattice. Consequently, the deviation is purely displacive. For quasiperiodic structures with the deviation is predominantly displacive and partly substitutional (occupied/non-occupied).Strong Bragg reflections of quasicrystals define pseudo-Brillouin zones (Jones zones). Subsets of these reflections define relevant periodic average structures (Cervellino & Steurer, 2002). This relationship has been used for the prediction of the pseudo-band-gaps of phononic quasicrystals (Sutter-Widmer et al., 2007). The i.e. of X-rays, has been shown to exist in quasicrystals despite the lack of periodicity (Härtwig et al., 2001). This can be easily explained based on the concept of the periodic average structure of quasicrystals.
4. Surfaces and interfaces
The study of d-Al–Co–Cu (Kortan et al., 1990). Since then, hundreds of experimental (STM, AFM, LEED, XPS, …) and theoretical (molecular dynamics, Monte Carlo, ab initio calculations, …) surface studies have been performed. These studies have contributed to our understanding of the surface structures of quasicrystals, whether they reconstruct, and how they terminate (Papadopolos & Kasner, 2005, and references therein). Additionally, since surfaces usually do not reconstruct, sequences of terrace structures can also be used for checking models of the bulk structure (Papadopolos et al., 2002, and references therein).
surfaces started in 1990 with a STM investigation of the tenfold surface ofOf particular interest have been studies of the structures adopted by atoms (Xe, Na, K, Al, Si, Co, Cu, Sn, Ag, Au, Pb, Bi, …) or molecules (C60) deposited on surfaces with fivefold symmetry in (sub)monolayer concentration. In almost all cases, fivefold twinned periodic domain structures are formed. However, in the case of 3–30 monolayers of Co on d-Al–Co–Ni for instance, domains built by quasiperiodically spaced rows of periodically arranged atoms have been observed (Smerdon et al., 2006). For a review on all aspects of surface science, see the special issue edited by Pat Thiel (2004).
5. – origin of strange properties?
In the first years after Shechtman's discovery, mathematicians, physicists and materials scientists jumped into non-crystallographers, crystallographers preferred to stay outside, perhaps because they did not feel responsible for structures with non-crystallographic symmetry. Mathematicians were particularly interested in tilings and their spectral properties. Their studies were not only important for the research in quasicrystals, they also had impact on mathematics itself in the areas of discrete geometry, harmonic analysis, group theory and ergodic theory (Lagarias, 2000), and finally promoted the understanding of ornamental art (see Lu & Steinhardt, 2007, and references therein). Physicists and materials scientists were excited by the special properties which they envisioned to possibly result from Since the fundamental difference between crystals and quasicrystals is in the character of their long-range order, physical properties sensitive to long-range order should be affected the most.
research with both feet. Contrary to theseIndeed, particularly electronic and thermal transport properties were found to behave differently from normal metals. At low temperatures, quasicrystals even seemed to approach a metal–insulator transition (Pierce et al., 1993). This finding generated intense research in the field (for a review see Trambly de Laissadière et al., 2005). Unfortunately, it was recently shown that a significant contribution to the low conductivity of the with the largest effect, polycrystalline i-Al–Pd–Re, was of extrinsic origin (oxide layers) (Dolinšek et al., 2006). Particularly in the beginning of the hype on quasicrystals, measurements were frequently performed on low-quality and/or poorly characterized samples in order to be the first providing experimental evidence for the strange properties expected from or predicted for quasicrystals. This attitude has been responsible for many contradictory results.
However, there is still clear evidence for a significant decrease in electronic and d-Al74Co16Ni10 between 373 and 873 K show a slight increase in thermal diffusivity (factor 2) in the quasiperiodic plane, while it remains constant in the periodic direction (Barrow et al., 2003). The absolute values at 373 K in the periodic direction are by about one order of magnitude smaller than those of pure aluminium, in the quasiperiodic plane by two orders of magnitude. The authors conclude the validity of a Drude free-electron model in this temperature range, with a longer carrier mean-free-path time along the periodic direction. Generally, it has been shown that quasicrystals follow Wiedemann–Franz's law of the mutual relationship between thermal and electrical conductivity (Macia, 2002).
of quasicrystals with decreasing temperature. DQCs, combining both periodicity and in one and the same sample, are good model systems for separating the influence of chemical composition from that of Indeed, there is a strong anisotropy in electronic and of DQCs. For instance, measurements onHowever, already small-unit-cell approximant DQCs such as Al13Fe4 (a = 15.489, b = 8.083, c = 12.476 Å, β = 107.72°) show a large anisotropy (factor of 5 at 4.2 and 273 K) in as well as an inverse Matthiessen rule along the quasiperiodic plane (Volkov & Poon, 1995). This indicates that the anisotropy in the electronic resistivity is mainly of local origin due to a highly anisotropic electronic structure (Krajci & Hafner, 1998) and quasiperiodic long-range order is not the crucial factor.
6. Growth and stability of QCs
It is generally agreed that electronic stabilization according to the Hume–Rothery mechanism plays a decisive role for Al-based quasicrystals. Indeed, many quasicrystals have been found by a systematic search for compounds with a particular valence-electron concentration for a given range of atomic size ratios and electronegativities of the elements involved (Tsai, 2003). The of low-energy empty d states with a wide sp band can significantly contribute to the stability as well. In the absence of a pseudogap at the as observed for Cd-based quasicrystals, this mechanism may even be the dominating one (Ishii & Fujiwara, 2001).
It is difficult to understand how a complex large-unit-cell intermetallic phase forms, even if it is periodic. How does the thousandth atom find its site in a huge unit cell? One factor is certainly the chemical composition (chemical potential), which should locally not differ too much from the global average. Another factor is the formation of structural subunits as fundamental building elements. These may just be small coordination polyhedra such as Frank–Kasper polyhedra representing the geometrically and energetically best local atomic arrangements for a given chemical composition. These may also be large clusters consisting of many shells, which are probably stabilized by a particular electronic structure [cf. Wade's rule (Mingos, 1984, and references therein)]. The size of the is thus determined by the optimal packing of these clusters, which usually requires some glue atoms in addition. Gaps or pseudogaps in the electronic at the can also play a role for the optimum unit-cell size. For a discussion of cluster properties in quasicrystals, see Steurer (2006), Henley (2006) and Henley et al. (2006).
It is possible that the formation of cluster-based ). This means that clusters, forming quasiperiodic structures, do not necessarily need to differ from their environment in terms of chemical bonding.
structures is even simpler than that of non-cluster-based large-unit-cell complex intermetallics. It has been demonstrated by that, in simple two-dimensional monoatomic models, decagonal and dodecagonal random tiling structures form if a proper double-well potential is used (Engel & Trebin, 20077. Outlook
Strange structures may have strange properties that may have interesting applications. This dream has been one of the main driving forces for the intense study of quasicrystals in the early years after their discovery, but it faded away. Although there is an interesting book available, Useful Quasicrystals (Dubois, 2005), quasicrystals have hitherto found only niche applications. Examples are special steels, hardened by quasicrystalline precipitates, or coatings for frying pans. Perhaps more potential for applications is shown by photonic and phononic quasicrystals (for a review, see Steurer & Sutter-Widmer, 2007). The combination of pure point Fourier spectra with high rotational symmetry allows for wide omnidirectional band gaps even for low-index-contrast heterostructures. The number of publications in this field is rapidly growing and already represents a significant fraction of all new papers on quasicrystals (small red bars in the histogram depicted in Fig. 9).
We do not know when the next class of non-periodic exciting crystal structures will be discovered, or if there will be such a discovery at all. If nature does not have anything of this kind to offer, man-made artificial structures with complex order beyond the quasiperiodic one (Axel & Gratias, 1995), on either the nano- or the mesoscale, may step in.
Acknowledgements
We thank the Swiss National Science Foundation for supporting part of the work discussed in this review article.
References
Audier, M., Pannetier, J., Leblanc, M., Janot, C., Lang, J. M. & Dubost, B. (1988). Physica (Utrecht), B153, 136–142. CrossRef ICSD Web of Science Google Scholar
Axel, F. & Gratias, D. (1995). Editors. Beyond Quasicrystals. Paris: Les Editions de Physique–Springer. Google Scholar
Baake, M. & Frettlöh, D. (2007). Z. Kristallogr. 222, 312. Web of Science CrossRef Google Scholar
Bak, P. (1986). Phys. Rev. Lett. 56, 861–864. CrossRef PubMed CAS Web of Science Google Scholar
Barrow, J. A., Cook, B. A., Canfield, P. C. & Sordelet, D. J. (2003). Phys. Rev. B, 68, 104202. Web of Science CrossRef Google Scholar
Ben Abraham, S. (2007). Z. Kristallogr. 222, 310. Web of Science CrossRef Google Scholar
Beraha, L., Steurer, W. & Perez-Mato, J. M. (2001). Z. Kristallogr. 216, 573–585. Web of Science CrossRef CAS Google Scholar
Bergman, G., Waugh, J. L. T. & Pauling, L. (1957). Acta Cryst. 10, 254–259. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Bohr, H. (1925). Acta Math. 46, 101–214. CrossRef Google Scholar
Boissieu, M. de & Francoual, S. (2005). Z. Kristallogr. 220 1043–1051. Web of Science CrossRef Google Scholar
Boissieu, M. de, Francoual, S., Kaneko, Y. & Ishimasa, T. (2005). Phys. Rev. Lett. 95, 105503. Web of Science CrossRef PubMed Google Scholar
Boissieu, M. de, Janot, C., Dubois, J. M., Audier, M. & Dubost, B. (1991). J. Phys. Condens. Matter, 3, 1–25. CrossRef Web of Science Google Scholar
Boudard, M., de Boissieu, M., Janot, C., Heger, G., Beeli, C., Nissen, H. U., Vincent, H., Ibberson, R., Audier, M. & Dubois, J. M. (1992). J. Phys. Condens. Matter, 4, 10149–10168. CrossRef CAS Web of Science Google Scholar
Bruijn, N. G. de (1981). Proc. Kon. Ned. Akad. Wetenschap. A84, 39–66. Google Scholar
Cahn, J. W., Gratias, D. & Mozer, B. (1988). J. Phys. Fr. 49, 1225–1233. CrossRef CAS Web of Science Google Scholar
Cervellino, A., Haibach, T. & Steurer, W. (2002). Acta Cryst. B58, 8–33. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cervellino, A. & Steurer, W. (2002). Acta Cryst. A58, 180–184. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, H. S., Phillips, J. C., Villars, P., Kortan, A. R. & Inoue, A. (1987). Phys. Rev. B, 35, 9326–9329. CrossRef CAS Web of Science Google Scholar
Cornier-Quiquandon, M., Quivy, A., Lefebvre, S., Elkaim, E., Heger, G., Katz, A. & Gratias, D. (1991). Phys. Rev. B, 44, 2071–2084. CrossRef CAS Web of Science Google Scholar
Daams, J. & Villars, P. (2000). Eng. Appl. Artif. Intell. 13, 507–511. Web of Science CrossRef Google Scholar
Deloudi, S. & Steurer, W. (2007). Philos. Mag. 87, 2727–2732. Web of Science CrossRef CAS Google Scholar
Dolinšek, J., McGuiness, P. J., Klanjšek, M., Smiljanić, I., Smontara, A., Zijlstra, E. S., Bose, S. K., Fisher, I. R., Kramer, M. J. & Canfield, P. C. (2006). Phys. Rev. B, 74, 134201. Google Scholar
Dubois, J. M. (2005). Useful Quasicrystals. Singapore: World Scientific. Google Scholar
Ebinger, W., Roth, J. & Trebin, H. R. (1998). Phys. Rev. B, 58, 8338–8346. Web of Science CrossRef CAS Google Scholar
Eisenhower, R. & Colella, R. (1998). Phys. Rev. B, 57, 8218–8222. Web of Science CrossRef CAS Google Scholar
Elcoro, L. & Perez-Mato, J. M. (1994). Acta Cryst. B50, 294–306. CrossRef CAS Web of Science IUCr Journals Google Scholar
Elcoro, L. & Perez-Mato, J. M. (1995). J. Phys. I5, 729–745. Google Scholar
Elser, V. (1985). Phys. Rev. B, 32, 4892–4898. CrossRef CAS Web of Science Google Scholar
Elser, V. (1996). Philos. Mag. B73, 641–656. Google Scholar
Elswijk, H. B., De Hosson, J. T. M., van Smaalen, S. & de Boer, J. L. (1988). Phys. Rev. B, 38, 1681–1685. CrossRef CAS Web of Science Google Scholar
Engel, M. & Trebin, H. R. (2007). Phys. Rev. Lett. 98, 225505. Web of Science CrossRef PubMed Google Scholar
Estermann, M. A., Lemster, K., Haibach, T. & Steurer, W. (2000). Z. Kristallogr. 215, 584–596. Web of Science CrossRef CAS Google Scholar
Fang, A. H., Zou, H. M., Yu, F. M., Wang, R. H. & Duan, X. F. (2003). J. Phys. Condens. Matter, 15, 4947–4960. Web of Science CrossRef CAS Google Scholar
Fu, Z. Q., Li, F. H. & Fan, H. F. (1993). Z. Kristallogr. 206, 57–68. CAS Google Scholar
Gähler, F. & Jeong, H. C. (1995). J. Phys. A28, 1807–1815. Google Scholar
Gardner, M. (1977). Sci. Am. 236, 110–121. CrossRef Google Scholar
Gratias, D., Puyraimond, F., Quiquandon, M. & Katz, A. (2001). Phys. Rev. B, 63, 024202. CrossRef Google Scholar
Grushko, B. & Velikanova, T. Y. (2004). J. Alloys Compd. 367, 58–63. Web of Science CrossRef CAS Google Scholar
Gummelt, P. (2006). Z. Kristallogr. 221, 582–588. Web of Science CrossRef CAS Google Scholar
Guo, J. Q., Abe, E. & Tsai, A. P. (2002). Philos. Mag. Lett. 82, 27–35. Web of Science CrossRef CAS Google Scholar
Haibach, T., Cervellino, A., Estermann, M. A. & Steurer, W. (2000). Z. Kristallogr. 215, 569–583. Web of Science CrossRef CAS Google Scholar
Härtwig, J., Agliozzo, S., Baruchel, J., Colella, R., de Boissieu, M., Gastaldi, J., Klein, H., Mancini, L. & Wang, J. (2001). J. Phys. D Appl. Phys. 34, A103–A108. Google Scholar
Henley, C. L. (2006). Philos. Mag. 86, 1123–1129. Web of Science CrossRef CAS Google Scholar
Henley, C. L., de Boissieu, M. & Steurer, W. (2006). Philos. Mag. 86, 1131–1151. Web of Science CrossRef CAS Google Scholar
Henley, C. L., Elser, V. & Mihalkovic, M. (2000). Z. Kristallogr. 215, 553–568. Web of Science CrossRef CAS Google Scholar
Hennig, R. G., Kelton, K. F., Carlsson, A. E. & Henley, C. L. (2003). Phys. Rev. B, 67, 134202. Web of Science CrossRef Google Scholar
Hermann, C. (1949). Acta Cryst. 2, 139–145. CrossRef IUCr Journals Web of Science Google Scholar
Ishii, Y. & Fujiwara, T. (2001). Phys. Rev. Lett. 87, 206408. Web of Science CrossRef PubMed Google Scholar
International Union of Crystallography (1992). Acta Cryst. A48, 922–946. Google Scholar
Janssen, T. (1986). Acta Cryst. A42, 261–271. CrossRef CAS Web of Science IUCr Journals Google Scholar
Janssen, T. (2007). Z. Kristallogr. 222, 311. Web of Science CrossRef Google Scholar
Janssen, T., Chapuis, G. & de Boissieu, M. (2007). Aperiodic Crystals. From Modulated Phases to Quasicrystals. IUCr Monographs on Crystallography, No. 20. IUCr/Oxford Science Publications. Google Scholar
Joseph, D. & Baake, M. (1996). J. Phys. A29, 6709–6716. Google Scholar
Katrych, S., Weber, T., Kobas, M., Massüger, L., Palatinus, L., Chapuis, G. & Steurer, W. (2007). J. Alloys Compd. 428, 164–172. Web of Science CrossRef CAS Google Scholar
Katz, A. & Gratias, D. (1995). Proceedings of ICQ5, edited by C. Janot & R. Mosseri, p. 164. Singapore: World Scientific. Google Scholar
Kobas, M., Weber, T. & Steurer, W. (2005a). Phys. Rev. B, 71, 224205. Web of Science CrossRef Google Scholar
Kobas, M., Weber, T. & Steurer, W. (2005b). Phys. Rev. B, 71, 224206. Web of Science CrossRef Google Scholar
Kortan, A. R., Becker, R. S., Thiel, F. A. & Chen, H. S. (1990). Phys. Rev. Lett. 64, 200–203. CrossRef PubMed CAS Web of Science Google Scholar
Krajci, M. & Hafner, J. (1998). Phys. Rev. B, 58, 5378–5383. CAS Google Scholar
Kuo, K. H. (2002). Struct. Chem. 13, 221–230. Web of Science CrossRef CAS Google Scholar
La Brecque, M. (1987/8). Mosaic, 18, 2–23. Google Scholar
Lagarias, J. C. (2000). Mater. Sci. Eng. A294, 186–191. Web of Science CrossRef Google Scholar
Levine, D. & Steinhardt, P. J. (1984). Phys. Rev. Lett. 53, 2477–2480. CrossRef CAS Web of Science Google Scholar
Levitov, L. S. (1988). Europhys. Lett. 6, 517–522. CrossRef CAS Web of Science Google Scholar
Lifshitz, R. (2007). Z. Kristallogr. 222, 313–317. Web of Science CrossRef CAS Google Scholar
Lifshitz, R. & Diamant, H. (2007). Philos. Mag. 87, 3021–3030. Web of Science CrossRef CAS Google Scholar
Loreto, L., Farinato, R., Catallo, S., Janot, C., Gerbasi, G. & DeAngelis, G. (2003). Physica (Utrecht), B328, 193–203. Web of Science CrossRef Google Scholar
Lu, P. J. & Steinhardt, P. J. (2007). Science, 315, 1016–1110. Web of Science CrossRef Google Scholar
Macia, E. (2002). Appl. Phys. Lett. 81, 88–90. Web of Science CrossRef CAS Google Scholar
Mackay, A. L. (1962). Acta Cryst. 15, 916–918. CrossRef CAS IUCr Journals Web of Science Google Scholar
Mackay, A. L. (1982). Physica (Utrecht), A114, 609–613. CrossRef Web of Science Google Scholar
Mackay, A. L. & Kramer, P. (1985). Nature (Utrecht), 316, 17–18. CrossRef Web of Science Google Scholar
Maezawa, R., Kashimoto, S. & Ishimasa, T. (2004). Philos. Mag. Lett. 84, 215–223. Web of Science CrossRef CAS Google Scholar
Mihalkovic, M. & Henley, C. L. (2004). Phys. Rev. B, 70, 092202. Google Scholar
Mihalkovic, M., Henley, C. L. & Widom, M. (2004). J. Non-Cryst. Solids, 334, 177–183. Web of Science CrossRef Google Scholar
Mihalkovic, M. & Mrafko, P. (1994). Phys. Rev. B, 49, 100–108. CAS Google Scholar
Mihalkovic, M. & Mrafko, P. (1997). Mater. Sci. Eng. A226, 961–966. Google Scholar
Mingos, D. M. P. (1984). Acc. Chem. Res. 17, 311–319. CrossRef CAS Web of Science Google Scholar
Nienhuis, B. (1998). Phys. Rep. 301, 271–292. Web of Science CrossRef CAS Google Scholar
Palenzona, A. (1971). J. Less Common. Met. 25, 367–372. CrossRef ICSD CAS Web of Science Google Scholar
Papadopolos, Z. & Kasner, G. (2005). Phys. Rev. B, 72, 4206. Web of Science CrossRef Google Scholar
Papadopolos, Z., Kasner, G., Ledieu, J., Cox, E. J., Richardson, N. V., Chen, Q., Diehl, R. D., Lograsso, T. A., Ross, A. R. & McGrath, R. (2002). Phys. Rev. B, 66, 184207. Web of Science CrossRef Google Scholar
Pauling, L. (1985). Nature (London), 317, 512–514. CrossRef CAS Web of Science Google Scholar
Pauling, L. (1989). Proc. Natl Acad. Sci. USA, 86, 8595–8599. CrossRef PubMed CAS Web of Science Google Scholar
Penrose, R. (1974). Bull. Inst. Math. Appl. 10, 266–271. Google Scholar
Pierce, F. S., Poon, S. J. & Guo, Q. (1993). Science, 261, 737–739. CrossRef PubMed CAS Web of Science Google Scholar
Ponson, L., Bonamy, D. & Barbier, L. (2006). Phys. Rev. B, 74, 184205. Web of Science CrossRef Google Scholar
Quiquandon, M. & Gratias, D. (2006). Phys. Rev. B, 74, 0214205. Web of Science CrossRef Google Scholar
Senechal, M. (2007). Z. Kristallogr. 222, 311. Web of Science CrossRef Google Scholar
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. (1984). Phys. Rev. Lett. 53, 1951–1953. CrossRef CAS Web of Science Google Scholar
Smaalen, S. van, de Boer, J. L. & Shen, Y. (1991). Phys. Rev. B, 43, 929–937. CrossRef Web of Science Google Scholar
Smerdon, J. A., Ledieu, J., Hoeft, J. T., Reid, D. E., Wearing, L. H., Diehl, R. D., LoGrasso, T. A., Ross, A. R. & McGrath, R. (2006). Philos. Mag. 86, 841–847. Web of Science CrossRef CAS Google Scholar
Socolar, J. E. S. (1990). Commun. Math. Phys. 129, 599–619. CrossRef Web of Science Google Scholar
Steurer, W. (1987). Acta Cryst. A43, 36–42. CrossRef CAS Web of Science IUCr Journals Google Scholar
Steurer, W. (1989). Acta Cryst. B45, 534–542. CrossRef CAS Web of Science IUCr Journals Google Scholar
Steurer, W. (1991). J. Phys. Condens. Matter, 3, 3397–3410. CrossRef CAS Web of Science Google Scholar
Steurer, W. (2000a). Z. Kristallogr. 215, 323–334. Web of Science CrossRef CAS Google Scholar
Steurer, W. (2000b). Mater. Sci. Eng. A294, 268–271. Web of Science CrossRef Google Scholar
Steurer, W. (2004a). Z. Kristallogr. 219, 391–446. Web of Science CrossRef CAS Google Scholar
Steurer, W. (2004b). J. Non-Cryst. Solids, 334, 137–142. Web of Science CrossRef Google Scholar
Steurer, W. (2005). Acta Cryst. A61, 28–38. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steurer, W. (2006). Philos. Mag. 86, 1105–1113. Web of Science CrossRef CAS Google Scholar
Steurer, W. (2007a). Z. Kristallogr. 222, 308–309. Web of Science CrossRef CAS Google Scholar
Steurer, W. (2007b). Philos. Mag. 87, 2707–2712. Web of Science CrossRef CAS Google Scholar
Steurer, W. & Haibach, T. (1999). Acta Cryst. A55, 48–57. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steurer, W., Haibach, T., Zhang, B., Beeli, C. & Nissen, H. U. (1994). J. Phys. Condens. Matter, 6, 613–632. CrossRef CAS Web of Science Google Scholar
Steurer, W., Haibach, T., Zhang, B., Kek, S. & Lück, R. (1993). Acta Cryst. B49, 661–675. CrossRef CAS Web of Science IUCr Journals Google Scholar
Steurer, W. & Kuo, K. H. (1990). Acta Cryst. B46, 703–712. CrossRef CAS Web of Science IUCr Journals Google Scholar
Steurer, W. & Sutter-Widmer, D. (2007). J. Phys. D Appl. Phys. 40, R229–R247. Web of Science CrossRef CAS Google Scholar
Strandburg, K. J. (1991). Phys. Rev. B, 44, 4644–4646. CrossRef CAS Web of Science Google Scholar
Sugiyama, K., Kaji, N. & Hiraga, K. (1998). Acta Cryst. C54, 445–447. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Sutter-Widmer, D., Deloudi, S. & Steurer, W. (2007). Phys. Rev. B, 75, 094304. Web of Science CrossRef Google Scholar
Takakura, H., Gomez, C. P., Yamamoto, A., de Boissieu, M. & Tsai, A. P. (2007). Nature Mater. 6, 58–63. Web of Science CrossRef CAS Google Scholar
Takakura, H., Shiono, M., Sato, T. J., Yamamoto, A. & Tsai, A. P. (2001). Phys. Rev. Lett. 86, 236–239. Web of Science CrossRef PubMed CAS Google Scholar
Takakura, H., Yamamoto, A., Sato, T. J., Tsai, A. P., Ozawa, Y., Yasuda, N. & Toriumi, K. (2006). Philos. Mag. 86, 621–627. Web of Science CrossRef CAS Google Scholar
Takakura, H., Yamamoto, A. & Tsai, A. P. (2001). Acta Cryst. A57, 576–585. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takakura, H., Yamamoto, A. & Tsai, A. P. (2004). Ferroelectrics, 305, 257–260. Web of Science CrossRef CAS Google Scholar
Tang, L. H. (1990). Phys. Rev. Lett. 64, 2390–2393. CrossRef PubMed CAS Web of Science Google Scholar
Thiel, P. A. (2004). Prog. Surf. Sci. 75, 69–86. Web of Science CrossRef CAS Google Scholar
Trambly de Laissadière, G., Nguyen-Manh, D. & Mayou, D. (2005). Prog. Mater. Sci. 50, 679–788. Google Scholar
Tsai, A. P. (2003). Acc. Chem. Res. 36, 31–38. Web of Science CrossRef PubMed CAS Google Scholar
Volkov, P. & Poon, S. J. (1995). Phys. Rev. B, 52, 12685–12689. CrossRef CAS Web of Science Google Scholar
Weber, S. & Yamamoto, A. (1997). Philos. Mag. A76, 85–106. CrossRef Web of Science Google Scholar
Weber, S. & Yamamoto, A. (1998). Acta Cryst. A54, 997–1005. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weber, T., Deloudi, S., Kobas, M., Yokoyama, Y., Inoue, A. & Steurer, W. (2007). In preparation. Google Scholar
Wolff, P. M. de (1974). Acta Cryst. A30, 777–785. CrossRef Web of Science IUCr Journals Google Scholar
Yamamoto, A. (1992). Phys. Rev. B, 45, 5217–5227. CrossRef CAS Web of Science Google Scholar
Yamamoto, A., Kato, K., Shibuya, T. & Takeuchi, S. (1990). Phys. Rev. Lett. 65, 1603–1606. CrossRef PubMed CAS Web of Science Google Scholar
Yamamoto, A., Matsuo, Y., Yamanoi, T., Tsai, A.P., Hiraga, K. & Masumoto, T. (1995). Proceedings of Aperiodic'94, edited by G. Chapuis & W. Paciorek, pp. 393–398. Singapore: World Scientific. Google Scholar
Yamamoto, A., Sato, A., Kato, K., Tsai, A. P. & Masumoto, T. (1994). Mater. Sci. Forum, 150–151, 211–222. CrossRef CAS Google Scholar
Yamamoto, A. & Takakura, H. (2004). Ferroelectrics, 305, 223–227. Web of Science CrossRef CAS Google Scholar
Yamamoto, A., Takakura, H., Ozeki, T., Tsai, A. P. & Ohashi, Y. (2004). J. Non-Cryst. Solids, 334, 151–155. Web of Science CrossRef Google Scholar
Yamamoto, A., Takakura, H. & Tsai, A. P. (2002). J. Alloy. Compd. 342, 159–163. Web of Science CrossRef CAS Google Scholar
Yamamoto, A., Takakura, H. & Tsai, A. P. (2003). Phys. Rev. B, 68, 4201. Google Scholar
Yamamoto, A., Takakura, H. & Tsai, A. P. (2004). Ferroelectrics, 305, 279–282. Web of Science CrossRef CAS Google Scholar
Zeng, X. B., Ungar, G., Liu, Y. S., Percec, V., Dulcey, S. E. & Hobbs, J. K. (2004). Nature (London), 428, 157–160. Web of Science CrossRef PubMed CAS Google Scholar
Zimmermann, H. (2007). Z. Kristallogr. 222, 318–319. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.