research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Volume 70| Part 4| July 2014| Pages 309-316

On the temperature dependence of H-Uiso in the riding hydrogen model

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen, Germany, bSchool of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley, Australia, cBragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia, dInstitut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main, Germany, eGZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen, Germany, and fInstitut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
*Correspondence e-mail: birger.dittrich@chemie.uni-hamburg.de

(Received 6 March 2014; accepted 9 May 2014; online 28 May 2014)

The temperature dependence of H-Uiso in N-acetyl-L-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-Uiso below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

1. Introduction

The riding hydrogen model is widely used in refining small-molecule X-ray diffraction data. Three positional and one isotropic displacement parameter can be constrained to a `parent atom' that the H atom is `riding' on, improving the data-to-parameter ratio and ensuring a chemically meaningful geometry. Alternatively, a single isotropic displacement parameter per riding H atom can be included in the least-squares refinement model while still constraining hydrogen positional parameters.

Predicted H-atom positions usually lead to comparable figures of merit to a free refinement of H-atom positional parameters. This holds even for high-quality X-ray data, extending far into reciprocal space, since the scattering contribution of hydrogen is small and limited in resolution. Therefore predicted positions, e.g. by SHELXL  (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), have also been used for `invariom' (Dittrich et al., 2004[Dittrich, B., Koritsánszky, T. & Luger, P. (2004). Angew. Chem. Int. Ed. 43, 2718-2721.]) aspherical-atom refinements (Schürmann et al., 2012[Schürmann, C. J., Pröpper, K., Wagner, T. & Dittrich, B. (2012). Acta Cryst. B68, 313-317.]; Pröpper et al., 2013[Pröpper, K., Holstein, J. J., Hübschle, C. B., Bond, C. S. & Dittrich, B. (2013). Acta Cryst. D69, 1530-1539.]). Such H-atom treatment, in combination with elongating X—H vectors to bond distances computed by quantum chemical optimizations of model compounds, provides structures of high quality from conventional diffraction data.

As stated above, the riding hydrogen model can include constraints for isotropic hydrogen displacement parameters. Ratios of 1.2 and 1.5 of H-Uiso with respect to the Ueq of the parent atom are being used in most refinement programs today. These ratios had been empirically derived for use with room-temperature data. However, most of today's data sets are collected at temperatures of 100 K or lower, making full use of reduced thermal motion, e.g. to reduce the bias of anisotropic displacement parameters on bond distances (Busing & Levy, 1964[Busing, W. R. & Levy, H. A. (1964). Acta Cryst. 17, 142-146.]). We will show that the ratio of H-Uiso/X-Ueq is temperature dependent, which indirectly follows from Bürgi & Capelli (2000[Bürgi, H. B. & Capelli, S. C. (2000). Acta Cryst. A56, 403-412.]). Therefore constant H-Uiso multipliers are inaccurate; the simple remedy of using temperature-dependent multipliers is proposed herein.

Taking into account the temperature dependence of riding hydrogen treatments of H-Uiso is a detail of increasing importance in X-ray diffraction, as experimental data quality is improving with modern detectors and X-ray sources. Taking the effect into account allows removal of a resolution-dependent systematic error that would otherwise only affect low-resolution data, which is where the hydrogen scattering contributes. While the effect of underestimating H-Uiso might seem unimportant when only looking at the R factor (which is practically unchanged), the effect can be frequently detected when aspherical scattering factors,1 which take into account bonding and lone-pair electron-density distribution, are used for least-squares refinement of positional and atomic displacement parameters (ADPs).2 For charge-density studies, where the aim is to adjust the scattering factor via multipole parameters to the X-ray data, the anisotropic description of atomic displacements should be used. Hydrogen ADPs are usually estimated in such studies. Munshi et al. (2008[Munshi, P., Madsen, A. Ø., Spackman, M. A., Larsen, S. & Destro, R. (2008). Acta Cryst. A64, 465-475.]) have compared competing approaches for such estimates, and the SHADE (simple hydrogen anisotropic displacement estimator) server (Madsen, 2006[Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757-758.]) is the approach most frequently used for that purpose today. Since the focus of this work is the most frequently used isotropic treatment of hydrogen displacements, we will not discuss the anisotropic description here.

2. Experimental

Single crystals of the compound N-acetyl-L-4-hydroxyproline monohydrate (NAC·H2O) were grown by slow evaporation of saturated solutions prepared in hot acetone. Crystals grow to sizes suitable for neutron diffraction. A series of multi-temperature X-ray diffraction data collections3 at 9, 30, 50 and 75 K on the same specimen with dimensions of 0.34 × 0.28 × 0.28 mm (0.5 mm pinhole) were collected at the DORIS beamline D3 at the HASYLAB/DESY synchrotron in Hamburg. The experimental setup consisted of an Oxford Diffraction open-flow helium gas-stream cooling device, a Huber type 512 four-circle diffractometer and a 165 mm MAR CCD detector. A wavelength of 0.5166 Å and a detector distance of 40.3 mm were chosen, allowing a high resolution of d = 0.50 Å or [\sin\theta/\lambda] of 1.0 Å−1 to be reached with a single detector setting. The XDS program (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]) was used for data integration and scaling. Standard deviations of the unit-cell parameters (Fig. 1[link]) were obtained by calculating the variance of intermediate cells during integration.

[Figure 1]
Figure 1
Temperature dependence of the lattice constants of the X-ray data of N-acetyl-L-hydroxyproline monohydrate. Unit-cell parameters and volume are normalized to the lowest data point at 9 K. E.s.d's are also plotted (but may not be visible when small). Connecting lines are only guidelines for the eye.

A detector correction (Johnas et al., 2006[Johnas, S. K. J., Morgenroth, W. & Weckert, E. (2006). Jahresber. HASYLAB, pp. 325-328. Hamburg: DESY.]) was applied to properly correct for the effect of oblique incidence (Wu et al., 2002[Wu, G., Rodrigues, B. L. & Coppens, P. (2002). J. Appl. Cryst. 35, 356-359.]) on the measured intensities. An empirical absorption correction was not performed at this short wavelength; Friedel opposites were merged. The structural model, cell settings but not the atom notation of the original structure determination by Hospital et al. (1979[Hospital, M., Courseille, C. & Leroy, F. (1979). Biopolymers, 18, 1141-1148.]) as given in the CIF file of the Cambridge Structural Database refcode NAHYPL were used as input. Preliminary least-squares refinements were initialized with this model and performed with the program SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Data sets at 100, 150 and 200 and 250 K were collected on an Xcalibur S diffractometer equipped with an Mo [K\alpha] sealed tube. Here an analytical absorption correction was performed following the method of Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) as implemented in the program CRYSALIS RED (Oxford Diffraction Ltd, 2006[Oxford Diffraction Ltd (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxford, England.]) employed for data reduction; Friedel mates were not merged. A second specimen was used for these four higher temperatures. High-resolution data ([\sin\theta/\lambda \ge 1]) were again measured with the exception of the data set at 250 K.

Neutron diffraction data were collected at the OPAL reactor on the Koala beamline at ANSTO, the Australian Nuclear Science and Technology Organization, in Lucas Heights, Australia. Laue neutron data were collected for a single specimen 1.8 × 1.4 × 0.5 mm using an unmonochromated thermal neutron beam on KOALA (Edwards, 2011[Edwards, A. J. (2011). Aust. J. Chem. 64, 869-872.]) at  9, 150, 200 and 250 K. Each data set comprises 16, 12, 12 and ten images (each exposure = 42 min) accumulated on the image plate and from which intensities were extracted using LaueG (Piltz, 2011[Piltz, R. (2011). Acta Cryst. A67, C155.]) employing unit-cell dimensions from the corresponding X-ray determination. The CRYSTALS program (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) was used for the refinement of positions and ADPs for all atoms. An isotropic extinction parameter was required at 9 K due to good crystal quality and comparably large specimen size for the neutron data. CCDC 977814–977817 contain the supplementary crystallographic information for the neutron data. These files can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/data_request/cif . A depiction of the molecule with its atomic numbering scheme and anisotropic ADPs at 9 K from neutron diffraction is shown in Fig. 2[link].

[Figure 2]
Figure 2
ADPs of N-acetyl-L-hydroxyproline monohydrate from neutron diffraction at T = 9 K. Ellipsoids at 50% probability (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]).

3. Methods

H-Uiso/X-Ueq ratios reported here were derived from four independent methods. Benchmark results for NAC·H2O were obtained from multi-temperature neutron diffraction. Values for the hydrogen ADPs from multi-temperature single-crystal X-ray diffraction evaluated with the independent-atom model (IAM) cannot reach the accuracy achievable by neutron diffraction. To improve the physical significance of ADPs and their accuracy from X-ray diffraction (Jelsch et al., 1998[Jelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. (1998). Acta Cryst. D54, 1306-1318.]; Dittrich et al., 2008[Dittrich, B., Pfitzenreuter, S. & Hübschle, C. B. (2012). Acta Cryst. A68, 110-116.]), we therefore performed aspherical-atom refinements [either Hirshfeld-atom (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]) or invariom refinement (Dittrich et al., 2004[Dittrich, B., Koritsánszky, T. & Luger, P. (2004). Angew. Chem. Int. Ed. 43, 2718-2721.]), see below]. QM/MM and MO/MO quantum mechanical cluster calculations (for details of how to run such computations see Dittrich et al., 2012[Dittrich, B., McKinnon, J. J. & Warren, J. E. (2008). Acta Cryst. B64, 750-759.]) yield normal modes within the `molecular Einstein approximation'. These were combined with a TLS fit in the TLS+ONIOM approach (Whitten & Spackman, 2006[Whitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875-888.]) and were subsequently converted to give anisotropic ADPs for H atoms. Such computations were performed to complement the experimental results (see §3.3[link]).

3.1. Aspherical-atom refinements

Two types of aspherical-atom refinements were performed: in invariom refinement (Dittrich et al., 2005[Dittrich, B., Hübschle, C. B., Luger, P. & Spackman, M. A. (2006). Acta Cryst. D62, 1325-1335.], 2006[Dittrich, B., Hübschle, C. B., Messerschmidt, M., Kalinowski, R., Girnt, D. & Luger, P. (2005). Acta Cryst. A61, 314-320.], 2013[Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91-104.]) the molecular electron-density distribution is reconstructed from Hansen/Coppens' multipole-model parameter values (Hansen & Coppens, 1978[Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909-921.]) as tabulated in the generalized invariom database (Dittrich et al., 2013[Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91-104.]). In Hirshfeld-atom refinement (HAR) (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]) the electron density of the asymmetric unit is obtained by a single-point energy calculation.

Invariom refinements. For structure models based on invariom refinements a least-squares refinement of positions and displacement parameters was carried out using the program XDLSM of the XD2006 package (Volkov et al., 2006[Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P., Richter, T. & Koritsánszky, T. (2006). XD2006 - a Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors.]). The program INVARIOMTOOL (Hübschle et al., 2007[Hübschle, C. B., Luger, P. & Dittrich, B. (2007). J. Appl. Cryst. 40, 623-627.]) was used to set up XD system files for that purpose. Refinement was against F2 with a SHELXL-type weighting scheme, and the R1 factor was calculated for all reflections with [F \,\gt\, 4\sigma(F)]. Crystallographic details are given in Table 1[link].

Table 1
Crystal data of N-acetyl-L-4-hydroxyproline monohydrate from invariom refinements

GoF = goodness of fit; GoFW = goodness of fit (weighted).

Crystal data                
Chemical formula C7H10NO4·H2O
Formula weight 191.18
Cell setting, space group Orthorhombic, P212121
Temperature (K) 9 30 50 75 100 150 200 250
a (Å) 9.854 (3) 9.853 (4) 9.866 (7) 9.884 (6) 9.9026 (2) 9.9408 (2) 9.9748 (2) 10.0123 (2)
b (Å) 9.249 (3) 9.251 (5) 9.250 (7) 9.253 (6) 9.2485 (2) 9.2479 (2) 9.2492 (2) 9.2556 (2)
c (Å) 10.144 (2) 10.145 (2) 10.149 (6) 10.155 (3) 10.1662 (2) 10.1875 (2) 10.2103 (2) 10.2441 (2)
V3) 924.5 (4) 924.7 (7) 926.2 (11) 928.7 (9) 931.06 (3) 936.55 (3) 941.99 (3) 949.32 (3)
Z, F(000) 4, 408
Dx (Mg m−3) 1.374 1.373 1.371 1.367 1.364 1.356 1.348 1.338
Radiation type Synchrotron Synchrotron Synchrotron Synchrotron Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.070 0.061 0.061 0.061 0.116 0.116 0.115 0.114
Crystal form, colour Rectangular, colourless Rectangular, colourless
Crystal size (mm) 0.34 × 0.28× 0.28 0.54 × 0.27 × 0.14
                 
Data collection                
Diffractometer Huber Type 512 Oxford Diffraction Xcalibur S
Data-collection method φ scans ω and φ scans
Absorption correction None Analytical
Tmin, Tmax n/a n/a n/a n/a 0.959/0.986 0.954/0.987 0.960/0.989 0.956/0.989
No. of measured reflections 45747 25178 44258 45127 39746 30837 30309 17876
No. of independent reflections 8304 7775 7803 7809 10866 7826 7829 4420
No. of observed reflections 7885 7262 7372 7255 7744 5673 4860 3245
Criterion for observed reflections [F_{\rm o}\,\gt\, 4\sigma(F_{\rm o})]
Rint (%) 0.040 0.038 0.055 0.051 0.037 0.039 0.039 0.020
[\theta _{\max}] (°), [\sin(\theta/\lambda)_{\max}] 31.90, 1.022 31.88, 1.000 31.90, 1.000 31.87, 1.000 53.28, 1.132 53.32, 1.000 53.31, 1.069 36.25, 0.833
                 
Invariom refinement                
Refinement on F2
R1 [[I\,\gt\, 2\sigma(I)]] 0.026 0.028 0.026 0.028 0.031 0.029 0.029 0.025
No. of reflections 7885 7262 7372 7255 7744 5673 4860 3245
No. of parameters 131              
H-atom treatment Invarioms: calculated H position, bond-length elongated, Uiso refined; HAR: all parameters adjusted
Weighting scheme                
1/[\sigma^{2}(F_{\rm o}^{2})] + [] (P = [{{1} \over {3}}F_{\rm o}^{2}] + [{{2} \over {3}}F_{\rm c}^{2}]) [0.06P2+ 0.04P] [0.04P2+ 0.05P] [0.04P2+ 0.04P] [0.05P2+ 0.02P] [0.04P2+ 0.07P] [0.05P2+ 0.05P] [0.06P2+ 0.04P] [0.04P2+ 0.08P]
GoF 1.76 1.44 1.48 2.02 2.81 2.96 2.12 3.84
GoFW 0.96 0.95 0.94 1.00 0.81 0.84 0.82 0.81
[\rho _{\max}], [\rho _{\min}] (e Å−3) 0.36/−0.25 0.32/−0.22 0.27/−0.21 0.30/−0.25 0.36/−0.21 0.25/−0.16 0.20/−0.17 0.16/−0.12

CCDC 990102–990109 contain the supplementary crystallographic data for the X-ray structures. CIF files including intensities are only provided for the invariom refinements, since the same intensities were also used for HAR.

Scattering factors, their local atomic site symmetry and invariom names as well as the model compounds these were derived from are given in Table 2[link]. H-atom positions were initially calculated with SHELXL. In invariom refinement the X—H bond distances were then elongated during initial scale-factor refinement to optimized bond distances of the respective model compound for the invariom assigned to the H atom. This new H-atom position was then constrained to have the same shift as the parent X atom. Only Uiso values were freely refined. This procedure was followed because it is also feasible when conventional data of lower resolution than the data studied here are available. Moreover, idealized H-atom positions provided better input for the MO/MO cluster computations (see §3.3[link]), since idealized positions facilitate reaching convergence. Ratios of hydrogen Uiso to Ueq of the parent atom were then averaged for H atoms sharing the same invariom name using the program APD-TOOLKIT.4 For direct comparison with HAR, free refinement of H atoms was also performed and the results obtained (not shown) are very similar.

Table 2
Scattering factor assigned during invariom refinement with atom names, invariom names, local atomic site symmetry and model compounds they were derived from

Atom name Invariom name Local atomic site symmetry Model compound
O1 O2c mm2 Formaldehyde
O2 O1c1h mz Methanol
O3 O1.5c[1.5n1c] mm2 Acetamide
O4 O1c1h mz Methanol
O5 O1h1h mm2 Water
N1 N1.5c[1.5o1c]1c1c mz N,N-Dimethylacetamide
C1 C2o1o1c mz Acetic acid
C2 C1n1c1c1h mz 2-Aminopropane
C3 C1c1c1h1h mm2 Propane
C4 C1o1c1c1h mz 2-Propanol
C5 C1n1c1h1h mz Ethylamine
C6 C1.5o1.5n[1c1c]1c mz N,N-Dimethylacetamide
C7 C1c1h1h1h 3m Ethane
H1,2 H1o[1c] 6 Methanol
H3 H1c[1n1c1c] 6 2-Aminopropane
H4,5 H1c[1c1c1h] 6 Propane
H6 H1c[1o1c1c] 6 2-Propanol
H7,8 H1c[1n1c1h] 6 Ethylamine
H9,10,11 H1c[1c1h1h] 6 Ethane
H12,13 H1o[1h] 6 Water

Hirshfeld-atom refinement. In Hirshfeld refinement the electron density from single-point energy calculations is used and partitioned into atomic contributions using Hirshfeld's fuzzy boundary partitioning scheme (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta (Berl.), 44, 129-138.]). Fourier transform (Jayatilaka, 1994[Jayatilaka, D. (1994). Chem. Phys. Lett. 230, 228-230.]) then gives aspherical atomic scattering factors. Atomic positions and ADPs are adjusted to best fit the experimental data using these scattering factors. In an improved implementation of HAR in the quantum crystallography program TONTO (Jayatilaka & Grimwood, 2003[Jayatilaka, D. & Grimwood, D. J. (2003). Computational Science - ICCS 2003, edited by P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya & Y. E. Gorbachev. Lecture Notes in Computer Science, Vol. 2660, pp. 142-151. Heidelberg: Springer.]), cycles of molecular electron-density calculations, aspherical-atom partitioning and least-squares refinement are now iterated to convergence in an automatic manner (Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ. Submitted.]). The Hartree–Fock method was used in combination with the basis set cc-pVTZ (Dunning, 1989[Dunning, T. H. (1989). J. Chem. Phys. 90, 1007-1023.]). A supermolecule cluster approach was chosen to calculate a wavefunction for both molecules of the asymmetric unit for use in HAR (Woinska et al., 2014[Woinska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Wozniak, K., Nishibori, E., Sugimoto, K. & Grabowsky, S. (2014). Acta Cryst. A. Submitted.]). The structural model used in HAR included individual positional parameters and isotropic ADPs for H atoms. Ratios of hydrogen Uiso and Ueq of the parent atom were again averaged for H atoms sharing the same invariom name. As expected and shown before for three urea derivatives (Checińska et al., 2013[Checińska, L., Morgenroth, W., Paulmann, C., Jayatilaka, D. & Dittrich, B. (2013). CrystEngComm, 15, 2084-2090.]), both types of aspherical-atom models, the Hansen & Coppens multipole model and HAR, give similar figures of merit and anisotropic ADPs of the non-H atoms with experimental X-ray data.

3.2. Neutron diffraction

As mentioned before, the H-Ueq/X-Ueq ratios from neutron diffraction provide benchmark values for this study. One of the advantages of neutron diffraction is that the scattering lengths of the elements that correspond to atomic scattering factors in X-ray diffraction are constant. Stewart (1976[Thorn, A. (2012). Personal communication.]) demonstrated that Uiso and Ueq from single-crystal X-ray and neutron diffraction differ, and that Ueq will be in between the arithmetic and geometric mean of the diagonal elements of the mean-square displacement matrix. Since we are interested in the ratio of hydrogen Uiso and Ueq of the parent atom, conventional least-squares adjustment can nevertheless provide relative reliable experimental estimates of atomic motion at a particular temperature. Equivalent isotropic displacements H-Ueq5 (orthorhombic system) were obtained both by geometric and by arithmetric averaging the diagonal elements of the matrix of the anisotropic displacements of H atoms (Fischer & Tillmanns, 1988[Fischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776.]), and both give the same ratios within the estimated uncertainty. In contrast to the deposited structural model, refinements were evaluated without using split-atom sites to model rotational disorder in the methyl group above 150 K. Structural models are given in the supporting information.6

3.3. Theoretical computations

A quantum mechanical cluster computation was performed to complement the experimental results. The computation was initiated using the experimental geometry from invariom refinement at the lowest temperature of 9 K with idealized hydrogen positions and elongated X—H distances. The method/basis set for optimizing these model compounds was B3LYP/D95++(3df,3pd). The utility program BAERLAUCH (Dittrich et al., 2012[Dittrich, B., McKinnon, J. J. & Warren, J. E. (2008). Acta Cryst. B64, 750-759.]) was used to generate a cluster of 17 asymmetric units packed around a central unit. The water solvent molecule was optimized together with the main molecule. Preliminary QM/MM calculations [HF/6-31G(d,p):UFF] ensured that this cluster size leads to convergence and is suitable to reproduce experimental ADPs at low temperature. Calculations to obtain final results employed the MO/MO basis-set combination B3LYP/cc-pVTZ:B3LYP/3-21G. Only the central molecule was optimized, whereas the surrounding 16 asymmetric units were kept at fixed positions. Normal modes were calculated and transformed to Cartesian atomic displacements after optimization.

On the basis of the discussion by Dunitz et al. (1988[Dunitz, J. D., Schomaker, V. & Trueblood, K. N. (1988). J. Phys. Chem. 92, 856-867.]), the temperature dependence of atomic motion can be described in analogy to a Boltzmann-type distribution of the harmonic oscillator. Atomic motion at higher temperatures can therefore be estimated by the formula given by Blessing (1995[Blessing, R. H. (1995). Acta Cryst. B51, 816-823.]):

[\langle u^{2}_{{\omega}}\rangle = {{\hbar} \over {2\omega m}}\coth\left ({{\hbar\omega} \over {2k_{\rm B}T}}\right). \eqno (1)]

Although the molecular Einstein approach underlying the MO/MO calculations is not able to take into account lattice vibrations with acceptable accuracy, such a cluster calculation can provide a H/parent-atom Uiso/Ueq ratio, which is however dominated by internal atomic motion. Estimates so derived predict a higher ratio than the experimentally observed ratios from neutron and X-ray diffraction and require a Ueq scale factor. To reach agreement between theory and experiment, and to take the temperature dependence into account, it was therefore necessary to go back to the TLS+ONIOM approach (Whitten & Spackman, 2006[Whitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875-888.]) and to include the experimental TLS contribution, treating the whole asymmetric unit as a rigid body. In this process the internal atomic relative displacement predicted by the MO/MO computation was subtracted from the experimental ADP data at a given temperature prior to the TLS fit (Schomaker & Trueblood, 1968[Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.]). Both TLS fit and subtraction were performed by the program APD-TOOLKIT. A more sophisticated (and computationally more demanding) theoretical method based on periodic computations of different-sized unit-cell assemblies was studied by Madsen et al. (2013[Madsen, A. Ø., Civalleri, B., Ferrabone, M., Pascale, F. & Erba, A. (2013). Acta Cryst. A69, 309-321.]); for reproducing temperature dependence the TLS+ONIOM approach was sufficient.

4. Results and discussion

4.1. Temperature dependence of Uiso/Ueq of riding hydrogen and parent atom from X-ray data

Prior to further analysis, a way to distinguish H atoms and their chemical environment is required. One choice would be the well established SHELXL AFIX groups. However, this would not distinguish H atoms exhibiting a distinct vibrational behaviour in theoretical calculations, e.g. an OH group in ethyl alcohol and one in phenol. The invariom formalism (Dittrich et al., 2013[Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91-104.]) allows a finer distinction. Here H atoms that share the same invariom name are in the same covalent bonding environment and have the same number of next-nearest non-H neighbours, so it was used for classification throughout.7 Vibrational modes of individual invarioms (as derived from their model compounds) in other molecules will be investigated in a forthcoming study.

We can now consider the ratio of hydrogen Uiso and parent-atom Ueq from X-ray diffraction at different temperatures. Initial observations with invariom refinements on D,L-serine (Dittrich et al., 2005[Dittrich, B., Hübschle, C. B., Luger, P. & Spackman, M. A. (2006). Acta Cryst. D62, 1325-1335.]) indicated a temperature dependence at very low temperatures. Subsequent tests using the IAM showed that the IAM does not provide the model precision required to obtain significant results (Thorn, 2012[Stewart, R. F. (1976). Acta Cryst. A32, 182-185.]). Our first question was therefore whether the Uiso/Ueq ratios from aspherical-atom refinements on NAC·H2O are able to reproduce the temperature dependence seen for D,L-serine. Fig. 3[link] shows such ratios for several hydrogen invarioms. Values were either obtained from invariom refinements with constrained riding hydrogen positions, but adjusted hydrogen Uiso (Fig. 3[link]a), or by free least-squares refinement of positional and isotropic displacement parameters with HAR (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]) (Fig. 3[link]b). As one can see, the programs/methods used, XD (Fig. 3[link]a) (Volkov et al., 2006[Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P., Richter, T. & Koritsánszky, T. (2006). XD2006 - a Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors.]) and TONTO (Jayatilaka & Grimwood, 2003[Jayatilaka, D. & Grimwood, D. J. (2003). Computational Science - ICCS 2003, edited by P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya & Y. E. Gorbachev. Lecture Notes in Computer Science, Vol. 2660, pp. 142-151. Heidelberg: Springer.]) (Fig. 3[link]b), give comparable results. Both refinements do indeed show the expected temperature dependence and even distinguish different hydrogen invarioms from X-ray data, although the standard deviation associated with each value is non-negligible (not shown for clarity).8 At very low temperatures the relative motion of H atoms relative to their parent atoms is clearly appreciably extended compared to higher temperatures.

[Figure 3]
Figure 3
Temperature dependence of the Uiso/Ueq ratio from the X-ray data of N-acetyl-L-hydroxyproline monohydrate. (a) Invariom refinement with constrained hydrogen positions and refined Uiso. (b) Hirshfeld-atom refinement with freely refined hydrogen positions/Uiso, both using the same X-ray diffraction data.

This temperature dependence can be understood by looking at the low- and high-temperature limits of equation (1)[link] as well as the transition temperature between both limits. Such dependence can be understood by considering the evolution of ADPs of atoms of different mass with temperature (Bürgi & Capelli, 2000[Bürgi, H. B. & Capelli, S. C. (2000). Acta Cryst. A56, 403-412.]). Division of the mass- and temperature-dependent functions [f_{1}(\omega,T,m_{1})] and [f_{2}(\omega,T,m_{2})] with masses [m_{1} \,\lt\, m_{2}] yields a function with the observed shape. Vibrations of atoms with larger contributions from higher internal frequencies are more prominent at lower temperatures, while at higher temperatures the atomic mass independent external modes dominate the overall amplitudes.

Interestingly, the data set that was an outlier in the expansion of the unit-cell volume at 67–75 K shows further deviations in atomic displacements: hydrogen invarioms of the type H1c[1c1h1h] mainly show a deviating behaviour with respect to the other atoms at higher temperatures. This is due to rotational disorder of the methyl group, and it is easily conceivable that the differences in the lattice constants seen at 67–75 K are due to the rotation becoming more frequent, either starting from this temperature or due to temperature fluctuations at this data point. We have previously studied similar disorder in methylaminobutyric acid hydrochloride by difference electron-density plots and molecular-dynamics simulations (Dittrich et al., 2009[Dittrich, B., Warren, J. E., Fabbiani, F. P., Morgenroth, W. & Corry, B. (2009). Phys. Chem. Chem. Phys. 11, 2601-2609.]). The abnormal temperature dependence of the three H1c[1c1h1h] methyl-hydrogen invarioms is proof that rotational disorder is also present in the acetyl group of NAC·H2O. We will study rotational disorder in this molecule and its anhydrous form in more detail in a subsequent study.

Since positional and displacement parameters are correlated, limiting model flexibility (constrained hydrogen positions) seems to make the onset of additional rotational motion more apparent in invariom refinement, whereas free refinement of positions and Uiso seems to lead to an over-parameterized model in HAR.

4.2. QM/MM and MO/MO calculations

We were interested in reproducing the temperature dependence of Uiso by using the TLS+ONIOM approach (Whitten & Spackman, 2006[Whitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875-888.]). For this purpose the above-mentioned two-layer ONIOM computation using the coordinates from the 9 K X-ray diffraction experiment was combined with a TLS fit at each temperature to provide another set of results that includes information independent from experiment.

Details of the procedure need to be highlighted prior to a discussion of the results. Before performing the TLS fit the computed internal modes were subtracted from the experimental non-H-atom ADPs. Contrary to expectation, this is not accompanied by an improvement of the TLS R factors (not shown) with temperature, since the internal ADPs of heavy atoms are mostly spherical in shape and get almost completely absorbed in the TLS ADPs. Nevertheless, such a correction is physically reasonable and we recommend that it is performed. Furthermore, the agreement of the ratio of Uiso/Ueq seen in the aspherical-atom refinements of the X-ray data improves when this internal TLS contribution is taken into account.

Another detail concerns the low-frequency modes describing the movement of the asymmetric unit in the crystal framework. Low-frequency modes have a very large impact on the overall displacements, which can be derived directly from equation (1)[link]. Since the approximations present in the theoretical method do not allow the estimation of these frequencies with sufficient accuracy, low-frequency modes were omitted in the calculation of ADPs. A frequency threshold of 200 cm−1 was found to be adequate (Madsen et al., 2013[Madsen, A. Ø., Civalleri, B., Ferrabone, M., Pascale, F. & Erba, A. (2013). Acta Cryst. A69, 309-321.]). The required information on the overall displacement is instead taken from the TLS fit, which yields more reliable values. The TLS+ONIOM approach is hence an attractive computational method to understand the ratio of H-Uiso/parent Ueq when experimental TLS contributions are available. It reproduces the temperature dependence nicely, although rotational disorder cannot be predicted. More work is required for ab initio prediction of the temperature dependence by theoretical computations without any experimental input. So far it can only provide an independent source of information for the internal modes and requires the application of the TLS fit; theoretical methods are nevertheless best suited to provide H-Uiso/X-Ueq ratios since experimental errors are limited to ADPs used in the TLS fit.

We now compare these TLS+ONIOM results to those from neutron diffraction, our experimental benchmark (Fig. 4[link]). Since neutron diffraction data sets were not collected at temperatures of 30, 50, 75 and 100 K, these data points are absent in the comparison with high-resolution X-ray and TLS+ONIOM results. The TLS+ONIOM approach confirms that individual displacements of hydrogen invarioms are distinguishable mainly at temperatures below 100 K. Rotational disorder cannot be predicted from this approach, whereas it is also detectable in the neutron data at higher temperatures. Good agreement of neutron diffraction and the TLS+ONIOM approach is found for the temperature-dependent ratio of hydrogen Uiso or Ueq and the parent atom, which also agrees rather well with the X-ray results in Fig. 3[link]. However, at higher temperatures HAR and neutron diffraction show a trend that deviates from the other methods, with the ratio being higher than 1.5, whereas the ratio is smaller in invariom refinement. This is probably due to the predicted/constrained hydrogen positions in invariom refinement, which impose a beneficial limit on the flexibility of the structural model here. Since the rigid-body fit in the TLS+ONIOM approach is based on the invariom results, a similar temperature dependence to that in invariom refinement is observed.

[Figure 4]
Figure 4
Temperature dependence of the Uiso/Ueq ratios obtained by TLS+ONIOM and neutron diffraction. (a) Internal vibrations from MO/MO ONIOM calculations and TLS fit against ADPs obtained by invariom refinement. (b) Refinement against neutron diffraction data.

A comparison of Figs. 3[link] and 4[link] indicates an overall surprisingly good agreement for each curve of H-Uiso/X-Ueq versus temperature over the whole range, especially when taking into account that different methods/experiments were used. All four methods consistently indicate that at very low temperatures the ratio H-Uiso/X-Ueq can be as high as four, e.g. for H atoms attached to an sp3 C atom with three non-H-atom neighbours (corresponding to AFIX 13 in SHELXL). Moreover, all four methods consistently confirm (or reproduce in the case of TLS+ONIOM) the temperature dependence that is predicted from equation (1)[link]. Conventional IAM structure determinations employing riding hydrogen constraints – and likewise models with aspherical scattering factors – should therefore take the temperature-dependent ratio into account.

5. Conclusion and outlook

Four different methods providing the temperature-dependent ratio of H-Uiso to X-Ueq in the riding hydrogen treatment have been evaluated and compared. Neutron diffraction experiments provide benchmark values. `Invariom' and `Hirshfeld-atom' aspherical-atom refinements with high-resolution X-ray diffraction data yield very similar results, with the invariom model using constrained hydrogen positions giving a more consistent result, but the Hirshfeld-atom model being closer to neutron diffraction at higher temperatures. Implementing restraints in the TONTO program would therefore be useful. Furthermore, experimental findings can be well reproduced by the TLS+ONIOM approach. Here a single quantum chemical MO/MO cluster calculation is combined with a temperature-dependent rigid-body fit of the non-hydrogen ADPs from aspherical-atom X-ray refinements. All methods show that the ratio of H-Uiso/eq/X-Ueq, which is usually assumed to be 1.2 or 1.5 independent of temperature, is frequently more than twice as high at lower temperatures. Fixed values of 1.2 or 1.5, as usually used in conventional spherical-atom `IAM' refinements, are therefore underestimating the relative displacement of H atoms at cryogenic temperatures. Since all methods used here consistently show or reproduce that the H-Uiso/eq/X-Ueq ratio is temperature dependent, the effect should be taken into account in low-temperature structure determinations, especially around 100 K and below. We will provide relevant functionality (program APD-TOOLKIT) in subsequent work.

Supporting information


Computing details top

Data collection: MAATEL/ANSTO control program for hydroxyproline9K, hydroxyproline150K, hydroxyproline200K, hydroxyproline250K. Data reduction: argonne_boxes (Wilkinson et al., 1988) & LaueG (Piltz, 2011) for hydroxyproline9K, hydroxyproline150K, hydroxyproline200K, hydroxyproline250K. Program(s) used to refine structure: Dittrich et al., (2013) Volkov et al., (2006) for (9K), (30K), (50K), (75K), 100K, 150K, xcalibur, 250K; CRYSTALS (Betteridge et al., 2003) for hydroxyproline9K, hydroxyproline150K, hydroxyproline200K, hydroxyproline250K. Molecular graphics: H"ubschle, (2011) for (9K), (30K), (50K), (75K), 100K, 150K, xcalibur, 250K. Software used to prepare material for publication: L"ubben, (to be published) for (9K), (30K), (50K), (75K), 100K, 150K, xcalibur, 250K.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(9K) top
Crystal data top
C7H11NO4·H2OZ = 4
Mr = 191.18F(000) = 408
Orthorhombic, P212121Dx = 1.374 Mg m3
a = 9.854 (3) ÅSynchrotron radiation, λ = 0.5166 Å
b = 9.249 (3) ŵ = 0.07 mm1
c = 10.144 (2) ÅT = 9 K
V = 924.5 (4) Å30.34 × 0.28 × 0.28 mm
Data collection top
45747 measured reflectionsθmax = 31.9°, θmin = 2.1°
8275 independent reflectionsh = 2020
7813 reflections with I > 2σ(I)k = 1818
Rint = 0.040l = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026Only H-atom displacement parameters refined
wR(F2) = 0.063 w2 = q/[s2(Fo2) + (0.04 P)2 + 0.05 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
S = 1.76(Δ/σ)max < 0.001
7885 reflectionsΔρmax = 0.36 e Å3
131 parametersΔρmin = 0.25 e Å3
Crystal data top
C7H11NO4·H2OV = 924.5 (4) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.5166 Å
a = 9.854 (3) ŵ = 0.07 mm1
b = 9.249 (3) ÅT = 9 K
c = 10.144 (2) Å0.34 × 0.28 × 0.28 mm
Data collection top
45747 measured reflections7813 reflections with I > 2σ(I)
8275 independent reflectionsRint = 0.040
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063Only H-atom displacement parameters refined
S = 1.76Δρmax = 0.36 e Å3
7885 reflectionsΔρmin = 0.25 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57864 (3)1.11469 (3)0.77183 (3)0.007
O(2)0.79421 (3)1.11863 (3)0.84048 (2)0.006
O(3)0.84067 (3)1.20556 (3)0.55093 (3)0.007
O(4)0.78344 (3)0.69402 (3)0.51516 (3)0.006
O(5)0.90008 (3)0.45965 (3)0.43048 (3)0.011
N(1)0.87822 (3)0.97789 (3)0.61460 (3)0.005
C(1)0.69679 (3)1.07603 (3)0.76141 (3)0.005
C(2)0.73844 (3)0.96432 (3)0.66018 (3)0.005
C(3)0.73469 (3)0.81108 (3)0.71988 (3)0.006
C(4)0.84126 (3)0.73017 (3)0.63963 (3)0.005
C(5)0.95442 (3)0.84208 (3)0.62487 (3)0.006
C(6)0.91997 (3)1.10147 (3)0.55827 (3)0.005
C(7)1.06213 (3)1.10715 (4)0.50529 (4)0.008
H(1)0.758011.183830.905270.021 (2)*
H(2)0.830760.612700.478300.018 (2)*
H(3)0.669210.969580.575110.020 (2)*
H(4)0.761140.812900.824580.016 (2)*
H(5)0.634440.762000.708170.018 (2)*
H(6)0.877030.633340.691780.018 (2)*
H(7)1.021700.842330.711320.024 (3)*
H(8)1.015020.822090.535730.017 (2)*
H(9)1.132571.067990.580240.032 (3)*
H(10)1.087661.218430.479490.025 (3)*
H(11)1.069521.039090.417690.030 (3)*
H(12)0.881550.369490.474160.022 (2)*
H(13)0.956390.438690.355440.019 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00481 (8)0.00970 (9)0.00751 (9)0.00191 (7)0.00032 (7)0.00294 (7)
O(2)0.00604 (8)0.00750 (8)0.00540 (8)0.00015 (7)0.00057 (6)0.00127 (7)
O(3)0.00694 (8)0.00476 (8)0.00870 (9)0.00130 (6)0.00109 (7)0.00188 (7)
O(4)0.00825 (8)0.00511 (8)0.00517 (8)0.00046 (7)0.00060 (7)0.00025 (6)
O(5)0.01306 (10)0.00620 (9)0.01266 (10)0.00112 (8)0.00575 (9)0.00002 (8)
N(1)0.00472 (8)0.00367 (8)0.00565 (9)0.00033 (6)0.00099 (7)0.00055 (7)
C(1)0.00452 (9)0.00487 (9)0.00424 (9)0.00039 (7)0.00015 (7)0.00040 (7)
C(2)0.00492 (9)0.00463 (9)0.00413 (9)0.00007 (7)0.00055 (7)0.00041 (8)
C(3)0.00858 (10)0.00475 (9)0.00556 (10)0.00022 (8)0.00226 (8)0.00021 (8)
C(4)0.00726 (10)0.00408 (9)0.00469 (9)0.00064 (8)0.00015 (8)0.00029 (7)
C(5)0.00575 (10)0.00515 (9)0.00785 (10)0.00101 (8)0.00024 (8)0.00021 (8)
C(6)0.00486 (9)0.00453 (9)0.00509 (9)0.00008 (7)0.00053 (7)0.00054 (7)
C(7)0.00557 (10)0.00890 (11)0.00950 (11)0.00118 (8)0.00189 (8)0.00012 (9)
Geometric parameters (Å, º) top
O(1)—C(1)1.2226 (4)C(2)—H(3)1.1010
O(2)—C(1)1.3115 (4)C(3)—C(4)1.5250 (5)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2423 (4)C(3)—H(5)1.0937
O(4)—C(4)1.4249 (4)C(4)—C(5)1.5287 (5)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4583 (4)C(6)—C(7)1.5012 (4)
N(1)—C(5)1.4672 (4)C(7)—H(9)1.0914
N(1)—C(6)1.3425 (4)C(7)—H(10)1.0914
C(1)—C(2)1.5134 (4)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.78 (3)O(4)—C(4)—C(3)108.23 (3)
C(2)—N(1)—C(6)119.85 (3)O(4)—C(4)—C(5)111.33 (3)
C(5)—N(1)—C(6)127.03 (3)C(3)—C(4)—C(5)102.84 (3)
O(1)—C(1)—O(2)123.80 (3)N(1)—C(5)—C(4)102.32 (3)
O(1)—C(1)—C(2)121.10 (3)O(3)—C(6)—N(1)119.51 (3)
O(2)—C(1)—C(2)114.94 (3)O(3)—C(6)—C(7)122.57 (3)
N(1)—C(2)—C(1)114.36 (3)N(1)—C(6)—C(7)117.92 (3)
(30K) top
Crystal data top
C7H11NO4·H2OZ = 4
Mr = 191.18F(000) = 408
Orthorhombic, P212121Dx = 1.373 Mg m3
a = 9.853 (4) ÅSynchrotron radiation, λ = 0.5166 Å
b = 9.251 (5) ŵ = 0.06 mm1
c = 10.145 (2) ÅT = 30 K
V = 924.7 (7) Å30.34 × 0.28 × 0.28 mm
Data collection top
25178 measured reflectionsθmax = 31.9°, θmin = 2.1°
8245 independent reflectionsh = 2019
7578 reflections with I > 2σ(I)k = 1718
Rint = 0.038l = 2019
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028Only H-atom displacement parameters refined
wR(F2) = 0.066 w2 = q/[s2(Fo2) + (0.04 P)2 + 0.03 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
S = 1.44(Δ/σ)max < 0.001
7262 reflectionsΔρmax = 0.32 e Å3
131 parametersΔρmin = 0.22 e Å3
Crystal data top
C7H11NO4·H2OV = 924.7 (7) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.5166 Å
a = 9.853 (4) ŵ = 0.06 mm1
b = 9.251 (5) ÅT = 30 K
c = 10.145 (2) Å0.34 × 0.28 × 0.28 mm
Data collection top
25178 measured reflections7578 reflections with I > 2σ(I)
8245 independent reflectionsRint = 0.038
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.066Only H-atom displacement parameters refined
S = 1.44Δρmax = 0.32 e Å3
7262 reflectionsΔρmin = 0.22 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57872 (3)1.11458 (3)0.77171 (3)0.008
O(2)0.79412 (3)1.11865 (3)0.84035 (3)0.007
O(3)0.84069 (3)1.20549 (3)0.55082 (3)0.007
O(4)0.78354 (3)0.69400 (3)0.51505 (3)0.007
O(5)0.90008 (4)0.45962 (3)0.43048 (4)0.012
N(1)0.87822 (3)0.97790 (3)0.61456 (3)0.005
C(1)0.69679 (3)1.07608 (4)0.76130 (3)0.005
C(2)0.73845 (3)0.96431 (4)0.66005 (3)0.005
C(3)0.73466 (4)0.81107 (4)0.71973 (4)0.007
C(4)0.84123 (4)0.73017 (4)0.63953 (3)0.006
C(5)0.95430 (4)0.84211 (4)0.62491 (4)0.007
C(6)0.91994 (3)1.10144 (4)0.55820 (3)0.005
C(7)1.06211 (4)1.10715 (4)0.50526 (4)0.009
H(1)0.757671.182780.905880.023 (3)*
H(2)0.830950.612720.478250.021 (2)*
H(3)0.669270.969620.574960.018 (2)*
H(4)0.761040.812810.824450.017 (2)*
H(5)0.634380.762040.707930.022 (2)*
H(6)0.876980.633390.691720.020 (2)*
H(7)1.021500.842340.711410.024 (3)*
H(8)1.015020.822110.535850.017 (2)*
H(9)1.132571.068220.580300.030 (3)*
H(10)1.087571.218370.479290.030 (3)*
H(11)1.069591.038930.417800.030 (3)*
H(12)0.882440.368530.472850.025 (2)*
H(13)0.955590.439470.354700.023 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00535 (9)0.01058 (10)0.00806 (10)0.00208 (8)0.00033 (7)0.00331 (9)
O(2)0.00682 (9)0.00808 (10)0.00575 (9)0.00014 (8)0.00065 (7)0.00120 (8)
O(3)0.00757 (9)0.00532 (9)0.00929 (10)0.00120 (8)0.00122 (8)0.00218 (8)
O(4)0.00949 (10)0.00569 (9)0.00553 (9)0.00043 (8)0.00044 (7)0.00017 (7)
O(5)0.01497 (12)0.00648 (10)0.01451 (12)0.00110 (9)0.00673 (10)0.00002 (9)
N(1)0.00529 (9)0.00437 (9)0.00610 (10)0.00049 (8)0.00101 (8)0.00056 (8)
C(1)0.00522 (10)0.00549 (10)0.00456 (10)0.00055 (9)0.00024 (8)0.00056 (9)
C(2)0.00570 (10)0.00523 (10)0.00445 (10)0.00008 (9)0.00069 (8)0.00029 (9)
C(3)0.01018 (12)0.00532 (11)0.00607 (11)0.00019 (10)0.00246 (9)0.00039 (9)
C(4)0.00884 (12)0.00470 (10)0.00523 (10)0.00071 (9)0.00000 (9)0.00041 (9)
C(5)0.00641 (11)0.00575 (11)0.00866 (12)0.00153 (9)0.00043 (9)0.00016 (10)
C(6)0.00551 (10)0.00501 (11)0.00549 (10)0.00004 (8)0.00071 (8)0.00042 (8)
C(7)0.00609 (11)0.00997 (13)0.01006 (13)0.00137 (10)0.00198 (10)0.00009 (11)
Geometric parameters (Å, º) top
O(1)—C(1)1.2213 (4)C(2)—H(3)1.1010
O(2)—C(1)1.3107 (4)C(3)—C(4)1.5247 (5)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2418 (4)C(3)—H(5)1.0937
O(4)—C(4)1.4247 (4)C(4)—C(5)1.5283 (5)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4578 (4)C(6)—C(7)1.5011 (5)
N(1)—C(5)1.4666 (5)C(7)—H(9)1.0914
N(1)—C(6)1.3424 (5)C(7)—H(10)1.0914
C(1)—C(2)1.5142 (5)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.73 (3)O(4)—C(4)—C(3)108.27 (3)
C(2)—N(1)—C(6)119.84 (3)O(4)—C(4)—C(5)111.35 (3)
C(5)—N(1)—C(6)127.10 (3)C(3)—C(4)—C(5)102.78 (3)
O(1)—C(1)—O(2)123.81 (3)N(1)—C(5)—C(4)102.40 (3)
O(1)—C(1)—C(2)121.07 (3)O(3)—C(6)—N(1)119.54 (3)
O(2)—C(1)—C(2)114.95 (3)O(3)—C(6)—C(7)122.55 (3)
N(1)—C(2)—C(1)114.33 (3)N(1)—C(6)—C(7)117.91 (3)
(50K) top
Crystal data top
C7H11NO4·H2OZ = 4
Mr = 191.18F(000) = 408
Orthorhombic, P212121Dx = 1.371 Mg m3
a = 9.866 (7) ÅSynchrotron radiation, λ = 0.5166 Å
b = 9.250 (7) ŵ = 0.06 mm1
c = 10.149 (6) ÅT = 50 K
V = 926.2 (11) Å30.34 × 0.28 × 0.28 mm
Data collection top
44258 measured reflectionsθmax = 31.9°, θmin = 2.1°
8284 independent reflectionsh = 2020
7710 reflections with I > 2σ(I)k = 1818
Rint = 0.055l = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026Only H-atom displacement parameters refined
wR(F2) = 0.065 w2 = q/[s2(Fo2) + (0.04 P)2 + 0.04 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
S = 1.48(Δ/σ)max < 0.001
7372 reflectionsΔρmax = 0.27 e Å3
131 parametersΔρmin = 0.21 e Å3
Crystal data top
C7H11NO4·H2OV = 926.2 (11) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.5166 Å
a = 9.866 (7) ŵ = 0.06 mm1
b = 9.250 (7) ÅT = 50 K
c = 10.149 (6) Å0.34 × 0.28 × 0.28 mm
Data collection top
44258 measured reflections7710 reflections with I > 2σ(I)
8284 independent reflectionsRint = 0.055
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065Only H-atom displacement parameters refined
S = 1.48Δρmax = 0.27 e Å3
7372 reflectionsΔρmin = 0.21 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57876 (3)1.11441 (3)0.77141 (3)0.01
O(2)0.79391 (3)1.11875 (3)0.84002 (3)0.008
O(3)0.84068 (3)1.20552 (3)0.55051 (3)0.009
O(4)0.78373 (3)0.69411 (3)0.51482 (3)0.009
O(5)0.90001 (4)0.45963 (3)0.43046 (4)0.015
N(1)0.87811 (3)0.97798 (3)0.61441 (3)0.007
C(1)0.69668 (3)1.07604 (3)0.76102 (3)0.006
C(2)0.73846 (3)0.96437 (3)0.65982 (3)0.006
C(3)0.73457 (4)0.81112 (4)0.71934 (3)0.009
C(4)0.84112 (4)0.73027 (4)0.63929 (3)0.008
C(5)0.95405 (4)0.84207 (4)0.62484 (4)0.009
C(6)0.91983 (3)1.10149 (3)0.55802 (3)0.007
C(7)1.06189 (4)1.10714 (4)0.50532 (4)0.011
H(1)0.757661.183740.904900.023 (2)*
H(2)0.831260.612950.478030.021 (2)*
H(3)0.669460.969730.574690.021 (2)*
H(4)0.760770.812790.824050.019 (2)*
H(5)0.634440.762100.707400.023 (2)*
H(6)0.876710.633450.691500.024 (2)*
H(7)1.021070.842200.711380.027 (3)*
H(8)1.014760.822050.535870.022 (2)*
H(9)1.132161.068640.580600.037 (3)*
H(10)1.087231.218290.478980.032 (3)*
H(11)1.069591.038520.418160.035 (3)*
H(12)0.884880.369330.475060.027 (2)*
H(13)0.956020.437680.355530.026 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00686 (8)0.01278 (10)0.00974 (9)0.00238 (7)0.00035 (7)0.00383 (8)
O(2)0.00810 (9)0.00987 (9)0.00719 (8)0.00014 (7)0.00072 (7)0.00135 (7)
O(3)0.00918 (9)0.00683 (8)0.01132 (9)0.00112 (7)0.00134 (8)0.00239 (7)
O(4)0.01172 (10)0.00665 (8)0.00721 (8)0.00077 (7)0.00035 (7)0.00018 (7)
O(5)0.01906 (13)0.00752 (9)0.01898 (13)0.00129 (9)0.00986 (11)0.00000 (9)
N(1)0.00649 (9)0.00561 (8)0.00756 (9)0.00069 (7)0.00114 (7)0.00058 (7)
C(1)0.00639 (9)0.00678 (9)0.00572 (9)0.00054 (8)0.00035 (8)0.00030 (8)
C(2)0.00699 (9)0.00627 (9)0.00554 (10)0.00022 (8)0.00091 (8)0.00034 (8)
C(3)0.01323 (12)0.00646 (10)0.00762 (11)0.00040 (9)0.00317 (9)0.00066 (9)
C(4)0.01143 (11)0.00590 (9)0.00670 (10)0.00115 (9)0.00003 (9)0.00072 (8)
C(5)0.00838 (11)0.00751 (10)0.01054 (12)0.00203 (9)0.00079 (9)0.00006 (9)
C(6)0.00659 (10)0.00660 (10)0.00687 (10)0.00016 (8)0.00064 (8)0.00063 (8)
C(7)0.00726 (11)0.01252 (12)0.01224 (12)0.00155 (9)0.00219 (9)0.00020 (10)
Geometric parameters (Å, º) top
O(1)—C(1)1.2210 (4)C(2)—H(3)1.1010
O(2)—C(1)1.3111 (4)C(3)—C(4)1.5246 (5)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2416 (4)C(3)—H(5)1.0937
O(4)—C(4)1.4242 (4)C(4)—C(5)1.5272 (5)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4583 (4)C(6)—C(7)1.5010 (5)
N(1)—C(5)1.4674 (4)C(7)—H(9)1.0914
N(1)—C(6)1.3423 (4)C(7)—H(10)1.0914
C(1)—C(2)1.5139 (4)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.68 (3)O(4)—C(4)—C(3)108.29 (3)
C(2)—N(1)—C(6)119.86 (3)O(4)—C(4)—C(5)111.34 (3)
C(5)—N(1)—C(6)127.12 (3)C(3)—C(4)—C(5)102.83 (3)
O(1)—C(1)—O(2)123.83 (3)N(1)—C(5)—C(4)102.39 (3)
O(1)—C(1)—C(2)121.09 (3)O(3)—C(6)—N(1)119.54 (3)
O(2)—C(1)—C(2)114.92 (3)O(3)—C(6)—C(7)122.57 (3)
N(1)—C(2)—C(1)114.38 (3)N(1)—C(6)—C(7)117.89 (3)
(75K) top
Crystal data top
C7H11NO4·H2OZ = 4
Mr = 191.18F(000) = 408
Orthorhombic, P212121Dx = 1.367 Mg m3
a = 9.884 (6) ÅSynchrotron radiation, λ = 0.5166 Å
b = 9.253 (6) ŵ = 0.06 mm1
c = 10.155 (3) ÅT = 75 K
V = 928.7 (9) Å30.34 × 0.28 × 0.28 mm
Data collection top
45127 measured reflectionsθmax = 31.9°, θmin = 2.1°
8293 independent reflectionsh = 2020
7571 reflections with I > 2σ(I)k = 1818
Rint = 0.051l = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028Only H-atom displacement parameters refined
wR(F2) = 0.074 w2 = q/[s2(Fo2) + (0.05 P)2 + 0.02 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
S = 2.02(Δ/σ)max < 0.001
7255 reflectionsΔρmax = 0.30 e Å3
131 parametersΔρmin = 0.25 e Å3
Crystal data top
C7H11NO4·H2OV = 928.7 (9) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.5166 Å
a = 9.884 (6) ŵ = 0.06 mm1
b = 9.253 (6) ÅT = 75 K
c = 10.155 (3) Å0.34 × 0.28 × 0.28 mm
Data collection top
45127 measured reflections7571 reflections with I > 2σ(I)
8293 independent reflectionsRint = 0.051
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074Only H-atom displacement parameters refined
S = 2.02Δρmax = 0.30 e Å3
7255 reflectionsΔρmin = 0.25 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57882 (3)1.11436 (4)0.77113 (3)0.012
O(2)0.79370 (3)1.11880 (4)0.83960 (3)0.01
O(3)0.84060 (3)1.20546 (3)0.55017 (3)0.011
O(4)0.78380 (3)0.69417 (3)0.51449 (3)0.01
O(5)0.89986 (4)0.45959 (4)0.43035 (4)0.018
N(1)0.87789 (3)0.97800 (4)0.61424 (3)0.008
C(1)0.69669 (4)1.07606 (4)0.76063 (4)0.008
C(2)0.73845 (4)0.96448 (4)0.65936 (3)0.007
C(3)0.73434 (5)0.81115 (4)0.71877 (4)0.011
C(4)0.84092 (4)0.73030 (4)0.63901 (4)0.01
C(5)0.95379 (4)0.84216 (4)0.62478 (4)0.011
C(6)0.91971 (4)1.10136 (4)0.55780 (4)0.008
C(7)1.06163 (4)1.10715 (5)0.50536 (5)0.013
H(1)0.757301.182860.905080.022 (2)*
H(2)0.830440.612170.478340.022 (2)*
H(3)0.669730.970000.574180.025 (3)*
H(4)0.760170.812730.823490.022 (2)*
H(5)0.634410.762200.706520.026 (3)*
H(6)0.876310.633510.691260.026 (3)*
H(7)1.020550.842280.711370.031 (3)*
H(8)1.014540.822220.535940.027 (3)*
H(9)1.131711.069230.580880.041 (3)*
H(10)1.086701.218220.478640.037 (3)*
H(11)1.069681.038170.418540.039 (3)*
H(12)0.880210.369990.474380.024 (2)*
H(13)0.956700.439330.355730.028 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00813 (10)0.01544 (12)0.01197 (11)0.00289 (9)0.00036 (9)0.00458 (10)
O(2)0.00983 (10)0.01153 (11)0.00854 (10)0.00010 (9)0.00075 (8)0.00157 (8)
O(3)0.01107 (11)0.00825 (10)0.01347 (11)0.00136 (8)0.00166 (9)0.00303 (9)
O(4)0.01442 (12)0.00767 (10)0.00881 (10)0.00095 (9)0.00009 (9)0.00009 (8)
O(5)0.02317 (16)0.00856 (11)0.02333 (16)0.00144 (11)0.01253 (14)0.00006 (11)
N(1)0.00775 (10)0.00695 (10)0.00905 (11)0.00091 (8)0.00125 (8)0.00059 (9)
C(1)0.00770 (11)0.00812 (11)0.00693 (11)0.00066 (9)0.00040 (9)0.00052 (9)
C(2)0.00828 (11)0.00749 (11)0.00665 (11)0.00026 (9)0.00118 (9)0.00042 (9)
C(3)0.01619 (14)0.00788 (12)0.00903 (13)0.00052 (11)0.00382 (11)0.00080 (10)
C(4)0.01434 (14)0.00695 (11)0.00815 (11)0.00175 (10)0.00016 (10)0.00079 (10)
C(5)0.00999 (13)0.00893 (12)0.01291 (14)0.00250 (10)0.00093 (11)0.00000 (11)
C(6)0.00794 (11)0.00808 (12)0.00839 (11)0.00025 (9)0.00072 (9)0.00051 (9)
C(7)0.00860 (12)0.01526 (15)0.01490 (15)0.00222 (11)0.00253 (11)0.00031 (12)
Geometric parameters (Å, º) top
O(1)—C(1)1.2224 (5)C(2)—H(3)1.1010
O(2)—C(1)1.3111 (5)C(3)—C(4)1.5249 (6)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2431 (5)C(3)—H(5)1.0937
O(4)—C(4)1.4246 (5)C(4)—C(5)1.5287 (6)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4578 (5)C(6)—C(7)1.5013 (5)
N(1)—C(5)1.4677 (5)C(7)—H(9)1.0914
N(1)—C(6)1.3425 (5)C(7)—H(10)1.0914
C(1)—C(2)1.5145 (5)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.76 (3)O(4)—C(4)—C(3)108.23 (3)
C(2)—N(1)—C(6)119.88 (3)O(4)—C(4)—C(5)111.36 (3)
C(5)—N(1)—C(6)127.01 (3)C(3)—C(4)—C(5)102.84 (3)
O(1)—C(1)—O(2)123.80 (4)N(1)—C(5)—C(4)102.34 (3)
O(1)—C(1)—C(2)121.10 (3)O(3)—C(6)—N(1)119.46 (3)
O(2)—C(1)—C(2)114.94 (3)O(3)—C(6)—C(7)122.54 (4)
N(1)—C(2)—C(1)114.37 (3)N(1)—C(6)—C(7)118.00 (3)
(100K) top
Crystal data top
C7H11NO4·H2OF(000) = 408.0
Mr = 191.18Dx = 1.364 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
a = 9.9026 (2) ÅCell parameters from 18260 reflections
b = 9.2485 (2) Åθ = 3.0–53.3°
c = 10.1662 (2) ŵ = 0.12 mm1
V = 931.06 (3) Å3T = 100 K
Z = 40.54 × 0.28 × 0.14 mm
Data collection top
Radiation source: Enhance (Mo) X-ray Source7744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0009 pixels mm-1θmax = 53.3°, θmin = 3.0°
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
h = 2219
Tmin = 0.959, Tmax = 0.986k = 1920
39746 measured reflectionsl = 2221
10866 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.031 w2 = q/[s2(Fo2) + (0.04 P)2 + 0.07 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 2.81Δρmax = 0.36 e Å3
7744 reflectionsΔρmin = 0.21 e Å3
131 parameters
Crystal data top
C7H11NO4·H2OV = 931.06 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9026 (2) ŵ = 0.12 mm1
b = 9.2485 (2) ÅT = 100 K
c = 10.1662 (2) Å0.54 × 0.28 × 0.14 mm
Data collection top
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
10866 independent reflections
Tmin = 0.959, Tmax = 0.9867744 reflections with I > 2σ(I)
39746 measured reflectionsRint = 0.037
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.066Only H-atom displacement parameters refined
S = 2.81Δρmax = 0.36 e Å3
7744 reflectionsΔρmin = 0.21 e Å3
131 parameters
Special details top

Refinement. An invariom refinement was performed. For details see Dittrich, et al. (2013).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57902 (3)1.11424 (4)0.77061 (4)0.016
O(2)0.79339 (3)1.11890 (4)0.83896 (3)0.014
O(3)0.84048 (4)1.20534 (4)0.54958 (4)0.015
O(4)0.78382 (4)0.69428 (4)0.51396 (3)0.014
O(5)0.89990 (5)0.45972 (4)0.43023 (5)0.025
N(1)0.87773 (4)0.97799 (4)0.61382 (4)0.011
C(1)0.69647 (4)1.07606 (4)0.76009 (4)0.011
C(2)0.73829 (4)0.96472 (4)0.65881 (4)0.01
C(3)0.73381 (5)0.81136 (5)0.71798 (4)0.015
C(4)0.84028 (5)0.73037 (5)0.63867 (4)0.013
C(5)0.95318 (5)0.84210 (5)0.62474 (5)0.015
C(6)0.91953 (4)1.10123 (4)0.55739 (4)0.011
C(7)1.06118 (5)1.10711 (6)0.50536 (5)0.017
H(1)0.757611.185040.902950.027 (3)*
H(2)0.830280.612050.478090.026 (2)*
H(3)0.669800.970430.573650.022 (2)*
H(4)0.759350.812850.822640.031 (3)*
H(5)0.634040.762520.705470.029 (3)*
H(6)0.875390.633440.690880.024 (2)*
H(7)1.019590.842160.711390.031 (3)*
H(8)1.014010.821960.536150.029 (3)*
H(9)1.130591.065010.579440.043 (3)*
H(10)1.087681.218860.482510.049 (4)*
H(11)1.068361.041620.416320.054 (4)*
H(12)0.880630.369640.473600.032 (3)*
H(13)0.959270.444400.356670.033 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.01123 (11)0.02079 (14)0.01632 (13)0.00352 (10)0.00041 (10)0.00618 (11)
O(2)0.01341 (11)0.01563 (12)0.01187 (10)0.00032 (10)0.00120 (9)0.00226 (9)
O(3)0.01483 (12)0.01196 (12)0.01856 (13)0.00141 (10)0.00222 (10)0.00385 (10)
O(4)0.01948 (13)0.01028 (11)0.01238 (10)0.00117 (10)0.00002 (10)0.00001 (9)
O(5)0.0305 (2)0.01130 (13)0.03167 (19)0.00155 (12)0.01698 (17)0.00003 (13)
N(1)0.01062 (11)0.01020 (12)0.01282 (12)0.00080 (9)0.00186 (9)0.00083 (9)
C(1)0.01060 (12)0.01177 (13)0.01041 (12)0.00082 (10)0.00070 (10)0.00106 (10)
C(2)0.01066 (12)0.01014 (13)0.01004 (12)0.00008 (10)0.00120 (10)0.00037 (10)
C(3)0.02136 (17)0.01138 (14)0.01240 (14)0.00101 (13)0.00496 (12)0.00103 (11)
C(4)0.01885 (16)0.00958 (13)0.01185 (13)0.00184 (12)0.00015 (12)0.00165 (10)
C(5)0.01347 (14)0.01254 (15)0.01783 (16)0.00314 (12)0.00163 (13)0.00040 (12)
C(6)0.01063 (12)0.01150 (14)0.01165 (12)0.00046 (10)0.00083 (10)0.00079 (10)
C(7)0.01194 (14)0.02032 (18)0.01903 (17)0.00321 (13)0.00337 (13)0.00046 (14)
Geometric parameters (Å, º) top
O(1)—C(1)1.2201 (5)C(2)—H(3)1.1010
O(2)—C(1)1.3119 (5)C(3)—C(4)1.5241 (6)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2435 (5)C(3)—H(5)1.0937
O(4)—C(4)1.4253 (5)C(4)—C(5)1.5290 (7)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4597 (5)C(6)—C(7)1.5001 (6)
N(1)—C(5)1.4663 (6)C(7)—H(9)1.0914
N(1)—C(6)1.3415 (5)C(7)—H(10)1.0914
C(1)—C(2)1.5140 (5)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.72 (3)O(4)—C(4)—C(3)108.32 (4)
C(2)—N(1)—C(6)119.82 (3)O(4)—C(4)—C(5)111.26 (4)
C(5)—N(1)—C(6)127.11 (4)C(3)—C(4)—C(5)102.87 (3)
O(1)—C(1)—O(2)123.81 (4)N(1)—C(5)—C(4)102.34 (4)
O(1)—C(1)—C(2)121.14 (4)O(3)—C(6)—N(1)119.40 (4)
O(2)—C(1)—C(2)114.89 (4)O(3)—C(6)—C(7)122.55 (4)
N(1)—C(2)—C(1)114.50 (3)N(1)—C(6)—C(7)118.05 (4)
(150K) top
Crystal data top
C7H11NO4·H2OF(000) = 408.0
Mr = 191.18Dx = 1.356 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
a = 9.9408 (2) ÅCell parameters from 11294 reflections
b = 9.2479 (2) Åθ = 3.0–53.3°
c = 10.1875 (2) ŵ = 0.12 mm1
V = 936.55 (3) Å3T = 150 K
Z = 40.54 × 0.28 × 0.14 mm
Data collection top
Radiation source: Enhance (Mo) X-ray Source5673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.0009 pixels mm-1θmax = 53.3°, θmin = 3.0°
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
h = 2216
Tmin = 0.954, Tmax = 0.987k = 1920
30837 measured reflectionsl = 2221
7826 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.029 w2 = q/[s2(Fo2) + (0.05 P)2 + 0.05 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 2.96Δρmax = 0.25 e Å3
5673 reflectionsΔρmin = 0.16 e Å3
131 parameters
Crystal data top
C7H11NO4·H2OV = 936.55 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9408 (2) ŵ = 0.12 mm1
b = 9.2479 (2) ÅT = 150 K
c = 10.1875 (2) Å0.54 × 0.28 × 0.14 mm
Data collection top
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
7826 independent reflections
Tmin = 0.954, Tmax = 0.9875673 reflections with I > 2σ(I)
30837 measured reflectionsRint = 0.039
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069Only H-atom displacement parameters refined
S = 2.96Δρmax = 0.25 e Å3
5673 reflectionsΔρmin = 0.16 e Å3
131 parameters
Special details top

Refinement. An invariom refinement was performed. For details see Dittrich, et al. (2013).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57947 (4)1.11407 (6)0.76947 (5)0.023
O(2)0.79288 (4)1.11890 (5)0.83745 (4)0.019
O(3)0.84020 (5)1.20508 (5)0.54824 (5)0.021
O(4)0.78374 (5)0.69446 (5)0.51284 (4)0.02
O(5)0.89928 (7)0.45993 (6)0.42971 (7)0.035
N(1)0.87691 (5)0.97802 (5)0.61298 (5)0.016
C(1)0.69642 (5)1.07620 (6)0.75871 (5)0.015
C(2)0.73793 (5)0.96502 (5)0.65751 (5)0.014
C(3)0.73258 (7)0.81157 (6)0.71585 (6)0.021
C(4)0.83894 (7)0.73033 (6)0.63748 (6)0.019
C(5)0.95169 (6)0.84209 (6)0.62438 (7)0.021
C(6)0.91895 (5)1.10117 (6)0.55636 (5)0.016
C(7)1.06010 (6)1.10733 (8)0.50517 (7)0.024
H(1)0.756891.183900.902090.031 (3)*
H(2)0.829520.611540.477760.031 (3)*
H(3)0.669970.971500.572370.025 (3)*
H(4)0.756880.812430.820560.038 (3)*
H(5)0.633140.763220.702210.039 (3)*
H(6)0.873320.633360.689900.031 (3)*
H(7)1.017100.842080.711380.038 (3)*
H(8)1.013010.821800.536500.039 (3)*
H(9)1.128481.062820.578600.051 (4)*
H(10)1.087441.219400.484810.069 (6)*
H(11)1.067321.044010.415040.071 (5)*
H(12)0.880080.370510.474110.043 (3)*
H(13)0.958570.443610.356590.041 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.01598 (16)0.0297 (2)0.02322 (19)0.00522 (15)0.00084 (15)0.00880 (17)
O(2)0.01839 (17)0.02252 (17)0.01697 (16)0.00023 (14)0.00110 (13)0.00404 (14)
O(3)0.02124 (18)0.01664 (16)0.0266 (2)0.00149 (14)0.00346 (16)0.00622 (15)
O(4)0.0270 (2)0.01460 (14)0.01759 (16)0.00220 (14)0.00014 (15)0.00047 (13)
O(5)0.0431 (3)0.01558 (17)0.0450 (3)0.00218 (18)0.0241 (3)0.00047 (18)
N(1)0.01471 (16)0.01434 (16)0.01761 (18)0.00159 (13)0.00230 (14)0.00102 (14)
C(1)0.01481 (18)0.01644 (17)0.01481 (19)0.00105 (14)0.00084 (15)0.00089 (15)
C(2)0.01553 (18)0.01432 (17)0.01349 (18)0.00010 (14)0.00225 (14)0.00028 (14)
C(3)0.0306 (3)0.01521 (19)0.0179 (2)0.00132 (18)0.00720 (19)0.00196 (16)
C(4)0.0276 (2)0.01342 (18)0.0170 (2)0.00316 (17)0.00004 (18)0.00212 (16)
C(5)0.0192 (2)0.0174 (2)0.0251 (3)0.00509 (17)0.00201 (19)0.00035 (18)
C(6)0.01505 (18)0.01636 (18)0.01640 (18)0.00081 (14)0.00148 (15)0.00068 (15)
C(7)0.0164 (2)0.0283 (3)0.0283 (3)0.00455 (19)0.0046 (2)0.0008 (2)
Geometric parameters (Å, º) top
O(1)—C(1)1.2192 (7)C(2)—H(3)1.1010
O(2)—C(1)1.3111 (7)C(3)—C(4)1.5231 (9)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2422 (7)C(3)—H(5)1.0937
O(4)—C(4)1.4226 (7)C(4)—C(5)1.5304 (9)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4591 (7)C(6)—C(7)1.4981 (8)
N(1)—C(5)1.4650 (7)C(7)—H(9)1.0914
N(1)—C(6)1.3433 (7)C(7)—H(10)1.0914
C(1)—C(2)1.5134 (7)C(7)—H(11)1.0914
C(2)—C(3)1.5394 (8)
C(2)—N(1)—C(5)112.65 (4)C(2)—C(3)—C(4)103.20 (4)
C(2)—N(1)—C(6)119.86 (4)O(4)—C(4)—C(3)108.37 (5)
C(5)—N(1)—C(6)127.13 (5)O(4)—C(4)—C(5)111.23 (5)
O(1)—C(1)—O(2)123.77 (5)C(3)—C(4)—C(5)102.77 (5)
O(1)—C(1)—C(2)121.09 (5)N(1)—C(5)—C(4)102.40 (5)
O(2)—C(1)—C(2)114.97 (5)O(3)—C(6)—N(1)119.24 (5)
N(1)—C(2)—C(1)114.45 (4)O(3)—C(6)—C(7)122.53 (5)
N(1)—C(2)—C(3)103.22 (4)N(1)—C(6)—C(7)118.24 (5)
C(1)—C(2)—C(3)110.72 (4)
(xcalibur) top
Crystal data top
C7H11NO4·H2OF(000) = 408.0
Mr = 191.18Dx = 1.348 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
a = 9.9748 (2) ÅCell parameters from 9686 reflections
b = 9.2492 (2) Åθ = 3.0–53.3°
c = 10.2103 (2) ŵ = 0.11 mm1
V = 941.99 (3) Å3T = 200 K
Z = 40.54 × 0.28 × 0.14 mm
Data collection top
Radiation source: Enhance (Mo) X-ray Source4860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.0009 pixels mm-1θmax = 53.3°, θmin = 3.0°
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
h = 2216
Tmin = 0.960, Tmax = 0.989k = 1920
30309 measured reflectionsl = 2221
7829 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.029 w2 = q/[s2(Fo2) + (0.06 P)2 + 0.04 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 2.12Δρmax = 0.20 e Å3
4860 reflectionsΔρmin = 0.17 e Å3
131 parameters
Crystal data top
C7H11NO4·H2OV = 941.99 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9748 (2) ŵ = 0.11 mm1
b = 9.2492 (2) ÅT = 200 K
c = 10.2103 (2) Å0.54 × 0.28 × 0.14 mm
Data collection top
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
7829 independent reflections
Tmin = 0.960, Tmax = 0.9894860 reflections with I > 2σ(I)
30309 measured reflectionsRint = 0.039
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074Only H-atom displacement parameters refined
S = 2.12Δρmax = 0.20 e Å3
4860 reflectionsΔρmin = 0.17 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.57995 (5)1.11413 (7)0.76832 (6)0.03
O(2)0.79246 (5)1.11887 (6)0.83585 (5)0.025
O(3)0.83997 (6)1.20478 (6)0.54676 (6)0.028
O(4)0.78359 (6)0.69501 (5)0.51184 (5)0.026
O(5)0.89880 (8)0.45994 (7)0.42911 (8)0.045
N(1)0.87621 (5)0.97809 (6)0.61221 (6)0.02
C(1)0.69624 (6)1.07643 (6)0.75744 (6)0.02
C(2)0.73763 (6)0.96568 (6)0.65609 (6)0.019
C(3)0.73162 (8)0.81193 (7)0.71378 (7)0.028
C(4)0.83821 (8)0.73081 (7)0.63649 (7)0.025
C(5)0.95022 (8)0.84203 (7)0.62394 (8)0.027
C(6)0.91842 (6)1.10108 (7)0.55554 (6)0.021
C(7)1.05895 (7)1.10742 (9)0.50501 (9)0.032
H(1)0.756361.181610.902030.034 (3)*
H(2)0.832180.615110.474930.041 (3)*
H(3)0.670150.972700.570990.030 (3)*
H(4)0.755120.812510.818420.050 (4)*
H(5)0.632560.763760.699430.043 (3)*
H(6)0.872040.633710.688840.044 (4)*
H(7)1.014700.841930.711270.052 (4)*
H(8)1.012070.821470.536790.042 (4)*
H(9)1.127121.066110.579780.064 (5)*
H(10)1.085141.219120.481930.078 (6)*
H(11)1.067351.041380.416810.108 (8)*
H(12)0.877990.371080.473620.046 (4)*
H(13)0.959490.442710.357600.061 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.0215 (2)0.0391 (3)0.0306 (3)0.00705 (19)0.00148 (18)0.0117 (2)
O(2)0.0241 (2)0.0300 (2)0.0223 (2)0.00049 (18)0.00145 (17)0.00453 (18)
O(3)0.0283 (2)0.0219 (2)0.0346 (3)0.00163 (18)0.0047 (2)0.00810 (18)
O(4)0.0367 (3)0.01832 (17)0.0234 (2)0.00300 (17)0.00035 (19)0.00064 (16)
O(5)0.0555 (4)0.0199 (2)0.0594 (4)0.0029 (2)0.0314 (4)0.0002 (2)
N(1)0.0196 (2)0.01855 (19)0.0230 (2)0.00216 (16)0.00257 (17)0.00094 (17)
C(1)0.0195 (2)0.0211 (2)0.0184 (2)0.00103 (17)0.00132 (18)0.00176 (18)
C(2)0.0205 (2)0.0184 (2)0.0178 (2)0.00004 (17)0.00251 (17)0.00053 (18)
C(3)0.0405 (4)0.0201 (2)0.0235 (3)0.0019 (2)0.0095 (3)0.0024 (2)
C(4)0.0370 (3)0.0175 (2)0.0216 (3)0.0049 (2)0.0003 (2)0.00274 (19)
C(5)0.0252 (3)0.0231 (3)0.0340 (3)0.0074 (2)0.0031 (3)0.0004 (2)
C(6)0.0198 (2)0.0213 (2)0.0217 (2)0.00105 (18)0.00225 (19)0.00095 (19)
C(7)0.0209 (3)0.0378 (3)0.0366 (4)0.0062 (3)0.0064 (3)0.0010 (3)
Geometric parameters (Å, º) top
O(1)—C(1)1.2164 (8)C(2)—H(3)1.1010
O(2)—C(1)1.3100 (8)C(3)—C(4)1.5219 (10)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2411 (8)C(3)—H(5)1.0937
O(4)—C(4)1.4234 (9)C(4)—C(5)1.5242 (11)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4576 (8)C(6)—C(7)1.4948 (9)
N(1)—C(5)1.4639 (8)C(7)—H(9)1.0914
N(1)—C(6)1.3439 (8)C(7)—H(10)1.0914
C(1)—C(2)1.5135 (8)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.67 (5)O(4)—C(4)—C(3)108.12 (6)
C(2)—N(1)—C(6)119.74 (5)O(4)—C(4)—C(5)111.25 (6)
C(5)—N(1)—C(6)127.22 (6)C(3)—C(4)—C(5)102.88 (5)
O(1)—C(1)—O(2)123.85 (6)N(1)—C(5)—C(4)102.56 (6)
O(1)—C(1)—C(2)121.11 (6)O(3)—C(6)—N(1)119.19 (6)
O(2)—C(1)—C(2)114.88 (5)O(3)—C(6)—C(7)122.41 (6)
N(1)—C(2)—C(1)114.56 (5)N(1)—C(6)—C(7)118.40 (6)
(250K) top
Crystal data top
C7H11NO4·H2OF(000) = 408.0
Mr = 191.18Dx = 1.338 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
a = 10.0123 (2) ÅCell parameters from 9593 reflections
b = 9.2556 (2) Åθ = 2.8–36.3°
c = 10.2441 (2) ŵ = 0.11 mm1
V = 949.32 (3) Å3T = 250 K
Z = 40.54 × 0.28 × 0.14 mm
Data collection top
Radiation source: Enhance (Mo) X-ray Source3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0009 pixels mm-1θmax = 36.3°, θmin = 2.8°
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
h = 1515
Tmin = 0.956, Tmax = 0.989k = 1616
17876 measured reflectionsl = 1516
4420 independent reflections
Refinement top
Refinement on F2131 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.025 w2 = q/[s2(Fo2) + (0.04 P)2 + 0.08 P + 0.00 + 0.00 sin(th)]
where P = (0.3333 Fo2 + 0.6667 Fc2) q = 1.0
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 3.84Δρmax = 0.16 e Å3
3245 reflectionsΔρmin = 0.12 e Å3
Crystal data top
C7H11NO4·H2OV = 949.32 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0123 (2) ŵ = 0.11 mm1
b = 9.2556 (2) ÅT = 250 K
c = 10.2441 (2) Å0.54 × 0.28 × 0.14 mm
Data collection top
Absorption correction: analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
4420 independent reflections
Tmin = 0.956, Tmax = 0.9893245 reflections with I > 2σ(I)
17876 measured reflectionsRint = 0.020
Refinement top
R[F2 > 2σ(F2)] = 0.025131 parameters
wR(F2) = 0.0630 restraints
S = 3.84Δρmax = 0.16 e Å3
3245 reflectionsΔρmin = 0.12 e Å3
Special details top

Refinement. An invariom refinement was performed. For details see Dittrich, et al. (2013).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.58066 (6)1.11426 (7)0.76704 (6)0.038
O(2)0.79194 (6)1.11883 (7)0.83443 (6)0.031
O(3)0.84014 (6)1.20456 (7)0.54572 (6)0.035
O(4)0.78372 (7)0.69571 (6)0.51116 (6)0.032
O(5)0.89806 (9)0.46008 (7)0.42897 (9)0.055
N(1)0.87566 (6)0.97841 (7)0.61151 (6)0.025
C(1)0.69641 (7)1.07661 (8)0.75633 (7)0.025
C(2)0.73784 (7)0.96612 (8)0.65492 (7)0.023
C(3)0.73091 (10)0.81237 (9)0.71204 (8)0.034
C(4)0.83730 (10)0.73126 (9)0.63539 (8)0.032
C(5)0.94910 (9)0.84218 (9)0.62370 (9)0.034
C(6)0.91761 (7)1.10078 (8)0.55487 (8)0.026
C(7)1.05839 (8)1.10739 (11)0.50476 (11)0.04
H(1)0.757081.186140.897170.049 (4)*
H(2)0.829940.613330.476290.045 (3)*
H(3)0.670840.973740.569970.026 (2)*
H(4)0.753410.812400.816520.054 (4)*
H(5)0.632260.764520.696770.060 (4)*
H(6)0.870520.634210.687840.042 (3)*
H(7)1.013050.841890.710940.060 (4)*
H(8)1.010930.821450.537020.052 (4)*
H(9)1.125881.062870.578120.088 (5)*
H(10)1.085481.219460.484900.100 (6)*
H(11)1.066231.044340.415060.108 (7)*
H(12)0.879330.370910.473560.065 (4)*
H(13)0.957120.442170.356720.061 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.0267 (3)0.0484 (4)0.0379 (3)0.0093 (3)0.0011 (2)0.0149 (3)
O(2)0.0298 (3)0.0366 (3)0.0277 (3)0.0005 (2)0.0015 (2)0.0059 (2)
O(3)0.0352 (3)0.0280 (3)0.0429 (3)0.0028 (2)0.0061 (3)0.0098 (2)
O(4)0.0457 (3)0.0225 (2)0.0292 (3)0.0040 (2)0.0004 (2)0.0002 (2)
O(5)0.0685 (5)0.0244 (3)0.0723 (5)0.0040 (3)0.0380 (4)0.0007 (3)
N(1)0.0242 (3)0.0232 (3)0.0272 (3)0.0022 (2)0.0033 (2)0.0002 (2)
C(1)0.0245 (3)0.0263 (3)0.0229 (3)0.0021 (3)0.0011 (2)0.0009 (3)
C(2)0.0256 (3)0.0226 (3)0.0215 (3)0.0008 (2)0.0028 (2)0.0005 (2)
C(3)0.0497 (4)0.0244 (3)0.0282 (4)0.0026 (3)0.0112 (3)0.0025 (3)
C(4)0.0458 (4)0.0228 (3)0.0273 (4)0.0061 (3)0.0004 (3)0.0040 (3)
C(5)0.0315 (4)0.0302 (4)0.0408 (4)0.0091 (3)0.0034 (3)0.0004 (3)
C(6)0.0243 (3)0.0270 (3)0.0268 (3)0.0005 (3)0.0027 (3)0.0007 (3)
C(7)0.0257 (3)0.0478 (5)0.0478 (5)0.0081 (4)0.0081 (4)0.0015 (4)
Geometric parameters (Å, º) top
O(1)—C(1)1.2152 (9)C(2)—H(3)1.1010
O(2)—C(1)1.3068 (10)C(3)—C(4)1.5214 (12)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2382 (10)C(3)—H(5)1.0937
O(4)—C(4)1.4197 (10)C(4)—C(5)1.5236 (13)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4543 (9)C(6)—C(7)1.5013 (11)
N(1)—C(5)1.4650 (10)C(7)—H(9)1.0914
N(1)—C(6)1.3401 (10)C(7)—H(10)1.0914
C(1)—C(2)1.5156 (10)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.51 (6)O(4)—C(4)—C(3)108.21 (7)
C(2)—N(1)—C(6)119.73 (6)O(4)—C(4)—C(5)111.30 (7)
C(5)—N(1)—C(6)127.37 (6)C(3)—C(4)—C(5)102.85 (7)
O(1)—C(1)—O(2)123.85 (7)N(1)—C(5)—C(4)102.58 (6)
O(1)—C(1)—C(2)121.09 (7)O(3)—C(6)—N(1)119.48 (7)
O(2)—C(1)—C(2)114.90 (6)O(3)—C(6)—C(7)122.05 (8)
N(1)—C(2)—C(1)114.61 (6)N(1)—C(6)—C(7)118.47 (7)
(hydroxyproline9K) top
Crystal data top
C7H11NO4·H2OF(000) = 144
Mr = 191.18Dx = 1.373 Mg m3
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
Hall symbol: P 2ac 2abCell parameters from not applicable reflections
a = 9.854 (3) Åθ = not applicable–not applicable°
b = 9.249 (3) ŵ = 0.0 mm1
c = 10.144 (2) ÅT = 9 K
V = 924.5 (4) Å3Block, colorless
Z = 41.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
Rint = 0.068
Radiation source: nuclear reactor, OPAL reactor, ANSTO, Lucas Heights, Australiaθmax = 70.9°
Laue scansh = 1515
21579 measured reflectionsk = 1515
1355 independent reflectionsl = 1515
1243 reflections with I > 3.0σ(I)
Refinement top
Refinement on FHydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.027 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: -1.70 6.60 -5.09 3.23 -0.829
wR(F2) = 0.025(Δ/σ)max = 0.0004256
S = 0.99Δρmax = 0.67 e Å3
1243 reflectionsΔρmin = 0.64 e Å3
236 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 7.8 (7)
Primary atom site location: isomorphous structure methods
Crystal data top
C7H11NO4·H2OV = 924.5 (4) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
a = 9.854 (3) ŵ = 0.0 mm1
b = 9.249 (3) ÅT = 9 K
c = 10.144 (2) Å1.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
1243 reflections with I > 3.0σ(I)
21579 measured reflectionsRint = 0.068
1355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.025All H-atom parameters refined
S = 0.99Δρmax = 0.67 e Å3
1243 reflectionsΔρmin = 0.64 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57863 (11)1.11458 (19)0.77209 (11)0.0082
C10.69652 (10)1.07608 (16)0.76162 (9)0.0050
O20.79426 (11)1.11850 (18)0.84052 (11)0.0068
H10.7569 (2)1.1900 (4)0.9077 (2)0.0179
C20.73840 (9)0.96392 (16)0.66045 (9)0.0049
N10.87824 (7)0.97794 (11)0.61475 (7)0.0061
C50.95464 (10)0.84244 (16)0.62478 (11)0.0069
C40.84135 (11)0.73007 (16)0.63979 (9)0.0065
C30.73460 (10)0.81134 (16)0.72019 (10)0.0070
H40.7650 (3)0.8145 (4)0.8237 (2)0.0219
H50.6341 (3)0.7603 (4)0.7126 (3)0.0226
O40.78331 (12)0.69404 (19)0.51517 (11)0.0066
H20.8326 (3)0.6095 (4)0.4775 (2)0.0185
H60.8774 (3)0.6313 (4)0.6885 (2)0.0195
H71.0200 (3)0.8425 (4)0.7124 (3)0.0196
H81.0162 (3)0.8232 (4)0.5367 (3)0.0212
C60.92001 (9)1.10170 (15)0.55818 (9)0.0058
O30.84071 (12)1.20518 (19)0.55102 (12)0.0080
C71.06233 (10)1.10733 (17)0.50527 (10)0.0080
H91.1357 (3)1.0659 (5)0.5759 (3)0.0293
H101.0894 (3)1.2169 (5)0.4793 (4)0.0298
H111.0698 (3)1.0408 (5)0.4175 (3)0.0341
H30.6681 (2)0.9754 (4)0.5767 (2)0.0161
O50.90038 (14)0.4600 (2)0.43079 (13)0.0111
H130.9593 (3)0.4391 (4)0.3571 (3)0.0201
H120.8821 (3)0.3676 (4)0.4746 (3)0.0212
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0049 (4)0.0121 (9)0.0076 (4)0.0001 (4)0.0002 (3)0.0034 (5)
C10.0040 (3)0.0070 (8)0.0040 (3)0.0004 (3)0.0003 (2)0.0002 (4)
O20.0049 (4)0.0098 (9)0.0056 (4)0.0005 (4)0.0012 (3)0.0022 (5)
H10.0186 (9)0.021 (2)0.0139 (8)0.0019 (10)0.0006 (7)0.0051 (9)
C20.0044 (3)0.0054 (7)0.0050 (3)0.0001 (3)0.0004 (3)0.0001 (4)
N10.0042 (2)0.0075 (6)0.0065 (2)0.0004 (3)0.00116 (19)0.0006 (3)
C50.0047 (3)0.0078 (8)0.0082 (4)0.0009 (3)0.0004 (3)0.0000 (4)
C40.0066 (3)0.0075 (8)0.0054 (4)0.0002 (3)0.0002 (3)0.0010 (4)
C30.0068 (4)0.0078 (8)0.0064 (4)0.0006 (4)0.0021 (3)0.0003 (4)
H40.0329 (12)0.022 (2)0.0111 (8)0.0024 (12)0.0008 (8)0.0002 (9)
H50.0151 (9)0.022 (2)0.0306 (12)0.0077 (9)0.0025 (9)0.0001 (11)
O40.0072 (4)0.0062 (10)0.0062 (4)0.0001 (4)0.0006 (3)0.0003 (4)
H20.0221 (9)0.0162 (18)0.0172 (8)0.0040 (11)0.0009 (7)0.0024 (10)
H60.0239 (10)0.0155 (19)0.0193 (9)0.0041 (10)0.0028 (8)0.0041 (10)
H70.0204 (9)0.0155 (19)0.0228 (10)0.0017 (9)0.0106 (9)0.0006 (10)
H80.0193 (9)0.022 (2)0.0225 (11)0.0027 (10)0.0096 (8)0.0015 (11)
C60.0043 (3)0.0070 (8)0.0060 (3)0.0005 (4)0.0008 (3)0.0002 (4)
O30.0058 (4)0.0092 (9)0.0089 (4)0.0011 (4)0.0006 (3)0.0021 (5)
C70.0054 (4)0.0085 (9)0.0100 (4)0.0011 (4)0.0025 (3)0.0003 (4)
H90.0171 (10)0.042 (3)0.0292 (12)0.0031 (11)0.0039 (9)0.0094 (13)
H100.0230 (11)0.016 (2)0.0499 (17)0.0032 (12)0.0110 (12)0.0097 (15)
H110.0263 (12)0.049 (3)0.0274 (13)0.0097 (14)0.0090 (10)0.0177 (15)
H30.0143 (8)0.0209 (18)0.0132 (8)0.0009 (8)0.0030 (7)0.0011 (9)
O50.0121 (5)0.0091 (11)0.0121 (5)0.0013 (5)0.0059 (4)0.0005 (6)
H130.0238 (10)0.0168 (19)0.0196 (10)0.0003 (9)0.0102 (8)0.0019 (10)
H120.0243 (10)0.015 (2)0.0242 (10)0.0028 (10)0.0032 (9)0.0046 (11)
Geometric parameters (Å, º) top
O1—C11.2197 (15)C4—O41.4270 (15)
C1—O21.3122 (15)C4—H61.098 (3)
C1—C21.5165 (17)C3—H41.092 (3)
O2—H11.019 (3)C3—H51.099 (3)
C2—N11.4597 (12)O4—H20.996 (4)
C2—C31.536 (2)C6—O31.238 (2)
C2—H31.101 (2)C6—C71.5025 (14)
N1—C51.4655 (17)C7—H91.088 (3)
N1—C61.3450 (16)C7—H101.080 (4)
C5—C41.5328 (18)C7—H111.085 (3)
C5—H71.098 (3)O5—H130.967 (3)
C5—H81.094 (3)O5—H120.980 (4)
C4—C31.5285 (16)
O1—C1—O2123.96 (13)C3—C4—O4108.16 (9)
O1—C1—C2121.18 (11)C5—C4—H6111.91 (18)
O2—C1—C2114.68 (10)C3—C4—H6113.08 (17)
C1—O2—H1109.69 (17)O4—C4—H6109.5 (2)
C1—C2—N1114.27 (10)C2—C3—C4102.97 (9)
C1—C2—C3110.78 (9)C2—C3—H4110.3 (2)
N1—C2—C3103.29 (9)C4—C3—H4109.72 (18)
C1—C2—H3106.56 (17)C2—C3—H5112.9 (2)
N1—C2—H3109.86 (14)C4—C3—H5111.8 (2)
C3—C2—H3112.21 (19)H4—C3—H5109.0 (3)
C2—N1—C5112.77 (9)C4—O4—H2109.10 (18)
C2—N1—C6120.00 (9)N1—C6—O3119.33 (10)
C5—N1—C6126.88 (8)N1—C6—C7117.88 (11)
N1—C5—C4102.27 (9)O3—C6—C7122.79 (13)
N1—C5—H7110.9 (2)C6—C7—H9111.86 (18)
C4—C5—H7110.33 (19)C6—C7—H10110.5 (2)
N1—C5—H8111.5 (2)H9—C7—H10109.1 (3)
C4—C5—H8112.0 (2)C6—C7—H11109.70 (19)
H7—C5—H8109.7 (2)H9—C7—H11107.2 (3)
C5—C4—C3102.76 (11)H10—C7—H11108.4 (3)
C5—C4—O4111.24 (9)H13—O5—H12106.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0191.5792.5940 (16)173.3 (2)
C3—H4···O3i1.0922.5373.4405 (16)139.4 (2)
C3—H5···O1ii1.0992.4973.5839 (16)169.5 (3)
O4—H2···O50.9961.6072.5980 (16)172.2 (3)
C7—H10···O3iii1.0802.5983.2952 (16)121.6 (3)
C7—H11···O1iv1.0852.5263.4259 (16)139.7 (2)
C2—H3···O2iv1.1012.5753.3492 (16)126.50 (18)
O5—H13···O1v0.9671.8292.7922 (16)174.2 (3)
O5—H12···O3vi0.9801.7392.7180 (16)177.1 (3)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+5/2, z+1; (iv) x+3/2, y+2, z1/2; (v) x+1/2, y+3/2, z+1; (vi) x, y1, z.
(hydroxyproline150K) top
Crystal data top
C7H11NO4·H2OF(000) = 144
Mr = 191.18Dx = 1.356 Mg m3
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
Hall symbol: P 2ac 2abCell parameters from not applicable reflections
a = 9.9408 (2) Åθ = not applicable–not applicable°
b = 9.2479 (2) ŵ = 0.0 mm1
c = 10.1875 (2) ÅT = 150 K
V = 936.55 (3) Å3Block, colorless
Z = 41.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
Rint = 0.092
Radiation source: nuclear reactor, OPAL reactor, ANSTO, Lucas Heights, Australiaθmax = 70.8°
Laue scansh = 1514
16001 measured reflectionsk = 1514
1331 independent reflectionsl = 1514
1092 reflections with I > 3.0σ(I)
Refinement top
Refinement on FPrimary atom site location: isomorphous structure methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.034 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.661 -0.306 0.427E-01
S = 1.00(Δ/σ)max = 0.0002363
1092 reflectionsΔρmax = 0.71 e Å3
235 parametersΔρmin = 0.81 e Å3
0 restraints
Crystal data top
C7H11NO4·H2OV = 936.55 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
a = 9.9408 (2) ŵ = 0.0 mm1
b = 9.2479 (2) ÅT = 150 K
c = 10.1875 (2) Å1.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
1092 reflections with I > 3.0σ(I)
16001 measured reflectionsRint = 0.092
1331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.034All H-atom parameters refined
S = 1.00Δρmax = 0.71 e Å3
1092 reflectionsΔρmin = 0.81 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5797 (2)1.1141 (4)0.7699 (2)0.0233
C10.69597 (18)1.0771 (3)0.75893 (16)0.0154
O20.7928 (2)1.1189 (3)0.8371 (2)0.0192
H10.7568 (5)1.1889 (7)0.9048 (4)0.0298
C20.73788 (17)0.9652 (3)0.65729 (18)0.0149
N10.87699 (12)0.97883 (19)0.61308 (12)0.0156
C50.9517 (2)0.8425 (3)0.6239 (2)0.0217
C40.8393 (2)0.7301 (3)0.63734 (17)0.0191
C30.7327 (2)0.8118 (3)0.7161 (2)0.0214
H40.7610 (7)0.8137 (7)0.8190 (4)0.0407
H50.6317 (6)0.7636 (7)0.7066 (6)0.0436
O40.7835 (2)0.6947 (4)0.5130 (2)0.0195
H20.8321 (5)0.6090 (7)0.4755 (4)0.0308
H60.8741 (6)0.6325 (7)0.6874 (5)0.0392
H71.0148 (6)0.8433 (8)0.7131 (6)0.0440
H81.0147 (5)0.8229 (8)0.5380 (6)0.0416
C60.91879 (18)1.1017 (3)0.55664 (17)0.0172
O30.8403 (2)1.2056 (4)0.5481 (2)0.0221
C71.06006 (19)1.1067 (4)0.5052 (2)0.0250
H91.1307 (6)1.0634 (11)0.5768 (7)0.0611
H101.0877 (7)1.2161 (10)0.4830 (10)0.0675
H111.0688 (7)1.0429 (12)0.4183 (7)0.0748
H30.6689 (4)0.9769 (6)0.5736 (4)0.0273
O50.8988 (3)0.4604 (4)0.4294 (3)0.0349
H130.9573 (5)0.4405 (7)0.3577 (5)0.0370
H120.8800 (5)0.3694 (7)0.4734 (5)0.0352
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (8)0.0323 (19)0.0210 (8)0.0051 (10)0.0003 (7)0.0088 (10)
C10.0167 (6)0.0174 (15)0.0121 (6)0.0004 (7)0.0008 (5)0.0008 (7)
O20.0178 (8)0.0232 (18)0.0165 (8)0.0042 (9)0.0021 (7)0.0045 (10)
H10.0355 (19)0.033 (3)0.0211 (14)0.002 (2)0.0023 (14)0.0050 (17)
C20.0151 (6)0.0152 (14)0.0145 (6)0.0002 (6)0.0013 (5)0.0009 (7)
N10.0133 (4)0.0166 (11)0.0170 (5)0.0016 (5)0.0025 (4)0.0010 (5)
C50.0184 (7)0.0234 (17)0.0233 (8)0.0053 (7)0.0026 (6)0.0003 (9)
C40.0275 (8)0.0153 (16)0.0145 (7)0.0039 (8)0.0003 (6)0.0023 (7)
C30.0290 (9)0.0180 (16)0.0174 (7)0.0030 (9)0.0053 (7)0.0023 (8)
H40.070 (3)0.032 (4)0.0200 (16)0.006 (3)0.0033 (19)0.0038 (18)
H50.041 (2)0.039 (4)0.051 (3)0.010 (2)0.012 (2)0.001 (3)
O40.0260 (10)0.0147 (19)0.0179 (8)0.0017 (10)0.0009 (7)0.0001 (9)
H20.040 (2)0.025 (3)0.0278 (16)0.009 (2)0.0027 (16)0.0024 (19)
H60.061 (3)0.024 (3)0.033 (2)0.009 (2)0.005 (2)0.013 (2)
H70.047 (3)0.040 (4)0.045 (3)0.007 (2)0.020 (2)0.000 (3)
H80.036 (2)0.047 (5)0.042 (3)0.004 (2)0.0144 (19)0.005 (3)
C60.0138 (6)0.0217 (15)0.0160 (6)0.0006 (7)0.0006 (5)0.0010 (8)
O30.0226 (9)0.0178 (18)0.0260 (10)0.0014 (10)0.0046 (8)0.0064 (10)
C70.0147 (7)0.0328 (19)0.0276 (9)0.0036 (9)0.0055 (7)0.0016 (10)
H90.030 (2)0.090 (6)0.063 (4)0.002 (3)0.007 (2)0.012 (4)
H100.041 (3)0.047 (5)0.114 (6)0.006 (3)0.027 (4)0.024 (5)
H110.048 (3)0.124 (8)0.052 (3)0.024 (4)0.021 (3)0.046 (4)
H30.0269 (16)0.029 (3)0.0256 (15)0.0016 (17)0.0004 (13)0.0002 (18)
O50.0421 (15)0.020 (2)0.0422 (15)0.0057 (13)0.0239 (13)0.0021 (15)
H130.039 (2)0.037 (4)0.035 (2)0.003 (2)0.0125 (18)0.003 (2)
H120.0346 (19)0.031 (4)0.040 (2)0.000 (2)0.0095 (18)0.003 (2)
Geometric parameters (Å, º) top
O1—C11.211 (3)C4—O41.421 (3)
C1—O21.308 (3)C4—H61.093 (6)
C1—C21.522 (3)C3—H41.085 (5)
O2—H11.011 (5)C3—H51.102 (6)
C2—N11.460 (2)O4—H21.003 (6)
C2—C31.541 (4)C6—O31.241 (4)
C2—H31.099 (4)C6—C71.500 (3)
N1—C51.468 (3)C7—H91.089 (7)
N1—C61.339 (3)C7—H101.072 (9)
C5—C41.532 (3)C7—H111.068 (7)
C5—H71.105 (6)O5—H130.952 (5)
C5—H81.091 (6)O5—H120.971 (8)
C4—C31.529 (3)
O1—C1—O2124.3 (2)C3—C4—O4108.13 (18)
O1—C1—C2121.1 (2)C5—C4—H6111.8 (4)
O2—C1—C2114.44 (18)C3—C4—H6112.5 (3)
C1—O2—H1110.1 (3)O4—C4—H6110.4 (4)
C1—C2—N1114.21 (17)C2—C3—C4103.16 (16)
C1—C2—C3110.64 (16)C2—C3—H4110.6 (4)
N1—C2—C3103.37 (17)C4—C3—H4109.6 (4)
C1—C2—H3106.8 (3)C2—C3—H5111.6 (4)
N1—C2—H3110.1 (3)C4—C3—H5112.7 (4)
C3—C2—H3111.8 (3)H4—C3—H5109.1 (5)
C2—N1—C5112.46 (17)C4—O4—H2109.5 (3)
C2—N1—C6119.98 (17)N1—C6—O3119.49 (19)
C5—N1—C6127.15 (15)N1—C6—C7117.8 (2)
N1—C5—C4102.73 (16)O3—C6—C7122.7 (2)
N1—C5—H7110.1 (4)C6—C7—H9111.0 (4)
C4—C5—H7110.2 (4)C6—C7—H10110.1 (5)
N1—C5—H8111.9 (4)H9—C7—H10108.9 (7)
C4—C5—H8112.2 (4)C6—C7—H11110.4 (4)
H7—C5—H8109.6 (5)H9—C7—H11107.4 (8)
C5—C4—C3102.5 (2)H10—C7—H11109.0 (9)
C5—C4—O4111.17 (18)H13—O5—H12107.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0111.5922.600 (3)173.8 (5)
C3—H4···O3i1.0852.5493.463 (3)141.3 (5)
C3—H5···O1ii1.1022.5273.606 (3)165.9 (5)
O4—H2···O51.0031.5972.595 (3)172.6 (5)
C7—H11···O1iii1.0682.5643.442 (3)139.1 (5)
C2—H3···O2iii1.0992.5963.367 (3)126.5 (3)
O5—H13···O1iv0.9521.8502.798 (3)173.6 (6)
O5—H12···O3v0.9711.7412.711 (3)177.6 (6)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+3/2, y+2, z1/2; (iv) x+1/2, y+3/2, z+1; (v) x, y1, z.
(hydroxyproline200K) top
Crystal data top
C7H11NO4·H2OF(000) = 144
Mr = 191.18Dx = 1.348 Mg m3
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
Hall symbol: P 2ac 2abCell parameters from not applicable reflections
a = 9.9748 (2) Åθ = not applicable–not applicable°
b = 9.2492 (2) ŵ = 0.0 mm1
c = 10.2103 (2) ÅT = 200 K
V = 941.99 (3) Å3Block, colorless
Z = 41.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
Rint = 0.088
Radiation source: nuclear reactor, OPAL reactor, ANSTO, Lucas Heights, Australiaθmax = 70.9°
Laue scansh = 1415
15826 measured reflectionsk = 1415
1315 independent reflectionsl = 1415
1065 reflections with I > 3.0σ(I)
Refinement top
Refinement on FPrimary atom site location: isomorphous structure methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.045 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 1.49 -0.682 1.01
S = 1.00(Δ/σ)max = 0.0001787
1065 reflectionsΔρmax = 0.76 e Å3
232 parametersΔρmin = 0.89 e Å3
0 restraints
Crystal data top
C7H11NO4·H2OV = 941.99 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
a = 9.9748 (2) ŵ = 0.0 mm1
b = 9.2492 (2) ÅT = 200 K
c = 10.2103 (2) Å1.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
1065 reflections with I > 3.0σ(I)
15826 measured reflectionsRint = 0.088
1315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.045All H-atom parameters refined
S = 1.00Δρmax = 0.76 e Å3
1065 reflectionsΔρmin = 0.89 e Å3
232 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5800 (2)1.1141 (4)0.7682 (2)0.0301
C10.69631 (18)1.0771 (3)0.75768 (17)0.0182
O20.7927 (2)1.1192 (4)0.8354 (2)0.0233
H10.7562 (5)1.1883 (7)0.9034 (4)0.0323
C20.73750 (18)0.9655 (3)0.65604 (18)0.0170
N10.87619 (13)0.9782 (2)0.61209 (13)0.0188
C50.9508 (2)0.8423 (3)0.6240 (2)0.0262
C40.8378 (3)0.7305 (3)0.63651 (19)0.0250
C30.7319 (2)0.8124 (3)0.7138 (2)0.0267
H40.7586 (8)0.8150 (9)0.8181 (5)0.0520
H50.6321 (7)0.7652 (8)0.7042 (7)0.0508
O40.7838 (3)0.6944 (4)0.5124 (2)0.0246
H20.8314 (5)0.6097 (8)0.4759 (5)0.0365
H60.8715 (7)0.6328 (8)0.6854 (6)0.0470
H71.0119 (7)0.8439 (9)0.7134 (8)0.0515
H81.0129 (6)0.8236 (8)0.5381 (7)0.0446
C60.91787 (19)1.1012 (3)0.55540 (18)0.0205
O30.8402 (3)1.2042 (4)0.5465 (3)0.0266
C71.0591 (2)1.1073 (4)0.5054 (2)0.0342
H30.6687 (4)0.9782 (6)0.5726 (4)0.0302
O50.8991 (4)0.4604 (5)0.4294 (4)0.0438
H130.9576 (5)0.4417 (8)0.3581 (6)0.0419
H120.8816 (6)0.3697 (9)0.4721 (6)0.0424
H1101.0575 (14)1.077 (2)0.4042 (15)0.052 (3)*0.5000
H1111.0761 (11)1.0170 (18)0.4294 (11)0.037 (2)*0.5000
H1001.0944 (14)1.2165 (19)0.5069 (15)0.046 (3)*0.5000
H1011.0805 (16)1.211 (2)0.4617 (17)0.052 (3)*0.5000
H901.1285 (14)1.090 (2)0.5828 (14)0.048 (3)*0.5000
H911.1301 (15)1.037 (2)0.5664 (16)0.052 (4)*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0181 (9)0.045 (2)0.0272 (10)0.0056 (11)0.0013 (7)0.0085 (12)
C10.0177 (7)0.0209 (15)0.0158 (7)0.0000 (7)0.0008 (5)0.0006 (8)
O20.0215 (8)0.027 (2)0.0213 (8)0.0022 (9)0.0016 (7)0.0060 (10)
H10.042 (2)0.030 (4)0.0257 (16)0.003 (2)0.0001 (15)0.0006 (17)
C20.0203 (7)0.0137 (15)0.0170 (6)0.0001 (6)0.0026 (5)0.0009 (7)
N10.0176 (5)0.0172 (12)0.0215 (5)0.0033 (5)0.0026 (4)0.0013 (6)
C50.0233 (8)0.0231 (18)0.0323 (10)0.0095 (8)0.0030 (7)0.0016 (10)
C40.0380 (10)0.0164 (19)0.0204 (8)0.0029 (9)0.0025 (7)0.0036 (8)
C30.0378 (10)0.0192 (19)0.0229 (8)0.0039 (10)0.0079 (8)0.0008 (9)
H40.084 (5)0.046 (5)0.0263 (19)0.008 (4)0.005 (2)0.006 (2)
H50.051 (3)0.042 (5)0.059 (3)0.010 (3)0.022 (3)0.002 (3)
O40.0346 (11)0.017 (2)0.0222 (9)0.0050 (11)0.0003 (8)0.0009 (10)
H20.044 (2)0.030 (4)0.0352 (19)0.003 (2)0.0047 (17)0.001 (2)
H60.067 (3)0.029 (4)0.045 (3)0.013 (3)0.008 (2)0.009 (3)
H70.054 (3)0.040 (5)0.061 (4)0.001 (3)0.024 (3)0.005 (3)
H80.039 (2)0.040 (5)0.055 (3)0.011 (2)0.012 (2)0.003 (3)
C60.0190 (7)0.0227 (17)0.0197 (7)0.0023 (8)0.0011 (6)0.0023 (8)
O30.0264 (10)0.023 (2)0.0309 (11)0.0030 (10)0.0039 (8)0.0106 (11)
C70.0165 (8)0.049 (2)0.0373 (11)0.0050 (10)0.0073 (7)0.0007 (12)
H30.0278 (15)0.033 (4)0.0299 (16)0.0003 (17)0.0005 (13)0.0036 (19)
O50.0533 (19)0.023 (3)0.0550 (19)0.0036 (15)0.0322 (16)0.0015 (19)
H130.038 (2)0.044 (4)0.044 (2)0.002 (2)0.0149 (19)0.002 (2)
H120.047 (3)0.033 (4)0.047 (3)0.007 (3)0.012 (2)0.007 (3)
Geometric parameters (Å, º) top
O1—C11.214 (3)C4—H61.085 (7)
C1—O21.307 (3)C3—H41.098 (6)
C1—C21.520 (3)C3—H51.092 (7)
O2—H11.011 (6)O4—H20.989 (7)
C2—N11.459 (2)C6—O31.232 (4)
C2—C31.535 (4)C6—C71.499 (3)
C2—H31.101 (4)C7—H1101.071 (15)
N1—C51.466 (3)C7—H1111.153 (14)
N1—C61.342 (3)C7—H1001.070 (19)
C5—C41.535 (4)C7—H1011.076 (19)
C5—H71.097 (7)C7—H901.062 (14)
C5—H81.087 (6)C7—H911.147 (18)
C4—C31.520 (4)O5—H130.949 (6)
C4—O41.417 (3)O5—H120.962 (10)
O1—C1—O2124.4 (3)C2—C3—H4110.1 (5)
O1—C1—C2120.7 (2)C4—C3—H4110.3 (4)
O2—C1—C2114.72 (19)C2—C3—H5111.5 (5)
C1—O2—H1109.9 (3)C4—C3—H5112.8 (4)
C1—C2—N1114.30 (18)H4—C3—H5108.5 (6)
C1—C2—C3110.75 (17)C4—O4—H2109.9 (4)
N1—C2—C3103.10 (17)N1—C6—O3119.5 (2)
C1—C2—H3106.7 (3)N1—C6—C7118.0 (2)
N1—C2—H3110.2 (3)O3—C6—C7122.5 (3)
C3—C2—H3111.9 (4)C6—C7—H110107.8 (8)
C2—N1—C5112.76 (18)C6—C7—H111109.9 (6)
C2—N1—C6119.65 (17)C6—C7—H100109.9 (8)
C5—N1—C6127.22 (16)C6—C7—H101111.2 (9)
N1—C5—C4102.23 (17)H110—C7—H10180.6 (15)
N1—C5—H7109.8 (5)H111—C7—H101109.6 (12)
C4—C5—H7110.3 (5)C6—C7—H90110.7 (8)
N1—C5—H8111.0 (4)H110—C7—H90133.5 (14)
C4—C5—H8112.2 (5)H111—C7—H90107.3 (13)
H7—C5—H8110.9 (6)H100—C7—H9085.1 (14)
C5—C4—C3102.6 (2)H101—C7—H90108.1 (14)
C5—C4—O4111.3 (2)C6—C7—H91112.0 (8)
C3—C4—O4108.5 (2)H110—C7—H91112.6 (15)
C5—C4—H6111.9 (5)H111—C7—H9182.1 (13)
C3—C4—H6113.0 (4)H100—C7—H91109.0 (14)
O4—C4—H6109.4 (5)H101—C7—H91127.4 (13)
C2—C3—C4103.58 (18)H13—O5—H12107.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0111.6052.612 (3)173.1 (5)
C3—H4···O3i1.0982.5383.475 (3)142.7 (6)
C3—H5···O1ii1.0922.5513.617 (3)164.9 (6)
O4—H2···O50.9891.6092.594 (3)173.0 (6)
O5—H13···O1iii0.9491.8492.793 (3)172.7 (7)
O5—H12···O3iv0.9621.7582.719 (3)176.7 (6)
C7—H111···O1v1.1532.5703.461 (3)133.1 (8)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y1, z; (v) x+3/2, y+2, z1/2.
(hydroxyproline250K) top
Crystal data top
C7H11NO4·H2OF(000) = 144
Mr = 191.18Dx = 1.338 Mg m3
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
Hall symbol: P 2ac 2abCell parameters from not applicable reflections
a = 10.0123 (2) Åθ = not applicable–not applicable°
b = 9.2556 (2) ŵ = 0.0 mm1
c = 10.2441 (2) ÅT = 250 K
V = 949.32 (3) Å3Block, colorless
Z = 41.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
Rint = 0.098
Radiation source: nuclear reactor, OPAL reactor, ANSTO, Lucas Heights, Australiaθmax = 70.9°
Laue scansh = 915
13174 measured reflectionsk = 915
1307 independent reflectionsl = 915
967 reflections with I > 3.0σ(I)
Refinement top
Refinement on FPrimary atom site location: isomorphous structure methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051All H-atom parameters refined
wR(F2) = 0.050 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 1.19 -0.518 0.521
S = 1.00(Δ/σ)max = 0.0001605
9675 reflectionsΔρmax = 0.70 e Å3
232 parametersΔρmin = 0.88 e Å3
0 restraints
Crystal data top
C7H11NO4·H2OV = 949.32 (3) Å3
Mr = 191.18Z = 4
Orthorhombic, P212121Neutron radiation, λ = 0.85 Å
a = 10.0123 (2) ŵ = 0.0 mm1
b = 9.2556 (2) ÅT = 250 K
c = 10.2441 (2) Å1.8 × 1.4 × 0.5 mm
Data collection top
KOALA
diffractometer
967 reflections with I > 3.0σ(I)
13174 measured reflectionsRint = 0.098
1307 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.050All H-atom parameters refined
S = 1.00Δρmax = 0.70 e Å3
9675 reflectionsΔρmin = 0.88 e Å3
232 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5808 (3)1.1136 (6)0.7671 (4)0.0366
C10.6961 (3)1.0769 (4)0.7562 (2)0.0239
O20.7918 (3)1.1189 (5)0.8343 (3)0.0300
H10.7556 (7)1.1897 (10)0.9020 (6)0.0419
C20.7371 (3)0.9663 (4)0.6549 (3)0.0221
N10.87562 (19)0.9790 (3)0.61179 (19)0.0241
C50.9496 (3)0.8424 (5)0.6232 (3)0.0328
C40.8369 (4)0.7304 (4)0.6355 (3)0.0297
C30.7305 (4)0.8125 (5)0.7124 (3)0.0345
H40.7551 (11)0.8148 (11)0.8151 (7)0.0588
H50.6312 (10)0.7643 (11)0.7023 (10)0.0621
O40.7836 (4)0.6951 (6)0.5110 (3)0.0314
H20.8316 (8)0.6113 (10)0.4752 (7)0.0448
H60.8703 (11)0.6340 (11)0.6842 (8)0.0570
H71.0109 (10)0.8434 (14)0.7117 (11)0.0711
H81.0117 (8)0.8242 (12)0.5379 (11)0.0563
C60.9179 (3)1.1016 (4)0.5552 (3)0.0263
O30.8401 (4)1.2037 (5)0.5454 (4)0.0348
C71.0576 (3)1.1070 (6)0.5042 (4)0.0416
H30.6699 (5)0.9801 (9)0.5717 (5)0.0358
O50.8980 (6)0.4618 (7)0.4292 (6)0.0547
H130.9566 (8)0.4419 (11)0.3574 (8)0.0529
H120.8804 (9)0.3688 (12)0.4714 (8)0.0509
H901.128 (2)1.097 (4)0.583 (2)0.069 (7)*0.5000
H911.128 (2)1.041 (3)0.568 (2)0.053 (5)*0.5000
H1101.057 (3)1.087 (3)0.401 (3)0.075 (6)*0.5000
H1111.0761 (16)1.024 (2)0.4315 (17)0.047 (3)*0.5000
H1001.097 (2)1.218 (3)0.512 (3)0.065 (5)*0.5000
H1011.081 (2)1.202 (3)0.461 (3)0.065 (5)*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0251 (13)0.049 (3)0.0356 (16)0.0076 (16)0.0000 (12)0.0111 (18)
C10.0231 (10)0.029 (2)0.0192 (10)0.0013 (11)0.0017 (8)0.0011 (11)
O20.0269 (12)0.037 (3)0.0262 (14)0.0045 (15)0.0052 (11)0.0064 (16)
H10.046 (3)0.047 (5)0.033 (3)0.007 (3)0.002 (2)0.002 (3)
C20.0272 (11)0.018 (2)0.0206 (9)0.0000 (10)0.0033 (8)0.0016 (10)
N10.0226 (7)0.0246 (17)0.0251 (8)0.0025 (8)0.0021 (6)0.0011 (8)
C50.0289 (12)0.031 (3)0.0384 (15)0.0109 (12)0.0056 (11)0.0003 (14)
C40.0453 (15)0.018 (2)0.0254 (12)0.0053 (13)0.0015 (11)0.0055 (13)
C30.0490 (17)0.027 (3)0.0277 (13)0.0040 (16)0.0121 (13)0.0021 (14)
H40.102 (7)0.040 (6)0.035 (3)0.011 (5)0.014 (4)0.011 (3)
H50.063 (5)0.055 (7)0.068 (5)0.016 (4)0.024 (4)0.002 (4)
O40.0476 (19)0.019 (3)0.0279 (15)0.0058 (18)0.0001 (14)0.0015 (15)
H20.053 (4)0.038 (6)0.043 (3)0.006 (4)0.007 (3)0.003 (3)
H60.082 (5)0.039 (6)0.049 (4)0.019 (5)0.007 (4)0.013 (4)
H70.062 (5)0.073 (9)0.079 (6)0.005 (5)0.036 (5)0.007 (6)
H80.043 (3)0.051 (8)0.075 (5)0.014 (4)0.016 (3)0.002 (5)
C60.0236 (10)0.029 (2)0.0264 (11)0.0040 (12)0.0017 (9)0.0033 (13)
O30.0345 (15)0.030 (3)0.0401 (18)0.0051 (17)0.0077 (13)0.0104 (18)
C70.0231 (12)0.053 (3)0.0482 (19)0.0061 (16)0.0092 (12)0.0034 (19)
H30.029 (2)0.047 (5)0.032 (2)0.000 (2)0.0024 (19)0.002 (3)
O50.072 (3)0.024 (4)0.068 (3)0.006 (2)0.040 (3)0.001 (3)
H130.053 (4)0.056 (6)0.050 (4)0.006 (4)0.017 (3)0.002 (4)
H120.052 (4)0.046 (6)0.054 (4)0.000 (4)0.016 (3)0.010 (4)
Geometric parameters (Å, º) top
O1—C11.208 (4)C4—H61.076 (9)
C1—O21.308 (4)C3—H41.080 (8)
C1—C21.514 (4)C3—H51.095 (10)
O2—H11.020 (9)O4—H20.984 (11)
C2—N11.460 (3)C6—O31.229 (5)
C2—C31.542 (5)C6—C71.494 (4)
C2—H31.094 (6)C7—H901.08 (3)
N1—C51.470 (4)C7—H911.13 (2)
N1—C61.343 (4)C7—H1101.07 (3)
C5—C41.537 (5)C7—H1111.087 (19)
C5—H71.095 (9)C7—H1001.10 (3)
C5—H81.086 (10)C7—H1011.01 (3)
C4—C31.528 (5)O5—H130.959 (9)
C4—O41.421 (5)O5—H120.980 (14)
O1—C1—O2124.1 (4)C2—C3—H4110.1 (7)
O1—C1—C2120.8 (3)C4—C3—H4110.7 (6)
O2—C1—C2114.9 (3)C2—C3—H5112.3 (7)
C1—O2—H1110.2 (5)C4—C3—H5112.4 (6)
C1—C2—N1114.3 (2)H4—C3—H5107.9 (8)
C1—C2—C3110.5 (2)C4—O4—H2109.4 (6)
N1—C2—C3103.3 (3)N1—C6—O3119.0 (3)
C1—C2—H3106.7 (4)N1—C6—C7118.3 (3)
N1—C2—H3109.8 (4)O3—C6—C7122.6 (4)
C3—C2—H3112.3 (5)C6—C7—H90110.3 (13)
C2—N1—C5112.7 (3)C6—C7—H91111.1 (11)
C2—N1—C6119.9 (2)C6—C7—H110109.6 (14)
C5—N1—C6127.0 (2)H90—C7—H110137 (2)
N1—C5—C4102.5 (2)H91—C7—H110118 (2)
N1—C5—H7109.9 (7)C6—C7—H111112.0 (9)
C4—C5—H7110.4 (7)H90—C7—H111110 (2)
N1—C5—H8111.0 (6)C6—C7—H100109.7 (13)
C4—C5—H8112.4 (7)H91—C7—H100104.1 (19)
H7—C5—H8110.3 (9)H110—C7—H100103 (2)
C5—C4—C3102.6 (3)H111—C7—H100130.4 (17)
C5—C4—O4110.9 (3)C6—C7—H101113.2 (14)
C3—C4—O4108.4 (3)H90—C7—H101105 (2)
C5—C4—H6111.7 (7)H91—C7—H101125.4 (19)
C3—C4—H6112.9 (6)H111—C7—H101106.2 (19)
O4—C4—H6110.0 (7)H13—O5—H12106.3 (10)
C2—C3—C4103.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0201.5932.609 (5)173.4 (7)
C3—H4···O3i1.0802.5503.487 (5)144.5 (8)
C3—H5···O1ii1.0952.5593.626 (5)164.5 (9)
O4—H2···O50.9841.6052.583 (5)172.5 (8)
O5—H13···O1iii0.9591.8542.807 (5)172.5 (10)
O5—H12···O3iv0.9801.7532.732 (5)177.1 (9)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y1, z.

Experimental details

(9K)(30K)(50K)(75K)
Crystal data
Chemical formulaC7H11NO4·H2OC7H11NO4·H2OC7H11NO4·H2OC7H11NO4·H2O
Mr191.18191.18191.18191.18
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)9305075
a, b, c (Å)9.854 (3), 9.249 (3), 10.144 (2)9.853 (4), 9.251 (5), 10.145 (2)9.866 (7), 9.250 (7), 10.149 (6)9.884 (6), 9.253 (6), 10.155 (3)
V3)924.5 (4)924.7 (7)926.2 (11)928.7 (9)
Z4444
Radiation typeSynchrotron, λ = 0.5166 ÅSynchrotron, λ = 0.5166 ÅSynchrotron, λ = 0.5166 ÅSynchrotron, λ = 0.5166 Å
µ (mm1)0.070.060.060.06
Crystal size (mm)0.34 × 0.28 × 0.280.34 × 0.28 × 0.280.34 × 0.28 × 0.280.34 × 0.28 × 0.28
Data collection
Diffractometer????
Absorption correction
Tmin, Tmax
No. of measured, independent and
observed reflections
45747, 8275, 7813 [I > 2σ(I)]25178, 8245, 7578 [I > 2σ(I)]44258, 8284, 7710 [I > 2σ(I)]45127, 8293, 7571 [I > 2σ(I)]
Rint0.0400.0380.0550.051
(sin θ/λ)max1)1.0221.0221.0231.022
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.76 0.028, 0.066, 1.44 0.026, 0.065, 1.48 0.028, 0.074, 2.02
No. of reflections7885726273727255
No. of parameters131131131131
H-atom treatmentOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.250.32, 0.220.27, 0.210.30, 0.25


(100K)(150K)(xcalibur)(250K)
Crystal data
Chemical formulaC7H11NO4·H2OC7H11NO4·H2OC7H11NO4·H2OC7H11NO4·H2O
Mr191.18191.18191.18191.18
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)100150200250
a, b, c (Å)9.9026 (2), 9.2485 (2), 10.1662 (2)9.9408 (2), 9.2479 (2), 10.1875 (2)9.9748 (2), 9.2492 (2), 10.2103 (2)10.0123 (2), 9.2556 (2), 10.2441 (2)
V3)931.06 (3)936.55 (3)941.99 (3)949.32 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.120.110.11
Crystal size (mm)0.54 × 0.28 × 0.140.54 × 0.28 × 0.140.54 × 0.28 × 0.140.54 × 0.28 × 0.14
Data collection
Diffractometer????
Absorption correctionAnalytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Analytical
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Tmin, Tmax0.959, 0.9860.954, 0.9870.960, 0.9890.956, 0.989
No. of measured, independent and
observed reflections
39746, 10866, 7744 [I > 2σ(I)]30837, 7826, 5673 [I > 2σ(I)]30309, 7829, 4860 [I > 2σ(I)]17876, 4420, 3245 [I > 2σ(I)]
Rint0.0370.0390.0390.020
(sin θ/λ)max1)1.1281.1281.1280.832
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.066, 2.81 0.029, 0.069, 2.96 0.029, 0.074, 2.12 0.025, 0.063, 3.84
No. of reflections7744567348603245
No. of parameters131131131131
H-atom treatmentOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refined?
Δρmax, Δρmin (e Å3)0.36, 0.210.25, 0.160.20, 0.170.16, 0.12


(hydroxyproline9K)(hydroxyproline150K)(hydroxyproline200K)(hydroxyproline250K)
Crystal data
Chemical formulaC7H11NO4·H2OC7H11NO4·H2OC7H11NO4·H2OC7H11NO4·H2O
Mr191.18191.18191.18191.18
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)9150200250
a, b, c (Å)9.854 (3), 9.249 (3), 10.144 (2)9.9408 (2), 9.2479 (2), 10.1875 (2)9.9748 (2), 9.2492 (2), 10.2103 (2)10.0123 (2), 9.2556 (2), 10.2441 (2)
V3)924.5 (4)936.55 (3)941.99 (3)949.32 (3)
Z4444
Radiation typeNeutron, λ = 0.85 ÅNeutron, λ = 0.85 ÅNeutron, λ = 0.85 ÅNeutron, λ = 0.85 Å
µ (mm1)0.00.00.00.0
Crystal size (mm)1.8 × 1.4 × 0.51.8 × 1.4 × 0.51.8 × 1.4 × 0.51.8 × 1.4 × 0.5
Data collection
DiffractometerKOALA
diffractometer
KOALA
diffractometer
KOALA
diffractometer
KOALA
diffractometer
Absorption correction
Tmin, Tmax
No. of measured, independent and
observed reflections
21579, 1355, 1243 [I > 3.0σ(I)]16001, 1331, 1092 [I > 3.0σ(I)]15826, 1315, 1065 [I > 3.0σ(I)]13174, 1307, 967 [I > 3.0σ(I)]
Rint0.0680.0920.0880.098
(sin θ/λ)max1)1.1121.1111.1121.112
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.025, 0.99 0.039, 0.034, 1.00 0.045, 0.045, 1.00 0.051, 0.050, 1.00
No. of reflections1243109210659675
No. of parameters236235232232
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.67, 0.640.71, 0.810.76, 0.890.70, 0.88

Computer programs: MAATEL/ANSTO control program, argonne_boxes (Wilkinson et al., 1988) & LaueG (Piltz, 2011), Dittrich et al., (2013) Volkov et al., (2006), CRYSTALS (Betteridge et al., 2003), H"ubschle, (2011), L"ubben, (to be published).

Selected geometric parameters (Å, º) for (9K) top
O(1)—C(1)1.2226 (4)C(2)—H(3)1.1010
O(2)—C(1)1.3115 (4)C(3)—C(4)1.5250 (5)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2423 (4)C(3)—H(5)1.0937
O(4)—C(4)1.4249 (4)C(4)—C(5)1.5287 (5)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4583 (4)C(6)—C(7)1.5012 (4)
N(1)—C(5)1.4672 (4)C(7)—H(9)1.0914
N(1)—C(6)1.3425 (4)C(7)—H(10)1.0914
C(1)—C(2)1.5134 (4)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.78 (3)O(4)—C(4)—C(3)108.23 (3)
C(2)—N(1)—C(6)119.85 (3)O(4)—C(4)—C(5)111.33 (3)
C(5)—N(1)—C(6)127.03 (3)C(3)—C(4)—C(5)102.84 (3)
O(1)—C(1)—O(2)123.80 (3)N(1)—C(5)—C(4)102.32 (3)
O(1)—C(1)—C(2)121.10 (3)O(3)—C(6)—N(1)119.51 (3)
O(2)—C(1)—C(2)114.94 (3)O(3)—C(6)—C(7)122.57 (3)
N(1)—C(2)—C(1)114.36 (3)N(1)—C(6)—C(7)117.92 (3)
Selected geometric parameters (Å, º) for (30K) top
O(1)—C(1)1.2213 (4)C(2)—H(3)1.1010
O(2)—C(1)1.3107 (4)C(3)—C(4)1.5247 (5)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2418 (4)C(3)—H(5)1.0937
O(4)—C(4)1.4247 (4)C(4)—C(5)1.5283 (5)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4578 (4)C(6)—C(7)1.5011 (5)
N(1)—C(5)1.4666 (5)C(7)—H(9)1.0914
N(1)—C(6)1.3424 (5)C(7)—H(10)1.0914
C(1)—C(2)1.5142 (5)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.73 (3)O(4)—C(4)—C(3)108.27 (3)
C(2)—N(1)—C(6)119.84 (3)O(4)—C(4)—C(5)111.35 (3)
C(5)—N(1)—C(6)127.10 (3)C(3)—C(4)—C(5)102.78 (3)
O(1)—C(1)—O(2)123.81 (3)N(1)—C(5)—C(4)102.40 (3)
O(1)—C(1)—C(2)121.07 (3)O(3)—C(6)—N(1)119.54 (3)
O(2)—C(1)—C(2)114.95 (3)O(3)—C(6)—C(7)122.55 (3)
N(1)—C(2)—C(1)114.33 (3)N(1)—C(6)—C(7)117.91 (3)
Selected geometric parameters (Å, º) for (50K) top
O(1)—C(1)1.2210 (4)C(2)—H(3)1.1010
O(2)—C(1)1.3111 (4)C(3)—C(4)1.5246 (5)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2416 (4)C(3)—H(5)1.0937
O(4)—C(4)1.4242 (4)C(4)—C(5)1.5272 (5)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4583 (4)C(6)—C(7)1.5010 (5)
N(1)—C(5)1.4674 (4)C(7)—H(9)1.0914
N(1)—C(6)1.3423 (4)C(7)—H(10)1.0914
C(1)—C(2)1.5139 (4)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.68 (3)O(4)—C(4)—C(3)108.29 (3)
C(2)—N(1)—C(6)119.86 (3)O(4)—C(4)—C(5)111.34 (3)
C(5)—N(1)—C(6)127.12 (3)C(3)—C(4)—C(5)102.83 (3)
O(1)—C(1)—O(2)123.83 (3)N(1)—C(5)—C(4)102.39 (3)
O(1)—C(1)—C(2)121.09 (3)O(3)—C(6)—N(1)119.54 (3)
O(2)—C(1)—C(2)114.92 (3)O(3)—C(6)—C(7)122.57 (3)
N(1)—C(2)—C(1)114.38 (3)N(1)—C(6)—C(7)117.89 (3)
Selected geometric parameters (Å, º) for (75K) top
O(1)—C(1)1.2224 (5)C(2)—H(3)1.1010
O(2)—C(1)1.3111 (5)C(3)—C(4)1.5249 (6)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2431 (5)C(3)—H(5)1.0937
O(4)—C(4)1.4246 (5)C(4)—C(5)1.5287 (6)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4578 (5)C(6)—C(7)1.5013 (5)
N(1)—C(5)1.4677 (5)C(7)—H(9)1.0914
N(1)—C(6)1.3425 (5)C(7)—H(10)1.0914
C(1)—C(2)1.5145 (5)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.76 (3)O(4)—C(4)—C(3)108.23 (3)
C(2)—N(1)—C(6)119.88 (3)O(4)—C(4)—C(5)111.36 (3)
C(5)—N(1)—C(6)127.01 (3)C(3)—C(4)—C(5)102.84 (3)
O(1)—C(1)—O(2)123.80 (4)N(1)—C(5)—C(4)102.34 (3)
O(1)—C(1)—C(2)121.10 (3)O(3)—C(6)—N(1)119.46 (3)
O(2)—C(1)—C(2)114.94 (3)O(3)—C(6)—C(7)122.54 (4)
N(1)—C(2)—C(1)114.37 (3)N(1)—C(6)—C(7)118.00 (3)
Selected geometric parameters (Å, º) for (100K) top
O(1)—C(1)1.2201 (5)C(2)—H(3)1.1010
O(2)—C(1)1.3119 (5)C(3)—C(4)1.5241 (6)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2435 (5)C(3)—H(5)1.0937
O(4)—C(4)1.4253 (5)C(4)—C(5)1.5290 (7)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4597 (5)C(6)—C(7)1.5001 (6)
N(1)—C(5)1.4663 (6)C(7)—H(9)1.0914
N(1)—C(6)1.3415 (5)C(7)—H(10)1.0914
C(1)—C(2)1.5140 (5)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.72 (3)O(4)—C(4)—C(3)108.32 (4)
C(2)—N(1)—C(6)119.82 (3)O(4)—C(4)—C(5)111.26 (4)
C(5)—N(1)—C(6)127.11 (4)C(3)—C(4)—C(5)102.87 (3)
O(1)—C(1)—O(2)123.81 (4)N(1)—C(5)—C(4)102.34 (4)
O(1)—C(1)—C(2)121.14 (4)O(3)—C(6)—N(1)119.40 (4)
O(2)—C(1)—C(2)114.89 (4)O(3)—C(6)—C(7)122.55 (4)
N(1)—C(2)—C(1)114.50 (3)N(1)—C(6)—C(7)118.05 (4)
Selected geometric parameters (Å, º) for (150K) top
O(1)—C(1)1.2192 (7)C(2)—H(3)1.1010
O(2)—C(1)1.3111 (7)C(3)—C(4)1.5231 (9)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2422 (7)C(3)—H(5)1.0937
O(4)—C(4)1.4226 (7)C(4)—C(5)1.5304 (9)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4591 (7)C(6)—C(7)1.4981 (8)
N(1)—C(5)1.4650 (7)C(7)—H(9)1.0914
N(1)—C(6)1.3433 (7)C(7)—H(10)1.0914
C(1)—C(2)1.5134 (7)C(7)—H(11)1.0914
C(2)—C(3)1.5394 (8)
C(2)—N(1)—C(5)112.65 (4)C(2)—C(3)—C(4)103.20 (4)
C(2)—N(1)—C(6)119.86 (4)O(4)—C(4)—C(3)108.37 (5)
C(5)—N(1)—C(6)127.13 (5)O(4)—C(4)—C(5)111.23 (5)
O(1)—C(1)—O(2)123.77 (5)C(3)—C(4)—C(5)102.77 (5)
O(1)—C(1)—C(2)121.09 (5)N(1)—C(5)—C(4)102.40 (5)
O(2)—C(1)—C(2)114.97 (5)O(3)—C(6)—N(1)119.24 (5)
N(1)—C(2)—C(1)114.45 (4)O(3)—C(6)—C(7)122.53 (5)
N(1)—C(2)—C(3)103.22 (4)N(1)—C(6)—C(7)118.24 (5)
C(1)—C(2)—C(3)110.72 (4)
Selected geometric parameters (Å, º) for (xcalibur) top
O(1)—C(1)1.2164 (8)C(2)—H(3)1.1010
O(2)—C(1)1.3100 (8)C(3)—C(4)1.5219 (10)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2411 (8)C(3)—H(5)1.0937
O(4)—C(4)1.4234 (9)C(4)—C(5)1.5242 (11)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4576 (8)C(6)—C(7)1.4948 (9)
N(1)—C(5)1.4639 (8)C(7)—H(9)1.0914
N(1)—C(6)1.3439 (8)C(7)—H(10)1.0914
C(1)—C(2)1.5135 (8)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.67 (5)O(4)—C(4)—C(3)108.12 (6)
C(2)—N(1)—C(6)119.74 (5)O(4)—C(4)—C(5)111.25 (6)
C(5)—N(1)—C(6)127.22 (6)C(3)—C(4)—C(5)102.88 (5)
O(1)—C(1)—O(2)123.85 (6)N(1)—C(5)—C(4)102.56 (6)
O(1)—C(1)—C(2)121.11 (6)O(3)—C(6)—N(1)119.19 (6)
O(2)—C(1)—C(2)114.88 (5)O(3)—C(6)—C(7)122.41 (6)
N(1)—C(2)—C(1)114.56 (5)N(1)—C(6)—C(7)118.40 (6)
Selected geometric parameters (Å, º) for (250K) top
O(1)—C(1)1.2152 (9)C(2)—H(3)1.1010
O(2)—C(1)1.3068 (10)C(3)—C(4)1.5214 (12)
O(2)—H(1)0.9607C(3)—H(4)1.0937
O(3)—C(6)1.2382 (10)C(3)—H(5)1.0937
O(4)—C(4)1.4197 (10)C(4)—C(5)1.5236 (13)
O(4)—H(2)0.9607C(4)—H(6)1.0982
O(5)—H(12)0.9618C(5)—H(7)1.0993
O(5)—H(13)0.9618C(5)—H(8)1.0993
N(1)—C(2)1.4543 (9)C(6)—C(7)1.5013 (11)
N(1)—C(5)1.4650 (10)C(7)—H(9)1.0914
N(1)—C(6)1.3401 (10)C(7)—H(10)1.0914
C(1)—C(2)1.5156 (10)C(7)—H(11)1.0914
C(2)—N(1)—C(5)112.51 (6)O(4)—C(4)—C(3)108.21 (7)
C(2)—N(1)—C(6)119.73 (6)O(4)—C(4)—C(5)111.30 (7)
C(5)—N(1)—C(6)127.37 (6)C(3)—C(4)—C(5)102.85 (7)
O(1)—C(1)—O(2)123.85 (7)N(1)—C(5)—C(4)102.58 (6)
O(1)—C(1)—C(2)121.09 (7)O(3)—C(6)—N(1)119.48 (7)
O(2)—C(1)—C(2)114.90 (6)O(3)—C(6)—C(7)122.05 (8)
N(1)—C(2)—C(1)114.61 (6)N(1)—C(6)—C(7)118.47 (7)
Selected geometric parameters (Å, º) for (hydroxyproline9K) top
O1—C11.2197 (15)C4—O41.4270 (15)
C1—O21.3122 (15)C4—H61.098 (3)
C1—C21.5165 (17)C3—H41.092 (3)
O2—H11.019 (3)C3—H51.099 (3)
C2—N11.4597 (12)O4—H20.996 (4)
C2—C31.536 (2)C6—O31.238 (2)
C2—H31.101 (2)C6—C71.5025 (14)
N1—C51.4655 (17)C7—H91.088 (3)
N1—C61.3450 (16)C7—H101.080 (4)
C5—C41.5328 (18)C7—H111.085 (3)
C5—H71.098 (3)O5—H130.967 (3)
C5—H81.094 (3)O5—H120.980 (4)
C4—C31.5285 (16)
O1—C1—O2123.96 (13)C3—C4—O4108.16 (9)
O1—C1—C2121.18 (11)C5—C4—H6111.91 (18)
O2—C1—C2114.68 (10)C3—C4—H6113.08 (17)
C1—O2—H1109.69 (17)O4—C4—H6109.5 (2)
C1—C2—N1114.27 (10)C2—C3—C4102.97 (9)
C1—C2—C3110.78 (9)C2—C3—H4110.3 (2)
N1—C2—C3103.29 (9)C4—C3—H4109.72 (18)
C1—C2—H3106.56 (17)C2—C3—H5112.9 (2)
N1—C2—H3109.86 (14)C4—C3—H5111.8 (2)
C3—C2—H3112.21 (19)H4—C3—H5109.0 (3)
C2—N1—C5112.77 (9)C4—O4—H2109.10 (18)
C2—N1—C6120.00 (9)N1—C6—O3119.33 (10)
C5—N1—C6126.88 (8)N1—C6—C7117.88 (11)
N1—C5—C4102.27 (9)O3—C6—C7122.79 (13)
N1—C5—H7110.9 (2)C6—C7—H9111.86 (18)
C4—C5—H7110.33 (19)C6—C7—H10110.5 (2)
N1—C5—H8111.5 (2)H9—C7—H10109.1 (3)
C4—C5—H8112.0 (2)C6—C7—H11109.70 (19)
H7—C5—H8109.7 (2)H9—C7—H11107.2 (3)
C5—C4—C3102.76 (11)H10—C7—H11108.4 (3)
C5—C4—O4111.24 (9)H13—O5—H12106.7 (3)
Hydrogen-bond geometry (Å, º) for (hydroxyproline9K) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0191.5792.5940 (16)173.3 (2)
C3—H4···O3i1.0922.5373.4405 (16)139.4 (2)
C3—H5···O1ii1.0992.4973.5839 (16)169.5 (3)
O4—H2···O50.9961.6072.5980 (16)172.2 (3)
C7—H10···O3iii1.0802.5983.2952 (16)121.6 (3)
C7—H11···O1iv1.0852.5263.4259 (16)139.7 (2)
C2—H3···O2iv1.1012.5753.3492 (16)126.50 (18)
O5—H13···O1v0.9671.8292.7922 (16)174.2 (3)
O5—H12···O3vi0.9801.7392.7180 (16)177.1 (3)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+5/2, z+1; (iv) x+3/2, y+2, z1/2; (v) x+1/2, y+3/2, z+1; (vi) x, y1, z.
Selected geometric parameters (Å, º) for (hydroxyproline150K) top
O1—C11.211 (3)C4—O41.421 (3)
C1—O21.308 (3)C4—H61.093 (6)
C1—C21.522 (3)C3—H41.085 (5)
O2—H11.011 (5)C3—H51.102 (6)
C2—N11.460 (2)O4—H21.003 (6)
C2—C31.541 (4)C6—O31.241 (4)
C2—H31.099 (4)C6—C71.500 (3)
N1—C51.468 (3)C7—H91.089 (7)
N1—C61.339 (3)C7—H101.072 (9)
C5—C41.532 (3)C7—H111.068 (7)
C5—H71.105 (6)O5—H130.952 (5)
C5—H81.091 (6)O5—H120.971 (8)
C4—C31.529 (3)
O1—C1—O2124.3 (2)C3—C4—O4108.13 (18)
O1—C1—C2121.1 (2)C5—C4—H6111.8 (4)
O2—C1—C2114.44 (18)C3—C4—H6112.5 (3)
C1—O2—H1110.1 (3)O4—C4—H6110.4 (4)
C1—C2—N1114.21 (17)C2—C3—C4103.16 (16)
C1—C2—C3110.64 (16)C2—C3—H4110.6 (4)
N1—C2—C3103.37 (17)C4—C3—H4109.6 (4)
C1—C2—H3106.8 (3)C2—C3—H5111.6 (4)
N1—C2—H3110.1 (3)C4—C3—H5112.7 (4)
C3—C2—H3111.8 (3)H4—C3—H5109.1 (5)
C2—N1—C5112.46 (17)C4—O4—H2109.5 (3)
C2—N1—C6119.98 (17)N1—C6—O3119.49 (19)
C5—N1—C6127.15 (15)N1—C6—C7117.8 (2)
N1—C5—C4102.73 (16)O3—C6—C7122.7 (2)
N1—C5—H7110.1 (4)C6—C7—H9111.0 (4)
C4—C5—H7110.2 (4)C6—C7—H10110.1 (5)
N1—C5—H8111.9 (4)H9—C7—H10108.9 (7)
C4—C5—H8112.2 (4)C6—C7—H11110.4 (4)
H7—C5—H8109.6 (5)H9—C7—H11107.4 (8)
C5—C4—C3102.5 (2)H10—C7—H11109.0 (9)
C5—C4—O4111.17 (18)H13—O5—H12107.7 (6)
Hydrogen-bond geometry (Å, º) for (hydroxyproline150K) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0111.5922.600 (3)173.8 (5)
C3—H4···O3i1.0852.5493.463 (3)141.3 (5)
C3—H5···O1ii1.1022.5273.606 (3)165.9 (5)
O4—H2···O51.0031.5972.595 (3)172.6 (5)
C7—H11···O1iii1.0682.5643.442 (3)139.1 (5)
C2—H3···O2iii1.0992.5963.367 (3)126.5 (3)
O5—H13···O1iv0.9521.8502.798 (3)173.6 (6)
O5—H12···O3v0.9711.7412.711 (3)177.6 (6)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+3/2, y+2, z1/2; (iv) x+1/2, y+3/2, z+1; (v) x, y1, z.
Selected geometric parameters (Å, º) for (hydroxyproline200K) top
O1—C11.214 (3)C4—H61.085 (7)
C1—O21.307 (3)C3—H41.098 (6)
C1—C21.520 (3)C3—H51.092 (7)
O2—H11.011 (6)O4—H20.989 (7)
C2—N11.459 (2)C6—O31.232 (4)
C2—C31.535 (4)C6—C71.499 (3)
C2—H31.101 (4)C7—H1101.071 (15)
N1—C51.466 (3)C7—H1111.153 (14)
N1—C61.342 (3)C7—H1001.070 (19)
C5—C41.535 (4)C7—H1011.076 (19)
C5—H71.097 (7)C7—H901.062 (14)
C5—H81.087 (6)C7—H911.147 (18)
C4—C31.520 (4)O5—H130.949 (6)
C4—O41.417 (3)O5—H120.962 (10)
O1—C1—O2124.4 (3)C2—C3—H4110.1 (5)
O1—C1—C2120.7 (2)C4—C3—H4110.3 (4)
O2—C1—C2114.72 (19)C2—C3—H5111.5 (5)
C1—O2—H1109.9 (3)C4—C3—H5112.8 (4)
C1—C2—N1114.30 (18)H4—C3—H5108.5 (6)
C1—C2—C3110.75 (17)C4—O4—H2109.9 (4)
N1—C2—C3103.10 (17)N1—C6—O3119.5 (2)
C1—C2—H3106.7 (3)N1—C6—C7118.0 (2)
N1—C2—H3110.2 (3)O3—C6—C7122.5 (3)
C3—C2—H3111.9 (4)C6—C7—H110107.8 (8)
C2—N1—C5112.76 (18)C6—C7—H111109.9 (6)
C2—N1—C6119.65 (17)C6—C7—H100109.9 (8)
C5—N1—C6127.22 (16)C6—C7—H101111.2 (9)
N1—C5—C4102.23 (17)H110—C7—H10180.6 (15)
N1—C5—H7109.8 (5)H111—C7—H101109.6 (12)
C4—C5—H7110.3 (5)C6—C7—H90110.7 (8)
N1—C5—H8111.0 (4)H110—C7—H90133.5 (14)
C4—C5—H8112.2 (5)H111—C7—H90107.3 (13)
H7—C5—H8110.9 (6)H100—C7—H9085.1 (14)
C5—C4—C3102.6 (2)H101—C7—H90108.1 (14)
C5—C4—O4111.3 (2)C6—C7—H91112.0 (8)
C3—C4—O4108.5 (2)H110—C7—H91112.6 (15)
C5—C4—H6111.9 (5)H111—C7—H9182.1 (13)
C3—C4—H6113.0 (4)H100—C7—H91109.0 (14)
O4—C4—H6109.4 (5)H101—C7—H91127.4 (13)
C2—C3—C4103.58 (18)H13—O5—H12107.5 (7)
Hydrogen-bond geometry (Å, º) for (hydroxyproline200K) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0111.6052.612 (3)173.1 (5)
C3—H4···O3i1.0982.5383.475 (3)142.7 (6)
C3—H5···O1ii1.0922.5513.617 (3)164.9 (6)
O4—H2···O50.9891.6092.594 (3)173.0 (6)
O5—H13···O1iii0.9491.8492.793 (3)172.7 (7)
O5—H12···O3iv0.9621.7582.719 (3)176.7 (6)
C7—H111···O1v1.1532.5703.461 (3)133.1 (8)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y1, z; (v) x+3/2, y+2, z1/2.
Selected geometric parameters (Å, º) for (hydroxyproline250K) top
O1—C11.208 (4)C4—H61.076 (9)
C1—O21.308 (4)C3—H41.080 (8)
C1—C21.514 (4)C3—H51.095 (10)
O2—H11.020 (9)O4—H20.984 (11)
C2—N11.460 (3)C6—O31.229 (5)
C2—C31.542 (5)C6—C71.494 (4)
C2—H31.094 (6)C7—H901.08 (3)
N1—C51.470 (4)C7—H911.13 (2)
N1—C61.343 (4)C7—H1101.07 (3)
C5—C41.537 (5)C7—H1111.087 (19)
C5—H71.095 (9)C7—H1001.10 (3)
C5—H81.086 (10)C7—H1011.01 (3)
C4—C31.528 (5)O5—H130.959 (9)
C4—O41.421 (5)O5—H120.980 (14)
O1—C1—O2124.1 (4)C2—C3—H4110.1 (7)
O1—C1—C2120.8 (3)C4—C3—H4110.7 (6)
O2—C1—C2114.9 (3)C2—C3—H5112.3 (7)
C1—O2—H1110.2 (5)C4—C3—H5112.4 (6)
C1—C2—N1114.3 (2)H4—C3—H5107.9 (8)
C1—C2—C3110.5 (2)C4—O4—H2109.4 (6)
N1—C2—C3103.3 (3)N1—C6—O3119.0 (3)
C1—C2—H3106.7 (4)N1—C6—C7118.3 (3)
N1—C2—H3109.8 (4)O3—C6—C7122.6 (4)
C3—C2—H3112.3 (5)C6—C7—H90110.3 (13)
C2—N1—C5112.7 (3)C6—C7—H91111.1 (11)
C2—N1—C6119.9 (2)C6—C7—H110109.6 (14)
C5—N1—C6127.0 (2)H90—C7—H110137 (2)
N1—C5—C4102.5 (2)H91—C7—H110118 (2)
N1—C5—H7109.9 (7)C6—C7—H111112.0 (9)
C4—C5—H7110.4 (7)H90—C7—H111110 (2)
N1—C5—H8111.0 (6)C6—C7—H100109.7 (13)
C4—C5—H8112.4 (7)H91—C7—H100104.1 (19)
H7—C5—H8110.3 (9)H110—C7—H100103 (2)
C5—C4—C3102.6 (3)H111—C7—H100130.4 (17)
C5—C4—O4110.9 (3)C6—C7—H101113.2 (14)
C3—C4—O4108.4 (3)H90—C7—H101105 (2)
C5—C4—H6111.7 (7)H91—C7—H101125.4 (19)
C3—C4—H6112.9 (6)H111—C7—H101106.2 (19)
O4—C4—H6110.0 (7)H13—O5—H12106.3 (10)
C2—C3—C4103.4 (2)
Hydrogen-bond geometry (Å, º) for (hydroxyproline250K) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O4i1.0201.5932.609 (5)173.4 (7)
C3—H4···O3i1.0802.5503.487 (5)144.5 (8)
C3—H5···O1ii1.0952.5593.626 (5)164.5 (9)
O4—H2···O50.9841.6052.583 (5)172.5 (8)
O5—H13···O1iii0.9591.8542.807 (5)172.5 (10)
O5—H12···O3iv0.9801.7532.732 (5)177.1 (9)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1; (iv) x, y1, z.
 

Footnotes

1This was only tested for scattering factors from the generalized invariom database (Dittrich et al., 2013[Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91-104.]), not for those from the UBDB2011  (Jarzembska & Dominiak, 2012[Jarzembska, K. N. & Dominiak, P. M. (2012). Acta Cryst. A68, 139-147.]), the ELMAM2  (Domagala et al., 2012[Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337-351.]) nor the SBFA (Hathwar et al., 2011[Hathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616-623.]) libraries. For modelling hydrogen scattering, theoretically derived databases have the advantage of higher precision, since experimental scattering factors for hydrogen can only be reliably determined to the dipolar level of the multipole expansion.

2Since displacement parameters used in this work are either isotropic or anisotropic, we use the abbreviation ADPs, which was recommended to be used only for anisotropic displacement parameters (Trueblood et al., 1996[Trueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D., Gramaccioli, C. M., Schulz, H. H., Shmueli, U. & Abrahams, S. C. (1996). Acta Cryst. A52, 770-781.]), in a different manner here.

3Post-analysis of the temperature and volume dependence of unit-cell parameters showed that the data point at 67 K (as indicated on the low-T device) was an outlier, probably due to inaccuracies caused by heating the cold stream of He gas to higher temperatures. We have corrected this temperature to 75 K, as derived from a plot of the increase of the unit-cell volume with temperature. Another reason for the deviating behaviour might be rotational disorder and this is discussed later on.

4This new segmented-body TLS refinement program and its functionality will be described in a forthcoming paper.

5We have also refined isotropic ADPs for H atoms using the neutron data instead of the anisotropic description. Results show the same trends within the standard deviations of our experiments, but since the figures of merit are worse we chose to use H-Ueq for neutron data and H-Uisofor the X-ray data.

6Supporting information is available from the IUCr electronic archives (Reference: KX5033 ).

7It should be noted that differences due to hydrogen bonding are not taken into account in the invariom approach. However, such influences are an order of magnitude smaller than electron-density redistributions due to covalent bonding, which are not taken into account in the IAM model.

8For the most common invariom H1c[1c1h1h], which is used three times, the standard deviation of HUiso/XUeq varies from 0.03 to 0.3 across all temperatures and experiments.

Acknowledgements

BD enjoyed helpful discussions with A. Ø. Madsen and H.-B. Bürgi. The grant of Director's Discretionary beam-time access to KOALA under ANSTO proposal DB2827 is gratefully acknowledged. SG acknowledges funding from the Australian Research Council within the Discovery Project DP110105347.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. B51, 816–823.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBürgi, H. B. & Capelli, S. C. (2000). Acta Cryst. A56, 403–412.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationBusing, W. R. & Levy, H. A. (1964). Acta Cryst. 17, 142–146.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCapelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ. Submitted.  Google Scholar
First citationChecińska, L., Morgenroth, W., Paulmann, C., Jayatilaka, D. & Dittrich, B. (2013). CrystEngComm, 15, 2084–2090.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDittrich, B., Hübschle, C. B., Luger, P. & Spackman, M. A. (2006). Acta Cryst. D62, 1325–1335.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, B., Hübschle, C. B., Messerschmidt, M., Kalinowski, R., Girnt, D. & Luger, P. (2005). Acta Cryst. A61, 314–320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T. & Holstein, J. J. (2013). Acta Cryst. B69, 91–104.  CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, B., Koritsánszky, T. & Luger, P. (2004). Angew. Chem. Int. Ed. 43, 2718–2721.  Web of Science CSD CrossRef CAS Google Scholar
First citationDittrich, B., McKinnon, J. J. & Warren, J. E. (2008). Acta Cryst. B64, 750–759.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, B., Pfitzenreuter, S. & Hübschle, C. B. (2012). Acta Cryst. A68, 110–116.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDittrich, B., Warren, J. E., Fabbiani, F. P., Morgenroth, W. & Corry, B. (2009). Phys. Chem. Chem. Phys. 11, 2601–2609.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDomagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). Acta Cryst. A68, 337–351.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDunitz, J. D., Schomaker, V. & Trueblood, K. N. (1988). J. Phys. Chem. 92, 856–867.  CrossRef CAS Web of Science Google Scholar
First citationDunning, T. H. (1989). J. Chem. Phys. 90, 1007–1023.  CrossRef CAS Web of Science Google Scholar
First citationEdwards, A. J. (2011). Aust. J. Chem. 64, 869–872.  Web of Science CrossRef CAS Google Scholar
First citationFischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44, 775–776.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616–623.  Web of Science CSD CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta (Berl.), 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHospital, M., Courseille, C. & Leroy, F. (1979). Biopolymers, 18, 1141–1148.  CSD CrossRef CAS Web of Science Google Scholar
First citationHübschle, C. B., Luger, P. & Dittrich, B. (2007). J. Appl. Cryst. 40, 623–627.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJarzembska, K. N. & Dominiak, P. M. (2012). Acta Cryst. A68, 139–147.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayatilaka, D. (1994). Chem. Phys. Lett. 230, 228–230.  CrossRef CAS Google Scholar
First citationJayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayatilaka, D. & Grimwood, D. J. (2003). Computational Science – ICCS 2003, edited by P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya & Y. E. Gorbachev. Lecture Notes in Computer Science, Vol. 2660, pp. 142–151. Heidelberg: Springer.  Google Scholar
First citationJelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. (1998). Acta Cryst. D54, 1306–1318.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnas, S. K. J., Morgenroth, W. & Weckert, E. (2006). Jahresber. HASYLAB, pp. 325–328. Hamburg: DESY.  Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø., Civalleri, B., Ferrabone, M., Pascale, F. & Erba, A. (2013). Acta Cryst. A69, 309–321.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P., Madsen, A. Ø., Spackman, M. A., Larsen, S. & Destro, R. (2008). Acta Cryst. A64, 465–475.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction Ltd (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxford, England.  Google Scholar
First citationPiltz, R. (2011). Acta Cryst. A67, C155.  CrossRef IUCr Journals Google Scholar
First citationPröpper, K., Holstein, J. J., Hübschle, C. B., Bond, C. S. & Dittrich, B. (2013). Acta Cryst. D69, 1530–1539.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchürmann, C. J., Pröpper, K., Wagner, T. & Dittrich, B. (2012). Acta Cryst. B68, 313–317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, R. F. (1976). Acta Cryst. A32, 182–185.  CrossRef IUCr Journals Web of Science Google Scholar
First citationThorn, A. (2012). Personal communication.  Google Scholar
First citationTrueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D., Gramaccioli, C. M., Schulz, H. H., Shmueli, U. & Abrahams, S. C. (1996). Acta Cryst. A52, 770–781.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVolkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P., Richter, T. & Koritsánszky, T. (2006). XD2006 – a Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors.  Google Scholar
First citationWhitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875–888.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoinska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Wozniak, K., Nishibori, E., Sugimoto, K. & Grabowsky, S. (2014). Acta Cryst. A. Submitted.  Google Scholar
First citationWu, G., Rodrigues, B. L. & Coppens, P. (2002). J. Appl. Cryst. 35, 356–359.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Volume 70| Part 4| July 2014| Pages 309-316
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds