research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Nine N-aryl-2-chloronicotinamides: supramolecular structures in one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aAgência Córdoba Ciência-Unidad Ceprocor, Córdoba, Argentina, bSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, dFundação Oswaldo Cruz, Far Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro-RJ, Brazil, and eInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro-RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 28 January 2006; accepted 27 April 2006)

Structures are reported here for eight further substituted N-aryl-2-chloronicotinamides, 2-ClC5H3NCONHC6H4X-4′. When X = H, compound (I) (C12H9ClN2O), the molecules are linked into sheets by N—H⋯N, C—H⋯π(pyridyl) and C—H⋯π(arene) hydrogen bonds. For X = CH3, compound (II) (C13H11ClN2O, triclinic [P\bar 1] with Z′ = 2), the molecules are linked into sheets by N—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds. Compound (III), where X = F, crystallizes as a monohydrate (C12H8ClFN2O·H2O) and sheets are formed by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds and aromatic ππ stacking interactions. Crystals of compound (IV), where X = Cl (C12H8Cl2N2O, monoclinic P21 with Z′ = 4) exhibit inversion twinning: the molecules are linked by N—H⋯O hydrogen bonds into four independent chains, linked in pairs by C—H⋯π(arene) hydrogen bonds. When X = Br, compound (V) (C12H8BrClN2O), the molecules are linked into sheets by N—H⋯O and C—H⋯N hydrogen bonds, while in compound (VI), where X = I (C12H8ClIN2O), the molecules are linked into a three-dimensional framework by N—H⋯O and C—H⋯π(arene) hydrogen bonds and an iodo⋯N(pyridyl) interaction. For X = CH3O, compound (VII) (C13H11ClN2O2), the molecules are linked into chains by a single N—H⋯O hydrogen bond. Compound (VIII) (C13H8ClN3O, triclinic [P\bar 1] with Z′ = 2), where X = CN, forms a complex three-dimensional framework by N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds and two independent aromatic ππ stacking interactions.

1. Introduction

Nicotinic acid (pyridine-3-carboxylic acid) and nicotinamide (niacinamide, pyridine-3-carboxamide) are two of the principal members of the B-vitamin complex. Niacin, nicotinamide and nicotinic acid have identical vitamin activities, but they have very different pharmacological activities. Nicotinamide, via its major metabolite nicotinamide adenine dinucleotide, is involved in a wide range of biological processes including the production of energy, the synthesis of fatty acids, cholesterol and steroids, signal transduction, and the maintenance of the integrity of the genome. Nicotinic acid in pharmacological doses is used as an antihyperlipidemic agent: it also causes vasodilation of cutaneous blood vessels. Nicotinamide has been investigated as an agent for the prevention or delay of the onset of type 1 diabetes mellitus. It also has anti-oxidant, anti-inflammatory and anti-carcinogenic activities, and has putative activity against osteoarthritis and granuloma annulare. We have made a study of the properties and activities of substituted derivatives, 2-chloro-N-(4-X-phenyl)nicotinamides, and here we report the structures and supramolecular arrangements of nine examples having X = H (I), Me (II), F (III), Cl (IV), Br (V), I (VI), OMe (VII) and CN (VIII), and including the recently reported analogue with X = NO2, (IX) (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]).

Here we report the molecular and supramolecular structures of eight closely related N-aryl-2-chloronicotinamides, 2-ClC5H3NCONHC6H4X-4′, whose crystallization characteristics prove to be all different, even within the halogen-substituted subset, (III)–(VI), and whose supramolecular structures all prove to be different, with no two utilizing the same combination of direction-specific intermolecular interactions.

[Scheme 1]

2. Experimental

2.1. Synthesis

Samples of (I)–(VIII)[link] were prepared by reaction of equimolar quantities of 2-chloronicotinoyl chloride and the appropriate substituted aniline in tetrahydrofuran solution at ambient temperature in the presence of a catalytic quantity of triethylamine. After stirring for 8 h, the reaction mixtures were neutralized with saturated aqueous sodium hydrogencarbonate solution and the resulting aqueous mixtures were extracted with ethyl acetate (2 × 30 cm3). For each preparation, the organic extracts were combined, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure. Chromatography on silica, using hexane:ethyl acetate gradients (up to 50% ethyl acetate), then yielded the pure products, with yields in the range 80–90%. Crystals of (I), (II) and (IV)–(VIII) suitable for single-crystal X-ray diffraction were grown from solution in ethanol, and crystals of (III) were grown from an aqueous solution: m.p.s: (I) 395–397 K, (II) 432–433 K, (III) 366–367 K, (IV) 421–422 K, (V) 399–400 K, (VI) 448–450 K, (VII) 383–384 K and (VIII) 445–446 K.

2.2. Data collection, structure solution and refinement

Details of cell data, data collection and structure solution and refinement are summarized in Table 1[link] (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT, Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]; Cernik et al., 1997[Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. & Teat, S. J. (1997). J. Synchrotron Rad. 4, 279-286.]; Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]; McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 University of Göttingen, Germany.],b[Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.], 2003[Sheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.]; Hooft, 1999[Hooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.]). The space groups for (I), (IV), (V), VI) and (VII) were all assigned uniquely from the systematic absences: crystals of (II), (III) and (VIII) are triclinic, and for each the space group [P\bar 1] was selected, and confirmed by the successful structure analysis. The structures were all solved by direct methods using SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 University of Göttingen, Germany.]) and refined on F2 with all data using SHELXL97 (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.]). A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). All H atoms were located from difference maps and all were included in the refinements as riding atoms, with distances C—H 0.95 and N—H 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N). For (V) and (VII), the correct enantiomorph was selected using the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]): the final values were 0.031 (7) and −0.05 (7), respectively. For (IV), where the crystals were all of very poor quality, the Flack parameter 0.54 (11) indicated inversion twinning.

Table 1
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C12H9ClN2O C13H11ClN2O C12H8ClFN2O·H2O C12H8Cl2N2O
Mr 232.66 246.69 268.67 267.10
Cell setting, space group Orthorhombic, Pccn Triclinic, [P\bar 1] Triclinic, [P\bar 1] Monoclinic, P21
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2)
a, b, c (Å) 13.2296 (6), 21.0744 (10), 7.6898 (16) 9.6824 (6), 11.3082 (7), 11.5139 (7) 6.8033 (4), 8.1303 (3), 11.5356 (6) 5.0855 (8), 28.982 (8), 15.607 (4)
α, β, γ (°) 90, 90, 90 77.453 (2), 73.445 (2), 87.978 (2) 84.032 (3), 84.297 (2), 69.569 (3) 90, 90.37 (2), 90
V3) 2144.0 (5) 1179.07 (13) 593.32 (5) 2300.2 (9)
Z 8 4 2 8
Dx (Mg m−3) 1.442 1.390 1.504 1.543
Radiation type Mo Kα Synchrotron, λ = 0.67510 Å Mo Kα Mo Kα
No. of reflections for cell parameters 2446 6881 2720 9787
θ range (°) 3.1–27.5 2.1–28.8 3.3–27.8 3.0–27.5
μ (mm−1) 0.33 0.31 0.33 0.55
Crystal form, colour Needle, colourless Needle, colourless Plate, colourless Plate, colourless
Crystal size (mm) 0.24 × 0.09 × 0.02 0.10 × 0.02 × 0.02 0.18 × 0.16 × 0.03 0.28 × 0.07 × 0.03
         
Data collection
Diffractometer Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker SMART APEX2 CCD diffractometer Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker–Nonius 95 mm CCD camera on κ goniostat
Data collection method φ and ω scans Fine-slice ω scans φ and ω scans φ and ω scans
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan
Tmin 0.943 0.970 0.933 0.862
Tmax 0.993 0.994 0.990 0.984
No. of measured, independent and observed reflections 17 837, 2446, 1724 12 982, 6881, 5217 12 303, 2720, 1943 24 726, 9787, 6370
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.104 0.022 0.052 0.053
θmax (°) 27.5 28.8 27.8 27.5
Range of h, k, l −16 → h → 17 −13 → h → 13 −8 → h → 8 −6 → h → 6
  −27 → k → 27 −16 → k → 16 −9 → k → 10 −37 → k → 37
  −9 → l → 9 −16 → l → 16 −14 → l → 14 −20 → l → 20
         
Refinement
Refinement on F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.129, 1.07 0.044, 0.124, 1.02 0.044, 0.113, 1.05 0.069, 0.169, 1.04
No. of reflections 2446 6881 2720 9787
No. of parameters 145 309 163 254
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0479P)2 + 1.6007P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.3225P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.1705P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0454P)2 + 5.774P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 0.001 <0.0001 0.001
Δρmax, Δρmin (e Å−3) 0.28, −0.28 0.43, −0.30 0.26, −0.29 0.79, −0.54
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4396 Friedel pairs
Flack parameter 0.54 (11)
  (V) (VI) (VII) (VIII)
Crystal data
Chemical formula C12H8BrClN2O C12H8ClIN2O C13H11ClN2O2 C13H8ClN3O
Mr 311.56 358.55 262.69 257.67
Cell setting, space group Orthorhombic, P212121 Orthorhombic, Pbca Orthorhombic, P212121 Triclinic, [P\bar 1]
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2)
a, b, c (Å) 4.8810 (2), 13.3448 (2), 18.3974 (3) 10.6597 (2), 25.9833 (3), 9.2044 (6) 4.8536 (2), 11.8437 (4), 21.0612 (7) 7.2885 (3), 7.7607 (3), 20.8849 (9)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 96.456 (2), 92.913 (2), 91.810 (2)
V3) 1198.33 (6) 2549.38 (18) 1210.69 (6) 1171.49 (8)
Z 4 8 4 4
Dx (Mg m−3) 1.727 1.868 1.441 1.461
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 2736 2909 2661 5365
θ range (°) 3.0–27.5 3.0–27.5 3.6–27.5 2.9–27.6
μ (mm−1) 3.64 2.71 0.31 0.32
Crystal form, colour Block, colourless Plate, colourless Block, colourless Block, colourless
Crystal size (mm) 0.16 × 0.16 × 0.16 0.33 × 0.18 × 0.07 0.34 × 0.22 × 0.12 0.40 × 0.10 × 0.10
         
Data collection
Diffractometer Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker–Nonius 95 mm CCD camera on κ goniostat
Data collection method φ and ω scans φ and ω scans φ and ω scans φ and ω scans
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan
Tmin 0.558 0.469 0.921 0.899
Tmax 0.558 0.833 0.964 0.969
No. of measured, independent and observed reflections 36 201, 2736, 2597 19 649, 2909, 2314 7884, 2661, 2184 21 639, 5365, 3760
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.047 0.038 0.040 0.060
θmax (°) 27.5 27.5 27.5 27.6
Range of h, k, l −6 → h → 6 −13 → h → 13 −5 → h → 6 −9 → h → 9
  −17 → k → 17 −32 → k → 33 −15 → k → 11 −10 → k → 10
  −23 → l → 23 −11 → l → 11 −21 → l → 27 −27 → l → 26
         
Refinement
Refinement on F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.07 0.023, 0.056, 1.04 0.042, 0.104, 1.04 0.059, 0.171, 1.06
No. of reflections 2736 2909 2661 5365
No. of parameters 154 154 164 325
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0339P)2 + 0.2964P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.026P)2 + 0.5926P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0579P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0844P)2 + 1.0407P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 0.005 <0.0001 <0.0001
Δρmax, Δρmin (e Å−3) 0.43, −0.52 0.39, −0.78 0.24, −0.35 0.74, −0.35
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1098 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1013 Friedel pairs
Flack parameter 0.031 (7) −0.05 (7)

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Figs. 1–30 show the independent components of (I)–(VIII) and aspects of their supramolecular structures. Selected torsional angles are given in Table 2[link] and details of the hydrogen bonding are in Table 3[link].1

Table 2
Selected torsional and dihedral angles (°)

C13—C17—N21—C21 C12—C13—C17—N21 C17—N21—C21—C22 Δ
(I)
178.8 (2) −56.2 (4) −171.8 (2) 48.2 (2)
       
(II)
175.30 (13) −99.53 (16) −141.82 (15) 59.8 (2)
175.77 (13) −103.14 (16) 166.05 (14) 62.9 (2)
       
(III)
171.39 (18) 130.5 (2) 174.60 (18) 62.6 (2)
       
(IV)
175.0 (6) 135.5 (8) 149.0 (6) 78.2 (3)
−176.7 (6) −137.9 (8) −148.6 (5) 77.8 (3)
173.9 (6) 134.4 (8) −141.9 (6) 12.4 (3)
−176.9 (6) −138.0 (8) 144.9 (5) 11.5 (3)
       
(V)
178.86 (17) 51.3 (3) 143.6 (2) 17.2 (2)
       
(VI)
172.75 (19) −77.3 (2) −135.9 (2) 35.4 (2)
       
(VII)
−179.41 (18) −134.5 (2) 141.0 (2) 10.2 (2)
       
(VIII)
170.3 (3) −73.7 (4) −163.6 (3) 60.9 (2)
−174.2 (3) 90.9 (3) 177.8 (3) 89.4 (3)
       
(IX)§
173.29 (19) 78.1 (3) −179.8 (2) 73.3 (2)
−173.4 (2) −71.5 (3) 173.6 (2) 73.6 (3)
Δ is the dihedral angle between the two rings in each independent molecule.
‡In molecule 2 of (II), (IV), (VIII) and (IX) the relevant atom sequence is C32—C33—C37—N41—C41—C42; in molecules 3 and 4 of (IV) the relevant atom sequences are C52—C53—C57—N61—C61—C62 and C72—C73—C77—N81—C81—C82, respectively (see Figs. 5[link], 12[link] and 25[link]).
§Data from de Souza et al. (2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]).

Table 3
Hydrogen-bond parameters (Å, °)

D—H⋯A H⋯A DA D—H⋯A
(I)
N21—H21⋯N11i 2.25 3.101 (3) 164
C15—H15⋯Cg1ii 2.89 3.535 (3) 126
C16—H16⋯Cg2iii 2.87 3.464 (3) 121
       
(II)
N21—H21⋯O3 1.96 2.827 (2) 170
N41—H41⋯O1iv 1.99 2.847 (2) 163
C35—H35⋯O1ii 2.48 3.424 (2) 174
C14—H14⋯Cg3v§ 2.69 3.398 (2) 132
C34—H34⋯Cg2ii 2.63 3.398 (2) 138
       
(III)
N21—H21⋯O2 1.91 2.837 (2) 179
O2—H2A⋯N11vi 1.97 2.887 (2) 161
O2—H2B⋯O1iv 1.95 2.780 (2) 173
       
(IV)
N21—H21⋯O1iv 2.11 2.925 (8) 153
N41—H41⋯O3iv 2.00 2.833 (8) 157
N61—H61⋯O5vii 2.11 2.925 (8) 153
N81—H81⋯O7vii 2.00 2.841 (8) 159
C26—H26⋯Cg5 2.76 3.444 (8) 130
C46—H46⋯Cg4†† 2.75 3.448 (8) 131
C62—H62⋯Cg3vii§ 2.88 3.588 (8) 132
C82—H82⋯Cg2vii 2.87 3.579 (8) 132
       
(V)
N21—H21⋯O1iv 2.03 2.825 (2) 169
C22—H22⋯N11viii 2.56 3.405 (3) 148
       
(VI)
N21—H21⋯O1ix 2.01 2.853 (2) 160
C15—H15⋯Cg2x 2.65 3.404 (2) 137
       
(VII)
N21—H21⋯O1ii 1.92 2.785 (2) 168
       
(VIII)
N21—H21⋯N44 2.15 3.006 (4) 164
N41—H41⋯N24xi 2.10 2.978 (4) 173
C14—H14⋯O11xii 2.49 3.334 (4) 148
C15—H15⋯O11ii 2.60 3.507 (4) 160
C25—H25⋯N11xiii 2.52 3.348 (4) 146
C34—H34⋯O31xiv 2.53 3.327 (4) 142
C35—H35⋯O31ii 2.45 3.366 (4) 161
C45—H45⋯N31xiii 2.53 3.300 (4) 138
Symmetry codes: (i) [{1\over 2}- x, y, -{1\over 2} + z]; (ii) 1 - x, 1 - y, 1 - z; (iii) [{1\over 2} - x, y, {1\over 2} + z]; (iv) -1 +x, y, z; (v) 1 - x, 2 - y, -z; (vi) 1 - x, 2 - y, 1 - z; (vii) 1 + x, y, z; (viii) [-x, {1\over 2} + y, {1\over 2}- z]; (ix) [x, {1\over 2} - y, {1\over 2} + z]; (x) [-{1\over 2} + x, {1\over 2} - y, 1 - z]; (xi) -2 + x, 1 + y, z; (xii) 1 - x, -y, 1 - z; (xiii) 1 + x, -1 + y, z; (xiv) -1 - x, 1 - y, -z.
†Cg1 is the centroid of ring N11, C12–C16.
‡Cg2 is the centroid of ring C21–C26.
§Cg3 is the centroid of ring C41–C46.
¶Cg5 is the centroid of ring C81–C86.
††Cg4 is the centroid of ring C61–C66.

3. Results and discussion

3.1. Crystallization characteristics

Compounds (II) and (VIII) both crystallize with Z′ = 2, while (IV) has Z′= 4; similarly, the 4-nitrophenyl derivative (IX) crystallizes with Z′ = 2 (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]). Of the compounds (I)–(VIII) reported here, the 4-fluorophenyl derivative is unique in crystallizing as a monohydrate, although the 2-nitrophenyl analogue reported recently (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]) also crystallizes as a stoichiometric monohydrate.

3.2. Molecular conformations

In each of compounds (I)–(VIII), as well as in (IX) (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]), the central C—C—N—C spacer unit is nearly planar, as shown by the torsional angles for this unit which are all close to 180°, ranging between 170.0 (3) and −173.4 (2)° (Table 2[link]). However, the aryl ring is often markedly twisted out of this plane, particularly in (II), (IV), (V), (VI) and (VII), while the chloropyridyl is always twisted well away from the plane of the central spacer, being nearly orthogonal to this plane in (II), (VI), (VIII) and (IX). An alternative way to consider the overall conformations is by means of the dihedral angle denoted Δ between the two rings of each molecule, also shown in Table 2[link]. It is striking to note the relationships between the conformations of the four independent molecules in (IV), shown particularly clearly by the dihedral angles Δ: molecules 1 and 2, containing N21 and N41 respectively, are close to being enantiomorphs, as are molecules 3 and 4 containing N61 and N81. However, the relationships between molecules 1 and 3, and between molecules 2 and 4 is that of diastereoisomers. The wide range of the dihedral angles Δ in (I)–(IX), varying from 10.2 (2)° in (VII) to 89.4 (2)° in molecule 2 of (VIII), indicates that the intramolecular barriers to rotation about the C—C bonds connecting the rings to the central spacer unit are rather readily overcome by the intermolecular forces, in particular by the direction-specific hydrogen bonds. In this way the observed conformations are an indirect reflection of the action of the hydrogen bonds, just as the detailed supramolecular aggregation patterns are a direct reflection of the action of the hydrogen bonds. The bond lengths and angles present no unusual features.

3.3. Supramolecular structures

3.3.1. Compound (I)

In the unsubstituted parent compound, (I) (Fig. 1[link]), the molecules are linked into sheets by a combination of N—H⋯N, C—H⋯π(pyridyl) and C—H⋯π(arene) hydrogen bonds, but N—H⋯O hydrogen bonds are absent (Table 3[link]). The formation of the sheets is most conveniently analysed and described in terms of the chains formed by the N—H⋯N and C—H⋯π(pyridyl) hydrogen bonds, and the linkage of the chains by the C—H⋯π(arene) hydrogen bonds.

[Figure 1]
Figure 1
The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The amidic N21 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the pyridyl N11 atom in the molecule at ([{1\over 2}- x, y, -{1\over 2}+ z]), thus forming a C(7) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction and generated by the c glide plane at x = 0.25. This chain is reinforced by the —H⋯π(pyridyl) hydrogen bond, where the C16 atom in the molecule at (x, y, z) acts as a donor to the pyridyl ring in the molecule at ([{1\over 2}- x, y, {1\over 2}+ z]), thus forming a [001] chain of rings generated by the c glide plane at y = 0.25 (Fig. 2[link]). Four chains of this type pass though each unit cell, two each in the domains 0.25 < y < 0.75 and −0.25 < y < 0.25, and within each domain, one chain is generated by the c glide plane at 0.25, and the other, antiparallel to the first, is generated by the c glide plane at y = 0.75. A simple centrosymmetric motif serves to link the antiparallel pairs of [001] chains in each domain to form sheets. The C15 atom in the molecule at (x, y, z), which is part of a chain generated by the glide plane at x = 0.25, acts as a hydrogen-bond donor to the phenyl ring in the molecule at (1 - x, 1 - y, 1 - z), which is part of a chain generated by the glide plane at x = 0.75 (Fig. 3[link]). Propagation of this interaction then links all the chains in a given domain of y into a (010) sheet (Fig. 4[link]): two sheets, related to one another by the twofold rotation axes parallel to [001], pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

[Figure 2]
Figure 2
Part of the crystal structure of (I) showing the formation of a hydrogen-bonded chain of rings along [001]. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{1\over 2}- x, y -{1\over 2} + z]), ([{1\over 2} - x, y, {1\over 2} + z]) and (x, y, -1 + z), respectively.
[Figure 3]
Figure 3
Part of the crystal structure of (I) showing the centrosymmetric ring built from C—H⋯π(arene) hydrogen bonds, which link the [001] chains into (010) sheets. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 4]
Figure 4
Stereoview of part of the crystal structure of (I), showing a hydrogen-bonded (010) sheet. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
3.3.2. Compound (II)

In the 4-methylphenyl derivative (II), where Z′ = 2 (Fig. 5[link]), the molecules are linked by two independent N—H⋯O hydrogen bonds (Table 3[link]) into C22(8) chains (Fig. 6[link]): it is convenient to refer to molecules containing atoms O1 and O3 as 1 and 2, respectively. Two antiparallel C22(8) chains pass through each unit cell and these chains are linked into a chain of edge-fused rings by a single, nearly linear C—H⋯O hydrogen bond, where the pyridyl C35 atom in molecule 2 at (x, y, z) acts as a hydrogen-bond donor to the O1 atom in molecule 1 at (1 - x, 1 - y, 1 - z). Propagation by translation and inversion of these three hydrogen bonds, two of the N—H⋯O type and one of the C—H⋯O type, generates a chain of centrosymmetric, edge-fused rings along ([x, {1\over 2}, {1\over 2}]), with R24(16) rings centred at ([n, {1\over 2}, {1\over 2}]) (n = zero or integer) and R44(20) rings centred at ([n + {1\over 2}, {1\over 2}, {1\over 2}]) (n = zero or integer; Fig. 7[link]).

[Figure 5]
Figure 5
The two independent molecules of (II) showing the atom-labelling scheme and the N—H⋯O hydrogen bond within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
Part of the crystal structure of (II), showing the formation of a C22(8) chain along [100]. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-1 + x, y, z) and (1 + x, y, z), respectively.
[Figure 7]
Figure 7
Stereoview of part of the crystal structure of (II) showing the formation of a chain of edge fused R24(16) and R44(20) rings along [100]. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

There are two C—H⋯π(arene) hydrogen bonds in the structure of (II) (Table 3[link]): one, having the C34 atom as the donor, lies within the [100] chain of rings, but the other, having C14 as the donor, links the [100] chains into sheets. The C14 atom in molecule 1 at (x, y, z) lies in the chain along ([x, {1\over 2}, {1\over 2}]): this atom acts as a donor to the phenyl ring C41–C46 in molecule 2 at (1 - x, 2 - y, -z), which lies in the chain along ([x, {3\over 2}, -{1\over 2}]). Propagation by inversion of this C—H⋯π(arene) hydrogen bond then links [100] chains into a (011) sheet (Fig. 8[link]). There are no direction-specific interactions between adjacent sheets.

[Figure 8]
Figure 8
Stereoview of part of the crystal structure of (II) showing the linking, by means of a single C—H⋯π(arene) hydrogen bond, of the [100] chains of rings into a (011) sheet. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
3.3.3. Compound (III)

The 4-fluorophenyl derivative crystallizes as a monohydrate, compound (III), and in the selected asymmetric unit (Fig. 9[link]) the two components are linked by an N—H⋯O hydrogen bond: this utilization of the N—H donor site immediately precludes the formation of the characteristic amidic C(4) chain. Instead the molecules are linked into chains of edge-fused rings by a combination of O—H⋯O and O—H⋯N hydrogen bonds (Table 3[link]), and these chains are linked into sheets by a single aromatic ππ stacking interaction.

[Figure 9]
Figure 9
The molecular components of (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The water atom O2 at (x, y, z) acts as a hydrogen-bond donor, via H2B, to the amidic atom O1 at (-1 + x, y, z), thus generating by translation a C22(6) chain running parallel to the [100] direction. An antiparallel pair of these C22(6) chains is linked by the N—H⋯O hydrogen bond: the O2 atom at (x, y, z) acts as a donor, via H2A, to the pyridyl N11 atom at (1 - x, 2 - y, 1 - z), thus generating a centrosymmetric R44(16) ring, centred at ([{1\over 2}, 1, {1\over 2}]). The combination of all the hydrogen bonds then generates, by translation and inversion, a chain of edge-fused R44(16) rings along ([x, 1, {1\over 2}]) (Fig. 10[link]). There are two types of ring within this chain and both are centrosymmetric: those having amidic O atoms as two of the acceptor sites are centred at ([n, 1, {1\over 2}]) (n = zero or integer), and those having water O atoms as two of the acceptor sites are centred at ([n + {1\over 2}, 1, {1\over 2}]) (n = zero or integer).

[Figure 10]
Figure 10
Part of the crystal structure of (III) showing the formation of a hydrogen-bonded chain of edge-fused rings along [100]. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (1 - x, 2 - y, 1 - z), (-1 + x, y, z) and (-x, 2 - y, 1 - z), respectively.

The pyridyl rings in the amide molecules at (x, y, z) and (1 - x, 1 - y, 2 - z) are strictly parallel with an interplanar spacing of 3.352 (2) Å; the ring-centroid separation is 3.618 (2) Å, corresponding to a nearly ideal ring offset of 1.362 (2) Å. These two amide molecules form parts of the chains of fused rings along ([x, 1, {1\over 2}]) and ([x, 0, {3\over 2}]), so that propagation by inversion of this stacking interaction forms a [01[\bar 1]] chain (Fig. 11[link]), which links the chains of rings into a (011) sheet.

[Figure 11]
Figure 11
Stereoview of part of the crystal structure of (III) showing the centrosymmetric π-stacking interaction which links the [100] chains into (011) sheets. For the sake of clarity, the H atoms bonded to C atoms have been omitted.
3.3.4. Compound (IV)

We comment here only briefly on the supramolecular aggregation of the 4-chlorophenyl compound (IV). This compound crystallizes in the non-centrosymmetric space group P21 with Z′ = 4 (Fig. 12[link]), but the crystal quality was extremely poor, with extensive twinning. Nonetheless, the main features of the structure are clear enough: each of the four independent molecules forms a C(4) chain by translation along [100], built from N—H⋯O hydrogen bonds (Fig. 13[link]), and these chains are linked in pairs by the C—H⋯ π(arene) hydrogen bonds (Table 3[link]).

[Figure 12]
Figure 12
The four independent molecules of (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atom labelling for the other three molecules and the conformational differences between the molecules are defined in Table 2[link].
[Figure 13]
Figure 13
Stereoview of part of the crystal structure of (IV) showing the formation of four independent C(4) chains along [100]. For the sake of clarity, the H atoms bonded to C atoms have been omitted.
3.3.5. Compound (V)

In the 4-bromophenyl compound (V) (Fig. 14[link]), the molecules are linked into isolated sheets by a combination of one N—H⋯O and one C—H⋯N hydrogen bond (Table 3[link]). The amidic N21 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the amidic O1 in the molecule at (-1 + x, y, z), so generating by translation a C(4) chain running parallel to the [100] direction (Fig. 15[link]). Four chains of this type pass through each unit cell, two in each of the domains 0 < z < 0.5 and 0.5 < z < 1.0, and within each of these domains the chains are linked into sheets by a single C—H⋯N hydrogen bond. The aryl C22 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the pyridyl N11 atom in the molecule at ([-x, {1\over 2} + y, {1\over 2} - z]), so forming a C(8) chain running parallel to the [010] direction, and generated by the 21 screw axis along ([0, y, {1\over 4}]) (Fig. 16[link]). The combination of the [100] and [010] chains then generates a (001) sheet in the form of a (4,4) net built from a single type of R44(22) ring (Fig. 17[link]). Two sheets of this type pass through each unit cell, generated by screw axes at y = 0.25 and y = 0.75, respectively, but there are no direction-specific interactions between adjacent sheets: in particular, aromatic ππ stacking interactions and C—H⋯π(arene) hydrogen bonds are absent.

[Figure 14]
Figure 14
The molecule of (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 15]
Figure 15
Part of the crystal structure of (V) showing the formation of a hydrogen-bonded C(4) chain along [100]. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-1 + x, y, z) and (1 + x, y, z), respectively.
[Figure 16]
Figure 16
Part of the crystal structure of (V) showing the formation of a hydrogen-bonded C(8) chain along [010]. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([-x, {1\over 2} + y, {1\over 2} - z]) and ([-x, -{1\over 2} + y, {1\over 2} - z]), respectively.
[Figure 17]
Figure 17
Stereoview of part of the crystal structure of (V) showing the formation of a hydrogen-bonded (001) sheet of R44(22) rings. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
3.3.6. Compound (VI)

The molecules of the 4-iodophenyl compound (VI) (Fig. 18[link]) are linked into sheets by a combination of one N—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond (Table 3[link]) and these sheets are themselves linked by a single iodo⋯N(pyridyl) interaction. The N21 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the O1 atom in the molecule at ([x, {1\over 2} - y, {1\over 2} + z]), so forming a C(4) chain running parallel to the [001] direction, and generated by the c-glide plane at y = 0.25 (Fig. 19[link]). In addition, the pyridyl C15 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the aryl ring C21—C26 in the molecule at ([-{1\over 2} + x, {1\over 2} - y, 1 - z]), so forming a chain running parallel to the [100] direction and generated by the 21 screw axis along ([x, {1\over 4}, {1\over 2}]) (Fig. 20[link]). The combination of these two hydrogen-bonded motifs then generates a (010) sheet (Fig. 21[link]): two sheets of this type pass through each unit cell, in the domains −0.02 < y < 0.52 and 0.48 < y < 1.02. The sole direction-specific interaction between adjacent sheets is an iodo⋯N(pyridyl) interaction, somewhat analogous electronically to an iodo⋯nitro interaction: the I24 atom in the molecule at (x, y, z) forms a short contact with the pyridyl N11 atom in the molecule at ([{3\over 2} - x, {1\over 2} + y, z]), with dimensions I⋯Ni 3.116 (2) Å, C—I⋯Ni 167.5 (2)° [symmetry code (i) [{3\over 2} - x, {1\over 2} + y, z]]. This interaction thus forms a C(10) chain (Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]) running parallel to the [010] direction and generated by a b-glide plane at y = 0.75 (Fig. 22[link]): in this manner all the (010) sheets are linked into a continuous three-dimensional array.

[Figure 18]
Figure 18
The molecule of (VI) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 19]
Figure 19
Part of the crystal structure of (VI) showing the formation of a hydrogen-bonded C(4) chain along [001]. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([x, {1\over 2} - y, {1\over 2} + z]) and ([x, {1\over 2} - y, -{1\over 2} + z]), respectively.
[Figure 20]
Figure 20
Part of the crystal structure of (VI) showing the formation of a hydrogen-bonded chain along [100]. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([-{1\over 2} + x, {1\over 2} - y, 1 - z]) and ([{1\over 2} + x, {1\over 2} - y, 1 - z]), respectively.
[Figure 21]
Figure 21
Stereoview of part of the crystal structure of (VI) showing the formation of a hydrogen-bonded (010) sheet. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 22]
Figure 22
Part of the crystal structure of (VI) showing the formation of an iodo⋯N(pyridyl) chain along [010]. For the sake of clarity, the H atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{3\over 2} - x, {1\over 2} + y, z]) and ([{3\over 2} - x, -{1\over 2} + y, z]), respectively.
3.3.7. Compound (VII)

The supramolecular aggregation of the 4-methoxyphenyl derivative, compound (VII) (Fig. 23[link]), is exceptionally simple. A single N—H⋯O hydrogen bond (Table 3[link]) links the molecules into C(4) chains generated by translation (Fig. 24[link]). Four chain of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains: in particular, C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking interactions are both absent.

[Figure 23]
Figure 23
The molecule of (VII) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 24]
Figure 24
Part of the crystal structure of (VII) showing the formation of a hydrogen-bonded C(4) chain along [100]. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-1 + x, y, z) and (1 + x, y, z), respectively.
3.3.8. Compound (VIII)

The structure of the 4-cyanophenyl compound (VIII) (Fig. 25[link]) contains N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds (Table 3[link]), as well as aromatic ππ stacking interactions; the resulting three-dimensional structure is of considerable complexity, although it is readily analysed in terms of its constituent one-dimensional sub-structures. Within the asymmetric unit, the amido N21 atom acts as a hydrogen-bond donor to the cyano N44 atom: similarly, the amido atom N41 at (x, y, z) acts as a donor to the cyano N24 atom at (-2 + x, 1 + y, z), so generating by translation a C22(16) chain running parallel to the [2[\bar 1]0] direction (Fig. 26[link]). In contrast to the simple chain generated by the hard hydrogen bonds, the soft hydrogen bonds generate both molecular ladders and chains of rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Figure 25]
Figure 25
The two independent molecules of (VIII) showing the atom-labelling scheme and the N—H⋯N hydrogen bond within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 26]
Figure 26
Stereoview of part of the crystal structure of (VIII) showing the formation of a C22(16) chain along [2[\bar 1]0] built from N—H⋯N hydrogen bonds. For the sake of clarity, the H atoms bonded to C atoms have been omitted.

Atoms C15 and C35 in the bimolecular aggregate at (x, y, z) act as hydrogen-bond donors respectively to atoms O11 and O31 in the aggregate at (-1 + x, y, z). The individual C—H⋯O hydrogen bonds each generate by translation a C(6) chain along [100] and, together with the N—H⋯N hydrogen bond within the bimolecular aggregate, they generate a chain of edge-fused R44(32) rings (Fig. 27[link]). Alternatively, this motif can be regarded as a molecular ladder, in which the C(6) chains form the uprights, and N—H⋯N hydrogen bonds form part of each rung.

[Figure 27]
Figure 27
Stereoview of part of the crystal structure of (VIII) showing the formation of a chain of edge-fused R44(32) rings along [100] built from N—H⋯N and C—H⋯O hydrogen bonds. For the sake of clarity, the H atoms bonded to C atoms, but not involved in the motif shown, have been omitted.

In a similar way, the C25 and C45 atoms in the bimolecular aggregate at (x, y, z) act as hydrogen-bond donors respectively to pyridyl atoms N11 and N31 in the aggregate at (1 + x, -1 + y, z). The individual C—H⋯N hydrogen bonds each generate by translation a C(9) chain along [1[\bar 1]0] and together with the N—H⋯N hydrogen bond within the bimolecular aggregate they generate a chain of edge-fused R44(28) rings (Fig. 28[link]). As before, this motif can be regarded as a molecular ladder, with the C(9) chains now forming the uprights and with the N—H⋯N hydrogen bonds in the rungs.

[Figure 28]
Figure 28
Stereoview of part of the crystal structure of (VIII) showing the formation of a chain of edge-fused R44(28) rings along [1[\bar 1]0] built from N—H⋯N and C—H⋯N hydrogen bonds. For the sake of clarity, the H atoms bonded to C atoms, but not involved in the motif shown, have been omitted.

Finally, atoms C14 and C34 at (x, y, z) acts as hydrogen-bond donors respectively to atoms O11 at (1 - x, -y, 1 - z) and O31 at (-1 - x, 1 - y, -z), so generating two distinct R22(10) rings, both centrosymmetric, and centred respectively at ([{1\over 2}, 0, {1\over 2}]) and ([-{1\over 2}, {1\over 2}, 0]). The combination of these two rings, together with the N—H⋯N hydrogen bond within the asymmetric unit, then generates by inversion a chain of rings running parallel to the [2[\bar 1]1] direction (Fig. 29[link]). This chain, in turn, is reinforced by a combination of two ππ stacking interactions. The pyridyl rings containing N11 in the molecules are (x, y, z) and (1 - x, 1 - y, 1 - z) and are parallel with an interplanar spacing of 3.426 (2) Å; the ring-centroid separation is 3.589 (2) Å, corresponding to a ring offset of 1.069 (2) Å; similarly, the pyridyl rings containing N31 in the molecules at (x, y, z) and (-1 - x, 2 - y, -z) have an interplanar spacing of 3.334 (2) Å, with a ring-centroid separation of 3.658 (2) Å and ring offset of 1.505 (2) Å. These two interactions are centred across the inversion centres at ([{1\over 2}, {1\over 2}, {1\over 2}]) and ([-{1\over 2}, 1, 0]), respectively, and their combination thus generates a second [2[\bar 1]1] substructure (Fig. 30[link]). The combination of chains along [100], [1[\bar 1]0], [2[\bar 1]0] and [2[\bar 1]1] suffices to generate a continuous three-dimensional framework structure.

[Figure 29]
Figure 29
Stereoview of part of the crystal structure of (VIII) showing the formation of a chain of R22(10) rings along [2[\bar 1]1] built from N—H⋯N and C—H⋯O hydrogen bonds. For the sake of clarity, the H atoms bonded to C atoms, but not involved in the motif shown, have been omitted.
[Figure 30]
Figure 30
Stereoview of part of the crystal structure of (VIII) showing the formation of a π-stacked chain along [2[\bar 1]1]. For the sake of clarity, the H atoms have been omitted.
3.3.9. Compound (IX)

The structure of the 4-nitrophenyl analogue (IX) has recently been described (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]) and here we briefly summarize its supramolecular behaviour. Compound (IX) crystallizes in the space group P21/n with Z′ = 2, and the molecules are linked by two independent N—H⋯N hydrogen bonds into C22(12) chains in which the two independent molecules alternate: however, the amidic N—H⋯O hydrogen bonds which characterize (II)–(VIII), although not (I), are absent from the structure of (IX).

3.3.10. General comments on the structures

Although the approximately isosteric requirements of methyl and chloro substituents on aryl rings often lead to the isomorphism of corresponding pairs of compounds, the unit-cell dimension and Z′ values (Table 1[link]) for (II) (X = CH3) and (IV) (X = Cl) here are entirely distinct. Likewise, the four 4-halogenophenyl derivatives (III)–(VI) all crystallize in different space groups, one triclinic, two monoclinic and one orthorhombic. In contrast to this, we have recently observed:

  • (i) that the 4-substituted anilinium 2-carboxy-4-nitrobenzoates [4-XC6H4NH3]+·[C8H4NO6], for X = H, Cl, Br and I, are all isomorphous and approximately isostructural (Glidewell et al., 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276-o280.]);

  • (ii) that a series of cyclopenta[g]pyrazolo[1,5-a]pyrimidines carrying 4-methylphenyl, 4-chlorophenyl or 4-bromophenyl substituents are all strictly isostructural (Portilla et al., 2005[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o452-o456.]); and

  • (iii) that a pair of benzo[f]pyrazolo[3,4-b]quinolines carrying 4-chlorophenyl or 4-bromophenyl substituents are also strictly isostructural (Serrano et al., 2005a[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058-o1060.],b[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702-o1703.]).

As the single substituent in the aryl ring is varied within the series (I)–(IX), so too are the direction-specific intermolecular interactions which are manifested in the supramolecular structures. A very common supramolecular motif found in the crystal structures of simple amides is the formation of simple C(4) chains built from N—H⋯O hydrogen bonds, with corresponding C22(8) chains in some cases where Z′ = 2. Such chains occur in (II), where the chain is of C22(8) type; in (IV), where there are four independent C(4) chains, and in (V), (VI) and (VII), each of which forms a single C(4) chain. It is striking how readily this motif can be disrupted when alternative hydrogen-bond acceptor sites are available, so that the amidic N—H donor has a pyridyl N acceptor in each of (I), (VIII) and (IX), while in (III) the water O atom acts as the acceptor to form the amidic N—H bond (Table 3[link]). Despite the acceptor role for the pyridyl N atom manifested in (I), (VIII) and (IX), this potential acceptor is completely inactive in each of (II), (IV) and (VI), while in (III) and (V) this site acts as the acceptor in O—H⋯N and C—H⋯N hydrogen bonds, respectively. No obvious pattern of behaviour can be discerned here and any attempt to rationalize such behaviour would necessarily be largely, if not entirely, speculative: in this connection, it should perhaps be emphasized that the intermolecular forces involved here are all fairly weak and soft, and not readily susceptible to quantitative modelling.

For (IV), where X = Cl, (VII) where X = OMe and (IX) where X = NO2 (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]), the supramolecular structures are all one-dimensional, with isolated chains built from N—H⋯O hydrogen bonds in (VII), similar chains linked in pairs by C—H⋯π(arene) hydrogen bonds in (IV), and chains built from N—H⋯N hydrogen bonds in (IX). Compounds (IV) and (IX) differ further in that (IV), where Z′ = 4, contains four independent chains, each containing a single molecular type, whereas (IX), where Z′ = 2, contains a single chain where the two independent molecules alternate.

[Scheme 2]

The structures of compounds (I), where X = H, (II), where X = Me, (III), where X = F, and (V), where X = Br, are all two-dimensional. N—H⋯N hydrogen bonds are present only in the structure of (I); C—H⋯O and C—H⋯π(arene) hydrogen bonds are present only in the structure of (II); O—H⋯O and O—H⋯N hydrogen bonds, and aromatic ππ stacking interactions are present only in the structure of (III); and C—H⋯N hydrogen bonds are present only in the structure of (V). For the two compounds with three-dimensional supramolecular structures, there are no direction-specific intermolecular interactions in common: the structure of (VI), where X = I, is built from N—H⋯O and C—H⋯π(arene) hydrogen bonds, and iodo⋯pyridyl interactions, while the structure of (VIII), where X = CN, is built from N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds.

3.3.11. Compounds closely related to (I)–(IX)

Here we briefly comment on the supramolecular structures of some closely related compounds, including two isomers (X) and (XI) of (IX) (de Souza et al., 2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]), and (XII)–(XV) retrieved from the Cambridge Structural Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

In (X), the only N—H⋯O hydrogen bond is intramolecular, so that again the formation of a C(4) chain has readily been prevented: the molecules of (X) are linked into chains of centrosymmetric edge-fused R22(14) and R44(24) rings by two independent C—H⋯.O hydrogen bonds, while the pyridyl N atom is inactive as an acceptor. In the isomeric compound (XI), which unexpectedly crystallizes as a stoichiometric monohydrate just like compound (III), the amidic N—H bond acts as a hydrogen-bond donor to the water molecule, and these bimolecular aggregates are linked by a combination of O—H⋯N and O—H⋯O hydrogen bonds to form a chain of edge-fused rings containing two different types of R44(16) ring. Thus, despite the different composition and constitutions of (III) and (XI), their supramolecular aggregation patterns show a considerable degree of similarity.

The unsubstituted amide (XII) (CSD code PYDCXA10; Gdaniec et al., 1979[Gdaniec, M., Jaskolski, M. & Kosturkiewicz, Z. (1979). Pol. J. Chem. 53, 2563-2569.]), which may be regarded as the parent compound for this whole series, forms simple C(4) chains built from N—H⋯O hydrogen bonds, and these chains are linked in pairs by a centrosymmetric ππ stacking interaction. In the dichloro compound (XIII) (CSD code HIFWUO; Jethmalani et al., 1996[Jethmalani, J. M., Camp, A. G., Soman, N. G., Hawley, J. W., Setliff, F. L. & Holt, E. M. (1996). Acta Cryst. C52, 438-441.]), a combination of N—H⋯N and C—H⋯N hydrogen bonds generates a C(3)C(6)[R12(7)] chain of rings, but no N—H⋯O hydrogen bonds are present.

The ease with which the C(4) motif can be disrupted, not only by the presence of water molecules in the structure, but also by intramolecular hydrogen bonds, is shown both by (X), and by (XIV) (CSD code MURWUR; Zhang et al., 2002[Zhang, J.-Y., Tu, C., Lin, J., Fun, H.-K., Chantrapromma, S., You, X.-Z. & Guo, Z.-J. (2002). Chin. J. Inorg. Chem. 18, 554-558.]) and (XV) (CSD code ZIKWEX; Pèpe et al., 1995[Pèpe, G., Pfefer, G. & Boistelle, R. (1995). Acta Cryst. C51, 2671-2672.]), where the amidic N—H bonds participate respectively in intramolecular N—H⋯N and N—H⋯O hydrogen bonds. The supramolecular structure of (XIV) consists of simple C(6) chains built from C—H⋯O hydrogen bonds, while the structure of (XV) consists of effectively isolated molecules with no direction-specific intermolecular interactions of any kind.

4. Concluding remarks

The variations in the unit-cell dimensions in (I)–(IX) and the consequent absence of any isomorphisms, together with the very wide variations in the active intermolecular interactions and in the resulting supramolecular structures, both for these compounds and for the related compounds (X)–(XV), raise the question of whether supramolecular structures of this type, dependent on weak intermolecular forces, are likely to become reliably predictable in the foreseeable future.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

Data collection: COLLECT (Hooft, 1999) for (I), (III), (IV), (V), (VI), (VII), (VIII); Bruker APEX2 (Bruker, 2004) for (II). Cell refinement: DENZO (Otwinowski & Minor, 1997) & COLLECT for (I), (III), (IV), (V), (VI), (VII), (VIII); SAINT (Bruker, 2004) for (II). Data reduction: DENZO & COLLECT for (I), (III), (IV), (V), (VI), (VII), (VIII); SAINT for (II). For all compounds, program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
In full text version
(I) N-phenyl-2-chloronicotinamide top
Crystal data top
C12H9ClN2OF(000) = 960
Mr = 232.66Dx = 1.442 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2446 reflections
a = 13.2296 (6) Åθ = 3.1–27.5°
b = 21.0744 (10) ŵ = 0.33 mm1
c = 7.6898 (16) ÅT = 120 K
V = 2144.0 (5) Å3Needle, colourless
Z = 80.24 × 0.09 × 0.02 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2446 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ & ω scansh = 1617
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 2727
Tmin = 0.943, Tmax = 0.993l = 99
17837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 1.6007P]
where P = (Fo2 + 2Fc2)/3
2446 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H9ClN2OV = 2144.0 (5) Å3
Mr = 232.66Z = 8
Orthorhombic, PccnMo Kα radiation
a = 13.2296 (6) ŵ = 0.33 mm1
b = 21.0744 (10) ÅT = 120 K
c = 7.6898 (16) Å0.24 × 0.09 × 0.02 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2446 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
1724 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.993Rint = 0.104
17837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
2446 reflectionsΔρmin = 0.28 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.25408 (16)0.57579 (10)0.9067 (3)0.0262 (5)
C120.32767 (18)0.60070 (12)0.8111 (4)0.0238 (6)
Cl10.31180 (5)0.68016 (3)0.75558 (10)0.0305 (2)
C130.41523 (18)0.56871 (12)0.7615 (3)0.0220 (5)
C140.42677 (19)0.50752 (12)0.8256 (3)0.0248 (6)
C150.3523 (2)0.48067 (13)0.9271 (3)0.0282 (6)
C160.2668 (2)0.51593 (13)0.9605 (4)0.0288 (6)
C170.49778 (19)0.59498 (12)0.6469 (4)0.0246 (6)
O10.58540 (13)0.59291 (10)0.6968 (3)0.0390 (5)
N210.46640 (16)0.61551 (10)0.4897 (3)0.0249 (5)
C210.52498 (19)0.64341 (12)0.3554 (3)0.0235 (6)
C220.4731 (2)0.66828 (13)0.2137 (4)0.0296 (7)
C230.5248 (2)0.69702 (13)0.0789 (4)0.0331 (7)
C240.6292 (2)0.70101 (13)0.0842 (4)0.0295 (6)
C250.6809 (2)0.67565 (13)0.2231 (4)0.0293 (6)
C260.63023 (19)0.64704 (12)0.3598 (4)0.0252 (6)
H140.48620.48410.79950.030*
H150.35970.43900.97270.034*
H160.21390.49671.02520.035*
H210.40120.61250.46880.030*
H220.40150.66550.20960.035*
H230.48870.71400.01730.040*
H240.66500.72120.00760.035*
H250.75260.67780.22530.035*
H260.66670.63010.45550.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0225 (11)0.0302 (12)0.0261 (13)0.0000 (10)0.0039 (10)0.0002 (10)
C120.0234 (13)0.0253 (13)0.0227 (14)0.0002 (10)0.0028 (11)0.0013 (11)
Cl10.0259 (3)0.0258 (3)0.0400 (4)0.0033 (3)0.0028 (3)0.0040 (3)
C130.0183 (12)0.0277 (13)0.0202 (14)0.0002 (10)0.0021 (11)0.0010 (11)
C140.0241 (13)0.0294 (14)0.0210 (14)0.0029 (12)0.0052 (12)0.0030 (11)
C150.0333 (15)0.0256 (14)0.0257 (15)0.0025 (12)0.0002 (13)0.0023 (11)
C160.0299 (15)0.0317 (14)0.0247 (15)0.0057 (12)0.0040 (12)0.0001 (12)
C170.0205 (12)0.0282 (14)0.0250 (15)0.0045 (11)0.0003 (11)0.0008 (11)
O10.0193 (10)0.0645 (14)0.0333 (12)0.0000 (10)0.0020 (9)0.0148 (10)
N210.0162 (10)0.0334 (13)0.0250 (13)0.0001 (9)0.0004 (10)0.0055 (10)
C210.0225 (13)0.0269 (14)0.0213 (15)0.0016 (11)0.0008 (12)0.0021 (11)
C220.0198 (13)0.0369 (16)0.0319 (17)0.0011 (11)0.0009 (12)0.0045 (12)
C230.0312 (16)0.0367 (16)0.0315 (17)0.0011 (13)0.0018 (13)0.0092 (13)
C240.0300 (15)0.0328 (15)0.0257 (15)0.0044 (12)0.0061 (13)0.0018 (12)
C250.0237 (14)0.0344 (15)0.0297 (16)0.0042 (12)0.0036 (12)0.0046 (12)
C260.0224 (13)0.0280 (14)0.0251 (15)0.0006 (11)0.0002 (12)0.0027 (11)
Geometric parameters (Å, º) top
N11—C121.328 (3)N21—C211.419 (3)
N11—C161.338 (3)N21—H210.8796
C12—C131.394 (3)C21—C221.390 (4)
C12—Cl11.741 (3)C21—C261.395 (3)
C13—C141.389 (3)C22—C231.382 (4)
C13—C171.509 (4)C22—H220.95
C14—C151.378 (4)C23—C241.385 (4)
C14—H140.95C23—H230.95
C15—C161.378 (4)C24—C251.376 (4)
C15—H150.95C24—H240.95
C16—H160.95C25—C261.385 (4)
C17—O11.222 (3)C25—H250.95
C17—N211.349 (3)C26—H260.95
C12—N11—C16116.9 (2)C17—N21—H21116.3
N11—C12—C13124.7 (2)C21—N21—H21115.6
N11—C12—Cl1115.32 (19)C22—C21—C26119.4 (2)
C13—C12—Cl1119.9 (2)C22—C21—N21117.2 (2)
C14—C13—C12116.3 (2)C26—C21—N21123.4 (2)
C14—C13—C17117.9 (2)C23—C22—C21120.6 (2)
C12—C13—C17125.8 (2)C23—C22—H22119.7
C15—C14—C13120.2 (2)C21—C22—H22119.7
C15—C14—H14119.9C22—C23—C24119.8 (3)
C13—C14—H14119.9C22—C23—H23120.1
C16—C15—C14118.1 (2)C24—C23—H23120.1
C16—C15—H15120.9C25—C24—C23119.7 (3)
C14—C15—H15120.9C25—C24—H24120.2
N11—C16—C15123.6 (3)C23—C24—H24120.2
N11—C16—H16118.2C24—C25—C26121.2 (2)
C15—C16—H16118.2C24—C25—H25119.4
O1—C17—N21125.8 (2)C26—C25—H25119.4
O1—C17—C13119.4 (2)C25—C26—C21119.3 (3)
N21—C17—C13114.7 (2)C25—C26—H26120.4
C17—N21—C21128.1 (2)C21—C26—H26120.4
C16—N11—C12—C131.1 (4)C12—C13—C17—N2156.2 (4)
C16—N11—C12—Cl1176.12 (19)O1—C17—N21—C215.5 (4)
N11—C12—C13—C143.4 (4)C13—C17—N21—C21178.8 (2)
Cl1—C12—C13—C14173.71 (19)C17—N21—C21—C22171.8 (2)
N11—C12—C13—C17177.3 (2)C17—N21—C21—C268.0 (4)
Cl1—C12—C13—C175.7 (4)C26—C21—C22—C230.7 (4)
C12—C13—C14—C152.3 (4)N21—C21—C22—C23179.1 (2)
C17—C13—C14—C15178.3 (2)C21—C22—C23—C240.2 (4)
C13—C14—C15—C160.7 (4)C22—C23—C24—C250.7 (4)
C12—N11—C16—C152.4 (4)C23—C24—C25—C261.1 (4)
C14—C15—C16—N113.2 (4)C24—C25—C26—C210.6 (4)
C14—C13—C17—O151.6 (4)C22—C21—C26—C250.3 (4)
C12—C13—C17—O1127.8 (3)N21—C21—C26—C25179.5 (2)
C14—C13—C17—N21124.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N11i0.882.253.101 (3)164
C15—H15···Cg1ii0.952.893.535 (3)126
C16—H16···Cg2iii0.952.873.464 (3)121
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+1/2.
(II) N-(4-Methylphenyl)-2-chloronicotinamide top
Crystal data top
C13H11ClN2OZ = 4
Mr = 246.69F(000) = 512
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.67510 Å
a = 9.6824 (6) ÅCell parameters from 6881 reflections
b = 11.3082 (7) Åθ = 2.1–28.8°
c = 11.5139 (7) ŵ = 0.31 mm1
α = 77.453 (2)°T = 120 K
β = 73.445 (2)°Needle, colourless
γ = 87.978 (2)°0.10 × 0.02 × 0.02 mm
V = 1179.07 (13) Å3
Data collection top
Bruker SMART APEX2 CCD
diffractometer
6881 independent reflections
Radiation source: Daresbury SRS station 9.8, (Cernik et al., 1997)5217 reflections with ( > 2σ(I)
Silicon 111 monochromatorRint = 0.022
fine–slice ω scansθmax = 28.8°, θmin = 2.1°
Absorption correction: multi-scan
Bruker SADABS (Bruker, 2004)
h = 1313
Tmin = 0.970, Tmax = 0.994k = 1616
12982 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.3225P]
where P = (Fo2 + 2Fc2)/3
6881 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H11ClN2Oγ = 87.978 (2)°
Mr = 246.69V = 1179.07 (13) Å3
Triclinic, P1Z = 4
a = 9.6824 (6) ÅSynchrotron radiation, λ = 0.67510 Å
b = 11.3082 (7) ŵ = 0.31 mm1
c = 11.5139 (7) ÅT = 120 K
α = 77.453 (2)°0.10 × 0.02 × 0.02 mm
β = 73.445 (2)°
Data collection top
Bruker SMART APEX2 CCD
diffractometer
6881 independent reflections
Absorption correction: multi-scan
Bruker SADABS (Bruker, 2004)
5217 reflections with ( > 2σ(I)
Tmin = 0.970, Tmax = 0.994Rint = 0.022
12982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
6881 reflectionsΔρmin = 0.30 e Å3
309 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.86915 (14)0.73134 (12)0.08967 (11)0.0221 (3)
C120.84419 (15)0.70831 (13)0.03187 (12)0.0183 (3)
Cl10.83100 (5)0.55573 (3)0.10547 (3)0.02910 (11)
C130.83069 (14)0.79583 (13)0.10341 (12)0.0168 (3)
C140.83825 (17)0.91586 (14)0.04073 (13)0.0220 (3)
C150.86423 (18)0.94293 (14)0.08708 (13)0.0245 (3)
C160.88058 (17)0.84842 (14)0.14807 (13)0.0236 (3)
C170.82579 (15)0.76179 (13)0.23844 (12)0.0173 (3)
O10.93912 (11)0.74347 (11)0.26770 (9)0.0255 (2)
N210.69517 (13)0.75458 (11)0.31986 (10)0.0182 (2)
C210.66503 (14)0.71569 (13)0.45110 (12)0.0168 (3)
C220.54054 (15)0.64547 (14)0.51422 (13)0.0201 (3)
C230.50576 (16)0.60308 (14)0.64181 (13)0.0223 (3)
C240.59492 (16)0.62974 (14)0.70977 (12)0.0209 (3)
C250.71711 (16)0.70342 (14)0.64523 (13)0.0214 (3)
C260.75349 (15)0.74657 (14)0.51730 (13)0.0196 (3)
C2410.56166 (18)0.57879 (16)0.84700 (13)0.0274 (3)
N310.09859 (14)0.76364 (12)0.58897 (11)0.0225 (3)
C320.17080 (16)0.79085 (13)0.47011 (13)0.0192 (3)
Cl30.20022 (5)0.94486 (3)0.40386 (4)0.03240 (11)
C330.22193 (15)0.70691 (13)0.39653 (12)0.0175 (3)
C340.19083 (15)0.58576 (13)0.45303 (13)0.0200 (3)
C350.11540 (16)0.55384 (14)0.57837 (13)0.0215 (3)
C360.07258 (16)0.64550 (14)0.64210 (13)0.0219 (3)
C370.31481 (15)0.74411 (14)0.26399 (12)0.0194 (3)
O30.44343 (12)0.76878 (14)0.24022 (10)0.0373 (3)
N410.24535 (12)0.74497 (11)0.17848 (10)0.0171 (2)
C410.30028 (14)0.78264 (13)0.04773 (12)0.0164 (3)
C420.21841 (15)0.75010 (13)0.02321 (12)0.0192 (3)
C430.25670 (16)0.79412 (14)0.15074 (13)0.0211 (3)
C440.37751 (16)0.87086 (14)0.21107 (12)0.0205 (3)
C4410.41532 (19)0.92274 (16)0.34831 (13)0.0274 (3)
C450.46144 (16)0.89806 (14)0.13930 (13)0.0222 (3)
C460.42436 (15)0.85517 (14)0.01134 (12)0.0204 (3)
H140.82570.97910.08500.026*
H150.87071.02470.13180.029*
H160.90100.86740.23590.028*
H210.62270.75430.28790.022*
H220.47870.62630.46960.024*
H230.42010.55530.68360.027*
H250.77740.72480.69010.026*
H260.83750.79640.47560.024*
H24A0.53360.49280.86500.041*
H24B0.48240.62300.89130.041*
H24C0.64730.58730.87410.041*
H340.22080.52490.40650.024*
H350.09390.47130.61900.026*
H360.02220.62380.72790.026*
H410.15220.72810.20780.021*
H420.13620.69760.01600.023*
H430.19970.77170.19780.025*
H44A0.32800.92640.37580.041*
H44B0.48510.87110.39230.041*
H44C0.45751.00450.36630.041*
H450.54640.94730.17900.027*
H460.48320.87520.03540.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0278 (7)0.0255 (6)0.0147 (5)0.0004 (5)0.0070 (5)0.0064 (5)
C120.0191 (6)0.0206 (7)0.0149 (6)0.0015 (5)0.0044 (5)0.0036 (5)
Cl10.0429 (2)0.02044 (19)0.02131 (18)0.00353 (15)0.00605 (15)0.00230 (14)
C130.0156 (6)0.0228 (7)0.0118 (6)0.0001 (5)0.0032 (5)0.0044 (5)
C140.0279 (7)0.0226 (7)0.0160 (6)0.0040 (6)0.0058 (5)0.0067 (5)
C150.0337 (8)0.0229 (7)0.0154 (6)0.0049 (6)0.0068 (6)0.0021 (5)
C160.0298 (8)0.0280 (8)0.0131 (6)0.0044 (6)0.0067 (5)0.0043 (5)
C170.0175 (6)0.0214 (7)0.0132 (6)0.0003 (5)0.0043 (5)0.0043 (5)
O10.0162 (5)0.0439 (7)0.0158 (5)0.0009 (4)0.0056 (4)0.0039 (4)
N210.0159 (5)0.0283 (6)0.0115 (5)0.0006 (4)0.0051 (4)0.0050 (4)
C210.0171 (6)0.0238 (7)0.0103 (5)0.0021 (5)0.0033 (5)0.0066 (5)
C220.0180 (6)0.0285 (7)0.0147 (6)0.0018 (5)0.0052 (5)0.0054 (5)
C230.0203 (7)0.0289 (8)0.0152 (6)0.0019 (6)0.0019 (5)0.0032 (5)
C240.0238 (7)0.0260 (7)0.0124 (6)0.0050 (5)0.0039 (5)0.0056 (5)
C250.0220 (7)0.0302 (8)0.0153 (6)0.0020 (6)0.0071 (5)0.0095 (5)
C260.0181 (6)0.0270 (7)0.0157 (6)0.0011 (5)0.0052 (5)0.0075 (5)
C2410.0318 (8)0.0363 (9)0.0125 (6)0.0040 (7)0.0049 (6)0.0042 (6)
N310.0278 (7)0.0256 (6)0.0133 (5)0.0024 (5)0.0043 (5)0.0048 (5)
C320.0227 (7)0.0205 (7)0.0141 (6)0.0004 (5)0.0063 (5)0.0016 (5)
Cl30.0471 (3)0.0213 (2)0.02420 (19)0.00033 (16)0.00680 (17)0.00040 (14)
C330.0159 (6)0.0259 (7)0.0115 (5)0.0000 (5)0.0056 (5)0.0029 (5)
C340.0197 (7)0.0243 (7)0.0172 (6)0.0008 (5)0.0054 (5)0.0071 (5)
C350.0220 (7)0.0228 (7)0.0177 (6)0.0005 (5)0.0055 (5)0.0001 (5)
C360.0228 (7)0.0281 (8)0.0133 (6)0.0004 (6)0.0045 (5)0.0024 (5)
C370.0170 (6)0.0294 (7)0.0116 (6)0.0009 (5)0.0048 (5)0.0029 (5)
O30.0172 (5)0.0745 (10)0.0175 (5)0.0082 (5)0.0072 (4)0.0001 (6)
N410.0150 (5)0.0259 (6)0.0103 (5)0.0014 (4)0.0032 (4)0.0039 (4)
C410.0167 (6)0.0229 (7)0.0101 (5)0.0019 (5)0.0038 (5)0.0049 (5)
C420.0178 (6)0.0260 (7)0.0147 (6)0.0001 (5)0.0046 (5)0.0060 (5)
C430.0226 (7)0.0303 (8)0.0137 (6)0.0034 (6)0.0076 (5)0.0089 (5)
C440.0242 (7)0.0251 (7)0.0116 (6)0.0037 (5)0.0040 (5)0.0045 (5)
C4410.0341 (9)0.0335 (9)0.0121 (6)0.0041 (7)0.0046 (6)0.0031 (6)
C450.0226 (7)0.0287 (8)0.0132 (6)0.0036 (6)0.0024 (5)0.0027 (5)
C460.0197 (7)0.0281 (7)0.0139 (6)0.0034 (5)0.0048 (5)0.0051 (5)
Geometric parameters (Å, º) top
N11—C121.3182 (17)N31—C321.3203 (17)
N11—C161.341 (2)N31—C361.3428 (19)
C12—C131.3996 (19)C32—C331.393 (2)
C12—Cl11.7407 (15)C32—Cl31.7407 (15)
C13—C141.386 (2)C33—C341.386 (2)
C13—C171.5056 (18)C33—C371.5101 (18)
C14—C151.3861 (19)C34—C351.3921 (19)
C14—H140.95C34—H340.95
C15—C161.382 (2)C35—C361.383 (2)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—O11.2348 (16)C37—O31.2251 (18)
C17—N211.3355 (17)C37—N411.3395 (17)
N21—C211.4251 (16)N41—C411.4184 (16)
N21—H210.8803N41—H410.8803
C21—C221.3890 (19)C41—C461.3928 (19)
C21—C261.3948 (18)C41—C421.3969 (18)
C22—C231.3874 (19)C42—C431.3880 (19)
C22—H220.95C42—H420.95
C23—C241.398 (2)C43—C441.397 (2)
C23—H230.95C43—H430.95
C24—C251.395 (2)C44—C451.396 (2)
C24—C2411.5032 (19)C44—C4411.5026 (19)
C25—C261.3914 (19)C441—H44A0.98
C25—H250.95C441—H44B0.98
C26—H260.95C441—H44C0.98
C241—H24A0.98C45—C461.3911 (19)
C241—H24B0.98C45—H450.95
C241—H24C0.98C46—H460.95
C12—N11—C16116.68 (13)C32—N31—C36116.89 (13)
N11—C12—C13125.25 (13)N31—C32—C33125.15 (13)
N11—C12—Cl1115.85 (11)N31—C32—Cl3115.60 (11)
C13—C12—Cl1118.90 (10)C33—C32—Cl3119.24 (11)
C14—C13—C12116.57 (12)C34—C33—C32116.74 (12)
C14—C13—C17121.50 (12)C34—C33—C37120.95 (13)
C12—C13—C17121.55 (12)C32—C33—C37122.20 (13)
C13—C14—C15119.45 (13)C33—C34—C35119.58 (13)
C13—C14—H14120.3C33—C34—H34120.2
C15—C14—H14120.3C35—C34—H34120.2
C16—C15—C14118.57 (14)C36—C35—C34118.23 (14)
C16—C15—H15120.7C36—C35—H35120.9
C14—C15—H15120.7C34—C35—H35120.9
N11—C16—C15123.40 (13)N31—C36—C35123.37 (13)
N11—C16—H16118.3N31—C36—H36118.3
C15—C16—H16118.3C35—C36—H36118.3
O1—C17—N21124.14 (12)O3—C37—N41124.47 (13)
O1—C17—C13119.67 (12)O3—C37—C33121.01 (12)
N21—C17—C13116.18 (12)N41—C37—C33114.51 (12)
C17—N21—C21125.42 (12)C37—N41—C41127.77 (12)
C17—N21—H21114.9C37—N41—H41115.4
C21—N21—H21117.4C41—N41—H41116.4
C22—C21—C26119.55 (12)C46—C41—C42119.37 (12)
C22—C21—N21117.58 (12)C46—C41—N41123.70 (12)
C26—C21—N21122.86 (12)C42—C41—N41116.80 (12)
C23—C22—C21120.59 (13)C43—C42—C41120.29 (13)
C23—C22—H22119.7C43—C42—H42119.9
C21—C22—H22119.7C41—C42—H42119.9
C22—C23—C24120.94 (14)C42—C43—C44121.15 (13)
C22—C23—H23119.5C42—C43—H43119.4
C24—C23—H23119.5C44—C43—H43119.4
C25—C24—C23117.58 (13)C45—C44—C43117.66 (12)
C25—C24—C241121.29 (14)C45—C44—C441121.21 (14)
C23—C24—C241121.12 (14)C43—C44—C441121.13 (13)
C26—C25—C24122.13 (13)C44—C441—H44A109.5
C26—C25—H25118.9C44—C441—H44B109.5
C24—C25—H25118.9H44A—C441—H44B109.5
C25—C26—C21119.15 (13)C44—C441—H44C109.5
C25—C26—H26120.4H44A—C441—H44C109.5
C21—C26—H26120.4H44B—C441—H44C109.5
C24—C241—H24A109.5C46—C45—C44121.91 (13)
C24—C241—H24B109.5C46—C45—H45119.0
H24A—C241—H24B109.5C44—C45—H45119.0
C24—C241—H24C109.5C45—C46—C41119.50 (13)
H24A—C241—H24C109.5C45—C46—H46120.2
H24B—C241—H24C109.5C41—C46—H46120.2
C16—N11—C12—C130.8 (2)C36—N31—C32—C330.2 (2)
C16—N11—C12—Cl1179.58 (11)C36—N31—C32—Cl3179.10 (11)
N11—C12—C13—C142.9 (2)N31—C32—C33—C341.6 (2)
Cl1—C12—C13—C14178.36 (11)Cl3—C32—C33—C34177.70 (10)
N11—C12—C13—C17170.10 (13)N31—C32—C33—C37174.61 (13)
Cl1—C12—C13—C178.60 (18)Cl3—C32—C33—C376.09 (19)
C12—C13—C14—C152.7 (2)C32—C33—C34—C351.8 (2)
C17—C13—C14—C15170.38 (14)C37—C33—C34—C35174.50 (13)
C13—C14—C15—C160.6 (2)C33—C34—C35—C360.7 (2)
C12—N11—C16—C151.6 (2)C32—N31—C36—C351.0 (2)
C14—C15—C16—N111.7 (2)C34—C35—C36—N310.8 (2)
C14—C13—C17—O191.64 (18)C34—C33—C37—O397.98 (19)
C12—C13—C17—O181.05 (18)C32—C33—C37—O378.1 (2)
C14—C13—C17—N2187.78 (17)C34—C33—C37—N4180.81 (17)
C12—C13—C17—N2199.53 (16)C32—C33—C37—N41103.14 (16)
O1—C17—N21—C215.3 (2)O3—C37—N41—C415.5 (3)
C13—C17—N21—C21175.30 (13)C33—C37—N41—C41175.77 (13)
C17—N21—C21—C22141.82 (15)C37—N41—C41—C4618.0 (2)
C17—N21—C21—C2639.1 (2)C37—N41—C41—C42166.05 (14)
C26—C21—C22—C231.8 (2)C46—C41—C42—C432.9 (2)
N21—C21—C22—C23179.06 (13)N41—C41—C42—C43173.22 (13)
C21—C22—C23—C240.1 (2)C41—C42—C43—C440.4 (2)
C22—C23—C24—C252.0 (2)C42—C43—C44—C452.4 (2)
C22—C23—C24—C241176.85 (14)C42—C43—C44—C441177.36 (14)
C23—C24—C25—C262.1 (2)C43—C44—C45—C462.6 (2)
C241—C24—C25—C26176.79 (14)C441—C44—C45—C46177.08 (14)
C24—C25—C26—C210.2 (2)C44—C45—C46—C410.2 (2)
C22—C21—C26—C251.8 (2)C42—C41—C46—C452.6 (2)
N21—C21—C26—C25179.17 (13)N41—C41—C46—C45173.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O30.881.962.827 (2)170
N41—H41···O1i0.881.992.847 (2)163
C35—H35···O1ii0.952.483.424 (2)174
C14—H14···Cg3iii0.952.693.398 (2)132
C34—H34···Cg2ii0.952.633.398 (2)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z.
(III) N-(4-Fluorophenyl)-2-chloronicotinamide monohydrate top
Crystal data top
C12H8ClFN2O·H2OZ = 2
Mr = 268.67F(000) = 276
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8033 (4) ÅCell parameters from 2720 reflections
b = 8.1303 (3) Åθ = 3.3–27.8°
c = 11.5356 (6) ŵ = 0.33 mm1
α = 84.032 (3)°T = 120 K
β = 84.297 (2)°Plate, colourless
γ = 69.569 (3)°0.18 × 0.16 × 0.03 mm
V = 593.32 (5) Å3
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2720 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 27.8°, θmin = 3.3°
ϕ & ω scansh = 88
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick,. 2003)
k = 910
Tmin = 0.933, Tmax = 0.990l = 1414
12303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.1705P]
where P = (Fo2 + 2Fc2)/3
2720 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H8ClFN2O·H2Oγ = 69.569 (3)°
Mr = 268.67V = 593.32 (5) Å3
Triclinic, P1Z = 2
a = 6.8033 (4) ÅMo Kα radiation
b = 8.1303 (3) ŵ = 0.33 mm1
c = 11.5356 (6) ÅT = 120 K
α = 84.032 (3)°0.18 × 0.16 × 0.03 mm
β = 84.297 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2720 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick,. 2003)
1943 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.990Rint = 0.052
12303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2720 reflectionsΔρmin = 0.29 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.7571 (3)0.9978 (2)0.48546 (15)0.0235 (4)
C120.7752 (3)0.9063 (3)0.58821 (17)0.0199 (4)
Cl10.78295 (8)1.02152 (7)0.70544 (5)0.02776 (17)
C130.7785 (3)0.7329 (2)0.60679 (17)0.0197 (4)
C140.7568 (3)0.6539 (3)0.50950 (18)0.0234 (5)
C150.7400 (3)0.7458 (3)0.40094 (18)0.0258 (5)
C160.7432 (3)0.9155 (3)0.39284 (19)0.0258 (5)
C170.8196 (3)0.6272 (3)0.72202 (17)0.0209 (4)
O10.9775 (2)0.61153 (18)0.77274 (12)0.0271 (4)
N210.6788 (3)0.5477 (2)0.75786 (14)0.0209 (4)
C210.6875 (3)0.4219 (2)0.85440 (17)0.0205 (4)
C220.5108 (3)0.3715 (3)0.87844 (18)0.0231 (5)
C230.5070 (4)0.2461 (3)0.96891 (18)0.0270 (5)
C240.6789 (4)0.1759 (3)1.03364 (18)0.0277 (5)
F240.6761 (2)0.05172 (17)1.12278 (11)0.0396 (4)
C250.8533 (4)0.2245 (3)1.01359 (19)0.0288 (5)
C260.8583 (3)0.3489 (3)0.92234 (19)0.0268 (5)
O20.3127 (2)0.65660 (18)0.63096 (13)0.0276 (4)
H140.75340.53740.51770.028*
H150.72670.69350.33360.031*
H160.73530.97750.31800.031*
H210.56060.58390.71590.025*
H220.39270.42320.83270.028*
H230.38800.20980.98550.032*
H250.96890.17401.06120.035*
H260.97840.38390.90660.032*
H2A0.27980.75990.57920.041*
H2B0.20580.64580.66890.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0174 (9)0.0273 (9)0.0255 (10)0.0077 (7)0.0038 (7)0.0021 (7)
C120.0127 (10)0.0235 (10)0.0238 (11)0.0060 (8)0.0026 (8)0.0026 (8)
Cl10.0311 (3)0.0269 (3)0.0277 (3)0.0113 (2)0.0042 (2)0.0056 (2)
C130.0122 (10)0.0223 (10)0.0235 (11)0.0052 (8)0.0003 (8)0.0001 (8)
C140.0182 (11)0.0239 (11)0.0277 (12)0.0062 (8)0.0033 (9)0.0027 (9)
C150.0214 (11)0.0311 (12)0.0245 (12)0.0075 (9)0.0033 (9)0.0048 (9)
C160.0199 (11)0.0321 (12)0.0229 (11)0.0068 (9)0.0020 (9)0.0027 (9)
C170.0181 (11)0.0223 (10)0.0221 (11)0.0063 (8)0.0025 (8)0.0021 (8)
O10.0237 (8)0.0326 (8)0.0279 (8)0.0134 (6)0.0084 (6)0.0044 (6)
N210.0169 (9)0.0217 (9)0.0249 (10)0.0078 (7)0.0061 (7)0.0039 (7)
C210.0226 (11)0.0171 (10)0.0211 (11)0.0057 (8)0.0015 (8)0.0026 (8)
C220.0234 (11)0.0254 (11)0.0227 (11)0.0105 (9)0.0028 (9)0.0031 (8)
C230.0325 (13)0.0292 (11)0.0240 (12)0.0168 (10)0.0002 (10)0.0033 (9)
C240.0413 (14)0.0222 (11)0.0197 (11)0.0123 (10)0.0010 (10)0.0012 (8)
F240.0566 (9)0.0359 (7)0.0300 (8)0.0230 (7)0.0073 (7)0.0111 (6)
C250.0285 (12)0.0275 (12)0.0277 (12)0.0056 (9)0.0081 (10)0.0022 (9)
C260.0233 (12)0.0271 (11)0.0297 (12)0.0086 (9)0.0046 (9)0.0016 (9)
O20.0212 (8)0.0271 (8)0.0357 (9)0.0111 (6)0.0052 (6)0.0057 (6)
Geometric parameters (Å, º) top
N11—C121.325 (3)N21—H210.9217
N11—C161.345 (3)C21—C261.386 (3)
C12—C131.397 (3)C21—C221.394 (3)
C12—Cl11.738 (2)C22—C231.386 (3)
C13—C141.394 (3)C22—H220.95
C13—C171.501 (3)C23—C241.368 (3)
C14—C151.384 (3)C23—H230.95
C14—H140.95C24—C251.367 (3)
C15—C161.381 (3)C24—F241.368 (2)
C15—H150.95C25—C261.389 (3)
C16—H160.95C25—H250.95
C17—O11.235 (2)C26—H260.95
C17—N211.343 (2)O2—H2A0.9508
N21—C211.423 (2)O2—H2B0.8371
C12—N11—C16117.01 (17)C21—N21—H21117.2
N11—C12—C13124.72 (19)C26—C21—C22120.02 (19)
N11—C12—Cl1115.00 (15)C26—C21—N21123.98 (18)
C13—C12—Cl1120.21 (15)C22—C21—N21116.00 (18)
C14—C13—C12116.67 (18)C23—C22—C21120.2 (2)
C14—C13—C17119.78 (18)C23—C22—H22119.9
C12—C13—C17123.38 (18)C21—C22—H22119.9
C15—C14—C13119.74 (19)C24—C23—C22118.3 (2)
C15—C14—H14120.1C24—C23—H23120.9
C13—C14—H14120.1C22—C23—H23120.9
C16—C15—C14118.4 (2)C25—C24—C23123.1 (2)
C16—C15—H15120.8C25—C24—F24118.5 (2)
C14—C15—H15120.8C23—C24—F24118.43 (19)
N11—C16—C15123.42 (19)C24—C25—C26118.8 (2)
N11—C16—H16118.3C24—C25—H25120.6
C15—C16—H16118.3C26—C25—H25120.6
O1—C17—N21125.40 (18)C21—C26—C25119.7 (2)
O1—C17—C13120.50 (17)C21—C26—H26120.2
N21—C17—C13113.99 (17)C25—C26—H26120.2
C17—N21—C21127.79 (17)H2A—O2—H2B112.3
C17—N21—H21114.9
C16—N11—C12—C130.7 (3)O1—C17—N21—C214.9 (3)
C16—N11—C12—Cl1177.79 (14)C13—C17—N21—C21171.39 (18)
N11—C12—C13—C141.4 (3)C17—N21—C21—C265.9 (3)
Cl1—C12—C13—C14175.56 (14)C17—N21—C21—C22174.60 (18)
N11—C12—C13—C17174.01 (18)C26—C21—C22—C231.2 (3)
Cl1—C12—C13—C179.1 (3)N21—C21—C22—C23178.30 (17)
C12—C13—C14—C152.0 (3)C21—C22—C23—C240.7 (3)
C17—C13—C14—C15173.52 (18)C22—C23—C24—C250.4 (3)
C13—C14—C15—C160.7 (3)C22—C23—C24—F24179.80 (18)
C12—N11—C16—C152.2 (3)C23—C24—C25—C261.0 (3)
C14—C15—C16—N111.5 (3)F24—C24—C25—C26179.21 (18)
C14—C13—C17—O1122.2 (2)C22—C21—C26—C250.6 (3)
C12—C13—C17—O153.0 (3)N21—C21—C26—C25178.85 (19)
C14—C13—C17—N2154.2 (2)C24—C25—C26—C210.5 (3)
C12—C13—C17—N21130.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N11i0.951.972.887 (2)161
O2—H2B···O1ii0.841.952.780 (2)173
N21—H21···O20.921.912.837 (2)179
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.
(IV) N-(4-Chlorophenyl-2-chloronicotinamide top
Crystal data top
C12H8Cl2N2OF(000) = 1088
Mr = 267.10Dx = 1.543 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9787 reflections
a = 5.0855 (8) Åθ = 3.0–27.5°
b = 28.982 (8) ŵ = 0.55 mm1
c = 15.607 (4) ÅT = 120 K
β = 90.37 (2)°Plate, colourless
V = 2300.2 (9) Å30.28 × 0.07 × 0.03 mm
Z = 8
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
9787 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode6370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ & ω scansh = 66
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 3737
Tmin = 0.862, Tmax = 0.984l = 2020
24726 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0454P)2 + 5.774P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9787 reflectionsΔρmax = 0.79 e Å3
254 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983), 4396 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.54 (11)
Crystal data top
C12H8Cl2N2OV = 2300.2 (9) Å3
Mr = 267.10Z = 8
Monoclinic, P21Mo Kα radiation
a = 5.0855 (8) ŵ = 0.55 mm1
b = 28.982 (8) ÅT = 120 K
c = 15.607 (4) Å0.28 × 0.07 × 0.03 mm
β = 90.37 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
9787 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
6370 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.984Rint = 0.053
24726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.169Δρmax = 0.79 e Å3
S = 1.04Δρmin = 0.54 e Å3
9787 reflectionsAbsolute structure: Flack (1983), 4396 Friedel pairs
254 parametersAbsolute structure parameter: 0.54 (11)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.0930 (11)0.1416 (2)0.0684 (4)0.0249 (6)
C121.1545 (15)0.0970 (3)0.0642 (5)0.0249 (6)
Cl11.3934 (4)0.07776 (6)0.13183 (11)0.0255 (4)
C131.0218 (16)0.0653 (3)0.0091 (5)0.0249 (6)
C140.8354 (15)0.0820 (3)0.0465 (4)0.0249 (6)
C150.7658 (14)0.1313 (3)0.0424 (5)0.0249 (6)
C160.8947 (12)0.1561 (3)0.0104 (4)0.0249 (6)
C171.0824 (14)0.0137 (3)0.0081 (5)0.0249 (6)
O11.3151 (10)0.00037 (17)0.0012 (3)0.0249 (6)
N210.8848 (12)0.0131 (2)0.0071 (4)0.0193 (5)
Cl240.8822 (4)0.21692 (6)0.02990 (14)0.0324 (5)
C210.8859 (7)0.06241 (12)0.0004 (2)0.0193 (5)
C220.6884 (6)0.08819 (14)0.0387 (2)0.0193 (5)
C230.6872 (6)0.13596 (14)0.0308 (2)0.0193 (5)
C240.8835 (7)0.15795 (12)0.0162 (2)0.0193 (5)
C251.0810 (6)0.13216 (14)0.0554 (2)0.0193 (5)
C261.0822 (6)0.08439 (14)0.0474 (2)0.0193 (5)
N310.3668 (10)0.8114 (2)0.1869 (4)0.0231 (5)
C320.4029 (15)0.7668 (3)0.1884 (5)0.0231 (5)
Cl30.6478 (4)0.74925 (6)0.11518 (12)0.0285 (5)
C330.2773 (16)0.7352 (3)0.2393 (5)0.0231 (5)
C340.0798 (15)0.7547 (3)0.2904 (5)0.0231 (5)
C350.0404 (13)0.7987 (2)0.2935 (5)0.0231 (5)
C360.1852 (12)0.8288 (2)0.2357 (4)0.0231 (5)
C370.3454 (14)0.6860 (3)0.2416 (5)0.0231 (5)
O30.5701 (9)0.67153 (16)0.2390 (3)0.0231 (5)
N410.1203 (12)0.6564 (2)0.2434 (4)0.0211 (5)
Cl440.1270 (4)0.45328 (6)0.27721 (12)0.0280 (5)
C410.1364 (7)0.60846 (12)0.2500 (2)0.0211 (5)
C420.0605 (6)0.58283 (15)0.2102 (2)0.0211 (5)
C430.0640 (6)0.53508 (14)0.2184 (2)0.0211 (5)
C440.1295 (7)0.51296 (12)0.2665 (3)0.0211 (5)
C450.3263 (6)0.53858 (14)0.3063 (2)0.0211 (5)
C460.3298 (6)0.58633 (14)0.2981 (2)0.0211 (5)
N510.4263 (11)0.3580 (2)0.5740 (4)0.0252 (6)
C520.3620 (15)0.4025 (3)0.5697 (5)0.0252 (6)
Cl50.1300 (4)0.42136 (6)0.64060 (11)0.0272 (4)
C530.4881 (16)0.4344 (3)0.5147 (5)0.0252 (6)
C540.6738 (15)0.4183 (3)0.4579 (5)0.0252 (6)
C550.7478 (13)0.3695 (2)0.4609 (5)0.0252 (6)
C560.6201 (12)0.3440 (3)0.5145 (4)0.0252 (6)
C570.4242 (14)0.4860 (3)0.5140 (5)0.0252 (6)
O50.1900 (10)0.49896 (17)0.5091 (3)0.0252 (6)
Cl640.5855 (4)0.71624 (6)0.46495 (13)0.0298 (5)
N610.6203 (12)0.5126 (2)0.5135 (4)0.0201 (5)
C610.6177 (7)0.56264 (12)0.5049 (2)0.0201 (5)
C620.8107 (6)0.58460 (14)0.4572 (2)0.0201 (5)
C630.8043 (6)0.63223 (15)0.4470 (2)0.0201 (5)
C640.6049 (7)0.65791 (12)0.4845 (2)0.0201 (5)
C650.4120 (6)0.63595 (15)0.5322 (2)0.0201 (5)
C660.4184 (6)0.58832 (15)0.5424 (2)0.0201 (5)
N711.1553 (11)0.3130 (2)0.3173 (4)0.0249 (6)
C721.1159 (15)0.2685 (3)0.3159 (5)0.0249 (6)
Cl70.8784 (4)0.25131 (6)0.39206 (12)0.0293 (5)
C731.2365 (16)0.2368 (3)0.2649 (5)0.0249 (6)
C741.4280 (15)0.2551 (3)0.2109 (5)0.0249 (6)
C751.4668 (13)0.2994 (2)0.2065 (5)0.0249 (6)
C761.3311 (12)0.3301 (2)0.2677 (4)0.0249 (6)
C771.1627 (14)0.1876 (3)0.2631 (5)0.0249 (6)
O70.9370 (9)0.17332 (16)0.2669 (3)0.0249 (6)
N811.3862 (12)0.1571 (2)0.2606 (4)0.0208 (5)
Cl841.3420 (4)0.04497 (6)0.21810 (13)0.0297 (5)
C811.3679 (7)0.10957 (12)0.2546 (2)0.0208 (5)
C821.5613 (6)0.08769 (14)0.2070 (2)0.0208 (5)
C831.5558 (6)0.04005 (14)0.1969 (2)0.0208 (5)
C841.3569 (7)0.01429 (12)0.2344 (3)0.0208 (5)
C851.1634 (6)0.03616 (15)0.2820 (2)0.0208 (5)
C861.1690 (6)0.08381 (15)0.2921 (2)0.0208 (5)
H140.75330.06210.08660.030*
H150.63150.14400.07720.030*
H160.85330.18810.01090.030*
H210.72940.00010.01160.023*
H220.55420.07320.07090.023*
H230.55220.15360.05750.023*
H251.21520.14720.08750.023*
H261.21720.06680.07420.023*
H340.02800.73490.32360.028*
H350.08150.81130.33300.028*
H360.14730.86080.23370.028*
H410.03660.66900.24010.025*
H420.19270.59800.17730.025*
H430.19850.51760.19120.025*
H450.45850.52350.33920.025*
H460.46440.60380.32530.025*
H540.75210.43850.41760.030*
H550.88200.35730.42550.030*
H560.66120.31210.51400.030*
H610.77560.49950.51890.024*
H620.94690.56700.43150.024*
H630.93620.64720.41440.024*
H650.27570.65350.55790.024*
H660.28650.57330.57500.024*
H741.53120.23490.17690.030*
H751.58090.31190.16460.030*
H761.37330.36200.27030.030*
H811.54410.16950.26290.025*
H821.69730.10530.18130.025*
H831.68800.02510.16430.025*
H851.02750.01860.30770.025*
H861.03680.09880.32470.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
C120.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
Cl10.0312 (10)0.0205 (10)0.0249 (9)0.0036 (8)0.0083 (7)0.0004 (8)
C130.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
C140.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
C150.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
C160.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
C170.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
O10.0242 (13)0.0245 (15)0.0262 (12)0.0006 (11)0.0013 (10)0.0009 (11)
N210.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
Cl240.0369 (12)0.0165 (11)0.0438 (12)0.0031 (9)0.0072 (9)0.0017 (9)
C210.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
C220.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
C230.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
C240.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
C250.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
C260.0169 (11)0.0209 (12)0.0202 (12)0.0001 (10)0.0027 (9)0.0005 (9)
N310.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
C320.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
Cl30.0264 (10)0.0245 (11)0.0347 (11)0.0019 (9)0.0116 (8)0.0006 (9)
C330.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
C340.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
C350.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
C360.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
C370.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
O30.0225 (12)0.0146 (12)0.0324 (13)0.0002 (10)0.0059 (10)0.0015 (10)
N410.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
Cl440.0373 (12)0.0153 (10)0.0314 (10)0.0023 (8)0.0044 (8)0.0018 (8)
C410.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
C420.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
C430.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
C440.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
C450.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
C460.0228 (12)0.0173 (12)0.0233 (12)0.0005 (10)0.0042 (9)0.0003 (10)
N510.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
C520.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
Cl50.0313 (10)0.0197 (10)0.0308 (10)0.0008 (9)0.0123 (8)0.0001 (9)
C530.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
C540.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
C550.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
C560.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
C570.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
O50.0209 (13)0.0243 (15)0.0304 (13)0.0018 (10)0.0007 (10)0.0006 (11)
Cl640.0330 (11)0.0164 (10)0.0400 (11)0.0020 (8)0.0040 (9)0.0033 (8)
N610.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
C610.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
C620.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
C630.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
C640.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
C650.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
C660.0169 (11)0.0228 (13)0.0207 (12)0.0021 (10)0.0004 (9)0.0001 (10)
N710.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
C720.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
Cl70.0345 (11)0.0208 (10)0.0328 (10)0.0023 (9)0.0145 (8)0.0038 (8)
C730.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
C740.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
C750.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
C760.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
C770.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
O70.0249 (13)0.0151 (13)0.0347 (13)0.0005 (10)0.0085 (10)0.0005 (10)
N810.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
Cl840.0394 (12)0.0163 (10)0.0335 (10)0.0024 (9)0.0101 (9)0.0031 (8)
C810.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
C820.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
C830.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
C840.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
C850.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
C860.0216 (12)0.0169 (12)0.0239 (12)0.0014 (10)0.0002 (9)0.0019 (9)
Geometric parameters (Å, º) top
N11—C121.330 (10)N51—C521.330 (10)
N11—C161.424 (9)N51—C561.418 (9)
C12—C131.432 (12)C52—C531.418 (12)
C12—Cl11.709 (8)C52—Cl51.713 (8)
C13—C141.376 (11)C53—C541.382 (11)
C13—C171.525 (11)C53—C571.530 (11)
C14—C151.474 (11)C54—C551.462 (11)
C14—H140.95C54—H540.95
C15—C161.278 (10)C55—C561.295 (10)
C15—H150.95C55—H550.95
C16—H160.95C56—H560.95
C17—O11.249 (9)C57—O51.251 (9)
C17—N211.270 (9)C57—N611.260 (9)
N21—C211.435 (7)Cl64—C641.721 (4)
N21—H210.88N61—C611.456 (7)
Cl24—C241.722 (4)N61—H610.88
C21—C221.39C61—C621.39
C21—C261.39C61—C661.39
C22—C231.39C62—C631.39
C22—H220.95C62—H620.95
C23—C241.39C63—C641.39
C23—H230.95C63—H630.95
C24—C251.39C64—C651.39
C25—C261.39C65—C661.39
C25—H250.95C65—H650.95
C26—H260.95C66—H660.95
N31—C361.302 (8)N71—C761.285 (9)
N31—C321.307 (10)N71—C721.305 (10)
C32—C331.372 (11)C72—C731.365 (11)
C32—Cl31.770 (8)C72—Cl71.771 (8)
C33—C341.405 (11)C73—C741.396 (11)
C33—C371.469 (10)C73—C771.474 (11)
C34—C351.290 (11)C74—C751.300 (11)
C34—H340.95C74—H740.95
C35—C361.458 (9)C75—C761.479 (10)
C35—H350.95C75—H750.95
C36—H360.95C76—H760.95
C37—O31.218 (8)C77—O71.222 (8)
C37—N411.431 (9)C77—N811.441 (9)
N41—C411.394 (7)N81—C811.384 (7)
N41—H410.88N81—H810.88
Cl44—C441.738 (4)Cl84—C841.738 (4)
C41—C421.39C81—C821.39
C41—C461.39C81—C861.39
C42—C431.39C82—C831.39
C42—H420.95C82—H820.95
C43—C441.39C83—C841.39
C43—H430.95C83—H830.95
C44—C451.39C84—C851.39
C45—C461.39C85—C861.39
C45—H450.95C85—H850.95
C46—H460.95C86—H860.95
C12—N11—C16115.0 (6)C52—N51—C56114.5 (6)
N11—C12—C13122.9 (7)N51—C52—C53123.4 (7)
N11—C12—Cl1117.0 (6)N51—C52—Cl5116.5 (6)
C13—C12—Cl1120.0 (6)C53—C52—Cl5119.9 (6)
C14—C13—C12118.8 (8)C54—C53—C52118.7 (8)
C14—C13—C17118.5 (7)C54—C53—C57118.2 (7)
C12—C13—C17122.7 (7)C52—C53—C57123.1 (7)
C13—C14—C15118.7 (7)C53—C54—C55118.9 (7)
C13—C14—H14120.7C53—C54—H54120.5
C15—C14—H14120.7C55—C54—H54120.5
C16—C15—C14116.8 (7)C56—C55—C54116.2 (7)
C16—C15—H15121.6C56—C55—H55121.9
C14—C15—H15121.6C54—C55—H55121.9
C15—C16—N11127.7 (7)C55—C56—N51127.9 (7)
C15—C16—H16116.2C55—C56—H56116.1
N11—C16—H16116.2N51—C56—H56116.1
O1—C17—N21124.0 (8)O5—C57—N61124.7 (8)
O1—C17—C13119.7 (7)O5—C57—C53119.7 (7)
N21—C17—C13116.0 (7)N61—C57—C53115.4 (7)
C17—N21—C21127.4 (6)C57—N61—C61127.1 (6)
C17—N21—H21116.3C57—N61—H61116.5
C21—N21—H21116.3C61—N61—H61116.5
C22—C21—C26120.0C62—C61—C66120.0
C22—C21—N21119.8 (3)C62—C61—N61120.0 (3)
C26—C21—N21120.2 (3)C66—C61—N61120.0 (3)
C21—C22—C23120.0C61—C62—C63120.0
C21—C22—H22120.0C61—C62—H62120.0
C23—C22—H22120.0C63—C62—H62120.0
C24—C23—C22120.0C64—C63—C62120.0
C24—C23—H23120.0C64—C63—H63120.0
C22—C23—H23120.0C62—C63—H63120.0
C25—C24—C23120.0C65—C64—C63120.0
C25—C24—Cl24118.8 (2)C65—C64—Cl64120.3 (2)
C23—C24—Cl24121.1 (2)C63—C64—Cl64119.5 (2)
C24—C25—C26120.0C66—C65—C64120.0
C24—C25—H25120.0C66—C65—H65120.0
C26—C25—H25120.0C64—C65—H65120.0
C25—C26—C21120.0C65—C66—C61120.0
C25—C26—H26120.0C65—C66—H66120.0
C21—C26—H26120.0C61—C66—H66120.0
C36—N31—C32118.2 (6)C76—N71—C72118.6 (7)
N31—C32—C33127.1 (7)N71—C72—C73127.2 (8)
N31—C32—Cl3111.9 (6)N71—C72—Cl7111.9 (6)
C33—C32—Cl3121.0 (6)C73—C72—Cl7120.9 (6)
C32—C33—C34113.4 (7)C72—C73—C74114.5 (7)
C32—C33—C37123.5 (7)C72—C73—C77123.1 (7)
C34—C33—C37123.1 (7)C74—C73—C77122.3 (7)
C35—C34—C33122.0 (8)C75—C74—C73120.8 (8)
C35—C34—H34119.0C75—C74—H74119.6
C33—C34—H34119.0C73—C74—H74119.6
C34—C35—C36119.2 (7)C74—C75—C76119.3 (7)
C34—C35—H35120.4C74—C75—H75120.4
C36—C35—H35120.4C76—C75—H75120.4
N31—C36—C35119.6 (6)N71—C76—C75119.0 (6)
N31—C36—H36120.2N71—C76—H76120.5
C35—C36—H36120.2C75—C76—H76120.5
O3—C37—N41123.0 (7)O7—C77—N81122.3 (7)
O3—C37—C33123.6 (7)O7—C77—C73124.5 (7)
N41—C37—C33113.3 (6)N81—C77—C73113.1 (6)
C41—N41—C37123.5 (6)C81—N81—C77124.1 (6)
C41—N41—H41118.2C81—N81—H81118.0
C37—N41—H41118.2C77—N81—H81118.0
C42—C41—C46120.0N81—C81—C82116.3 (3)
C42—C41—N41117.2 (3)N81—C81—C86123.7 (3)
C46—C41—N41122.7 (3)C82—C81—C86120.0
C43—C42—C41120.0C81—C82—C83120.0
C43—C42—H42120.0C81—C82—H82120.0
C41—C42—H42120.0C83—C82—H82120.0
C42—C43—C44120.0C84—C83—C82120.0
C42—C43—H43120.0C84—C83—H83120.0
C44—C43—H43120.0C82—C83—H83120.0
C45—C44—C43120.0C83—C84—C85120.0
C45—C44—Cl44119.6 (2)C83—C84—Cl84120.0 (2)
C43—C44—Cl44120.4 (2)C85—C84—Cl84119.9 (2)
C44—C45—C46120.0C84—C85—C86120.0
C44—C45—H45120.0C84—C85—H85120.0
C46—C45—H45120.0C86—C85—H85120.0
C45—C46—C41120.0C85—C86—C81120.0
C45—C46—H46120.0C85—C86—H86120.0
C41—C46—H46120.0C81—C86—H86120.0
C16—N11—C12—C133.4 (10)C56—N51—C52—C534.3 (10)
C16—N11—C12—Cl1179.5 (5)C56—N51—C52—Cl5179.6 (5)
N11—C12—C13—C144.8 (11)N51—C52—C53—C545.1 (12)
Cl1—C12—C13—C14178.2 (5)Cl5—C52—C53—C54179.8 (6)
N11—C12—C13—C17176.5 (7)N51—C52—C53—C57176.2 (6)
Cl1—C12—C13—C170.5 (10)Cl5—C52—C53—C571.1 (10)
C12—C13—C14—C154.6 (10)C52—C53—C54—C554.6 (11)
C17—C13—C14—C15176.7 (6)C57—C53—C54—C55176.7 (6)
C13—C14—C15—C163.5 (10)C53—C54—C55—C563.9 (10)
C14—C15—C16—N112.4 (10)C54—C55—C56—N513.6 (10)
C12—N11—C16—C152.5 (10)C52—N51—C56—C553.8 (10)
C14—C13—C17—O1128.4 (8)C54—C53—C57—O5129.1 (8)
C12—C13—C17—O150.3 (10)C52—C53—C57—O549.6 (11)
C14—C13—C17—N2145.8 (9)C54—C53—C57—N6146.9 (10)
C12—C13—C17—N21135.5 (8)C52—C53—C57—N61134.4 (8)
O1—C17—N21—C211.0 (12)O5—C57—N61—C611.8 (12)
C13—C17—N21—C21175.0 (6)C53—C57—N61—C61173.9 (6)
C17—N21—C21—C22149.0 (6)C57—N61—C61—C62141.9 (6)
C17—N21—C21—C2631.7 (8)C57—N61—C61—C6636.4 (8)
C26—C21—C22—C230.0C66—C61—C62—C630.0
N21—C21—C22—C23179.3 (4)N61—C61—C62—C63178.2 (4)
C21—C22—C23—C240.0C61—C62—C63—C640.0
C22—C23—C24—C250.0C62—C63—C64—C650.0
C22—C23—C24—Cl24178.1 (3)C62—C63—C64—Cl64175.3 (3)
C23—C24—C25—C260.0C63—C64—C65—C660.0
Cl24—C24—C25—C26178.1 (3)Cl64—C64—C65—C66175.2 (3)
C24—C25—C26—C210.0C64—C65—C66—C610.0
C22—C21—C26—C250.0C62—C61—C66—C650.0
N21—C21—C26—C25179.3 (4)N61—C61—C66—C65178.2 (4)
C36—N31—C32—C333.2 (11)C76—N71—C72—C732.2 (12)
C36—N31—C32—Cl3177.7 (5)C76—N71—C72—Cl7177.1 (5)
N31—C32—C33—C344.0 (12)N71—C72—C73—C742.2 (12)
Cl3—C32—C33—C34177.0 (5)Cl7—C72—C73—C74177.1 (6)
N31—C32—C33—C37174.9 (7)N71—C72—C73—C77174.8 (7)
Cl3—C32—C33—C374.1 (11)Cl7—C72—C73—C775.9 (11)
C32—C33—C34—C355.8 (11)C72—C73—C74—C755.3 (11)
C37—C33—C34—C35173.1 (7)C77—C73—C74—C75171.7 (7)
C33—C34—C35—C366.7 (11)C73—C74—C75—C768.1 (11)
C32—N31—C36—C353.6 (9)C72—N71—C76—C754.7 (10)
C34—C35—C36—N315.6 (10)C74—C75—C76—N717.9 (10)
C32—C33—C37—O339.5 (12)C72—C73—C77—O739.2 (12)
C34—C33—C37—O3139.3 (8)C74—C73—C77—O7137.6 (8)
C32—C33—C37—N41137.9 (8)C72—C73—C77—N81138.0 (8)
C34—C33—C37—N4143.3 (10)C74—C73—C77—N8145.2 (10)
O3—C37—N41—C415.9 (11)O7—C77—N81—C815.8 (11)
C33—C37—N41—C41176.7 (6)C73—C77—N81—C81176.9 (6)
C37—N41—C41—C42148.6 (5)C77—N81—C81—C82144.9 (5)
C37—N41—C41—C4635.1 (7)C77—N81—C81—C8634.2 (8)
C46—C41—C42—C430.0N81—C81—C82—C83179.2 (4)
N41—C41—C42—C43176.4 (4)C86—C81—C82—C830.0
C41—C42—C43—C440.0C81—C82—C83—C840.0
C42—C43—C44—C450.0C82—C83—C84—C850.0
C42—C43—C44—Cl44180.0 (3)C82—C83—C84—Cl84177.3 (3)
C43—C44—C45—C460.0C83—C84—C85—C860.0
Cl44—C44—C45—C46180.0 (3)Cl84—C84—C85—C86177.3 (3)
C44—C45—C46—C410.0C84—C85—C86—C810.0
C42—C41—C46—C450.0N81—C81—C86—C85179.2 (5)
N41—C41—C46—C45176.2 (5)C82—C81—C86—C850.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O1i0.882.112.925 (8)153
N41—H41···O3i0.882.002.833 (8)157
N61—H61···O5ii0.882.112.925 (8)153
N81—H81···O7ii0.882.002.841 (8)159
C26—H26···Cg50.952.763.444 (8)130
C46—H46···Cg40.952.753.448 (8)131
C62—H62···Cg3ii0.952.883.588 (8)132
C82—H82···Cg2ii0.952.873.579 (8)132
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
(V) N-(4-bromophenyl)-2-chloronicotinamide top
Crystal data top
C12H8BrClN2OF(000) = 616
Mr = 311.56Dx = 1.727 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2736 reflections
a = 4.8810 (2) Åθ = 3.1–27.5°
b = 13.3448 (2) ŵ = 3.64 mm1
c = 18.3974 (3) ÅT = 120 K
V = 1198.33 (6) Å3Block, colourless
Z = 40.16 × 0.16 × 0.16 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2736 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ & ω scansh = 66
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1717
Tmin = 0.558, Tmax = 0.558l = 2323
36201 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.2964P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2736 reflectionsΔρmax = 0.43 e Å3
154 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack (1983), 1098 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.031 (7)
Crystal data top
C12H8BrClN2OV = 1198.33 (6) Å3
Mr = 311.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8810 (2) ŵ = 3.64 mm1
b = 13.3448 (2) ÅT = 120 K
c = 18.3974 (3) Å0.16 × 0.16 × 0.16 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2736 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2597 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.558Rint = 0.047
36201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.43 e Å3
S = 1.07Δρmin = 0.52 e Å3
2736 reflectionsAbsolute structure: Flack (1983), 1098 Friedel pairs
154 parametersAbsolute structure parameter: 0.031 (7)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.2251 (4)0.44892 (15)0.25022 (11)0.0305 (4)
C120.3184 (4)0.53761 (16)0.27104 (11)0.0233 (4)
Cl10.20925 (12)0.63776 (4)0.21708 (3)0.03344 (13)
C130.5004 (4)0.55387 (15)0.32813 (11)0.0212 (4)
C140.6017 (5)0.46884 (16)0.36219 (12)0.0282 (5)
C150.5092 (5)0.37504 (17)0.34193 (13)0.0350 (5)
C160.3191 (5)0.36907 (17)0.28653 (13)0.0344 (5)
C170.5980 (4)0.65411 (16)0.35532 (10)0.0218 (4)
O10.8431 (3)0.66775 (13)0.36577 (10)0.0359 (4)
N210.4029 (3)0.72119 (12)0.37036 (9)0.0212 (3)
C210.4464 (4)0.81970 (14)0.39778 (10)0.0201 (4)
C220.2741 (4)0.89596 (16)0.37318 (12)0.0261 (4)
C230.3060 (5)0.99245 (16)0.39955 (12)0.0275 (5)
C240.5085 (4)1.01185 (14)0.44999 (11)0.0242 (4)
Br240.55925 (5)1.144725 (15)0.484926 (12)0.03552 (8)
C250.6793 (4)0.93690 (16)0.47524 (11)0.0256 (4)
C260.6465 (4)0.83994 (16)0.44923 (11)0.0236 (4)
H140.73510.47510.39950.037*
H150.57460.31630.36540.045*
H160.25120.30480.27350.045*
H210.24660.70570.36310.025*
H220.13550.88170.33850.034*
H230.18951.04480.38310.036*
H250.81760.95160.51000.033*
H260.76090.78760.46660.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0325 (10)0.0286 (10)0.0305 (10)0.0047 (8)0.0013 (8)0.0098 (8)
C120.0242 (10)0.0250 (10)0.0206 (10)0.0007 (8)0.0021 (8)0.0028 (8)
Cl10.0459 (3)0.0307 (3)0.0237 (2)0.0034 (3)0.0106 (2)0.0017 (2)
C130.0205 (9)0.0238 (10)0.0192 (9)0.0000 (7)0.0044 (7)0.0029 (8)
C140.0332 (11)0.0288 (11)0.0225 (10)0.0030 (9)0.0007 (9)0.0021 (8)
C150.0501 (14)0.0249 (11)0.0299 (11)0.0034 (10)0.0038 (10)0.0000 (9)
C160.0425 (12)0.0213 (11)0.0393 (13)0.0059 (10)0.0090 (10)0.0085 (10)
C170.0199 (9)0.0259 (10)0.0196 (9)0.0037 (9)0.0019 (7)0.0015 (8)
O10.0187 (7)0.0393 (10)0.0497 (10)0.0021 (7)0.0010 (7)0.0161 (8)
N210.0178 (8)0.0224 (8)0.0232 (8)0.0042 (7)0.0028 (7)0.0034 (7)
C210.0204 (9)0.0206 (9)0.0192 (9)0.0027 (8)0.0016 (8)0.0006 (7)
C220.0243 (10)0.0297 (11)0.0243 (10)0.0003 (9)0.0049 (8)0.0007 (8)
C230.0286 (11)0.0245 (10)0.0293 (12)0.0040 (9)0.0009 (9)0.0017 (9)
C240.0340 (12)0.0175 (9)0.0210 (9)0.0035 (8)0.0055 (8)0.0006 (7)
Br240.05752 (15)0.01955 (11)0.02950 (12)0.00444 (10)0.00210 (10)0.00290 (9)
C250.0284 (10)0.0255 (10)0.0228 (10)0.0042 (8)0.0060 (8)0.0025 (8)
C260.0247 (9)0.0235 (10)0.0225 (9)0.0016 (8)0.0045 (8)0.0004 (8)
Geometric parameters (Å, º) top
N11—C121.325 (3)N21—C211.424 (2)
N11—C161.339 (3)N21—H210.8017
C12—C131.393 (3)C21—C261.387 (3)
C12—Cl11.748 (2)C21—C221.395 (3)
C13—C141.387 (3)C22—C231.385 (3)
C13—C171.506 (3)C22—H220.95
C14—C151.382 (3)C23—C241.381 (3)
C14—H140.95C23—H230.95
C15—C161.381 (4)C24—C251.382 (3)
C15—H150.95C24—Br241.9022 (19)
C16—H160.95C25—C261.389 (3)
C17—O11.225 (3)C25—H250.95
C17—N211.336 (3)C26—H260.95
C12—N11—C16116.70 (19)C17—N21—H21118.1
N11—C12—C13125.2 (2)C21—N21—H21116.0
N11—C12—Cl1114.47 (16)C26—C21—C22120.24 (19)
C13—C12—Cl1120.23 (17)C26—C21—N21121.77 (18)
C14—C13—C12116.14 (19)C22—C21—N21117.95 (18)
C14—C13—C17117.63 (17)C23—C22—C21119.8 (2)
C12—C13—C17126.23 (19)C23—C22—H22120.1
C15—C14—C13120.2 (2)C21—C22—H22120.1
C15—C14—H14119.9C24—C23—C22119.3 (2)
C13—C14—H14119.9C24—C23—H23120.3
C16—C15—C14118.1 (2)C22—C23—H23120.3
C16—C15—H15120.9C23—C24—C25121.47 (19)
C14—C15—H15120.9C23—C24—Br24119.68 (16)
N11—C16—C15123.5 (2)C25—C24—Br24118.84 (16)
N11—C16—H16118.2C24—C25—C26119.25 (19)
C15—C16—H16118.2C24—C25—H25120.4
O1—C17—N21124.3 (2)C26—C25—H25120.4
O1—C17—C13119.55 (18)C21—C26—C25119.86 (19)
N21—C17—C13116.01 (16)C21—C26—H26120.1
C17—N21—C21125.86 (17)C25—C26—H26120.1
C16—N11—C12—C131.3 (3)O1—C17—N21—C212.7 (3)
C16—N11—C12—Cl1175.22 (17)C13—C17—N21—C21178.86 (17)
N11—C12—C13—C144.1 (3)C17—N21—C21—C2638.6 (3)
Cl1—C12—C13—C14172.30 (16)C17—N21—C21—C22143.6 (2)
N11—C12—C13—C17176.62 (19)C26—C21—C22—C230.9 (3)
Cl1—C12—C13—C177.0 (3)N21—C21—C22—C23178.7 (2)
C12—C13—C14—C153.8 (3)C21—C22—C23—C240.0 (3)
C17—C13—C14—C15176.82 (19)C22—C23—C24—C250.5 (3)
C13—C14—C15—C161.1 (3)C22—C23—C24—Br24178.60 (17)
C12—N11—C16—C151.7 (3)C23—C24—C25—C260.0 (3)
C14—C15—C16—N111.8 (4)Br24—C24—C25—C26179.05 (16)
C14—C13—C17—O146.9 (3)C22—C21—C26—C251.3 (3)
C12—C13—C17—O1132.4 (2)N21—C21—C26—C25179.10 (19)
C14—C13—C17—N21129.4 (2)C24—C25—C26—C210.9 (3)
C12—C13—C17—N2151.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O1i0.802.032.825 (2)169
C22—H22···N11ii0.952.563.405 (3)148
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
(VI) N-(4-Iodophenyl)-2-chloronicotinamide top
Crystal data top
C12H8ClIN2OF(000) = 1376
Mr = 358.55Dx = 1.868 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2909 reflections
a = 10.6597 (2) Åθ = 3.0–27.5°
b = 25.9833 (3) ŵ = 2.71 mm1
c = 9.2044 (6) ÅT = 120 K
V = 2549.38 (18) Å3Plate, colourless
Z = 80.33 × 0.18 × 0.07 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2909 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 3233
Tmin = 0.469, Tmax = 0.833l = 1111
19649 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.026P)2 + 0.5926P]
where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max = 0.005
154 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C12H8ClIN2OV = 2549.38 (18) Å3
Mr = 358.55Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.6597 (2) ŵ = 2.71 mm1
b = 25.9833 (3) ÅT = 120 K
c = 9.2044 (6) Å0.33 × 0.18 × 0.07 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2909 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2314 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.833Rint = 0.038
19649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2909 reflectionsΔρmin = 0.78 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.60356 (18)0.11949 (7)0.62709 (19)0.0203 (4)
C120.6165 (2)0.16921 (8)0.6038 (2)0.0160 (5)
Cl10.76816 (5)0.19337 (2)0.62506 (6)0.02158 (13)
C130.5212 (2)0.20242 (8)0.5592 (2)0.0143 (4)
C140.4040 (2)0.18113 (8)0.5380 (2)0.0203 (5)
C150.3866 (2)0.12909 (8)0.5640 (2)0.0244 (5)
C160.4878 (2)0.10011 (8)0.6066 (3)0.0245 (5)
C170.54567 (19)0.25827 (8)0.5278 (2)0.0149 (4)
O10.55314 (15)0.27425 (5)0.40199 (16)0.0207 (4)
N210.55734 (17)0.28802 (7)0.64672 (17)0.0170 (4)
C210.5942 (2)0.34079 (8)0.6469 (2)0.0171 (5)
C220.6810 (2)0.35646 (8)0.7503 (2)0.0204 (5)
C230.7200 (2)0.40740 (8)0.7567 (3)0.0220 (5)
C240.6721 (2)0.44248 (8)0.6580 (2)0.0190 (5)
I240.741430 (14)0.518368 (5)0.656374 (16)0.02235 (7)
C250.5848 (2)0.42725 (8)0.5546 (2)0.0195 (5)
C260.5448 (2)0.37637 (8)0.5492 (2)0.0186 (5)
H140.33610.20190.50590.026*
H150.30630.11380.55260.032*
H160.47540.06430.62260.032*
H210.54090.27380.73130.022*
H220.71400.33210.81720.027*
H230.77880.41810.82800.029*
H250.55240.45160.48750.025*
H260.48420.36600.47950.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0209 (11)0.0147 (10)0.0253 (10)0.0018 (8)0.0015 (8)0.0022 (8)
C120.0160 (12)0.0168 (12)0.0150 (11)0.0013 (9)0.0016 (9)0.0029 (9)
Cl10.0157 (3)0.0203 (3)0.0288 (3)0.0014 (2)0.0015 (2)0.0029 (2)
C130.0191 (12)0.0134 (11)0.0105 (10)0.0016 (9)0.0021 (9)0.0010 (8)
C140.0192 (12)0.0188 (12)0.0230 (12)0.0011 (9)0.0050 (10)0.0009 (9)
C150.0209 (13)0.0189 (13)0.0334 (14)0.0057 (10)0.0023 (11)0.0028 (10)
C160.0290 (15)0.0146 (12)0.0300 (13)0.0048 (10)0.0029 (11)0.0007 (10)
C170.0100 (11)0.0154 (11)0.0193 (12)0.0005 (8)0.0004 (9)0.0000 (9)
O10.0329 (10)0.0161 (8)0.0132 (8)0.0007 (7)0.0016 (7)0.0012 (6)
N210.0265 (11)0.0115 (9)0.0131 (9)0.0038 (8)0.0026 (8)0.0005 (7)
C210.0208 (12)0.0146 (11)0.0158 (11)0.0007 (9)0.0039 (9)0.0015 (9)
C220.0305 (14)0.0171 (11)0.0137 (10)0.0002 (10)0.0010 (10)0.0015 (9)
C230.0304 (14)0.0174 (12)0.0182 (11)0.0048 (10)0.0026 (10)0.0036 (9)
C240.0241 (13)0.0096 (11)0.0234 (12)0.0018 (9)0.0059 (10)0.0032 (9)
I240.02689 (11)0.01153 (10)0.02863 (11)0.00335 (6)0.00034 (7)0.00170 (6)
C250.0185 (12)0.0138 (11)0.0263 (12)0.0028 (9)0.0003 (10)0.0024 (9)
C260.0162 (12)0.0173 (11)0.0225 (12)0.0003 (9)0.0005 (9)0.0016 (9)
Geometric parameters (Å, º) top
N11—C121.317 (3)N21—C211.426 (3)
N11—C161.346 (3)N21—H210.88
C12—C131.395 (3)C21—C221.389 (3)
C12—Cl11.745 (2)C21—C261.393 (3)
C13—C141.380 (3)C22—C231.388 (3)
C13—C171.502 (3)C22—H220.95
C14—C151.386 (3)C23—C241.384 (3)
C14—H140.95C23—H230.95
C15—C161.373 (3)C24—C251.388 (3)
C15—H150.95C24—I242.106 (2)
C16—H160.95C25—C261.390 (3)
C17—O11.232 (2)C25—H250.95
C17—N211.346 (3)C26—H260.95
C12—N11—C16116.14 (19)C17—N21—H21117.3
N11—C12—C13125.3 (2)C21—N21—H21117.3
N11—C12—Cl1115.59 (16)C22—C21—C26120.0 (2)
C13—C12—Cl1119.03 (16)C22—C21—N21117.77 (19)
C14—C13—C12116.93 (19)C26—C21—N21122.2 (2)
C14—C13—C17121.16 (18)C23—C22—C21120.5 (2)
C12—C13—C17121.83 (19)C23—C22—H22119.7
C13—C14—C15119.2 (2)C21—C22—H22119.7
C13—C14—H14120.4C24—C23—C22119.3 (2)
C15—C14—H14120.4C24—C23—H23120.3
C16—C15—C14118.6 (2)C22—C23—H23120.3
C16—C15—H15120.7C23—C24—C25120.6 (2)
C14—C15—H15120.7C23—C24—I24119.47 (16)
N11—C16—C15123.7 (2)C25—C24—I24119.83 (16)
N11—C16—H16118.1C24—C25—C26120.1 (2)
C15—C16—H16118.1C24—C25—H25119.9
O1—C17—N21124.37 (19)C26—C25—H25119.9
O1—C17—C13121.16 (18)C25—C26—C21119.5 (2)
N21—C17—C13114.47 (18)C25—C26—H26120.3
C17—N21—C21125.33 (18)C21—C26—H26120.3
C16—N11—C12—C130.6 (3)O1—C17—N21—C217.7 (3)
C16—N11—C12—Cl1178.02 (16)C13—C17—N21—C21172.75 (19)
N11—C12—C13—C140.0 (3)C17—N21—C21—C22135.9 (2)
Cl1—C12—C13—C14177.36 (15)C17—N21—C21—C2645.1 (3)
N11—C12—C13—C17176.83 (19)C26—C21—C22—C230.5 (3)
Cl1—C12—C13—C170.5 (3)N21—C21—C22—C23179.6 (2)
C12—C13—C14—C151.1 (3)C21—C22—C23—C240.5 (3)
C17—C13—C14—C15177.99 (19)C22—C23—C24—C250.8 (3)
C13—C14—C15—C161.6 (3)C22—C23—C24—I24175.18 (16)
C12—N11—C16—C150.0 (3)C23—C24—C25—C260.1 (3)
C14—C15—C16—N111.1 (4)I24—C24—C25—C26175.85 (16)
C14—C13—C17—O173.6 (3)C24—C25—C26—C210.9 (3)
C12—C13—C17—O1103.1 (2)C22—C21—C26—C251.2 (3)
C14—C13—C17—N21106.0 (2)N21—C21—C26—C25179.80 (19)
C12—C13—C17—N2177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O1i0.882.012.853 (2)160
C15—H15···Cg2ii0.952.653.404 (2)137
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x2, y+1, z.
(VII) N-(4-Methoxyphenyl)-2-chloronicotinamide top
Crystal data top
C13H11ClN2O2F(000) = 544
Mr = 262.69Dx = 1.441 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2661 reflections
a = 4.8536 (2) Åθ = 3.6–27.5°
b = 11.8437 (4) ŵ = 0.31 mm1
c = 21.0612 (7) ÅT = 120 K
V = 1210.69 (6) Å3Block, colourless
Z = 40.34 × 0.22 × 0.12 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2661 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ & ω scansh = 56
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1511
Tmin = 0.921, Tmax = 0.964l = 2127
7884 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2661 reflectionsΔρmax = 0.24 e Å3
164 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack (1983), 1013 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C13H11ClN2O2V = 1210.69 (6) Å3
Mr = 262.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8536 (2) ŵ = 0.31 mm1
b = 11.8437 (4) ÅT = 120 K
c = 21.0612 (7) Å0.34 × 0.22 × 0.12 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
2661 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2184 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.964Rint = 0.040
7884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.35 e Å3
2661 reflectionsAbsolute structure: Flack (1983), 1013 Friedel pairs
164 parametersAbsolute structure parameter: 0.05 (7)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.2528 (4)0.42072 (18)0.20676 (9)0.0307 (5)
C120.3347 (4)0.3434 (2)0.24770 (10)0.0227 (5)
Cl10.56547 (12)0.24507 (5)0.21709 (3)0.03297 (19)
C130.2436 (4)0.33534 (18)0.31091 (9)0.0177 (5)
C140.0515 (4)0.41567 (19)0.33018 (10)0.0208 (5)
C150.0354 (5)0.4982 (2)0.28822 (11)0.0267 (5)
C160.0687 (5)0.4970 (2)0.22747 (11)0.0331 (6)
C170.3486 (4)0.24784 (19)0.35626 (9)0.0182 (4)
O10.5965 (3)0.22805 (14)0.36182 (7)0.0282 (4)
N210.1514 (4)0.19607 (16)0.39034 (8)0.0183 (4)
C210.1969 (4)0.11043 (18)0.43713 (9)0.0182 (5)
C220.0365 (5)0.1129 (2)0.49195 (10)0.0215 (5)
C230.0673 (5)0.0297 (2)0.53731 (10)0.0245 (5)
C240.2577 (5)0.0565 (2)0.52849 (9)0.0212 (5)
O240.2684 (3)0.13507 (14)0.57646 (7)0.0285 (4)
C2410.4823 (5)0.2180 (2)0.57344 (11)0.0314 (6)
C250.4176 (5)0.0590 (2)0.47362 (10)0.0225 (5)
C260.3853 (4)0.02478 (19)0.42806 (10)0.0218 (5)
H140.02000.41380.37220.027*
H150.16380.55430.30110.035*
H160.00700.55320.19860.043*
H210.02020.21660.38330.022*
H220.09390.17170.49810.028*
H230.04210.03140.57470.032*
H24A0.46530.26100.53390.041*
H24B0.46600.26940.60970.041*
H12C0.66220.18050.57470.041*
H250.54820.11770.46740.029*
H260.49340.02300.39050.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0356 (11)0.0325 (12)0.0241 (10)0.0033 (11)0.0013 (9)0.0069 (9)
C120.0179 (11)0.0260 (14)0.0242 (11)0.0046 (10)0.0031 (10)0.0039 (10)
Cl10.0300 (3)0.0373 (4)0.0316 (3)0.0010 (3)0.0104 (2)0.0087 (3)
C130.0130 (9)0.0202 (13)0.0197 (10)0.0033 (9)0.0041 (9)0.0016 (9)
C140.0181 (10)0.0221 (13)0.0223 (10)0.0025 (10)0.0004 (9)0.0023 (9)
C150.0256 (12)0.0189 (12)0.0357 (13)0.0024 (11)0.0031 (12)0.0023 (10)
C160.0372 (15)0.0283 (15)0.0337 (13)0.0024 (13)0.0053 (12)0.0109 (10)
C170.0166 (10)0.0173 (11)0.0206 (9)0.0010 (10)0.0021 (8)0.0040 (9)
O10.0124 (7)0.0343 (10)0.0378 (8)0.0011 (8)0.0020 (7)0.0081 (8)
N210.0112 (8)0.0225 (11)0.0211 (9)0.0035 (8)0.0011 (7)0.0023 (8)
C210.0173 (11)0.0187 (13)0.0185 (11)0.0018 (9)0.0027 (9)0.0009 (9)
C220.0188 (11)0.0209 (13)0.0247 (10)0.0025 (10)0.0008 (9)0.0013 (9)
C230.0259 (12)0.0280 (14)0.0195 (10)0.0019 (11)0.0046 (10)0.0029 (9)
C240.0249 (11)0.0206 (13)0.0182 (10)0.0011 (11)0.0029 (9)0.0010 (9)
O240.0347 (9)0.0268 (10)0.0242 (8)0.0050 (9)0.0021 (8)0.0074 (7)
C2410.0329 (13)0.0312 (15)0.0300 (12)0.0041 (12)0.0035 (11)0.0074 (11)
C250.0184 (11)0.0216 (13)0.0274 (11)0.0076 (11)0.0007 (10)0.0006 (9)
C260.0196 (11)0.0265 (13)0.0192 (10)0.0031 (10)0.0035 (9)0.0002 (9)
Geometric parameters (Å, º) top
N11—C121.319 (3)C21—C261.379 (3)
N11—C161.344 (3)C21—C221.393 (3)
C12—C131.406 (3)C22—C231.381 (3)
C12—Cl11.740 (2)C22—H220.95
C13—C141.393 (3)C23—C241.389 (3)
C13—C171.499 (3)C23—H230.95
C14—C151.384 (3)C24—O241.375 (3)
C14—H140.95C24—C251.393 (3)
C15—C161.376 (3)O24—C2411.431 (3)
C15—H150.95C241—H24A0.98
C16—H160.95C241—H24B0.98
C17—O11.231 (2)C241—H12C0.98
C17—N211.344 (3)C25—C261.389 (3)
N21—C211.431 (3)C25—H250.95
N21—H210.88C26—H260.95
C12—N11—C16117.07 (19)C22—C21—N21117.99 (18)
N11—C12—C13124.9 (2)C23—C22—C21119.9 (2)
N11—C12—Cl1114.61 (17)C23—C22—H22120.1
C13—C12—Cl1120.50 (18)C21—C22—H22120.1
C14—C13—C12116.1 (2)C22—C23—C24120.3 (2)
C14—C13—C17120.95 (18)C22—C23—H23119.9
C12—C13—C17122.9 (2)C24—C23—H23119.9
C15—C14—C13120.1 (2)O24—C24—C23115.13 (19)
C15—C14—H14120.0O24—C24—C25125.1 (2)
C13—C14—H14120.0C23—C24—C25119.8 (2)
C16—C15—C14118.3 (2)C24—O24—C241117.39 (17)
C16—C15—H15120.8O24—C241—H24A109.5
C14—C15—H15120.8O24—C241—H24B109.5
N11—C16—C15123.6 (2)H24A—C241—H24B109.5
N11—C16—H16118.2O24—C241—H12C109.5
C15—C16—H16118.2H24A—C241—H12C109.5
O1—C17—N21123.9 (2)H24B—C241—H12C109.5
O1—C17—C13121.64 (19)C26—C25—C24119.7 (2)
N21—C17—C13114.43 (17)C26—C25—H25120.2
C17—N21—C21125.51 (17)C24—C25—H25120.2
C17—N21—H21117.2C21—C26—C25120.30 (19)
C21—N21—H21117.2C21—C26—H26119.9
C26—C21—C22120.1 (2)C25—C26—H26119.9
C26—C21—N21121.89 (17)
C16—N11—C12—C130.0 (3)C13—C17—N21—C21179.40 (17)
C16—N11—C12—Cl1178.26 (19)C17—N21—C21—C2641.5 (3)
N11—C12—C13—C140.4 (3)C17—N21—C21—C22141.0 (2)
Cl1—C12—C13—C14177.73 (16)C26—C21—C22—C230.3 (3)
N11—C12—C13—C17178.3 (2)N21—C21—C22—C23177.8 (2)
Cl1—C12—C13—C173.6 (3)C21—C22—C23—C240.0 (3)
C12—C13—C14—C151.0 (3)C22—C23—C24—O24179.4 (2)
C17—C13—C14—C15177.7 (2)C22—C23—C24—C250.1 (3)
C13—C14—C15—C161.2 (3)C23—C24—O24—C241172.87 (19)
C12—N11—C16—C150.1 (4)C25—C24—O24—C2417.9 (3)
C14—C15—C16—N110.8 (4)O24—C24—C25—C26179.2 (2)
C14—C13—C17—O1131.8 (2)C23—C24—C25—C260.1 (3)
C12—C13—C17—O146.8 (3)C22—C21—C26—C250.5 (3)
C14—C13—C17—N2146.9 (3)N21—C21—C26—C25177.90 (19)
C12—C13—C17—N21134.5 (2)C24—C25—C26—C210.4 (3)
O1—C17—N21—C210.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O1i0.881.922.785 (2)168
Symmetry code: (i) x1, y, z.
(VIII) N-(4-Cyanophenyl)-2-chloronicotinamide top
Crystal data top
C13H8ClN3OZ = 4
Mr = 257.67F(000) = 528
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2885 (3) ÅCell parameters from 5365 reflections
b = 7.7607 (3) Åθ = 2.9–27.6°
c = 20.8849 (9) ŵ = 0.32 mm1
α = 96.456 (2)°T = 120 K
β = 92.913 (2)°Block, colourless
γ = 91.810 (2)°0.40 × 0.10 × 0.10 mm
V = 1171.49 (8) Å3
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
5365 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.9°
ϕ & ω scansh = 99
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1010
Tmin = 0.899, Tmax = 0.969l = 2726
21639 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0844P)2 + 1.0407P]
where P = (Fo2 + 2Fc2)/3
5365 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H8ClN3Oγ = 91.810 (2)°
Mr = 257.67V = 1171.49 (8) Å3
Triclinic, P1Z = 4
a = 7.2885 (3) ÅMo Kα radiation
b = 7.7607 (3) ŵ = 0.32 mm1
c = 20.8849 (9) ÅT = 120 K
α = 96.456 (2)°0.40 × 0.10 × 0.10 mm
β = 92.913 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
5365 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
3760 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.969Rint = 0.060
21639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.07Δρmax = 0.74 e Å3
5365 reflectionsΔρmin = 0.35 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.4024 (3)0.5334 (3)0.41399 (12)0.0257 (6)
C120.5406 (4)0.4277 (4)0.40989 (14)0.0225 (6)
Cl110.74241 (10)0.51557 (10)0.38256 (4)0.0285 (2)
C130.5387 (4)0.2603 (4)0.42747 (14)0.0206 (6)
C140.3775 (4)0.2012 (4)0.45139 (15)0.0241 (7)
C150.2276 (4)0.3077 (4)0.45524 (15)0.0268 (7)
C160.2475 (4)0.4714 (4)0.43607 (15)0.0279 (7)
C170.7039 (4)0.1471 (4)0.42314 (14)0.0211 (6)
O110.7924 (3)0.1170 (3)0.47166 (10)0.0273 (5)
N210.7375 (3)0.0842 (3)0.36189 (12)0.0235 (6)
C210.8926 (4)0.0042 (4)0.33945 (14)0.0209 (6)
C220.9149 (4)0.0138 (4)0.27334 (15)0.0232 (6)
C231.0691 (4)0.0867 (4)0.24724 (15)0.0244 (7)
C241.2018 (4)0.1517 (4)0.28771 (15)0.0221 (6)
C2411.3665 (4)0.2196 (4)0.26069 (15)0.0263 (7)
N241.4970 (4)0.2700 (4)0.23738 (14)0.0340 (7)
C251.1762 (4)0.1476 (4)0.35319 (15)0.0224 (6)
C261.0208 (4)0.0761 (4)0.37956 (15)0.0221 (6)
N310.5598 (3)1.0705 (3)0.08089 (12)0.0251 (6)
C320.4236 (4)0.9650 (4)0.08737 (14)0.0203 (6)
Cl310.21001 (10)1.06368 (10)0.11310 (4)0.0268 (2)
C330.4379 (4)0.7849 (4)0.07404 (14)0.0194 (6)
C340.6107 (4)0.7128 (4)0.05231 (15)0.0244 (7)
C350.7567 (4)0.8212 (4)0.04530 (15)0.0266 (7)
C360.7249 (4)0.9975 (4)0.05984 (15)0.0279 (7)
C370.2739 (4)0.6719 (4)0.07828 (14)0.0193 (6)
O310.1832 (3)0.6369 (3)0.03110 (10)0.0257 (5)
N410.2429 (3)0.6166 (3)0.13691 (12)0.0221 (5)
C410.0939 (4)0.5220 (4)0.15886 (14)0.0192 (6)
C420.0933 (4)0.4872 (4)0.22279 (15)0.0238 (7)
C430.0521 (4)0.4041 (4)0.24920 (15)0.0246 (7)
C440.1995 (4)0.3559 (4)0.21195 (15)0.0220 (6)
C4410.3543 (4)0.2754 (4)0.23969 (15)0.0259 (7)
N440.4780 (4)0.2120 (4)0.26268 (14)0.0326 (6)
C450.1955 (4)0.3863 (4)0.14756 (14)0.0216 (6)
C460.0501 (4)0.4687 (4)0.12041 (14)0.0217 (6)
H140.36930.08870.46510.029*
H150.11480.26890.47060.032*
H160.14530.54430.43870.034*
H210.65170.10050.33220.028*
H220.82370.02990.24600.028*
H231.08450.09240.20220.029*
H251.26590.19420.38030.027*
H261.00210.07610.42420.027*
H340.62840.59080.04240.029*
H350.87570.77480.03080.032*
H360.82481.07140.05470.033*
H410.32630.64290.16510.026*
H420.19310.52080.24830.029*
H430.05160.37980.29280.030*
H450.29400.35000.12180.026*
H460.04810.48870.07630.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0217 (13)0.0263 (14)0.0300 (15)0.0095 (11)0.0027 (11)0.0032 (11)
C120.0200 (14)0.0251 (16)0.0229 (15)0.0055 (12)0.0028 (11)0.0029 (12)
Cl110.0228 (4)0.0318 (4)0.0330 (4)0.0026 (3)0.0089 (3)0.0083 (3)
C130.0190 (14)0.0238 (16)0.0195 (14)0.0059 (12)0.0024 (11)0.0023 (11)
C140.0186 (15)0.0261 (17)0.0285 (17)0.0043 (12)0.0035 (12)0.0050 (12)
C150.0141 (14)0.0328 (18)0.0330 (18)0.0029 (13)0.0042 (12)0.0004 (13)
C160.0158 (14)0.0325 (19)0.0346 (18)0.0099 (13)0.0020 (12)0.0030 (14)
C170.0184 (14)0.0222 (16)0.0236 (15)0.0023 (12)0.0025 (12)0.0052 (12)
O110.0214 (11)0.0361 (13)0.0254 (12)0.0096 (9)0.0015 (9)0.0056 (9)
N210.0163 (12)0.0305 (15)0.0241 (13)0.0098 (11)0.0003 (10)0.0029 (11)
C210.0162 (14)0.0172 (15)0.0292 (16)0.0039 (11)0.0021 (11)0.0016 (12)
C220.0211 (15)0.0232 (16)0.0255 (16)0.0065 (12)0.0008 (12)0.0026 (12)
C230.0232 (15)0.0248 (17)0.0255 (16)0.0029 (13)0.0038 (12)0.0019 (12)
C240.0151 (14)0.0181 (15)0.0329 (17)0.0031 (11)0.0031 (12)0.0008 (12)
C2410.0218 (16)0.0243 (17)0.0323 (17)0.0034 (13)0.0009 (13)0.0006 (13)
N240.0247 (15)0.0377 (17)0.0402 (17)0.0097 (13)0.0083 (12)0.0017 (13)
C250.0172 (14)0.0184 (15)0.0319 (17)0.0071 (11)0.0006 (12)0.0035 (12)
C260.0220 (15)0.0202 (15)0.0251 (16)0.0057 (12)0.0038 (12)0.0041 (12)
N310.0202 (13)0.0281 (14)0.0280 (14)0.0104 (11)0.0032 (10)0.0043 (11)
C320.0133 (13)0.0264 (16)0.0214 (15)0.0034 (12)0.0010 (11)0.0024 (11)
Cl310.0208 (4)0.0279 (4)0.0309 (4)0.0004 (3)0.0033 (3)0.0022 (3)
C330.0174 (14)0.0218 (15)0.0200 (14)0.0028 (11)0.0035 (11)0.0048 (11)
C340.0186 (15)0.0247 (16)0.0308 (17)0.0024 (12)0.0020 (12)0.0064 (13)
C350.0146 (14)0.0347 (19)0.0317 (17)0.0001 (13)0.0009 (12)0.0097 (14)
C360.0211 (15)0.0350 (19)0.0300 (17)0.0137 (14)0.0043 (13)0.0096 (14)
C370.0163 (14)0.0174 (15)0.0241 (15)0.0001 (11)0.0017 (11)0.0010 (11)
O310.0221 (11)0.0313 (13)0.0247 (11)0.0085 (9)0.0052 (9)0.0040 (9)
N410.0165 (12)0.0280 (14)0.0233 (13)0.0093 (10)0.0048 (10)0.0060 (10)
C410.0129 (13)0.0176 (15)0.0275 (16)0.0041 (11)0.0013 (11)0.0029 (11)
C420.0223 (15)0.0242 (16)0.0262 (16)0.0086 (13)0.0071 (12)0.0043 (12)
C430.0233 (15)0.0279 (17)0.0237 (16)0.0070 (13)0.0020 (12)0.0059 (12)
C440.0191 (14)0.0155 (15)0.0311 (17)0.0032 (11)0.0015 (12)0.0020 (12)
C4410.0257 (16)0.0233 (16)0.0290 (17)0.0034 (13)0.0008 (13)0.0043 (13)
N440.0280 (15)0.0330 (16)0.0376 (16)0.0111 (12)0.0030 (12)0.0074 (12)
C450.0166 (14)0.0187 (15)0.0296 (16)0.0046 (11)0.0030 (12)0.0015 (12)
C460.0203 (15)0.0216 (15)0.0242 (15)0.0062 (12)0.0034 (12)0.0049 (12)
Geometric parameters (Å, º) top
N11—C121.319 (4)N31—C321.318 (4)
N11—C161.336 (4)N31—C361.345 (4)
C12—C131.389 (4)C32—C331.394 (4)
C12—Cl111.751 (3)C32—Cl311.745 (3)
C13—C141.385 (4)C33—C341.395 (4)
C13—C171.513 (4)C33—C371.510 (4)
C14—C151.391 (4)C34—C351.389 (4)
C14—H140.95C34—H340.95
C15—C161.380 (5)C35—C361.377 (5)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—O111.222 (3)C37—O311.224 (3)
C17—N211.354 (4)C37—N411.353 (4)
N21—C211.414 (4)N41—C411.415 (4)
N21—H210.88N41—H410.88
C21—C221.392 (4)C41—C421.391 (4)
C21—C261.395 (4)C41—C461.399 (4)
C22—C231.383 (4)C42—C431.381 (4)
C22—H220.95C42—H420.95
C23—C241.396 (4)C43—C441.395 (4)
C23—H230.95C43—H430.95
C24—C251.387 (4)C44—C451.390 (4)
C24—C2411.442 (4)C44—C4411.434 (4)
C241—N241.150 (4)C441—N441.150 (4)
C25—C261.389 (4)C45—C461.385 (4)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C12—N11—C16116.5 (3)C32—N31—C36117.0 (3)
N11—C12—C13125.5 (3)N31—C32—C33125.0 (3)
N11—C12—Cl11115.0 (2)N31—C32—Cl31116.0 (2)
C13—C12—Cl11119.4 (2)C33—C32—Cl31118.9 (2)
C14—C13—C12116.6 (3)C32—C33—C34116.7 (3)
C14—C13—C17120.5 (3)C32—C33—C37122.5 (3)
C12—C13—C17122.9 (3)C34—C33—C37120.7 (3)
C13—C14—C15119.6 (3)C35—C34—C33119.4 (3)
C13—C14—H14120.2C35—C34—H34120.3
C15—C14—H14120.2C33—C34—H34120.3
C16—C15—C14118.0 (3)C36—C35—C34118.5 (3)
C16—C15—H15121.0C36—C35—H35120.8
C14—C15—H15121.0C34—C35—H35120.8
N11—C16—C15123.8 (3)N31—C36—C35123.4 (3)
N11—C16—H16118.1N31—C36—H36118.3
C15—C16—H16118.1C35—C36—H36118.3
O11—C17—N21125.5 (3)O31—C37—N41125.9 (3)
O11—C17—C13121.1 (3)O31—C37—C33120.3 (3)
N21—C17—C13113.4 (2)N41—C37—C33113.9 (2)
C17—N21—C21128.4 (2)C37—N41—C41128.5 (2)
C17—N21—H21115.8C37—N41—H41115.8
C21—N21—H21115.8C41—N41—H41115.8
C22—C21—C26120.3 (3)C42—C41—C46120.2 (3)
C22—C21—N21116.0 (3)C42—C41—N41116.4 (2)
C26—C21—N21123.8 (3)C46—C41—N41123.3 (3)
C23—C22—C21120.4 (3)C43—C42—C41120.2 (3)
C23—C22—H22119.8C43—C42—H42119.9
C21—C22—H22119.8C41—C42—H42119.9
C22—C23—C24119.4 (3)C42—C43—C44120.0 (3)
C22—C23—H23120.3C42—C43—H43120.0
C24—C23—H23120.3C44—C43—H43120.0
C25—C24—C23120.1 (3)C45—C44—C43119.5 (3)
C25—C24—C241120.7 (3)C45—C44—C441120.1 (3)
C23—C24—C241119.1 (3)C43—C44—C441120.4 (3)
N24—C241—C24177.5 (3)N44—C441—C44179.1 (4)
C24—C25—C26120.7 (3)C46—C45—C44121.0 (3)
C24—C25—H25119.6C46—C45—H45119.5
C26—C25—H25119.6C44—C45—H45119.5
C25—C26—C21119.0 (3)C45—C46—C41119.0 (3)
C25—C26—H26120.5C45—C46—H46120.5
C21—C26—H26120.5C41—C46—H46120.5
C16—N11—C12—C131.1 (5)C36—N31—C32—C330.1 (4)
C16—N11—C12—Cl11178.6 (2)C36—N31—C32—Cl31178.7 (2)
N11—C12—C13—C140.2 (5)N31—C32—C33—C340.1 (4)
Cl11—C12—C13—C14177.2 (2)Cl31—C32—C33—C34178.6 (2)
N11—C12—C13—C17178.4 (3)N31—C32—C33—C37175.9 (3)
Cl11—C12—C13—C171.0 (4)Cl31—C32—C33—C372.7 (4)
C12—C13—C14—C151.4 (4)C32—C33—C34—C350.1 (4)
C17—C13—C14—C15179.7 (3)C37—C33—C34—C35176.2 (3)
C13—C14—C15—C161.4 (5)C33—C34—C35—C360.4 (4)
C12—N11—C16—C151.1 (5)C32—N31—C36—C350.2 (4)
C14—C15—C16—N110.1 (5)C34—C35—C36—N310.4 (5)
C14—C13—C17—O1170.9 (4)C32—C33—C37—O3189.6 (4)
C12—C13—C17—O11107.3 (3)C34—C33—C37—O3186.2 (4)
C14—C13—C17—N21108.1 (3)C32—C33—C37—N4190.9 (3)
C12—C13—C17—N2173.7 (4)C34—C33—C37—N4193.3 (3)
O11—C17—N21—C2110.7 (5)O31—C37—N41—C416.3 (5)
C13—C17—N21—C21170.3 (3)C33—C37—N41—C41174.2 (3)
C17—N21—C21—C22163.6 (3)C37—N41—C41—C42177.8 (3)
C17—N21—C21—C2615.1 (5)C37—N41—C41—C460.3 (5)
C26—C21—C22—C233.4 (4)C46—C41—C42—C431.8 (5)
N21—C21—C22—C23175.4 (3)N41—C41—C42—C43176.4 (3)
C21—C22—C23—C240.4 (4)C41—C42—C43—C440.5 (5)
C22—C23—C24—C251.9 (4)C42—C43—C44—C452.4 (5)
C22—C23—C24—C241177.0 (3)C42—C43—C44—C441177.6 (3)
C23—C24—C25—C261.3 (4)C43—C44—C45—C462.1 (4)
C241—C24—C25—C26177.5 (3)C441—C44—C45—C46178.0 (3)
C24—C25—C26—C211.6 (4)C44—C45—C46—C410.2 (4)
C22—C21—C26—C253.9 (4)C42—C41—C46—C452.1 (4)
N21—C21—C26—C25174.7 (3)N41—C41—C46—C45175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N440.882.153.006 (4)164
N41—H41···N24i0.882.102.978 (4)173
C14—H14···O11ii0.952.493.334 (4)148
C15—H15···O11iii0.952.603.507 (4)160
C25—H25···N11iv0.952.523.348 (4)146
C34—H34···O31v0.952.533.327 (4)142
C35—H35···O31iii0.952.453.366 (4)161
C45—H45···N31iv0.952.533.300 (4)138
Symmetry codes: (i) x2, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1, y1, z; (v) x1, y+1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC12H9ClN2OC13H11ClN2OC12H8ClFN2O·H2OC12H8Cl2N2O
Mr232.66246.69268.67267.10
Crystal system, space groupOrthorhombic, PccnTriclinic, P1Triclinic, P1Monoclinic, P21
Temperature (K)120120120120
a, b, c (Å)13.2296 (6), 21.0744 (10), 7.6898 (16)9.6824 (6), 11.3082 (7), 11.5139 (7)6.8033 (4), 8.1303 (3), 11.5356 (6)5.0855 (8), 28.982 (8), 15.607 (4)
α, β, γ (°)90, 90, 9077.453 (2), 73.445 (2), 87.978 (2)84.032 (3), 84.297 (2), 69.569 (3)90, 90.37 (2), 90
V3)2144.0 (5)1179.07 (13)593.32 (5)2300.2 (9)
Z8428
Radiation typeMo KαSynchrotron, λ = 0.67510 ÅMo KαMo Kα
µ (mm1)0.330.310.330.55
Crystal size (mm)0.24 × 0.09 × 0.020.10 × 0.02 × 0.020.18 × 0.16 × 0.030.28 × 0.07 × 0.03
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Bruker SMART APEX2 CCD
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Absorption correctionMulti-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
Bruker SADABS (Bruker, 2004)
Multi-scan
SADABS 2.10 (Sheldrick,. 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.943, 0.9930.970, 0.9940.933, 0.9900.862, 0.984
No. of measured, independent and
observed reflections
17837, 2446, 1724 [I > 2σ(I)]12982, 6881, 5217 [( > 2σ(I)]12303, 2720, 1943 [I > 2σ(I)]24726, 9787, 6370 [I > 2σ(I)]
Rint0.1040.0220.0520.053
(sin θ/λ)max1)0.6500.7140.6550.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.129, 1.07 0.044, 0.124, 1.02 0.044, 0.113, 1.05 0.069, 0.169, 1.04
No. of reflections2446688127209787
No. of parameters145309163254
No. of restraints0001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.280.43, 0.300.26, 0.290.79, 0.54
Absolute structure???Flack (1983), 4396 Friedel pairs
Absolute structure parameter???0.54 (11)


(V)(VI)(VII)(VIII)
Crystal data
Chemical formulaC12H8BrClN2OC12H8ClIN2OC13H11ClN2O2C13H8ClN3O
Mr311.56358.55262.69257.67
Crystal system, space groupOrthorhombic, P212121Orthorhombic, PbcaOrthorhombic, P212121Triclinic, P1
Temperature (K)120120120120
a, b, c (Å)4.8810 (2), 13.3448 (2), 18.3974 (3)10.6597 (2), 25.9833 (3), 9.2044 (6)4.8536 (2), 11.8437 (4), 21.0612 (7)7.2885 (3), 7.7607 (3), 20.8849 (9)
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9096.456 (2), 92.913 (2), 91.810 (2)
V3)1198.33 (6)2549.38 (18)1210.69 (6)1171.49 (8)
Z4844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)3.642.710.310.32
Crystal size (mm)0.16 × 0.16 × 0.160.33 × 0.18 × 0.070.34 × 0.22 × 0.120.40 × 0.10 × 0.10
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Absorption correctionMulti-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.558, 0.5580.469, 0.8330.921, 0.9640.899, 0.969
No. of measured, independent and
observed reflections
36201, 2736, 2597 [I > 2σ(I)]19649, 2909, 2314 [I > 2σ(I)]7884, 2661, 2184 [I > 2σ(I)]21639, 5365, 3760 [I > 2σ(I)]
Rint0.0470.0380.0400.060
(sin θ/λ)max1)0.6500.6490.6490.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.07 0.023, 0.056, 1.04 0.042, 0.104, 1.04 0.059, 0.171, 1.07
No. of reflections2736290926615365
No. of parameters154154164325
No. of restraints0000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.520.39, 0.780.24, 0.350.74, 0.35
Absolute structureFlack (1983), 1098 Friedel pairs?Flack (1983), 1013 Friedel pairs?
Absolute structure parameter0.031 (7)?0.05 (7)?

Computer programs: COLLECT (Hooft, 1999), Bruker APEX2 (Bruker, 2004), DENZO (Otwinowski & Minor, 1997) & COLLECT, SAINT (Bruker, 2004), DENZO & COLLECT, SAINT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5033 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

We thank the EPSRC National Crystallography Service, University of Southampton, UK, for collecting the X-ray data for (I) and (III)–(VIII). Data for (II) were collected on Daresbury SRS Station 9.8, for which we thank the EPSRC-funded synchrotron crystallography service and Professor W. Clegg. JLW and SMSVW thank CNPq and FAPERJ for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT, Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. & Teat, S. J. (1997). J. Synchrotron Rad. 4, 279–286.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGdaniec, M., Jaskolski, M. & Kosturkiewicz, Z. (1979). Pol. J. Chem. 53, 2563–2569.  CAS Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJethmalani, J. M., Camp, A. G., Soman, N. G., Hawley, J. W., Setliff, F. L. & Holt, E. M. (1996). Acta Cryst. C52, 438–441.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPèpe, G., Pfefer, G. & Boistelle, R. (1995). Acta Cryst. C51, 2671–2672.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o452–o456.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005a). Acta Cryst. E61, o1058–o1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005b). Acta Cryst. E61, o1702–o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSouza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204–o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972.  Web of Science CrossRef Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar
First citationZhang, J.-Y., Tu, C., Lin, J., Fun, H.-K., Chantrapromma, S., You, X.-Z. & Guo, Z.-J. (2002). Chin. J. Inorg. Chem. 18, 554–558.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds