research papers
Structure of strontium barium niobate SrxBa1 − xNb2O6 (SBN) in the composition range 0.32 ≤ x ≤ 0.82
aFachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany, bRuhr-Universität Bochum, D-44801 Bochum, Germany, and cLudwig-Maximilians-Universität, D-80333 München, Germany
*Correspondence e-mail: klaus.betzler@uos.de
The structure of strontium barium niobate crystals SrxBa1 − xNb2O6 is comprehensively studied in the whole range of the tetragonal tungsten bronze phase (x = 0.32–0.82) using both powder and single-crystal X-ray diffraction measurements. Unit-cell parameters, density, site-occupancy factors and interionic distances show an explicit composition dependence which can be consistently explained using simple model calculations. The temperature dependence of the unit-cell parameters exhibits a remarkable anisotropy in a broad temperature region below the temperature. This proves that the electrostrictive contribution to the plays an important role in strontium barium niobate.
Keywords: tungsten bronze; single crystal growth; niobates; ferroelectric materials.
1. Introduction
Strontium barium niobate, SrxBa1-xNb2O6 (SBN), is an extensively studied ferroelectric material for electrooptic and photorefractive applications owing to its high electrooptic (r33 = 420 pm V−1 for x = 0.61) and piezoelectric coefficients (Neurgaonkar et al., 1984). Utilizing the high four-wave coupling coefficient in Ce-doped SBN, holographic applications of doped SBN (Volk et al., 1997) were also investigated. Most investigations were restricted to the congruently melting composition with x = 0.61, because for this composition crystals of high optical quality are available. The motivation to study SBN crystals with other strontium concentrations is the strong compositional dependence of the temperature. It changes from 503 K for x = 0.32 to ca 283 K for x = 0.82 (David et al., 2004). Taking advantage of this dependence, the electrooptic coefficients for room temperature can be optimized using appropriate Sr concentrations (r33 = 1400 for x = 0.75; Neurgaonkar et al., 1984).
SBN belongs to the group of relaxor A typical phenomenon for this class is a broadened which is probably caused by the wide variation of the non-equivalent crystallographic positions in its structure. A first structural characterization was made in 1969 (Jamieson et al., 1968) for the composition x = 0.75. The ferroelectric relaxor SBN belongs to the structure type of tetragonal tungsten bronze (TTB) with the P4bm at room temperature (see Fig. 1). Sr and Ba occupy the A1 and A2 positions; while the smaller 12-fold coordinated A1 site is occupied only by Sr, both Sr and Ba are found in the larger 15-fold coordinated A2 site. This cation distribution was recently confirmed for SBN crystals with x = 0.61 (Chernaya et al., 1997) and 0.75 (Chernaya et al., 2000).
The compositional range of the ferroelectric TTB phase has usually been defined as x = 0.25–0.75. The existence range of tetragonal SBN was recently corrected to be x = 0.32–0.82 (Ulex et al., 2004). The aim of this work is a for the whole compositional range of SBN by means of X-ray diffraction measurements for both single-crystal and powder samples, with special attention on the cation distribution and the parameters of the Nb in the unit cell.
2. Experimental
2.1. Crystals
Single crystals of SBN (x = 0.32–0.82) were grown by the Czochralski technique using resistance heating. The detailed description of growth procedures can be found elsewhere (Ulex et al., 2004). The crystals were grown along the [001] direction; they exhibit a slight yellow colouration and show the form of prisms with 16 natural facets. The crystal diameter is between 5 and 7 mm. For the single-crystal X-ray measurements, as-grown (unpoled) single crystals were ground in an agate mortar followed by grinding in a ball mill. These operations produced single-crystalline spherical particles with diameters between 50 and 100m. The samples for the powder X-ray diffractometry were also produced by grinding grown crystals.
2.2. X-ray diffraction measurements
X-ray powder diffraction measurements were performed on crystal powder samples consisting of 40 mg SBN and 12 mg F-phlogopite as standard, using Cu K radiation. The single-crystal X-ray diffraction measurements were carried out on a four-circle kappa diffractometer (Xcalibur from Oxford Diffraction) equipped with a Sapphire2 CCD area detector. Graphite-monochromatized Mo K radiation was used. The sample-to-detector distance was 44.4 mm. With one and four scans, 93.2% of was covered which corresponds to 100% completeness under Laue group 4/m mm at a resolution of 0.8 Å. Data reduction and numerical absorption correction were carried out with the program CrysAlisRED (Oxford Diffraction, 2002). The was refined with the program SHELXL97 (Sheldrick, 1997).
All measurements (except those for the temperature dependence of the unit-cell parameters) were carried out at room temperature.
3. Results and discussion
3.1. Unit-cell parameters
Powder X-ray measurements were performed throughout the compositional range x(Sr) from 0.32 to 0.82 with composition steps of ca 0.03. From these measurements, the unit-cell parameters a and c could be derived with an accuracy of approximately 3×10-5.
The a parameter lies between 1248.5 and 1241.1 pm and the c parameter varies from 397.4 to 389.9 pm. Both a and c unit-cell parameters decrease with increasing Sr concentration. The dependence of the unit-cell parameters on the Sr concentration is shown in Fig. 2. The unit-cell parameters for the composition x = 0.61 are in good agreement with previously reported data (Chernaya et al., 1997). For comparison, the unit-cell parameters resulting from the single-crystal measurements (see below) are also plotted.
The composition dependence of the unit-cell parameters can be described using second-order polynomial fits to the powder data
plotted as lines in Fig. 2. A quadratic term is included in both (1) and (2) to account for the slight deviations from Vegard's rule visible in the data. From Vegard's rule, a strictly linear dependence would be expected.
The overall variation of the unit-cell volume is approximately 3%. This can be fully ascribed to the variation of the effective average radii reff of the cations occupying the A1 and A2 sites (reff = 142–134 pm for rBa = 147 pm and rSr = 131 pm (Shannon & Prewitt, 1969, 1970), if one takes into account that approximately 15% of the unit-cell volume belongs to the A1 and A2 sites.
In Fig. 3 the measured unit-cell values are compared with the data for other with the TTB structure. The Sr-rich compositions of SBN show rather small unit-cell parameters. This could be one of the reasons for the high values of the spontaneous polarization Ps and in turn the electrooptic coefficient rij in SBN.
3.2. Density
The density of the crystals was measured by hydrostatic technique on SBN samples with a typical volume of some cubic centimeters using distilled water as the immersion liquid. Thus, a good accuracy was achieved. The results are plotted in Fig. 4 together with the calculated X-ray density. For the calculation, the composition-dependent unit-cell parameters as given in (1) and (2) are used. A second-order polynomial fit to the X-ray density yields
Again the quadratic term is included to account for deviations from Vegard's rule.
3.3. Site-occupancy factors
Single-crystal X-ray diffraction measurements were performed on SrxBa1-xNb2O6 crystals with x equal to 0.342, 0.477, 0.613 and 0.822. For all these compositions the structure led to the tetragonal structure type with the P4bm.
The site-occupancy factors (s.o.f.) for the cation sites A1 and A2, derived from the measurement, are shown in Fig. 5. Site-occupancy factors are defined as
where Mi is the number of atoms per formula unit on site i, N the number of formula units per and Z the number of symmetry-equivalent sites in the For SBN, N = 5, Z = 8, and the sum of the Mi for the A1 and A2 sites is 1. The 12-fold coordinated A1 sites are occupied by Sr cations only, the site-occupancy factor s.o.f.(Sr—A1) depends only slightly on the composition and varies between 0.16 and 0.18 corresponding to a relative occupancy between 66 and 72%. The 15-fold coordinated A2 sites are occupied by both Sr and Ba cations with an approximately linear composition dependence of the respective s.o.f. values. The total relative occupancy for the A2 sites is ca 90%.
The site-occupancy factors and their compositional dependence can be described by a simple statistical model. Assuming that Ba occupies only A2 sites and Sr randomly occupies A1 and the remaining A2 sites with different preferences yields the respective s.o.f. values as a function of the strontium fraction x
K is a factor denoting the preference of Sr for the A2 site compared with A1, with K = 1 for equal preferences. The results of the model calculation for K = 1.1, i.e. a slight preference for A2, are sketched as gray lines in Fig. 5. A satisfactory agreement with the experimental data was found.
3.4. Nb—O bond lengths
The Nb—O bond lengths for all the compositions studied lie between 180 and 214 pm. The mean bond length which characterizes the NbO6 octahedron size decreases monotonically with increasing Sr concentration and reaches 195.8 pm for the x(Sr) = 0.82, which is only slightly larger than the value of 195.2 pm calculated for the `ideal' oxygen (ion radius 138 pm) octahedron. The maximal difference between Nb—O bond lengths describes the asymmetry of the Nb position within the octahedron and also becomes smaller for the Sr-richer crystals. The measured unit-cell parameters, site-occupancy factors and Nb—O distances are shown in Table 1. All experimental data are given in Table 2.1
|
3.5. Temperature dependence of the unit-cell parameters
Usually the unit-cell parameters of crystals increase monotonically with increasing temperature owing to the amplitudes of the ionic oscillations, increasing with increasing temperature. x = 0.5 (Shorrocks et al., 1982) and x = 0.6 (Bhalla et al., 1987), however, show a negative for the unit-cell parameter c at low temperatures and a positive one at higher temperatures with a minimum value of c near the phase-transition temperature. In contrast to this, the unit-cell parameter a always strictly increases with increasing temperature. Dilatometric measurements, however, are problematic in ferroelectric crystals owing to domain effects. Recent X-ray measurements (Qadri et al., 2005) for SBN with x = 0.75 confirm this anisotropic behavior – with a negative for c, a positive one for a – throughout the temperature range investigated. To clarify the behavior, we extended the measurements of Quadri et al. (2005) up to higher temperatures on SBN with x = 0.822. The results are plotted in Fig. 6.
measurements of SBN withOur measurements show that X-ray measurements exhibit a similar behavior as found by a parameter strictly increases with temperature, whereas c decreases at low temperatures and increases at higher ones. An analog behavior has just been shown by neutron scattering measurements (Schefer et al., 2006).
measurements for other compositions: theThe explanation for this behavior had already been given by Cross et al. (1980) and Shrout et al. (1981a,b), who derived an additional electrostrictive contribution to the of from energetic considerations using the Landau–Ginsburg–Devonshire phenomenological theory. These contributions, Q31P2 for the unit-cell parameter a and Q33P2 for the unit-cell parameter c, are plotted as gray arrows in Fig. 6. For the calculation, the electrostriction constants Qik given by Cross et al. (1980) and a typical saturation polarization P = 0.3 C m-2 were used.
4. Conclusion
Structural properties of strontium barium niobate crystals, SrxBa1-xNb2O6, in the whole range of the tetragonal tungsten bronze phase (x = 0.32–0.82) have been comprehensively studied using powder and single-crystal X-ray diffraction. It has been shown that both unit-cell parameters a and c decrease with increasing x, i.e. with increasing strontium fraction. This effect can be fully attributed to the composition-dependent fraction of strontium and barium cations on the A1 and A2 sites, which results in a corresponding dependence of the average effective radii of the cations. Both unit-cell parameters are small compared with those of other TTB-type This may be one factor responsible for the high spontaneous polarization and the high electrooptic coefficients of the material.
Using the unit-cell parameters, the X-ray densities were calculated which were in excellent agreement with the macroscopic densities measured. Densities decrease with increasing strontium fraction.
From single-crystal X-ray measurements the site-occupancy factors for the A1 and A2 sites were derived; they showed a total occupancy of ca 70% for the A1 sites and ca 90% for the A2 sites. Absolute values and composition dependence can be consistently described by a simple statistical model.
The Nb—O distances varied only slightly with composition, whereas the off-center displacements of the Nb atoms showed a pronounced composition dependence owing to the fact that the phase-transition temperature was near room temperature at higher strontium fractions.
Temperature-dependent measurements of the unit-cell parameters for a composition of x = 0.822 confirmed earlier results found for SBN with other compositions. The a parameter strictly increases with increasing temperature, whereas the c parameter shows a more complicated behavior. At low temperatures c decreases, at high temperatures it increases with rising temperature, exhibiting a broad minimum in the region of the temperature. The effect can be well explained by an electrostrictive contribution to the thermal expansion.
Supporting information
10.1107/S0108768106038869/ws5047sup1.cif
contains datablocks k2shape, sr477, shape137, sbn159k3, global. DOI:Structure factors: contains datablock k2shape. DOI: 10.1107/S0108768106038869/ws5047k2shapesup2.fcf
Structure factors: contains datablock sr477. DOI: 10.1107/S0108768106038869/ws5047sr477sup3.fcf
Structure factors: contains datablock shape137. DOI: 10.1107/S0108768106038869/ws5047shape137sup4.fcf
Structure factors: contains datablock sbn159k3. DOI: 10.1107/S0108768106038869/ws5047sbn159k3sup5.fcf
For all compounds, data collection: CrysAlis CCD Oxford Diffraction, 2002); cell
CrysAlis CCD Oxford Diffraction, 2002). Data reduction: CrysAlis RED Oxford Diffraction, 2002) for k2shape, sr477, sbn159k3; CrysAlisREDOxford Diffraction, 2002) for shape137. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Ba0.67Nb2O6Sr0.33 | Dx = 5.392 Mg m−3 |
Mr = 402.26 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4bm | Cell parameters from 8363 reflections |
Hall symbol: P 4 -2ab | θ = 3–40° |
a = 12.4840 (4) Å | µ = 13.33 mm−1 |
c = 3.9742 (3) Å | T = 298 K |
V = 619.38 (5) Å3 | Sphere, colourless |
Z = 5 | 0.26 × 0.22 × 0.19 × 0.11 (radius) mm |
F(000) = 900 |
Xcalibur CCD diffractometer | 2077 independent reflections |
Radiation source: fine-focus sealed tube | 1852 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω and ϕ scans | θmax = 40.3°, θmin = 3.3° |
Absorption correction: numerical after shape optimisation | h = −23→22 |
Tmin = 0.097, Tmax = 0.177 | k = −22→21 |
11682 measured reflections | l = −7→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0303P)2 + 1.1155P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.027 | (Δ/σ)max = 0.009 |
wR(F2) = 0.065 | Δρmax = 2.18 e Å−3 |
S = 1.12 | Δρmin = −2.79 e Å−3 |
2077 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
65 parameters | Extinction coefficient: 0.0137 (3) |
2 restraints | Absolute structure: Flack H D (1983), 807 Friedel pairs |
Primary atom site location: structure-invariant direct methods |
Ba0.67Nb2O6Sr0.33 | Z = 5 |
Mr = 402.26 | Mo Kα radiation |
Tetragonal, P4bm | µ = 13.33 mm−1 |
a = 12.4840 (4) Å | T = 298 K |
c = 3.9742 (3) Å | 0.26 × 0.22 × 0.19 × 0.11 (radius) mm |
V = 619.38 (5) Å3 |
Xcalibur CCD diffractometer | 2077 independent reflections |
Absorption correction: numerical after shape optimisation | 1852 reflections with I > 2σ(I) |
Tmin = 0.097, Tmax = 0.177 | Rint = 0.034 |
11682 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 2 restraints |
wR(F2) = 0.065 | Δρmax = 2.18 e Å−3 |
S = 1.12 | Δρmin = −2.79 e Å−3 |
2077 reflections | Absolute structure: Flack H D (1983), 807 Friedel pairs |
65 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba2 | 0.17214 (2) | 0.67214 (2) | 0.49324 (10) | 0.02297 (4) | 0.8354 (8) |
Sr2 | 0.17214 (2) | 0.67214 (2) | 0.49324 (10) | 0.02297 (4) | 0.0823 (8) |
Sr1 | 0.0000 | 0.0000 | 0.4892 (2) | 0.00861 (9) | 0.6652 (11) |
Nb1 | 0.5000 | 0.0000 | 0.01333 (14) | 0.00785 (5) | |
Nb2 | 0.073922 (11) | 0.211046 (11) | 0.00295 (8) | 0.00938 (3) | |
O1 | 0.28338 (12) | 0.78338 (12) | 0.9708 (9) | 0.0137 (5) | |
O2 | 0.13965 (15) | 0.07009 (12) | 0.9572 (7) | 0.0249 (6) | |
O3 | 0.99341 (13) | 0.34380 (12) | 0.9605 (7) | 0.0216 (5) | |
O4 | 0.5000 | 0.0000 | 0.4752 (14) | 0.0375 (11) | |
O5 | 0.0762 (2) | 0.20507 (18) | 0.4651 (6) | 0.0374 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba2 | 0.02760 (6) | 0.02760 (6) | 0.01371 (8) | −0.01607 (7) | 0.00026 (10) | 0.00026 (10) |
Sr2 | 0.02760 (6) | 0.02760 (6) | 0.01371 (8) | −0.01607 (7) | 0.00026 (10) | 0.00026 (10) |
Sr1 | 0.00855 (10) | 0.00855 (10) | 0.0087 (2) | 0.000 | 0.000 | 0.000 |
Nb1 | 0.00804 (6) | 0.00804 (6) | 0.00746 (11) | 0.00052 (8) | 0.000 | 0.000 |
Nb2 | 0.00941 (5) | 0.00896 (5) | 0.00978 (6) | 0.00144 (4) | −0.00022 (11) | −0.00145 (12) |
O1 | 0.0105 (4) | 0.0105 (4) | 0.0202 (12) | 0.0038 (5) | 0.0025 (7) | 0.0025 (7) |
O2 | 0.0188 (6) | 0.0091 (5) | 0.0469 (17) | 0.0052 (5) | −0.0051 (10) | −0.0074 (9) |
O3 | 0.0145 (6) | 0.0067 (5) | 0.0436 (14) | 0.0035 (4) | −0.0027 (9) | −0.0006 (8) |
O4 | 0.0472 (15) | 0.0472 (15) | 0.018 (2) | 0.007 (2) | 0.000 | 0.000 |
O5 | 0.0735 (16) | 0.0319 (9) | 0.0067 (12) | −0.0247 (9) | 0.0003 (10) | −0.0030 (8) |
Ba2—O1 | 2.731 (3) | Nb1—Sr2xxi | 3.6753 (4) |
Ba2—O3i | 2.785 (2) | Nb2—O5 | 1.839 (2) |
Ba2—O3ii | 2.785 (2) | Nb2—O3xxii | 1.9456 (15) |
Ba2—O1iii | 2.858 (3) | Nb2—O2iii | 1.9501 (16) |
Ba2—O3iv | 2.965 (2) | Nb2—O1xx | 2.0013 (15) |
Ba2—O3v | 2.965 (2) | Nb2—O2xiii | 2.0149 (16) |
Ba2—O4vi | 3.0399 (3) | Nb2—O5iii | 2.139 (2) |
Ba2—O5vi | 3.170 (3) | Nb2—Sr1iii | 3.4587 (6) |
Ba2—O5vii | 3.170 (3) | Nb2—Ba2xix | 3.7527 (3) |
Ba2—O2vi | 3.247 (2) | Nb2—Sr2xix | 3.7527 (3) |
Ba2—O2vii | 3.247 (2) | Nb2—Sr2xx | 3.7934 (3) |
Ba2—Nb1vi | 3.5880 (4) | Nb2—Ba2xx | 3.7934 (3) |
Sr1—O2 | 2.695 (2) | O1—Nb2xxiii | 2.0013 (15) |
Sr1—O2viii | 2.695 (2) | O1—Nb2xxiv | 2.0013 (15) |
Sr1—O2ix | 2.695 (2) | O1—Ba2xxv | 2.858 (3) |
Sr1—O2x | 2.695 (2) | O1—Sr2xxv | 2.858 (3) |
Sr1—O5 | 2.733 (2) | O2—Nb2xxv | 1.9501 (16) |
Sr1—O5ix | 2.733 (2) | O2—Nb2xxvi | 2.0149 (16) |
Sr1—O5x | 2.733 (2) | O2—Sr1xxv | 2.877 (3) |
Sr1—O5viii | 2.733 (2) | O2—Ba2xix | 3.247 (2) |
Sr1—O2xi | 2.877 (3) | O2—Sr2xix | 3.247 (2) |
Sr1—O2xii | 2.877 (3) | O3—Nb2xxvii | 1.9456 (15) |
Sr1—O2xiii | 2.877 (3) | O3—Nb1xxviii | 1.9630 (15) |
Sr1—O2iii | 2.877 (3) | O3—Ba2ii | 2.785 (2) |
Nb1—O4 | 1.835 (6) | O3—Sr2ii | 2.785 (2) |
Nb1—O3xiv | 1.9630 (15) | O3—Sr2xxix | 2.965 (2) |
Nb1—O3xv | 1.9630 (15) | O3—Ba2xxix | 2.965 (2) |
Nb1—O3xvi | 1.9630 (15) | O4—Nb1xxv | 2.139 (6) |
Nb1—O3xvii | 1.9630 (15) | O4—Ba2xix | 3.0399 (3) |
Nb1—O4iii | 2.139 (6) | O4—Ba2xviii | 3.0399 (3) |
Nb1—Ba2xviii | 3.5880 (4) | O4—Sr2xix | 3.0399 (3) |
Nb1—Sr2xix | 3.5880 (4) | O4—Sr2xviii | 3.0399 (3) |
Nb1—Ba2xix | 3.5880 (4) | O5—Nb2xxv | 2.139 (2) |
Nb1—Sr2xviii | 3.5880 (4) | O5—Ba2xix | 3.170 (3) |
Nb1—Sr2xx | 3.6753 (4) | O5—Sr2xix | 3.170 (3) |
O1—Ba2—O3i | 87.15 (7) | Ba2xviii—Nb1—Sr2xix | 115.776 (19) |
O1—Ba2—O3ii | 87.15 (7) | O4—Nb1—Ba2xix | 57.888 (10) |
O3i—Ba2—O3ii | 56.61 (7) | O3xiv—Nb1—Ba2xix | 55.72 (7) |
O1—Ba2—O1iii | 90.61 (6) | O3xv—Nb1—Ba2xix | 132.60 (6) |
O3i—Ba2—O1iii | 151.59 (3) | O3xvi—Nb1—Ba2xix | 132.60 (6) |
O3ii—Ba2—O1iii | 151.59 (3) | O3xvii—Nb1—Ba2xix | 55.72 (7) |
O1—Ba2—O3iv | 152.21 (3) | O4iii—Nb1—Ba2xix | 122.112 (10) |
O3i—Ba2—O3iv | 87.37 (4) | Ba2xviii—Nb1—Ba2xix | 115.776 (19) |
O3ii—Ba2—O3iv | 112.11 (5) | O4—Nb1—Sr2xviii | 57.888 (10) |
O1iii—Ba2—O3iv | 81.52 (6) | O3xiv—Nb1—Sr2xviii | 132.60 (6) |
O1—Ba2—O3v | 152.21 (3) | O3xv—Nb1—Sr2xviii | 55.72 (7) |
O3i—Ba2—O3v | 112.11 (5) | O3xvi—Nb1—Sr2xviii | 55.72 (6) |
O3ii—Ba2—O3v | 87.37 (4) | O3xvii—Nb1—Sr2xviii | 132.60 (6) |
O1iii—Ba2—O3v | 81.52 (6) | O4iii—Nb1—Sr2xviii | 122.112 (10) |
O3iv—Ba2—O3v | 52.89 (6) | Sr2xix—Nb1—Sr2xviii | 115.776 (19) |
O1—Ba2—O4vi | 137.34 (12) | Ba2xix—Nb1—Sr2xviii | 115.776 (19) |
O3i—Ba2—O4vi | 56.00 (10) | O4—Nb1—Sr2xx | 124.220 (9) |
O3ii—Ba2—O4vi | 56.00 (10) | O3xiv—Nb1—Sr2xx | 48.28 (6) |
O1iii—Ba2—O4vi | 132.05 (12) | O3xv—Nb1—Sr2xx | 123.03 (7) |
O3iv—Ba2—O4vi | 56.15 (10) | O3xvi—Nb1—Sr2xx | 123.03 (7) |
O3v—Ba2—O4vi | 56.15 (10) | O3xvii—Nb1—Sr2xx | 48.28 (6) |
O1—Ba2—O5vi | 56.95 (6) | O4iii—Nb1—Sr2xx | 55.780 (9) |
O3i—Ba2—O5vi | 100.98 (5) | Ba2xviii—Nb1—Sr2xx | 177.892 (18) |
O3ii—Ba2—O5vi | 140.17 (6) | Sr2xix—Nb1—Sr2xx | 66.332 (6) |
O1iii—Ba2—O5vi | 55.24 (6) | Ba2xix—Nb1—Sr2xx | 66.332 (6) |
O3iv—Ba2—O5vi | 97.57 (5) | Sr2xviii—Nb1—Sr2xx | 177.892 (18) |
O3v—Ba2—O5vi | 132.39 (6) | O4—Nb1—Sr2xxi | 124.220 (9) |
O4vi—Ba2—O5vi | 142.31 (4) | O3xiv—Nb1—Sr2xxi | 123.03 (7) |
O1—Ba2—O5vii | 56.95 (6) | O3xv—Nb1—Sr2xxi | 48.28 (6) |
O3i—Ba2—O5vii | 140.17 (6) | O3xvi—Nb1—Sr2xxi | 48.28 (6) |
O3ii—Ba2—O5vii | 100.98 (5) | O3xvii—Nb1—Sr2xxi | 123.03 (7) |
O1iii—Ba2—O5vii | 55.24 (6) | O4iii—Nb1—Sr2xxi | 55.780 (9) |
O3iv—Ba2—O5vii | 132.39 (6) | Ba2xviii—Nb1—Sr2xxi | 66.332 (5) |
O3v—Ba2—O5vii | 97.57 (5) | Sr2xix—Nb1—Sr2xxi | 177.892 (18) |
O4vi—Ba2—O5vii | 142.31 (4) | Ba2xix—Nb1—Sr2xxi | 177.892 (18) |
O5vi—Ba2—O5vii | 75.03 (8) | Sr2xviii—Nb1—Sr2xxi | 66.332 (5) |
O1—Ba2—O2vi | 55.73 (4) | Sr2xx—Nb1—Sr2xxi | 111.560 (18) |
O3i—Ba2—O2vi | 51.83 (5) | O5—Nb2—O3xxii | 97.43 (11) |
O3ii—Ba2—O2vi | 97.49 (6) | O5—Nb2—O2iii | 92.87 (11) |
O1iii—Ba2—O2vi | 104.57 (5) | O3xxii—Nb2—O2iii | 167.94 (10) |
O3iv—Ba2—O2vi | 100.40 (5) | O5—Nb2—O1xx | 93.90 (13) |
O3v—Ba2—O2vi | 152.06 (4) | O3xxii—Nb2—O1xx | 94.01 (7) |
O4vi—Ba2—O2vi | 104.34 (7) | O2iii—Nb2—O1xx | 91.53 (8) |
O5vi—Ba2—O2vi | 49.75 (6) | O5—Nb2—O2xiii | 94.95 (11) |
O5vii—Ba2—O2vi | 108.36 (5) | O3xxii—Nb2—O2xiii | 84.72 (7) |
O1—Ba2—O2vii | 55.73 (4) | O2iii—Nb2—O2xiii | 88.16 (10) |
O3i—Ba2—O2vii | 97.49 (6) | O1xx—Nb2—O2xiii | 171.14 (12) |
O3ii—Ba2—O2vii | 51.83 (5) | O5—Nb2—O5iii | 175.36 (14) |
O1iii—Ba2—O2vii | 104.57 (5) | O3xxii—Nb2—O5iii | 87.13 (10) |
O3iv—Ba2—O2vii | 152.06 (4) | O2iii—Nb2—O5iii | 82.51 (11) |
O3v—Ba2—O2vii | 100.40 (5) | O1xx—Nb2—O5iii | 86.55 (12) |
O4vi—Ba2—O2vii | 104.34 (7) | O2xiii—Nb2—O5iii | 84.63 (10) |
O5vi—Ba2—O2vii | 108.36 (5) | O5—Nb2—Sr1 | 53.43 (7) |
O5vii—Ba2—O2vii | 49.75 (6) | O3xxii—Nb2—Sr1 | 124.75 (6) |
O2vi—Ba2—O2vii | 104.21 (8) | O2iii—Nb2—Sr1 | 57.81 (7) |
O1—Ba2—Nb1vi | 168.09 (6) | O1xx—Nb2—Sr1 | 128.93 (8) |
O3i—Ba2—Nb1vi | 82.37 (4) | O2xiii—Nb2—Sr1 | 57.70 (7) |
O3ii—Ba2—Nb1vi | 82.37 (4) | O5iii—Nb2—Sr1 | 123.05 (6) |
O1iii—Ba2—Nb1vi | 101.30 (6) | O5—Nb2—Sr1iii | 124.27 (7) |
O3iv—Ba2—Nb1vi | 33.16 (3) | O3xxii—Nb2—Sr1iii | 117.38 (6) |
O3v—Ba2—Nb1vi | 33.16 (3) | O2iii—Nb2—Sr1iii | 50.93 (7) |
O4vi—Ba2—Nb1vi | 30.76 (11) | O1xx—Nb2—Sr1iii | 122.92 (8) |
O5vi—Ba2—Nb1vi | 130.73 (4) | O2xiii—Nb2—Sr1iii | 51.07 (6) |
O5vii—Ba2—Nb1vi | 130.73 (4) | O5iii—Nb2—Sr1iii | 52.20 (6) |
O2vi—Ba2—Nb1vi | 120.02 (3) | Sr1—Nb2—Sr1iii | 70.873 (5) |
O2vii—Ba2—Nb1vi | 120.02 (3) | O5—Nb2—Ba2xix | 57.50 (9) |
O2—Sr1—O2viii | 61.56 (6) | O3xxii—Nb2—Ba2xix | 126.28 (6) |
O2—Sr1—O2ix | 61.56 (6) | O2iii—Nb2—Ba2xix | 64.93 (6) |
O2viii—Sr1—O2ix | 92.73 (11) | O1xx—Nb2—Ba2xix | 48.67 (8) |
O2—Sr1—O2x | 92.73 (11) | O2xiii—Nb2—Ba2xix | 138.02 (7) |
O2viii—Sr1—O2x | 61.56 (6) | O5iii—Nb2—Ba2xix | 120.19 (8) |
O2ix—Sr1—O2x | 61.56 (6) | Sr1—Nb2—Ba2xix | 80.425 (9) |
O2—Sr1—O5 | 59.65 (7) | Sr1iii—Nb2—Ba2xix | 115.679 (7) |
O2viii—Sr1—O5 | 62.05 (7) | O5—Nb2—Sr2xix | 57.50 (9) |
O2ix—Sr1—O5 | 121.13 (7) | O3xxii—Nb2—Sr2xix | 126.28 (6) |
O2x—Sr1—O5 | 123.61 (7) | O2iii—Nb2—Sr2xix | 64.93 (6) |
O2—Sr1—O5ix | 62.05 (7) | O1xx—Nb2—Sr2xix | 48.67 (8) |
O2viii—Sr1—O5ix | 123.61 (7) | O2xiii—Nb2—Sr2xix | 138.02 (7) |
O2ix—Sr1—O5ix | 59.65 (7) | O5iii—Nb2—Sr2xix | 120.19 (8) |
O2x—Sr1—O5ix | 121.13 (7) | Sr1—Nb2—Sr2xix | 80.425 (9) |
O5—Sr1—O5ix | 89.930 (4) | Sr1iii—Nb2—Sr2xix | 115.679 (7) |
O2—Sr1—O5x | 123.61 (7) | O5—Nb2—Sr2xx | 121.01 (9) |
O2viii—Sr1—O5x | 121.13 (7) | O3xxii—Nb2—Sr2xx | 119.64 (6) |
O2ix—Sr1—O5x | 62.05 (7) | O2iii—Nb2—Sr2xx | 58.87 (6) |
O2x—Sr1—O5x | 59.65 (7) | O1xx—Nb2—Sr2xx | 43.93 (8) |
O5—Sr1—O5x | 176.00 (10) | O2xiii—Nb2—Sr2xx | 129.85 (7) |
O5ix—Sr1—O5x | 89.930 (4) | O5iii—Nb2—Sr2xx | 56.67 (8) |
O2—Sr1—O5viii | 121.13 (7) | Sr1—Nb2—Sr2xx | 115.576 (7) |
O2viii—Sr1—O5viii | 59.65 (7) | Sr1iii—Nb2—Sr2xx | 79.058 (9) |
O2ix—Sr1—O5viii | 123.61 (7) | Ba2xix—Nb2—Sr2xx | 63.557 (5) |
O2x—Sr1—O5viii | 62.05 (7) | Sr2xix—Nb2—Sr2xx | 63.557 (5) |
O5—Sr1—O5viii | 89.930 (4) | O5—Nb2—Ba2xx | 121.01 (9) |
O5ix—Sr1—O5viii | 176.00 (10) | O3xxii—Nb2—Ba2xx | 119.64 (6) |
O5x—Sr1—O5viii | 89.930 (4) | O2iii—Nb2—Ba2xx | 58.87 (6) |
O2—Sr1—O2xi | 176.33 (8) | O1xx—Nb2—Ba2xx | 43.93 (8) |
O2viii—Sr1—O2xi | 120.48 (3) | O2xiii—Nb2—Ba2xx | 129.85 (7) |
O2ix—Sr1—O2xi | 120.48 (3) | O5iii—Nb2—Ba2xx | 56.67 (8) |
O2x—Sr1—O2xi | 90.94 (5) | Sr1—Nb2—Ba2xx | 115.576 (7) |
O5—Sr1—O2xi | 118.06 (7) | Sr1iii—Nb2—Ba2xx | 79.058 (9) |
O5ix—Sr1—O2xi | 115.85 (7) | Ba2xix—Nb2—Ba2xx | 63.557 (5) |
O5x—Sr1—O2xi | 58.56 (6) | Sr2xix—Nb2—Ba2xx | 63.557 (5) |
O5viii—Sr1—O2xi | 60.83 (7) | Nb2xxiii—O1—Nb2xxiv | 143.05 (12) |
O2—Sr1—O2xii | 120.48 (3) | Nb2xxiii—O1—Ba2 | 105.52 (9) |
O2viii—Sr1—O2xii | 176.33 (8) | Nb2xxiv—O1—Ba2 | 105.52 (9) |
O2ix—Sr1—O2xii | 90.94 (5) | Nb2xxiii—O1—Ba2xxv | 99.61 (9) |
O2x—Sr1—O2xii | 120.48 (3) | Nb2xxiv—O1—Ba2xxv | 99.61 (9) |
O5—Sr1—O2xii | 115.85 (7) | Ba2—O1—Ba2xxv | 90.61 (6) |
O5ix—Sr1—O2xii | 58.56 (6) | Nb2xxiii—O1—Sr2xxv | 99.61 (9) |
O5x—Sr1—O2xii | 60.83 (7) | Nb2xxiv—O1—Sr2xxv | 99.61 (9) |
O5viii—Sr1—O2xii | 118.06 (7) | Ba2—O1—Sr2xxv | 90.61 (6) |
O2xi—Sr1—O2xii | 57.30 (6) | Nb2xxv—O2—Nb2xxvi | 169.37 (16) |
O2—Sr1—O2xiii | 120.48 (3) | Nb2xxv—O2—Sr1 | 94.89 (8) |
O2viii—Sr1—O2xiii | 90.94 (5) | Nb2xxvi—O2—Sr1 | 93.37 (7) |
O2ix—Sr1—O2xiii | 176.33 (8) | Nb2xxv—O2—Sr1xxv | 87.18 (8) |
O2x—Sr1—O2xiii | 120.48 (3) | Nb2xxvi—O2—Sr1xxv | 86.00 (7) |
O5—Sr1—O2xiii | 60.83 (7) | Sr1—O2—Sr1xxv | 90.94 (5) |
O5ix—Sr1—O2xiii | 118.06 (7) | Nb2xxv—O2—Ba2xix | 90.20 (7) |
O5x—Sr1—O2xiii | 115.85 (7) | Nb2xxvi—O2—Ba2xix | 94.66 (7) |
O5viii—Sr1—O2xiii | 58.56 (6) | Sr1—O2—Ba2xix | 101.75 (8) |
O2xi—Sr1—O2xiii | 57.30 (6) | Sr1xxv—O2—Ba2xix | 167.22 (9) |
O2xii—Sr1—O2xiii | 85.39 (9) | Nb2xxv—O2—Sr2xix | 90.20 (7) |
O2—Sr1—O2iii | 90.94 (5) | Nb2xxvi—O2—Sr2xix | 94.66 (7) |
O2viii—Sr1—O2iii | 120.48 (3) | Sr1—O2—Sr2xix | 101.75 (8) |
O2ix—Sr1—O2iii | 120.48 (3) | Sr1xxv—O2—Sr2xix | 167.22 (9) |
O2x—Sr1—O2iii | 176.33 (8) | Nb2xxvii—O3—Nb1xxviii | 144.61 (10) |
O5—Sr1—O2iii | 58.56 (6) | Nb2xxvii—O3—Ba2ii | 112.35 (8) |
O5ix—Sr1—O2iii | 60.83 (7) | Nb1xxviii—O3—Ba2ii | 99.98 (7) |
O5x—Sr1—O2iii | 118.06 (7) | Nb2xxvii—O3—Sr2ii | 112.35 (8) |
O5viii—Sr1—O2iii | 115.85 (7) | Nb1xxviii—O3—Sr2ii | 99.98 (7) |
O2xi—Sr1—O2iii | 85.39 (9) | Nb2xxvii—O3—Sr2xxix | 103.94 (8) |
O2xii—Sr1—O2iii | 57.30 (5) | Nb1xxviii—O3—Sr2xxix | 91.11 (7) |
O2xiii—Sr1—O2iii | 57.30 (6) | Ba2ii—O3—Sr2xxix | 87.37 (4) |
O4—Nb1—O3xiv | 96.14 (8) | Sr2ii—O3—Sr2xxix | 87.37 (4) |
O4—Nb1—O3xv | 96.14 (8) | Nb2xxvii—O3—Ba2xxix | 103.94 (8) |
O3xiv—Nb1—O3xv | 94.12 (9) | Nb1xxviii—O3—Ba2xxix | 91.11 (7) |
O4—Nb1—O3xvi | 96.14 (8) | Ba2ii—O3—Ba2xxix | 87.37 (4) |
O3xiv—Nb1—O3xvi | 167.71 (16) | Sr2ii—O3—Ba2xxix | 87.37 (4) |
O3xv—Nb1—O3xvi | 84.57 (9) | Nb1—O4—Nb1xxv | 180.0 |
O4—Nb1—O3xvii | 96.14 (8) | Nb1—O4—Ba2xix | 91.36 (11) |
O3xiv—Nb1—O3xvii | 84.57 (9) | Nb1xxv—O4—Ba2xix | 88.64 (11) |
O3xv—Nb1—O3xvii | 167.71 (16) | Nb1—O4—Ba2xviii | 91.36 (11) |
O3xvi—Nb1—O3xvii | 94.12 (9) | Nb1xxv—O4—Ba2xviii | 88.64 (11) |
O4—Nb1—O4iii | 180.0 | Ba2xix—O4—Ba2xviii | 177.3 (2) |
O3xiv—Nb1—O4iii | 83.86 (8) | Nb1—O4—Sr2xix | 91.36 (11) |
O3xv—Nb1—O4iii | 83.86 (8) | Nb1xxv—O4—Sr2xix | 88.64 (11) |
O3xvi—Nb1—O4iii | 83.86 (8) | Ba2xviii—O4—Sr2xix | 177.3 (2) |
O3xvii—Nb1—O4iii | 83.86 (8) | Nb1—O4—Sr2xviii | 91.36 (11) |
O4—Nb1—Ba2xviii | 57.888 (10) | Nb1xxv—O4—Sr2xviii | 88.64 (11) |
O3xiv—Nb1—Ba2xviii | 132.60 (6) | Ba2xix—O4—Sr2xviii | 177.3 (2) |
O3xv—Nb1—Ba2xviii | 55.72 (7) | Sr2xix—O4—Sr2xviii | 177.3 (2) |
O3xvi—Nb1—Ba2xviii | 55.72 (6) | Nb2—O5—Nb2xxv | 175.36 (15) |
O3xvii—Nb1—Ba2xviii | 132.60 (6) | Nb2—O5—Sr1 | 93.86 (9) |
O4iii—Nb1—Ba2xviii | 122.112 (10) | Nb2xxv—O5—Sr1 | 89.60 (8) |
O4—Nb1—Sr2xix | 57.888 (10) | Nb2—O5—Ba2xix | 93.21 (10) |
O3xiv—Nb1—Sr2xix | 55.72 (7) | Nb2xxv—O5—Ba2xix | 89.01 (9) |
O3xv—Nb1—Sr2xix | 132.60 (6) | Sr1—O5—Ba2xix | 102.85 (8) |
O3xvi—Nb1—Sr2xix | 132.60 (6) | Nb2—O5—Sr2xix | 93.21 (10) |
O3xvii—Nb1—Sr2xix | 55.72 (7) | Nb2xxv—O5—Sr2xix | 89.01 (9) |
O4iii—Nb1—Sr2xix | 122.112 (10) | Sr1—O5—Sr2xix | 102.85 (8) |
Symmetry codes: (i) −y+1/2, −x+3/2, z; (ii) −x+1, −y+1, z; (iii) x, y, z−1; (iv) −y+1/2, −x+3/2, z−1; (v) −x+1, −y+1, z−1; (vi) −x+1/2, y+1/2, z; (vii) y, −x+1, z; (viii) −y, x, z; (ix) y, −x, z; (x) −x, −y, z; (xi) −x, −y, z−1; (xii) y, −x, z−1; (xiii) −y, x, z−1; (xiv) y, −x+1, z−1; (xv) −x+3/2, y−1/2, z−1; (xvi) −y+1, x−1, z−1; (xvii) x−1/2, −y+1/2, z−1; (xviii) x+1/2, −y+1/2, z; (xix) −x+1/2, y−1/2, z; (xx) −x+1/2, y−1/2, z−1; (xxi) x+1/2, −y+1/2, z−1; (xxii) x−1, y, z−1; (xxiii) −x+1/2, y+1/2, z+1; (xxiv) y, −x+1, z+1; (xxv) x, y, z+1; (xxvi) y, −x, z+1; (xxvii) x+1, y, z+1; (xxviii) −x+3/2, y+1/2, z+1; (xxix) −x+1, −y+1, z+1. |
Ba0.52Nb2O6Sr0.48 | Dx = 5.323 Mg m−3 |
Mr = 395.44 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4bm | Cell parameters from 5168 reflections |
Hall symbol: P 4 -2ab | θ = 3–40° |
a = 12.4844 (5) Å | µ = 13.78 mm−1 |
c = 3.9572 (3) Å | T = 298 K |
V = 616.77 (6) Å3 | Sphere, colourless |
Z = 5 | 0.18 × 0.17 × 0.16 × 0.08 (radius) mm |
F(000) = 886.8 |
Xcalibur CCD diffractometer | 2157 independent reflections |
Radiation source: fine-focus sealed tube | 1635 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω and ϕ scans | θmax = 41.3°, θmin = 3.3° |
Absorption correction: numerical after shape optimisation | h = −23→21 |
Tmin = 0.159, Tmax = 0.221 | k = −21→22 |
11771 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.021P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.030 | (Δ/σ)max = 0.005 |
wR(F2) = 0.055 | Δρmax = 2.12 e Å−3 |
S = 1.00 | Δρmin = −2.81 e Å−3 |
2157 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
65 parameters | Extinction coefficient: 0.00421 (12) |
2 restraints | Absolute structure: Flack H D (1983), 877 Friedel pairs |
Primary atom site location: structure-invariant direct methods |
Ba0.52Nb2O6Sr0.48 | Z = 5 |
Mr = 395.44 | Mo Kα radiation |
Tetragonal, P4bm | µ = 13.78 mm−1 |
a = 12.4844 (5) Å | T = 298 K |
c = 3.9572 (3) Å | 0.18 × 0.17 × 0.16 × 0.08 (radius) mm |
V = 616.77 (6) Å3 |
Xcalibur CCD diffractometer | 2157 independent reflections |
Absorption correction: numerical after shape optimisation | 1635 reflections with I > 2σ(I) |
Tmin = 0.159, Tmax = 0.221 | Rint = 0.038 |
11771 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 2 restraints |
wR(F2) = 0.055 | Δρmax = 2.12 e Å−3 |
S = 1.00 | Δρmin = −2.81 e Å−3 |
2157 reflections | Absolute structure: Flack H D (1983), 877 Friedel pairs |
65 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba2 | 0.17211 (2) | 0.67211 (2) | 0.49383 (13) | 0.02465 (6) | 0.6500 (7) |
Sr2 | 0.17211 (2) | 0.67211 (2) | 0.49383 (13) | 0.02465 (6) | 0.2462 (8) |
Sr1 | 0.0000 | 0.0000 | 0.4892 (2) | 0.00814 (10) | 0.7080 (10) |
Nb1 | 0.5000 | 0.0000 | 0.01582 (16) | 0.00804 (6) | |
Nb2 | 0.074263 (12) | 0.211348 (12) | 0.00129 (9) | 0.00970 (3) | |
O1 | 0.28318 (12) | 0.78318 (12) | 0.9686 (9) | 0.0159 (5) | |
O2 | 0.13908 (13) | 0.06924 (12) | 0.9585 (8) | 0.0256 (6) | |
O3 | 0.99357 (12) | 0.34369 (12) | 0.9588 (8) | 0.0245 (5) | |
O4 | 0.5000 | 0.0000 | 0.4788 (16) | 0.0421 (11) | |
O5 | 0.07542 (19) | 0.20469 (16) | 0.4660 (6) | 0.0427 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba2 | 0.02944 (7) | 0.02944 (7) | 0.01507 (10) | −0.01766 (9) | 0.00011 (17) | 0.00011 (17) |
Sr2 | 0.02944 (7) | 0.02944 (7) | 0.01507 (10) | −0.01766 (9) | 0.00011 (17) | 0.00011 (17) |
Sr1 | 0.00784 (11) | 0.00784 (11) | 0.0087 (2) | 0.000 | 0.000 | 0.000 |
Nb1 | 0.00854 (7) | 0.00854 (7) | 0.00705 (13) | 0.00056 (10) | 0.000 | 0.000 |
Nb2 | 0.00949 (6) | 0.00887 (6) | 0.01073 (6) | 0.00134 (5) | −0.00037 (17) | −0.00107 (19) |
O1 | 0.0119 (5) | 0.0119 (5) | 0.0238 (15) | 0.0038 (7) | 0.0018 (10) | 0.0018 (10) |
O2 | 0.0184 (7) | 0.0099 (6) | 0.0486 (16) | 0.0047 (6) | −0.0078 (12) | −0.0100 (11) |
O3 | 0.0152 (7) | 0.0092 (6) | 0.0492 (15) | 0.0056 (6) | −0.0024 (12) | −0.0038 (10) |
O4 | 0.0563 (15) | 0.0563 (15) | 0.014 (2) | −0.008 (2) | 0.000 | 0.000 |
O5 | 0.0907 (16) | 0.0333 (9) | 0.0041 (11) | −0.0306 (10) | 0.0028 (12) | −0.0011 (10) |
Ba2—O1 | 2.716 (3) | Nb1—Ba2xx | 3.6743 (5) |
Ba2—O3i | 2.775 (2) | Nb2—O5 | 1.840 (2) |
Ba2—O3ii | 2.775 (2) | Nb2—O3xxi | 1.9425 (15) |
Ba2—O1iii | 2.857 (3) | Nb2—O2iii | 1.9574 (15) |
Ba2—O3iv | 2.966 (2) | Nb2—O1xxii | 1.9972 (15) |
Ba2—O3v | 2.966 (2) | Nb2—O2xiii | 2.0132 (15) |
Ba2—O4vi | 3.0395 (3) | Nb2—O5iii | 2.120 (2) |
Ba2—O5vi | 3.180 (2) | Nb2—Sr1iii | 3.4536 (6) |
Ba2—O5vii | 3.180 (2) | Nb2—Ba2xix | 3.7503 (4) |
Ba2—O2vi | 3.254 (2) | Nb2—Sr2xix | 3.7503 (4) |
Ba2—O2vii | 3.254 (2) | Nb2—Sr2xxii | 3.7813 (4) |
Ba2—Nb1vi | 3.5794 (5) | Nb2—Ba2xxii | 3.7813 (4) |
Sr1—O2 | 2.685 (2) | O1—Nb2xxiii | 1.9972 (15) |
Sr1—O2viii | 2.685 (2) | O1—Nb2xxiv | 1.9972 (15) |
Sr1—O2ix | 2.685 (2) | O1—Ba2xxv | 2.857 (3) |
Sr1—O2x | 2.685 (2) | O1—Sr2xxv | 2.857 (3) |
Sr1—O5ix | 2.7252 (19) | O2—Nb2xxv | 1.9574 (15) |
Sr1—O5viii | 2.7252 (19) | O2—Nb2xxvi | 2.0132 (15) |
Sr1—O5 | 2.7252 (19) | O2—Sr1xxv | 2.859 (3) |
Sr1—O5x | 2.7252 (19) | O2—Ba2xix | 3.254 (2) |
Sr1—O2xi | 2.859 (3) | O2—Sr2xix | 3.254 (2) |
Sr1—O2xii | 2.859 (3) | O3—Nb2xxvii | 1.9425 (15) |
Sr1—O2xiii | 2.859 (3) | O3—Nb1xxviii | 1.9662 (15) |
Sr1—O2iii | 2.859 (3) | O3—Ba2ii | 2.775 (2) |
Nb1—O4 | 1.832 (6) | O3—Sr2ii | 2.775 (2) |
Nb1—O3xiv | 1.9662 (15) | O3—Sr2xxix | 2.966 (2) |
Nb1—O3xv | 1.9662 (15) | O3—Ba2xxix | 2.966 (2) |
Nb1—O3xvi | 1.9662 (15) | O4—Nb1xxv | 2.125 (6) |
Nb1—O3xvii | 1.9662 (15) | O4—Sr2xviii | 3.0395 (3) |
Nb1—O4iii | 2.125 (6) | O4—Ba2xviii | 3.0395 (3) |
Nb1—Ba2xviii | 3.5794 (5) | O4—Ba2xix | 3.0395 (3) |
Nb1—Sr2xviii | 3.5794 (5) | O4—Sr2xix | 3.0395 (3) |
Nb1—Ba2xix | 3.5794 (5) | O5—Nb2xxv | 2.120 (2) |
Nb1—Sr2xix | 3.5794 (5) | O5—Ba2xix | 3.180 (2) |
Nb1—Sr2xx | 3.6743 (5) | O5—Sr2xix | 3.180 (2) |
O1—Ba2—O3i | 87.61 (8) | O4—Nb1—Ba2xix | 58.104 (12) |
O1—Ba2—O3ii | 87.61 (8) | O3xiv—Nb1—Ba2xix | 132.92 (7) |
O3i—Ba2—O3ii | 56.95 (7) | O3xv—Nb1—Ba2xix | 55.96 (7) |
O1—Ba2—O1iii | 90.43 (6) | O3xvi—Nb1—Ba2xix | 55.96 (7) |
O3i—Ba2—O1iii | 151.44 (4) | O3xvii—Nb1—Ba2xix | 132.92 (7) |
O3ii—Ba2—O1iii | 151.44 (3) | O4iii—Nb1—Ba2xix | 121.896 (12) |
O1—Ba2—O3iv | 152.09 (4) | Ba2xviii—Nb1—Ba2xix | 116.21 (2) |
O3i—Ba2—O3iv | 87.05 (4) | Sr2xviii—Nb1—Ba2xix | 116.21 (2) |
O3ii—Ba2—O3iv | 111.96 (6) | O4—Nb1—Sr2xix | 58.104 (12) |
O1iii—Ba2—O3iv | 81.47 (7) | O3xiv—Nb1—Sr2xix | 132.92 (7) |
O1—Ba2—O3v | 152.09 (4) | O3xv—Nb1—Sr2xix | 55.96 (7) |
O3i—Ba2—O3v | 111.96 (6) | O3xvi—Nb1—Sr2xix | 55.96 (7) |
O3ii—Ba2—O3v | 87.05 (4) | O3xvii—Nb1—Sr2xix | 132.92 (7) |
O1iii—Ba2—O3v | 81.47 (7) | O4iii—Nb1—Sr2xix | 121.896 (12) |
O3iv—Ba2—O3v | 52.98 (7) | Ba2xviii—Nb1—Sr2xix | 116.21 (2) |
O1—Ba2—O4vi | 137.35 (14) | Sr2xviii—Nb1—Sr2xix | 116.21 (2) |
O3i—Ba2—O4vi | 55.65 (11) | O4—Nb1—Sr2xx | 124.201 (11) |
O3ii—Ba2—O4vi | 55.65 (11) | O3xiv—Nb1—Sr2xx | 48.02 (7) |
O1iii—Ba2—O4vi | 132.22 (13) | O3xv—Nb1—Sr2xx | 122.68 (7) |
O3iv—Ba2—O4vi | 56.36 (11) | O3xvi—Nb1—Sr2xx | 122.68 (7) |
O3v—Ba2—O4vi | 56.36 (11) | O3xvii—Nb1—Sr2xx | 48.02 (7) |
O1—Ba2—O5vi | 56.81 (6) | O4iii—Nb1—Sr2xx | 55.799 (11) |
O3i—Ba2—O5vi | 100.88 (5) | Ba2xviii—Nb1—Sr2xx | 66.10 (1) |
O3ii—Ba2—O5vi | 140.43 (7) | Sr2xviii—Nb1—Sr2xx | 66.10 (1) |
O1iii—Ba2—O5vi | 55.37 (6) | Ba2xix—Nb1—Sr2xx | 177.70 (2) |
O3iv—Ba2—O5vi | 97.49 (5) | Sr2xix—Nb1—Sr2xx | 177.70 (2) |
O3v—Ba2—O5vi | 132.45 (7) | O4—Nb1—Ba2xx | 124.201 (11) |
O4vi—Ba2—O5vi | 142.23 (4) | O3xiv—Nb1—Ba2xx | 48.02 (7) |
O1—Ba2—O5vii | 56.81 (6) | O3xv—Nb1—Ba2xx | 122.68 (7) |
O3i—Ba2—O5vii | 140.43 (7) | O3xvi—Nb1—Ba2xx | 122.68 (7) |
O3ii—Ba2—O5vii | 100.88 (5) | O3xvii—Nb1—Ba2xx | 48.02 (7) |
O1iii—Ba2—O5vii | 55.37 (6) | O4iii—Nb1—Ba2xx | 55.799 (11) |
O3iv—Ba2—O5vii | 132.45 (7) | Ba2xviii—Nb1—Ba2xx | 66.10 (1) |
O3v—Ba2—O5vii | 97.49 (5) | Sr2xviii—Nb1—Ba2xx | 66.10 (1) |
O4vi—Ba2—O5vii | 142.23 (4) | Ba2xix—Nb1—Ba2xx | 177.70 (2) |
O5vi—Ba2—O5vii | 75.24 (7) | Sr2xix—Nb1—Ba2xx | 177.70 (2) |
O1—Ba2—O2vi | 56.00 (4) | O5—Nb2—O3xxi | 97.40 (11) |
O3i—Ba2—O2vi | 51.88 (5) | O5—Nb2—O2iii | 92.42 (11) |
O3ii—Ba2—O2vi | 97.89 (7) | O3xxi—Nb2—O2iii | 167.95 (11) |
O1iii—Ba2—O2vi | 104.53 (5) | O5—Nb2—O1xxii | 94.47 (13) |
O3iv—Ba2—O2vi | 100.15 (5) | O3xxi—Nb2—O1xxii | 94.28 (7) |
O3v—Ba2—O2vi | 151.91 (4) | O2iii—Nb2—O1xxii | 91.89 (8) |
O4vi—Ba2—O2vi | 104.13 (7) | O5—Nb2—O2xiii | 94.05 (11) |
O5vi—Ba2—O2vi | 49.61 (6) | O3xxi—Nb2—O2xiii | 84.97 (7) |
O5vii—Ba2—O2vi | 108.55 (5) | O2iii—Nb2—O2xiii | 87.39 (10) |
O1—Ba2—O2vii | 56.00 (4) | O1xxii—Nb2—O2xiii | 171.47 (13) |
O3i—Ba2—O2vii | 97.89 (7) | O5—Nb2—O5iii | 175.09 (12) |
O3ii—Ba2—O2vii | 51.88 (5) | O3xxi—Nb2—O5iii | 87.16 (11) |
O1iii—Ba2—O2vii | 104.53 (5) | O2iii—Nb2—O5iii | 82.84 (11) |
O3iv—Ba2—O2vii | 151.91 (4) | O1xxii—Nb2—O5iii | 86.95 (12) |
O3v—Ba2—O2vii | 100.15 (5) | O2xiii—Nb2—O5iii | 84.52 (11) |
O4vi—Ba2—O2vii | 104.13 (7) | O5—Nb2—Sr1 | 53.10 (6) |
O5vi—Ba2—O2vii | 108.55 (5) | O3xxi—Nb2—Sr1 | 124.61 (7) |
O5vii—Ba2—O2vii | 49.61 (6) | O2iii—Nb2—Sr1 | 57.19 (7) |
O2vi—Ba2—O2vii | 104.63 (9) | O1xxii—Nb2—Sr1 | 128.95 (8) |
O1—Ba2—Nb1vi | 168.13 (7) | O2xiii—Nb2—Sr1 | 57.11 (7) |
O3i—Ba2—Nb1vi | 81.96 (5) | O5iii—Nb2—Sr1 | 122.62 (5) |
O3ii—Ba2—Nb1vi | 81.96 (5) | O5—Nb2—Sr1iii | 123.62 (6) |
O1iii—Ba2—Nb1vi | 101.44 (6) | O3xxi—Nb2—Sr1iii | 117.38 (7) |
O3iv—Ba2—Nb1vi | 33.32 (3) | O2iii—Nb2—Sr1iii | 50.78 (7) |
O3v—Ba2—Nb1vi | 33.32 (3) | O1xxii—Nb2—Sr1iii | 122.98 (9) |
O4vi—Ba2—Nb1vi | 30.78 (12) | O2xiii—Nb2—Sr1iii | 50.90 (7) |
O5vi—Ba2—Nb1vi | 130.81 (4) | O5iii—Nb2—Sr1iii | 52.10 (5) |
O5vii—Ba2—Nb1vi | 130.81 (4) | Sr1—Nb2—Sr1iii | 70.535 (8) |
O2vi—Ba2—Nb1vi | 119.77 (3) | O5—Nb2—Ba2xix | 57.88 (7) |
O2vii—Ba2—Nb1vi | 119.77 (3) | O3xxi—Nb2—Ba2xix | 126.44 (6) |
O2—Sr1—O2viii | 61.43 (6) | O2iii—Nb2—Ba2xix | 65.00 (7) |
O2—Sr1—O2ix | 92.50 (11) | O1xxii—Nb2—Ba2xix | 48.69 (9) |
O2viii—Sr1—O2ix | 61.43 (6) | O2xiii—Nb2—Ba2xix | 137.44 (7) |
O2—Sr1—O2x | 61.43 (6) | O5iii—Nb2—Ba2xix | 120.55 (7) |
O2viii—Sr1—O2x | 92.50 (11) | Sr1—Nb2—Ba2xix | 80.430 (11) |
O2ix—Sr1—O2x | 61.43 (6) | Sr1iii—Nb2—Ba2xix | 115.577 (8) |
O2—Sr1—O5ix | 123.28 (7) | O5—Nb2—Sr2xix | 57.88 (7) |
O2viii—Sr1—O5ix | 121.23 (7) | O3xxi—Nb2—Sr2xix | 126.44 (6) |
O2ix—Sr1—O5ix | 59.87 (7) | O2iii—Nb2—Sr2xix | 65.00 (7) |
O2x—Sr1—O5ix | 61.85 (7) | O1xxii—Nb2—Sr2xix | 48.69 (9) |
O2—Sr1—O5viii | 121.23 (7) | O2xiii—Nb2—Sr2xix | 137.44 (7) |
O2viii—Sr1—O5viii | 59.87 (7) | O5iii—Nb2—Sr2xix | 120.55 (7) |
O2ix—Sr1—O5viii | 61.85 (7) | Sr1—Nb2—Sr2xix | 80.430 (11) |
O2x—Sr1—O5viii | 123.28 (7) | Sr1iii—Nb2—Sr2xix | 115.577 (8) |
O5ix—Sr1—O5viii | 89.935 (4) | O5—Nb2—Sr2xxii | 121.20 (7) |
O2—Sr1—O5 | 59.87 (7) | O3xxi—Nb2—Sr2xxii | 119.91 (7) |
O2viii—Sr1—O5 | 61.85 (7) | O2iii—Nb2—Sr2xxii | 59.37 (7) |
O2ix—Sr1—O5 | 123.28 (7) | O1xxii—Nb2—Sr2xxii | 43.74 (9) |
O2x—Sr1—O5 | 121.23 (7) | O2xiii—Nb2—Sr2xxii | 129.99 (7) |
O5ix—Sr1—O5 | 176.13 (11) | O5iii—Nb2—Sr2xxii | 57.22 (6) |
O5viii—Sr1—O5 | 89.935 (4) | Sr1—Nb2—Sr2xxii | 115.437 (8) |
O2—Sr1—O5x | 61.85 (7) | Sr1iii—Nb2—Sr2xxii | 79.30 (1) |
O2viii—Sr1—O5x | 123.28 (7) | Ba2xix—Nb2—Sr2xxii | 63.380 (8) |
O2ix—Sr1—O5x | 121.23 (7) | Sr2xix—Nb2—Sr2xxii | 63.380 (8) |
O2x—Sr1—O5x | 59.87 (7) | O5—Nb2—Ba2xxii | 121.20 (7) |
O5ix—Sr1—O5x | 89.935 (4) | O3xxi—Nb2—Ba2xxii | 119.91 (7) |
O5viii—Sr1—O5x | 176.13 (11) | O2iii—Nb2—Ba2xxii | 59.37 (7) |
O5—Sr1—O5x | 89.935 (4) | O1xxii—Nb2—Ba2xxii | 43.74 (9) |
O2—Sr1—O2xi | 176.48 (9) | O2xiii—Nb2—Ba2xxii | 129.99 (7) |
O2viii—Sr1—O2xi | 120.53 (3) | O5iii—Nb2—Ba2xxii | 57.22 (6) |
O2ix—Sr1—O2xi | 91.02 (5) | Sr1—Nb2—Ba2xxii | 115.437 (8) |
O2x—Sr1—O2xi | 120.53 (3) | Sr1iii—Nb2—Ba2xxii | 79.30 (1) |
O5ix—Sr1—O2xi | 58.78 (6) | Ba2xix—Nb2—Ba2xxii | 63.380 (8) |
O5viii—Sr1—O2xi | 60.66 (6) | Sr2xix—Nb2—Ba2xxii | 63.380 (8) |
O5—Sr1—O2xi | 117.95 (7) | Nb2xxiii—O1—Nb2xxiv | 142.76 (12) |
O5x—Sr1—O2xi | 116.13 (7) | Nb2xxiii—O1—Ba2 | 105.70 (9) |
O2—Sr1—O2xii | 120.53 (3) | Nb2xxiv—O1—Ba2 | 105.70 (9) |
O2viii—Sr1—O2xii | 176.48 (9) | Nb2xxiii—O1—Ba2xxv | 99.64 (10) |
O2ix—Sr1—O2xii | 120.53 (3) | Nb2xxiv—O1—Ba2xxv | 99.64 (10) |
O2x—Sr1—O2xii | 91.02 (5) | Ba2—O1—Ba2xxv | 90.43 (6) |
O5ix—Sr1—O2xii | 60.66 (6) | Nb2xxiii—O1—Sr2xxv | 99.64 (10) |
O5viii—Sr1—O2xii | 117.95 (7) | Nb2xxiv—O1—Sr2xxv | 99.64 (10) |
O5—Sr1—O2xii | 116.13 (7) | Ba2—O1—Sr2xxv | 90.43 (6) |
O5x—Sr1—O2xii | 58.78 (6) | Nb2xxv—O2—Nb2xxvi | 169.98 (17) |
O2xi—Sr1—O2xii | 57.35 (6) | Nb2xxv—O2—Sr1 | 94.83 (8) |
O2—Sr1—O2xiii | 120.53 (3) | Nb2xxvi—O2—Sr1 | 93.52 (7) |
O2viii—Sr1—O2xiii | 91.02 (5) | Nb2xxv—O2—Sr1xxv | 87.68 (8) |
O2ix—Sr1—O2xiii | 120.53 (3) | Nb2xxvi—O2—Sr1xxv | 86.64 (8) |
O2x—Sr1—O2xiii | 176.48 (9) | Sr1—O2—Sr1xxv | 91.02 (5) |
O5ix—Sr1—O2xiii | 116.13 (7) | Nb2xxv—O2—Ba2xix | 89.46 (7) |
O5viii—Sr1—O2xiii | 58.78 (6) | Nb2xxvi—O2—Ba2xix | 94.25 (7) |
O5—Sr1—O2xiii | 60.66 (6) | Sr1—O2—Ba2xix | 101.82 (9) |
O5x—Sr1—O2xiii | 117.95 (7) | Sr1xxv—O2—Ba2xix | 167.04 (9) |
O2xi—Sr1—O2xiii | 57.35 (6) | Nb2xxv—O2—Sr2xix | 89.46 (7) |
O2xii—Sr1—O2xiii | 85.46 (10) | Nb2xxvi—O2—Sr2xix | 94.25 (7) |
O2—Sr1—O2iii | 91.02 (5) | Sr1—O2—Sr2xix | 101.82 (9) |
O2viii—Sr1—O2iii | 120.53 (3) | Sr1xxv—O2—Sr2xix | 167.04 (9) |
O2ix—Sr1—O2iii | 176.48 (9) | Nb2xxvii—O3—Nb1xxviii | 144.41 (10) |
O2x—Sr1—O2iii | 120.53 (3) | Nb2xxvii—O3—Ba2ii | 112.55 (9) |
O5ix—Sr1—O2iii | 117.95 (7) | Nb1xxviii—O3—Ba2ii | 100.20 (8) |
O5viii—Sr1—O2iii | 116.13 (7) | Nb2xxvii—O3—Sr2ii | 112.55 (9) |
O5—Sr1—O2iii | 58.78 (6) | Nb1xxviii—O3—Sr2ii | 100.20 (8) |
O5x—Sr1—O2iii | 60.66 (6) | Nb2xxvii—O3—Sr2xxix | 104.09 (9) |
O2xi—Sr1—O2iii | 85.46 (10) | Nb1xxviii—O3—Sr2xxix | 90.73 (8) |
O2xii—Sr1—O2iii | 57.35 (6) | Ba2ii—O3—Sr2xxix | 87.05 (4) |
O2xiii—Sr1—O2iii | 57.35 (6) | Sr2ii—O3—Sr2xxix | 87.05 (4) |
O4—Nb1—O3xiv | 96.58 (9) | Nb2xxvii—O3—Ba2xxix | 104.09 (9) |
O4—Nb1—O3xv | 96.58 (9) | Nb1xxviii—O3—Ba2xxix | 90.73 (8) |
O3xiv—Nb1—O3xv | 166.83 (18) | Ba2ii—O3—Ba2xxix | 87.05 (4) |
O4—Nb1—O3xvi | 96.58 (9) | Sr2ii—O3—Ba2xxix | 87.05 (4) |
O3xiv—Nb1—O3xvi | 93.90 (9) | Nb1—O4—Nb1xxv | 180.0 |
O3xv—Nb1—O3xvi | 84.59 (9) | Nb1—O4—Sr2xviii | 91.12 (12) |
O4—Nb1—O3xvii | 96.58 (9) | Nb1xxv—O4—Sr2xviii | 88.88 (12) |
O3xiv—Nb1—O3xvii | 84.59 (9) | Nb1—O4—Ba2xviii | 91.12 (12) |
O3xv—Nb1—O3xvii | 93.90 (9) | Nb1xxv—O4—Ba2xviii | 88.88 (12) |
O3xvi—Nb1—O3xvii | 166.83 (18) | Nb1—O4—Ba2xix | 91.12 (12) |
O4—Nb1—O4iii | 180.0 | Nb1xxv—O4—Ba2xix | 88.88 (12) |
O3xiv—Nb1—O4iii | 83.42 (9) | Sr2xviii—O4—Ba2xix | 177.8 (2) |
O3xv—Nb1—O4iii | 83.42 (9) | Ba2xviii—O4—Ba2xix | 177.8 (2) |
O3xvi—Nb1—O4iii | 83.42 (9) | Nb1—O4—Sr2xix | 91.12 (12) |
O3xvii—Nb1—O4iii | 83.42 (9) | Nb1xxv—O4—Sr2xix | 88.88 (12) |
O4—Nb1—Ba2xviii | 58.104 (12) | Sr2xviii—O4—Sr2xix | 177.8 (2) |
O3xiv—Nb1—Ba2xviii | 55.96 (7) | Ba2xviii—O4—Sr2xix | 177.8 (2) |
O3xv—Nb1—Ba2xviii | 132.92 (6) | Nb2—O5—Nb2xxv | 175.09 (12) |
O3xvi—Nb1—Ba2xviii | 132.92 (6) | Nb2—O5—Sr1 | 94.21 (8) |
O3xvii—Nb1—Ba2xviii | 55.96 (7) | Nb2xxv—O5—Sr1 | 90.04 (8) |
O4iii—Nb1—Ba2xviii | 121.896 (12) | Nb2—O5—Ba2xix | 92.76 (9) |
O4—Nb1—Sr2xviii | 58.104 (12) | Nb2xxv—O5—Ba2xix | 88.69 (8) |
O3xiv—Nb1—Sr2xviii | 55.96 (7) | Sr1—O5—Ba2xix | 102.79 (7) |
O3xv—Nb1—Sr2xviii | 132.92 (6) | Nb2—O5—Sr2xix | 92.76 (9) |
O3xvi—Nb1—Sr2xviii | 132.92 (6) | Nb2xxv—O5—Sr2xix | 88.69 (8) |
O3xvii—Nb1—Sr2xviii | 55.96 (7) | Sr1—O5—Sr2xix | 102.79 (7) |
O4iii—Nb1—Sr2xviii | 121.896 (12) |
Symmetry codes: (i) −y+1/2, −x+3/2, z; (ii) −x+1, −y+1, z; (iii) x, y, z−1; (iv) −y+1/2, −x+3/2, z−1; (v) −x+1, −y+1, z−1; (vi) −x+1/2, y+1/2, z; (vii) y, −x+1, z; (viii) −y, x, z; (ix) −x, −y, z; (x) y, −x, z; (xi) −x, −y, z−1; (xii) y, −x, z−1; (xiii) −y, x, z−1; (xiv) −y+1, x−1, z−1; (xv) y, −x+1, z−1; (xvi) x−1/2, −y+1/2, z−1; (xvii) −x+3/2, y−1/2, z−1; (xviii) x+1/2, −y+1/2, z; (xix) −x+1/2, y−1/2, z; (xx) x+1/2, −y+1/2, z−1; (xxi) x−1, y, z−1; (xxii) −x+1/2, y−1/2, z−1; (xxiii) y, −x+1, z+1; (xxiv) −x+1/2, y+1/2, z+1; (xxv) x, y, z+1; (xxvi) y, −x, z+1; (xxvii) x+1, y, z+1; (xxviii) −x+3/2, y+1/2, z+1; (xxix) −x+1, −y+1, z+1. |
Ba0.39Nb2O6Sr0.61 | Dx = 5.282 Mg m−3 |
Mr = 388.68 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4bm | Cell parameters from 8284 reflections |
Hall symbol: P 4 -2ab | θ = 3–40° |
a = 12.4575 (7) Å | µ = 14.31 mm−1 |
c = 3.9382 (3) Å | T = 298 K |
V = 611.17 (7) Å3 | Sphere, colourless |
Z = 5 | 0.20 × 0.19 × 0.13 × 0.10 (radius) mm |
F(000) = 875.3 |
Xcalibur CCD diffractometer | 2096 independent reflections |
Radiation source: fine-focus sealed tube | 1740 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω and ϕ scans | θmax = 39.5°, θmin = 3.3° |
Absorption correction: numerical after shape optimisation | h = −20→19 |
Tmin = 0.130, Tmax = 0.267 | k = −21→22 |
11458 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0334P)2 + 0.3182P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.033 | (Δ/σ)max = 0.001 |
wR(F2) = 0.076 | Δρmax = 2.54 e Å−3 |
S = 1.14 | Δρmin = −3.17 e Å−3 |
2096 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
65 parameters | Extinction coefficient: 0.0108 (3) |
2 restraints | Absolute structure: Flack H D (1983), 866 Friedel pairs |
Primary atom site location: structure-invariant direct methods |
Ba0.39Nb2O6Sr0.61 | Z = 5 |
Mr = 388.68 | Mo Kα radiation |
Tetragonal, P4bm | µ = 14.31 mm−1 |
a = 12.4575 (7) Å | T = 298 K |
c = 3.9382 (3) Å | 0.20 × 0.19 × 0.13 × 0.10 (radius) mm |
V = 611.17 (7) Å3 |
Xcalibur CCD diffractometer | 2096 independent reflections |
Absorption correction: numerical after shape optimisation | 1740 reflections with I > 2σ(I) |
Tmin = 0.130, Tmax = 0.267 | Rint = 0.039 |
11458 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 2 restraints |
wR(F2) = 0.076 | Δρmax = 2.54 e Å−3 |
S = 1.14 | Δρmin = −3.17 e Å−3 |
2096 reflections | Absolute structure: Flack H D (1983), 866 Friedel pairs |
65 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba2 | 0.17220 (2) | 0.67220 (2) | 0.49522 (13) | 0.02736 (7) | 0.4877 (8) |
Sr2 | 0.17220 (2) | 0.67220 (2) | 0.49522 (13) | 0.02736 (7) | 0.4037 (8) |
Sr1 | 0.0000 | 0.0000 | 0.48961 (18) | 0.00856 (10) | 0.7180 (12) |
Nb1 | 0.5000 | 0.0000 | 0.01794 (12) | 0.00900 (6) | |
Nb2 | 0.074489 (15) | 0.211482 (15) | −0.00035 (8) | 0.01067 (3) | |
O1 | 0.28227 (15) | 0.78227 (15) | 0.9698 (10) | 0.0189 (6) | |
O2 | 0.13869 (17) | 0.06946 (15) | 0.9619 (9) | 0.0316 (7) | |
O3 | 0.99311 (16) | 0.34320 (15) | 0.9664 (10) | 0.0357 (7) | |
O4 | 0.5000 | 0.0000 | 0.4752 (12) | 0.0579 (18) | |
O5 | 0.0761 (3) | 0.2035 (2) | 0.4694 (6) | 0.0553 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba2 | 0.03294 (9) | 0.03294 (9) | 0.01620 (11) | −0.01996 (12) | −0.00053 (17) | −0.00053 (17) |
Sr2 | 0.03294 (9) | 0.03294 (9) | 0.01620 (11) | −0.01996 (12) | −0.00053 (17) | −0.00053 (17) |
Sr1 | 0.00828 (12) | 0.00828 (12) | 0.0091 (2) | 0.000 | 0.000 | 0.000 |
Nb1 | 0.00954 (8) | 0.00954 (8) | 0.00790 (12) | 0.00050 (11) | 0.000 | 0.000 |
Nb2 | 0.01037 (7) | 0.00940 (7) | 0.01224 (7) | 0.00135 (6) | −0.00012 (15) | −0.00108 (17) |
O1 | 0.0128 (6) | 0.0128 (6) | 0.0311 (17) | 0.0056 (8) | 0.0006 (11) | 0.0006 (11) |
O2 | 0.0198 (8) | 0.0102 (7) | 0.0649 (19) | 0.0055 (6) | −0.0144 (15) | −0.0115 (14) |
O3 | 0.0188 (9) | 0.0094 (7) | 0.079 (2) | 0.0055 (7) | −0.006 (2) | −0.0099 (15) |
O4 | 0.085 (3) | 0.085 (3) | 0.0045 (19) | −0.017 (4) | 0.000 | 0.000 |
O5 | 0.124 (3) | 0.0391 (12) | 0.0030 (10) | −0.0406 (14) | 0.0047 (13) | 0.0007 (10) |
Ba2—O1 | 2.693 (3) | Nb1—Sr2xx | 3.6658 (6) |
Ba2—O3i | 2.778 (3) | Nb2—O5 | 1.852 (2) |
Ba2—O3ii | 2.778 (3) | Nb2—O3xxi | 1.9335 (19) |
Ba2—O1iii | 2.835 (3) | Nb2—O2iii | 1.9475 (19) |
Ba2—O3iv | 2.935 (3) | Nb2—O1xxii | 1.9941 (19) |
Ba2—O3v | 2.935 (3) | Nb2—O2xiii | 2.0152 (19) |
Ba2—O4vi | 3.0351 (4) | Nb2—O5iii | 2.090 (2) |
Ba2—O5vi | 3.162 (4) | Nb2—Sr1iii | 3.4400 (6) |
Ba2—O5vii | 3.162 (4) | Nb2—Ba2xix | 3.7423 (5) |
Ba2—O2vii | 3.250 (3) | Nb2—Sr2xix | 3.7423 (5) |
Ba2—O2vi | 3.250 (3) | Nb2—Sr2xxii | 3.7606 (5) |
Ba2—Nb1vi | 3.5685 (6) | Nb2—Ba2xxii | 3.7606 (5) |
Sr1—O2 | 2.682 (3) | O1—Nb2xxiii | 1.9941 (19) |
Sr1—O2viii | 2.682 (3) | O1—Nb2xxiv | 1.9941 (19) |
Sr1—O2ix | 2.682 (3) | O1—Ba2xxv | 2.835 (3) |
Sr1—O2x | 2.682 (3) | O1—Sr2xxv | 2.835 (3) |
Sr1—O5ix | 2.708 (3) | O2—Nb2xxv | 1.9475 (19) |
Sr1—O5x | 2.708 (3) | O2—Nb2xxvi | 2.0152 (19) |
Sr1—O5 | 2.708 (3) | O2—Sr1xxv | 2.837 (3) |
Sr1—O5viii | 2.708 (3) | O2—Ba2xix | 3.250 (3) |
Sr1—O2xi | 2.837 (3) | O2—Sr2xix | 3.250 (3) |
Sr1—O2xii | 2.837 (3) | O3—Nb2xxvii | 1.9335 (19) |
Sr1—O2xiii | 2.837 (3) | O3—Nb1xxviii | 1.9659 (19) |
Sr1—O2iii | 2.837 (3) | O3—Ba2i | 2.778 (3) |
Nb1—O4 | 1.800 (5) | O3—Sr2i | 2.778 (3) |
Nb1—O3xiv | 1.9659 (19) | O3—Sr2xxix | 2.935 (3) |
Nb1—O3xv | 1.9659 (19) | O3—Ba2xxix | 2.935 (3) |
Nb1—O3xvi | 1.9659 (19) | O4—Nb1xxv | 2.136 (5) |
Nb1—O3xvii | 1.9659 (19) | O4—Sr2xviii | 3.0351 (4) |
Nb1—O4iii | 2.136 (5) | O4—Ba2xviii | 3.0351 (4) |
Nb1—Ba2xviii | 3.5685 (6) | O4—Ba2xix | 3.0351 (4) |
Nb1—Sr2xviii | 3.5685 (6) | O4—Sr2xix | 3.0351 (4) |
Nb1—Sr2xix | 3.5685 (6) | O5—Nb2xxv | 2.090 (2) |
Nb1—Ba2xix | 3.5685 (6) | O5—Ba2xix | 3.162 (4) |
Nb1—Ba2xx | 3.6658 (6) | O5—Sr2xix | 3.162 (4) |
O1—Ba2—O3i | 87.11 (9) | O4—Nb1—Sr2xix | 58.22 (2) |
O1—Ba2—O3ii | 87.11 (9) | O3xiv—Nb1—Sr2xix | 55.30 (9) |
O3i—Ba2—O3ii | 56.77 (9) | O3xv—Nb1—Sr2xix | 132.69 (8) |
O1—Ba2—O1iii | 90.76 (8) | O3xvi—Nb1—Sr2xix | 132.69 (8) |
O3i—Ba2—O1iii | 151.51 (4) | O3xvii—Nb1—Sr2xix | 55.30 (9) |
O3ii—Ba2—O1iii | 151.51 (4) | O4iii—Nb1—Sr2xix | 121.78 (2) |
O1—Ba2—O3iv | 151.98 (4) | Ba2xviii—Nb1—Sr2xix | 116.44 (3) |
O3i—Ba2—O3iv | 87.06 (6) | Sr2xviii—Nb1—Sr2xix | 116.44 (3) |
O3ii—Ba2—O3iv | 112.12 (7) | O4—Nb1—Ba2xix | 58.22 (2) |
O1iii—Ba2—O3iv | 81.59 (8) | O3xiv—Nb1—Ba2xix | 55.30 (9) |
O1—Ba2—O3v | 151.98 (4) | O3xv—Nb1—Ba2xix | 132.69 (8) |
O3i—Ba2—O3v | 112.12 (7) | O3xvi—Nb1—Ba2xix | 132.69 (8) |
O3ii—Ba2—O3v | 87.06 (6) | O3xvii—Nb1—Ba2xix | 55.30 (9) |
O1iii—Ba2—O3v | 81.59 (8) | O4iii—Nb1—Ba2xix | 121.78 (2) |
O3iv—Ba2—O3v | 53.49 (9) | Ba2xviii—Nb1—Ba2xix | 116.44 (3) |
O1—Ba2—O4vi | 137.56 (11) | Sr2xviii—Nb1—Ba2xix | 116.44 (3) |
O3i—Ba2—O4vi | 56.25 (9) | O4—Nb1—Ba2xx | 124.16 (2) |
O3ii—Ba2—O4vi | 56.25 (9) | O3xiv—Nb1—Ba2xx | 123.31 (9) |
O1iii—Ba2—O4vi | 131.68 (11) | O3xv—Nb1—Ba2xx | 48.31 (9) |
O3iv—Ba2—O4vi | 55.89 (9) | O3xvi—Nb1—Ba2xx | 48.31 (9) |
O3v—Ba2—O4vi | 55.89 (9) | O3xvii—Nb1—Ba2xx | 123.31 (9) |
O1—Ba2—O5vi | 56.93 (7) | O4iii—Nb1—Ba2xx | 55.84 (2) |
O3i—Ba2—O5vi | 139.94 (8) | Ba2xviii—Nb1—Ba2xx | 65.94 (2) |
O3ii—Ba2—O5vi | 100.45 (6) | Sr2xviii—Nb1—Ba2xx | 65.94 (2) |
O1iii—Ba2—O5vi | 55.74 (6) | Sr2xix—Nb1—Ba2xx | 177.622 (19) |
O3iv—Ba2—O5vi | 132.95 (8) | Ba2xix—Nb1—Ba2xx | 177.622 (19) |
O3v—Ba2—O5vi | 97.39 (6) | O4—Nb1—Sr2xx | 124.16 (2) |
O4vi—Ba2—O5vi | 141.95 (5) | O3xiv—Nb1—Sr2xx | 123.31 (9) |
O1—Ba2—O5vii | 56.93 (6) | O3xv—Nb1—Sr2xx | 48.31 (9) |
O3i—Ba2—O5vii | 100.45 (6) | O3xvi—Nb1—Sr2xx | 48.31 (9) |
O3ii—Ba2—O5vii | 139.94 (8) | O3xvii—Nb1—Sr2xx | 123.31 (9) |
O1iii—Ba2—O5vii | 55.74 (6) | O4iii—Nb1—Sr2xx | 55.84 (2) |
O3iv—Ba2—O5vii | 97.39 (6) | Ba2xviii—Nb1—Sr2xx | 65.94 (2) |
O3v—Ba2—O5vii | 132.95 (8) | Sr2xviii—Nb1—Sr2xx | 65.94 (2) |
O4vi—Ba2—O5vii | 141.95 (5) | Sr2xix—Nb1—Sr2xx | 177.622 (19) |
O5vi—Ba2—O5vii | 75.78 (9) | Ba2xix—Nb1—Sr2xx | 177.622 (19) |
O1—Ba2—O2vii | 55.89 (5) | O5—Nb2—O3xxi | 96.82 (15) |
O3i—Ba2—O2vii | 51.74 (6) | O5—Nb2—O2iii | 91.31 (14) |
O3ii—Ba2—O2vii | 97.64 (8) | O3xxi—Nb2—O2iii | 168.93 (13) |
O1iii—Ba2—O2vii | 104.60 (6) | O5—Nb2—O1xxii | 94.19 (15) |
O3iv—Ba2—O2vii | 99.90 (7) | O3xxi—Nb2—O1xxii | 95.16 (9) |
O3v—Ba2—O2vii | 152.12 (5) | O2iii—Nb2—O1xxii | 91.70 (9) |
O4vi—Ba2—O2vii | 104.40 (6) | O5—Nb2—O2xiii | 93.37 (14) |
O5vi—Ba2—O2vii | 108.63 (6) | O3xxi—Nb2—O2xiii | 84.85 (8) |
O5vii—Ba2—O2vii | 49.29 (6) | O2iii—Nb2—O2xiii | 87.19 (12) |
O1—Ba2—O2vi | 55.89 (5) | O1xxii—Nb2—O2xiii | 172.39 (14) |
O3i—Ba2—O2vi | 97.64 (8) | O5—Nb2—O5iii | 174.08 (16) |
O3ii—Ba2—O2vi | 51.74 (6) | O3xxi—Nb2—O5iii | 88.72 (14) |
O1iii—Ba2—O2vi | 104.60 (6) | O2iii—Nb2—O5iii | 82.92 (13) |
O3iv—Ba2—O2vi | 152.12 (5) | O1xxii—Nb2—O5iii | 87.36 (13) |
O3v—Ba2—O2vi | 99.90 (7) | O2xiii—Nb2—O5iii | 85.03 (13) |
O4vi—Ba2—O2vi | 104.40 (6) | O5—Nb2—Sr1 | 52.69 (8) |
O5vi—Ba2—O2vi | 49.29 (6) | O3xxi—Nb2—Sr1 | 123.64 (9) |
O5vii—Ba2—O2vi | 108.63 (6) | O2iii—Nb2—Sr1 | 56.66 (9) |
O2vii—Ba2—O2vi | 104.57 (10) | O1xxii—Nb2—Sr1 | 128.42 (9) |
O1—Ba2—Nb1vi | 167.84 (7) | O2xiii—Nb2—Sr1 | 56.58 (9) |
O3i—Ba2—Nb1vi | 82.19 (6) | O5iii—Nb2—Sr1 | 122.21 (7) |
O3ii—Ba2—Nb1vi | 82.19 (6) | O5—Nb2—Sr1iii | 122.98 (8) |
O1iii—Ba2—Nb1vi | 101.40 (7) | O3xxi—Nb2—Sr1iii | 117.98 (9) |
O3iv—Ba2—Nb1vi | 33.42 (4) | O2iii—Nb2—Sr1iii | 50.98 (8) |
O3v—Ba2—Nb1vi | 33.42 (4) | O1xxii—Nb2—Sr1iii | 123.08 (9) |
O4vi—Ba2—Nb1vi | 30.28 (9) | O2xiii—Nb2—Sr1iii | 51.11 (8) |
O5vi—Ba2—Nb1vi | 130.81 (5) | O5iii—Nb2—Sr1iii | 51.92 (7) |
O5vii—Ba2—Nb1vi | 130.81 (5) | Sr1—Nb2—Sr1iii | 70.36 (3) |
O2vii—Ba2—Nb1vi | 119.77 (4) | O5—Nb2—Ba2xix | 57.56 (11) |
O2vi—Ba2—Nb1vi | 119.77 (4) | O3xxi—Nb2—Ba2xix | 126.05 (8) |
O2—Sr1—O2viii | 61.27 (7) | O2iii—Nb2—Ba2xix | 64.82 (8) |
O2—Sr1—O2ix | 92.22 (13) | O1xxii—Nb2—Ba2xix | 48.22 (9) |
O2viii—Sr1—O2ix | 61.27 (7) | O2xiii—Nb2—Ba2xix | 136.89 (8) |
O2—Sr1—O2x | 61.27 (7) | O5iii—Nb2—Ba2xix | 120.43 (10) |
O2viii—Sr1—O2x | 92.22 (13) | Sr1—Nb2—Ba2xix | 80.36 (2) |
O2ix—Sr1—O2x | 61.27 (7) | Sr1iii—Nb2—Ba2xix | 115.58 (2) |
O2—Sr1—O5ix | 123.24 (8) | O5—Nb2—Sr2xix | 57.56 (11) |
O2viii—Sr1—O5ix | 120.72 (8) | O3xxi—Nb2—Sr2xix | 126.05 (8) |
O2ix—Sr1—O5ix | 59.52 (8) | O2iii—Nb2—Sr2xix | 64.82 (8) |
O2x—Sr1—O5ix | 61.97 (8) | O1xxii—Nb2—Sr2xix | 48.22 (9) |
O2—Sr1—O5x | 61.97 (8) | O2xiii—Nb2—Sr2xix | 136.89 (8) |
O2viii—Sr1—O5x | 123.24 (8) | O5iii—Nb2—Sr2xix | 120.43 (10) |
O2ix—Sr1—O5x | 120.72 (8) | Sr1—Nb2—Sr2xix | 80.36 (2) |
O2x—Sr1—O5x | 59.52 (8) | Sr1iii—Nb2—Sr2xix | 115.58 (2) |
O5ix—Sr1—O5x | 89.950 (3) | O5—Nb2—Sr2xxii | 120.75 (11) |
O2—Sr1—O5 | 59.52 (8) | O3xxi—Nb2—Sr2xxii | 120.98 (9) |
O2viii—Sr1—O5 | 61.97 (8) | O2iii—Nb2—Sr2xxii | 59.79 (8) |
O2ix—Sr1—O5 | 123.24 (8) | O1xxii—Nb2—Sr2xxii | 43.57 (9) |
O2x—Sr1—O5 | 120.72 (8) | O2xiii—Nb2—Sr2xxii | 130.50 (8) |
O5ix—Sr1—O5 | 176.63 (10) | O5iii—Nb2—Sr2xxii | 57.22 (10) |
O5x—Sr1—O5 | 89.950 (3) | Sr1—Nb2—Sr2xxii | 115.38 (2) |
O2—Sr1—O5viii | 120.72 (8) | Sr1iii—Nb2—Sr2xxii | 79.53 (2) |
O2viii—Sr1—O5viii | 59.52 (8) | Ba2xix—Nb2—Sr2xxii | 63.32 (3) |
O2ix—Sr1—O5viii | 61.97 (8) | Sr2xix—Nb2—Sr2xxii | 63.32 (3) |
O2x—Sr1—O5viii | 123.24 (8) | O5—Nb2—Ba2xxii | 120.75 (11) |
O5ix—Sr1—O5viii | 89.950 (3) | O3xxi—Nb2—Ba2xxii | 120.98 (9) |
O5x—Sr1—O5viii | 176.63 (10) | O2iii—Nb2—Ba2xxii | 59.79 (8) |
O5—Sr1—O5viii | 89.950 (3) | O1xxii—Nb2—Ba2xxii | 43.57 (9) |
O2—Sr1—O2xi | 176.83 (10) | O2xiii—Nb2—Ba2xxii | 130.50 (8) |
O2viii—Sr1—O2xi | 120.50 (4) | O5iii—Nb2—Ba2xxii | 57.22 (10) |
O2ix—Sr1—O2xi | 90.95 (6) | Sr1—Nb2—Ba2xxii | 115.38 (2) |
O2x—Sr1—O2xi | 120.50 (4) | Sr1iii—Nb2—Ba2xxii | 79.53 (2) |
O5ix—Sr1—O2xi | 58.65 (7) | Ba2xix—Nb2—Ba2xxii | 63.32 (3) |
O5x—Sr1—O2xi | 116.23 (8) | Sr2xix—Nb2—Ba2xxii | 63.32 (3) |
O5—Sr1—O2xi | 118.50 (7) | Nb2xxiii—O1—Nb2xxiv | 142.01 (14) |
O5viii—Sr1—O2xi | 60.98 (8) | Nb2xxiii—O1—Ba2 | 105.75 (10) |
O2—Sr1—O2xii | 120.50 (4) | Nb2xxiv—O1—Ba2 | 105.75 (10) |
O2viii—Sr1—O2xii | 176.83 (10) | Nb2xxiii—O1—Ba2xxv | 100.14 (10) |
O2ix—Sr1—O2xii | 120.50 (4) | Nb2xxiv—O1—Ba2xxv | 100.14 (10) |
O2x—Sr1—O2xii | 90.95 (6) | Ba2—O1—Ba2xxv | 90.76 (8) |
O5ix—Sr1—O2xii | 60.98 (8) | Nb2xxiii—O1—Sr2xxv | 100.14 (10) |
O5x—Sr1—O2xii | 58.65 (7) | Nb2xxiv—O1—Sr2xxv | 100.14 (10) |
O5—Sr1—O2xii | 116.23 (8) | Ba2—O1—Sr2xxv | 90.76 (8) |
O5viii—Sr1—O2xii | 118.50 (7) | Nb2xxv—O2—Nb2xxvi | 171.05 (19) |
O2xi—Sr1—O2xii | 57.59 (7) | Nb2xxv—O2—Sr1 | 94.67 (9) |
O2—Sr1—O2xiii | 120.50 (4) | Nb2xxvi—O2—Sr1 | 93.09 (8) |
O2viii—Sr1—O2xiii | 90.95 (6) | Nb2xxv—O2—Sr1xxv | 88.35 (10) |
O2ix—Sr1—O2xiii | 120.50 (4) | Nb2xxvi—O2—Sr1xxv | 87.06 (9) |
O2x—Sr1—O2xiii | 176.83 (10) | Sr1—O2—Sr1xxv | 90.95 (6) |
O5ix—Sr1—O2xiii | 116.23 (8) | Nb2xxv—O2—Ba2xix | 89.03 (8) |
O5x—Sr1—O2xiii | 118.50 (7) | Nb2xxvi—O2—Ba2xix | 93.78 (9) |
O5—Sr1—O2xiii | 60.98 (8) | Sr1—O2—Ba2xix | 101.67 (11) |
O5viii—Sr1—O2xiii | 58.65 (7) | Sr1xxv—O2—Ba2xix | 167.27 (11) |
O2xi—Sr1—O2xiii | 57.59 (7) | Nb2xxv—O2—Sr2xix | 89.03 (8) |
O2xii—Sr1—O2xiii | 85.88 (11) | Nb2xxvi—O2—Sr2xix | 93.78 (9) |
O2—Sr1—O2iii | 90.95 (6) | Sr1—O2—Sr2xix | 101.67 (11) |
O2viii—Sr1—O2iii | 120.50 (4) | Sr1xxv—O2—Sr2xix | 167.27 (11) |
O2ix—Sr1—O2iii | 176.83 (10) | Nb2xxvii—O3—Nb1xxviii | 144.44 (12) |
O2x—Sr1—O2iii | 120.50 (4) | Nb2xxvii—O3—Ba2i | 112.05 (11) |
O5ix—Sr1—O2iii | 118.50 (7) | Nb1xxviii—O3—Ba2i | 99.78 (10) |
O5x—Sr1—O2iii | 60.98 (8) | Nb2xxvii—O3—Sr2i | 112.05 (11) |
O5—Sr1—O2iii | 58.64 (7) | Nb1xxviii—O3—Sr2i | 99.78 (10) |
O5viii—Sr1—O2iii | 116.23 (8) | Nb2xxvii—O3—Sr2xxix | 105.34 (12) |
O2xi—Sr1—O2iii | 85.88 (11) | Nb1xxviii—O3—Sr2xxix | 91.28 (10) |
O2xii—Sr1—O2iii | 57.59 (7) | Ba2i—O3—Sr2xxix | 87.06 (6) |
O2xiii—Sr1—O2iii | 57.59 (7) | Sr2i—O3—Sr2xxix | 87.06 (6) |
O4—Nb1—O3xiv | 95.93 (11) | Nb2xxvii—O3—Ba2xxix | 105.34 (12) |
O4—Nb1—O3xv | 95.93 (11) | Nb1xxviii—O3—Ba2xxix | 91.28 (10) |
O3xiv—Nb1—O3xv | 94.36 (12) | Ba2i—O3—Ba2xxix | 87.06 (6) |
O4—Nb1—O3xvi | 95.93 (11) | Sr2i—O3—Ba2xxix | 87.06 (6) |
O3xiv—Nb1—O3xvi | 168.1 (2) | Nb1—O4—Nb1xxv | 180.0 |
O3xv—Nb1—O3xvi | 84.41 (12) | Nb1—O4—Sr2xviii | 91.49 (9) |
O4—Nb1—O3xvii | 95.93 (11) | Nb1xxv—O4—Sr2xviii | 88.51 (9) |
O3xiv—Nb1—O3xvii | 84.41 (12) | Nb1—O4—Ba2xviii | 91.49 (9) |
O3xv—Nb1—O3xvii | 168.1 (2) | Nb1xxv—O4—Ba2xviii | 88.51 (9) |
O3xvi—Nb1—O3xvii | 94.36 (12) | Nb1—O4—Ba2xix | 91.49 (9) |
O4—Nb1—O4iii | 180.0 | Nb1xxv—O4—Ba2xix | 88.51 (9) |
O3xiv—Nb1—O4iii | 84.07 (11) | Sr2xviii—O4—Ba2xix | 177.02 (18) |
O3xv—Nb1—O4iii | 84.07 (11) | Ba2xviii—O4—Ba2xix | 177.02 (18) |
O3xvi—Nb1—O4iii | 84.07 (11) | Nb1—O4—Sr2xix | 91.49 (9) |
O3xvii—Nb1—O4iii | 84.07 (11) | Nb1xxv—O4—Sr2xix | 88.51 (9) |
O4—Nb1—Ba2xviii | 58.22 (4) | Sr2xviii—O4—Sr2xix | 177.02 (18) |
O3xiv—Nb1—Ba2xviii | 132.69 (8) | Ba2xviii—O4—Sr2xix | 177.02 (18) |
O3xv—Nb1—Ba2xviii | 55.30 (9) | Nb2—O5—Nb2xxv | 174.08 (16) |
O3xvi—Nb1—Ba2xviii | 55.30 (9) | Nb2—O5—Sr1 | 94.36 (10) |
O3xvii—Nb1—Ba2xviii | 132.69 (8) | Nb2xxv—O5—Sr1 | 90.68 (9) |
O4iii—Nb1—Ba2xviii | 121.78 (2) | Nb2—O5—Ba2xix | 92.83 (12) |
O4—Nb1—Sr2xviii | 58.22 (2) | Nb2xxv—O5—Ba2xix | 89.03 (10) |
O3xiv—Nb1—Sr2xviii | 132.69 (8) | Sr1—O5—Ba2xix | 103.34 (10) |
O3xv—Nb1—Sr2xviii | 55.30 (9) | Nb2—O5—Sr2xix | 92.83 (12) |
O3xvi—Nb1—Sr2xviii | 55.30 (9) | Nb2xxv—O5—Sr2xix | 89.03 (10) |
O3xvii—Nb1—Sr2xviii | 132.69 (8) | Sr1—O5—Sr2xix | 103.34 (10) |
O4iii—Nb1—Sr2xviii | 121.78 (2) |
Symmetry codes: (i) −x+1, −y+1, z; (ii) −y+1/2, −x+3/2, z; (iii) x, y, z−1; (iv) −x+1, −y+1, z−1; (v) −y+1/2, −x+3/2, z−1; (vi) −x+1/2, y+1/2, z; (vii) y, −x+1, z; (viii) −y, x, z; (ix) −x, −y, z; (x) y, −x, z; (xi) −x, −y, z−1; (xii) y, −x, z−1; (xiii) −y, x, z−1; (xiv) y, −x+1, z−1; (xv) −x+3/2, y−1/2, z−1; (xvi) −y+1, x−1, z−1; (xvii) x−1/2, −y+1/2, z−1; (xviii) x+1/2, −y+1/2, z; (xix) −x+1/2, y−1/2, z; (xx) x+1/2, −y+1/2, z−1; (xxi) x−1, y, z−1; (xxii) −x+1/2, y−1/2, z−1; (xxiii) y, −x+1, z+1; (xxiv) −x+1/2, y+1/2, z+1; (xxv) x, y, z+1; (xxvi) y, −x, z+1; (xxvii) x+1, y, z+1; (xxviii) −x+3/2, y+1/2, z+1; (xxix) −x+1, −y+1, z+1. |
Ba0.14Nb2O6Sr0.86 | Dx = 5.216 Mg m−3 |
Mr = 378.29 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4bm | Cell parameters from 5511 reflections |
Hall symbol: P 4 -2ab | θ = 3–40° |
a = 12.4179 (9) Å | µ = 15.13 mm−1 |
c = 3.9074 (5) Å | T = 298 K |
V = 602.54 (10) Å3 | Sphere, colourless |
Z = 5 | 0.17 × 0.17 × 0.12 × 0.09 (radius) mm |
F(000) = 852.8 |
Xcalibur CCD diffractometer | 2153 independent reflections |
Radiation source: fine-focus sealed tube | 1365 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ω and ϕ scans | θmax = 43.3°, θmin = 3.3° |
Absorption correction: numerical after shape optimisation | h = −22→22 |
Tmin = 0.099, Tmax = 0.169 | k = −19→23 |
11273 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0383P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.045 | (Δ/σ)max = 0.010 |
wR(F2) = 0.091 | Δρmax = 3.63 e Å−3 |
S = 0.96 | Δρmin = −3.54 e Å−3 |
2153 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
65 parameters | Extinction coefficient: 0.0118 (4) |
2 restraints | Absolute structure: Flack H D (1983), 891 Friedel pairs |
Primary atom site location: structure-invariant direct methods |
Ba0.14Nb2O6Sr0.86 | Z = 5 |
Mr = 378.29 | Mo Kα radiation |
Tetragonal, P4bm | µ = 15.13 mm−1 |
a = 12.4179 (9) Å | T = 298 K |
c = 3.9074 (5) Å | 0.17 × 0.17 × 0.12 × 0.09 (radius) mm |
V = 602.54 (10) Å3 |
Xcalibur CCD diffractometer | 2153 independent reflections |
Absorption correction: numerical after shape optimisation | 1365 reflections with I > 2σ(I) |
Tmin = 0.099, Tmax = 0.169 | Rint = 0.060 |
11273 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 2 restraints |
wR(F2) = 0.091 | Δρmax = 3.63 e Å−3 |
S = 0.96 | Δρmin = −3.54 e Å−3 |
2153 reflections | Absolute structure: Flack H D (1983), 891 Friedel pairs |
65 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba2 | 0.17232 (3) | 0.67232 (3) | 0.5066 (3) | 0.03420 (13) | 0.1782 (12) |
Sr2 | 0.17232 (3) | 0.67232 (3) | 0.5066 (3) | 0.03420 (13) | 0.7289 (11) |
Sr1 | 0.0000 | 0.0000 | 0.4976 (5) | 0.00966 (15) | 0.6859 (16) |
Nb1 | 0.5000 | 0.0000 | 0.0010 (4) | 0.01894 (12) | |
Nb2 | 0.07479 (2) | 0.21140 (2) | −0.0023 (2) | 0.01436 (6) | |
O1 | 0.2813 (2) | 0.7813 (2) | 0.9636 (15) | 0.0203 (10) | |
O2 | 0.1384 (2) | 0.0678 (2) | 1.007 (2) | 0.0458 (10) | |
O3 | 0.9938 (2) | 0.3428 (2) | 0.9287 (7) | 0.0216 (8) | |
O4 | 0.5000 | 0.0000 | 0.469 (2) | 0.084 (3) | |
O5 | 0.0779 (4) | 0.2051 (3) | 0.4753 (14) | 0.0791 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba2 | 0.04138 (18) | 0.04138 (18) | 0.0198 (2) | −0.0254 (2) | 0.0046 (3) | 0.0046 (3) |
Sr2 | 0.04138 (18) | 0.04138 (18) | 0.0198 (2) | −0.0254 (2) | 0.0046 (3) | 0.0046 (3) |
Sr1 | 0.00889 (19) | 0.00889 (19) | 0.0112 (3) | 0.000 | 0.000 | 0.000 |
Nb1 | 0.01085 (13) | 0.01085 (13) | 0.0351 (3) | 0.00078 (19) | 0.000 | 0.000 |
Nb2 | 0.01269 (11) | 0.01132 (11) | 0.01907 (11) | 0.00162 (9) | −0.0037 (3) | 0.0047 (3) |
O1 | 0.0132 (9) | 0.0132 (9) | 0.034 (3) | 0.0065 (12) | −0.0077 (16) | −0.0077 (16) |
O2 | 0.0198 (12) | 0.0147 (11) | 0.103 (3) | 0.0041 (10) | 0.023 (4) | −0.010 (4) |
O3 | 0.0235 (13) | 0.0095 (11) | 0.032 (2) | 0.0045 (10) | −0.0058 (12) | 0.0001 (10) |
O4 | 0.122 (5) | 0.122 (5) | 0.006 (4) | −0.034 (6) | 0.000 | 0.000 |
O5 | 0.172 (4) | 0.062 (2) | 0.0035 (14) | −0.067 (2) | 0.014 (3) | −0.009 (2) |
Ba2—O1 | 2.616 (5) | Nb1—Ba2xxi | 3.6134 (11) |
Ba2—O3i | 2.647 (3) | Nb2—O5 | 1.866 (5) |
Ba2—O3ii | 2.647 (3) | Nb2—O3xxii | 1.936 (3) |
Ba2—O1iii | 2.856 (5) | Nb2—O2iii | 1.950 (3) |
Ba2—O4iv | 3.0303 (8) | Nb2—O2xi | 1.990 (3) |
Ba2—O3v | 3.063 (3) | Nb2—O1xix | 1.992 (2) |
Ba2—O3vi | 3.063 (3) | Nb2—O5iii | 2.042 (5) |
Ba2—O5vii | 3.131 (5) | Nb2—Sr1iii | 3.4012 (12) |
Ba2—O5iv | 3.131 (5) | Nb2—Ba2xix | 3.7116 (8) |
Ba2—O2viii | 3.318 (6) | Nb2—Sr2xix | 3.7116 (8) |
Ba2—O2ix | 3.318 (6) | Nb2—Sr2xxi | 3.7479 (8) |
Ba2—O2vii | 3.321 (5) | Nb2—Ba2xxi | 3.7479 (8) |
Sr1—O2x | 2.707 (7) | O1—Nb2xxiii | 1.992 (2) |
Sr1—O2xi | 2.707 (7) | O1—Nb2xxiv | 1.992 (2) |
Sr1—O2xii | 2.707 (7) | O1—Ba2xxv | 2.856 (5) |
Sr1—O2iii | 2.707 (7) | O1—Sr2xxv | 2.856 (5) |
Sr1—O5xiii | 2.726 (4) | O2—Nb2xxv | 1.950 (3) |
Sr1—O5 | 2.726 (4) | O2—Nb2xxvi | 1.990 (3) |
Sr1—O5xiv | 2.726 (4) | O2—Sr1xxv | 2.707 (7) |
Sr1—O5xv | 2.726 (4) | O2—Ba2xxvii | 3.318 (6) |
Sr1—O2xiv | 2.761 (7) | O2—Ba2xxi | 3.321 (5) |
Sr1—O2xv | 2.761 (7) | O3—Nb2xxviii | 1.936 (3) |
Sr1—O2 | 2.761 (7) | O3—Nb1xxix | 1.974 (3) |
Sr1—O2xiii | 2.761 (7) | O3—Ba2ii | 2.647 (3) |
Nb1—O4 | 1.826 (9) | O3—Sr2ii | 2.647 (3) |
Nb1—O3xvi | 1.974 (3) | O3—Sr2xxx | 3.063 (3) |
Nb1—O3xvii | 1.974 (3) | O3—Ba2xxx | 3.063 (3) |
Nb1—O3xviii | 1.974 (3) | O4—Nb1xxv | 2.078 (9) |
Nb1—O3viii | 1.974 (3) | O4—Ba2xxi | 3.0303 (7) |
Nb1—O4iii | 2.078 (9) | O4—Ba2xxxi | 3.0303 (7) |
Nb1—Sr2xix | 3.5898 (11) | O4—Sr2xxi | 3.0303 (7) |
Nb1—Ba2xx | 3.5898 (11) | O4—Sr2xxxi | 3.0303 (7) |
Nb1—Sr2xx | 3.5898 (11) | O5—Nb2xxv | 2.042 (5) |
Nb1—Ba2xix | 3.5898 (11) | O5—Ba2xxi | 3.131 (5) |
Nb1—Sr2xxi | 3.6134 (11) | O5—Sr2xxi | 3.131 (5) |
O1—Ba2—O3i | 90.87 (12) | Sr2xix—Nb1—Ba2xx | 114.95 (5) |
O1—Ba2—O3ii | 90.88 (12) | O4—Nb1—Sr2xx | 122.53 (3) |
O3i—Ba2—O3ii | 60.10 (11) | O3xvi—Nb1—Sr2xx | 46.39 (8) |
O1—Ba2—O1iii | 90.94 (11) | O3xvii—Nb1—Sr2xx | 122.41 (9) |
O3i—Ba2—O1iii | 149.89 (6) | O3xviii—Nb1—Sr2xx | 46.39 (8) |
O3ii—Ba2—O1iii | 149.89 (6) | O3viii—Nb1—Sr2xx | 122.41 (9) |
O1—Ba2—O4iv | 139.8 (2) | O4iii—Nb1—Sr2xx | 57.47 (3) |
O3i—Ba2—O4iv | 55.23 (15) | Sr2xix—Nb1—Sr2xx | 114.95 (5) |
O3ii—Ba2—O4iv | 55.23 (15) | O4—Nb1—Ba2xix | 122.53 (3) |
O1iii—Ba2—O4iv | 129.27 (19) | O3xvi—Nb1—Ba2xix | 122.41 (9) |
O1—Ba2—O3v | 151.94 (6) | O3xvii—Nb1—Ba2xix | 46.39 (8) |
O3i—Ba2—O3v | 85.94 (8) | O3xviii—Nb1—Ba2xix | 122.41 (9) |
O3ii—Ba2—O3v | 111.26 (10) | O3viii—Nb1—Ba2xix | 46.39 (8) |
O1iii—Ba2—O3v | 78.55 (10) | O4iii—Nb1—Ba2xix | 57.47 (3) |
O4iv—Ba2—O3v | 56.28 (15) | Ba2xx—Nb1—Ba2xix | 114.95 (5) |
O1—Ba2—O3vi | 151.94 (6) | Sr2xx—Nb1—Ba2xix | 114.95 (5) |
O3i—Ba2—O3vi | 111.26 (10) | O4—Nb1—Sr2xxi | 56.89 (3) |
O3ii—Ba2—O3vi | 85.94 (8) | O3xvi—Nb1—Sr2xxi | 133.39 (9) |
O1iii—Ba2—O3vi | 78.55 (10) | O3xvii—Nb1—Sr2xxi | 57.95 (9) |
O4iv—Ba2—O3vi | 56.28 (15) | O3xviii—Nb1—Sr2xxi | 133.39 (9) |
O3v—Ba2—O3vi | 51.29 (10) | O3viii—Nb1—Sr2xxi | 57.94 (9) |
O1—Ba2—O5vii | 56.43 (12) | O4iii—Nb1—Sr2xxi | 123.11 (3) |
O3i—Ba2—O5vii | 143.68 (12) | Sr2xix—Nb1—Sr2xxi | 65.69 (2) |
O3ii—Ba2—O5vii | 101.31 (10) | Ba2xx—Nb1—Sr2xxi | 179.42 (5) |
O1iii—Ba2—O5vii | 55.95 (12) | Sr2xx—Nb1—Sr2xxi | 179.42 (5) |
O4iv—Ba2—O5vii | 142.15 (7) | Ba2xix—Nb1—Sr2xxi | 65.69 (2) |
O3v—Ba2—O5vii | 130.29 (12) | O4—Nb1—Ba2xxi | 56.89 (3) |
O3vi—Ba2—O5vii | 96.88 (10) | O3xvi—Nb1—Ba2xxi | 133.39 (9) |
O1—Ba2—O5iv | 56.43 (12) | O3xvii—Nb1—Ba2xxi | 57.95 (9) |
O3i—Ba2—O5iv | 101.31 (10) | O3xviii—Nb1—Ba2xxi | 133.39 (9) |
O3ii—Ba2—O5iv | 143.68 (12) | O3viii—Nb1—Ba2xxi | 57.94 (9) |
O1iii—Ba2—O5iv | 55.95 (12) | O4iii—Nb1—Ba2xxi | 123.11 (3) |
O4iv—Ba2—O5iv | 142.15 (7) | Sr2xix—Nb1—Ba2xxi | 65.69 (2) |
O3v—Ba2—O5iv | 96.88 (10) | Ba2xx—Nb1—Ba2xxi | 179.42 (5) |
O3vi—Ba2—O5iv | 130.29 (12) | Sr2xx—Nb1—Ba2xxi | 179.42 (5) |
O5vii—Ba2—O5iv | 74.98 (14) | Ba2xix—Nb1—Ba2xxi | 65.69 (2) |
O1—Ba2—O2viii | 103.69 (11) | O5—Nb2—O3xxii | 100.66 (17) |
O3i—Ba2—O2viii | 152.88 (8) | O5—Nb2—O2iii | 86.2 (3) |
O3ii—Ba2—O2viii | 96.39 (11) | O3xxii—Nb2—O2iii | 169.7 (2) |
O1iii—Ba2—O2viii | 54.09 (9) | O5—Nb2—O2xi | 88.9 (3) |
O4iv—Ba2—O2viii | 101.27 (11) | O3xxii—Nb2—O2xi | 85.66 (12) |
O3v—Ba2—O2viii | 91.17 (13) | O2iii—Nb2—O2xi | 86.78 (16) |
O3vi—Ba2—O2viii | 49.26 (9) | O5—Nb2—O1xix | 93.8 (2) |
O5vii—Ba2—O2viii | 47.62 (12) | O3xxii—Nb2—O1xix | 95.15 (13) |
O5iv—Ba2—O2viii | 105.81 (10) | O2iii—Nb2—O1xix | 92.05 (12) |
O1—Ba2—O2ix | 103.68 (11) | O2xi—Nb2—O1xix | 177.0 (3) |
O3i—Ba2—O2ix | 96.40 (11) | O5—Nb2—O5iii | 174.9 (3) |
O3ii—Ba2—O2ix | 152.88 (8) | O3xxii—Nb2—O5iii | 84.44 (16) |
O1iii—Ba2—O2ix | 54.09 (9) | O2iii—Nb2—O5iii | 88.6 (3) |
O4iv—Ba2—O2ix | 101.27 (11) | O2xi—Nb2—O5iii | 91.0 (3) |
O3v—Ba2—O2ix | 49.26 (9) | O1xix—Nb2—O5iii | 86.2 (2) |
O3vi—Ba2—O2ix | 91.17 (13) | O5—Nb2—Sr1iii | 123.14 (12) |
O5vii—Ba2—O2ix | 105.81 (10) | O3xxii—Nb2—Sr1iii | 115.41 (9) |
O5iv—Ba2—O2ix | 47.62 (12) | O2iii—Nb2—Sr1iii | 54.3 (2) |
O2viii—Ba2—O2ix | 102.1 (2) | O2xi—Nb2—Sr1iii | 54.27 (19) |
O1—Ba2—O2vii | 55.57 (8) | O1xix—Nb2—Sr1iii | 122.88 (13) |
O3i—Ba2—O2vii | 99.06 (13) | O5iii—Nb2—Sr1iii | 53.27 (10) |
O3ii—Ba2—O2vii | 51.64 (9) | O5—Nb2—Sr1 | 53.13 (12) |
O1iii—Ba2—O2vii | 106.66 (11) | O3xxii—Nb2—Sr1 | 126.07 (9) |
O4iv—Ba2—O2vii | 104.63 (11) | O2iii—Nb2—Sr1 | 52.70 (18) |
O3v—Ba2—O2vii | 152.40 (9) | O2xi—Nb2—Sr1 | 52.73 (18) |
O3vi—Ba2—O2vii | 102.35 (11) | O1xix—Nb2—Sr1 | 128.31 (14) |
O5vii—Ba2—O2vii | 51.14 (13) | O5iii—Nb2—Sr1 | 123.29 (10) |
O5iv—Ba2—O2vii | 108.55 (9) | Sr1iii—Nb2—Sr1 | 70.11 (4) |
O2viii—Ba2—O2vii | 72.04 (6) | O5—Nb2—Ba2xix | 119.55 (17) |
O2ix—Ba2—O2vii | 154.08 (9) | O3xxii—Nb2—Ba2xix | 118.55 (9) |
O2x—Sr1—O2xi | 90.0 (3) | O2iii—Nb2—Ba2xix | 63.10 (16) |
O2x—Sr1—O2xii | 60.00 (17) | O2xi—Nb2—Ba2xix | 134.69 (19) |
O2xi—Sr1—O2xii | 60.00 (17) | O1xix—Nb2—Ba2xix | 42.50 (13) |
O2x—Sr1—O2iii | 60.00 (17) | O5iii—Nb2—Ba2xix | 57.52 (15) |
O2xi—Sr1—O2iii | 60.00 (17) | Sr1iii—Nb2—Ba2xix | 80.39 (3) |
O2xii—Sr1—O2iii | 90.0 (3) | Sr1—Nb2—Ba2xix | 115.28 (2) |
O2x—Sr1—O5xiii | 59.64 (15) | O5—Nb2—Sr2xix | 119.55 (17) |
O2xi—Sr1—O5xiii | 117.40 (16) | O3xxii—Nb2—Sr2xix | 118.55 (9) |
O2xii—Sr1—O5xiii | 57.41 (14) | O2iii—Nb2—Sr2xix | 63.10 (16) |
O2iii—Sr1—O5xiii | 119.57 (16) | O2xi—Nb2—Sr2xix | 134.69 (19) |
O2x—Sr1—O5 | 117.40 (16) | O1xix—Nb2—Sr2xix | 42.50 (13) |
O2xi—Sr1—O5 | 59.64 (15) | O5iii—Nb2—Sr2xix | 57.52 (15) |
O2xii—Sr1—O5 | 119.57 (16) | Sr1iii—Nb2—Sr2xix | 80.39 (3) |
O2iii—Sr1—O5 | 57.41 (14) | Sr1—Nb2—Sr2xix | 115.28 (2) |
O5xiii—Sr1—O5 | 176.3 (2) | O5—Nb2—Sr2xxi | 56.49 (16) |
O2x—Sr1—O5xiv | 119.57 (16) | O3xxii—Nb2—Sr2xxi | 128.19 (8) |
O2xi—Sr1—O5xiv | 57.41 (14) | O2iii—Nb2—Sr2xxi | 62.10 (17) |
O2xii—Sr1—O5xiv | 59.64 (15) | O2xi—Nb2—Sr2xxi | 132.61 (19) |
O2iii—Sr1—O5xiv | 117.41 (16) | O1xix—Nb2—Sr2xxi | 48.67 (15) |
O5xiii—Sr1—O5xiv | 89.940 (8) | O5iii—Nb2—Sr2xxi | 120.59 (15) |
O5—Sr1—O5xiv | 89.943 (8) | Sr1iii—Nb2—Sr2xxi | 115.672 (15) |
O2x—Sr1—O5xv | 57.41 (14) | Sr1—Nb2—Sr2xxi | 79.88 (3) |
O2xi—Sr1—O5xv | 119.57 (16) | Ba2xix—Nb2—Sr2xxi | 63.16 (2) |
O2xii—Sr1—O5xv | 117.41 (16) | Sr2xix—Nb2—Sr2xxi | 63.16 (2) |
O2iii—Sr1—O5xv | 59.64 (15) | O5—Nb2—Ba2xxi | 56.49 (16) |
O5xiii—Sr1—O5xv | 89.943 (8) | O3xxii—Nb2—Ba2xxi | 128.19 (8) |
O5—Sr1—O5xv | 89.940 (8) | O2iii—Nb2—Ba2xxi | 62.10 (17) |
O5xiv—Sr1—O5xv | 176.3 (2) | O2xi—Nb2—Ba2xxi | 132.61 (19) |
O2x—Sr1—O2xiv | 178.9 (3) | O1xix—Nb2—Ba2xxi | 48.67 (15) |
O2xi—Sr1—O2xiv | 91.11 (8) | O5iii—Nb2—Ba2xxi | 120.59 (15) |
O2xii—Sr1—O2xiv | 120.63 (5) | Sr1iii—Nb2—Ba2xxi | 115.672 (15) |
O2iii—Sr1—O2xiv | 120.64 (5) | Sr1—Nb2—Ba2xxi | 79.88 (3) |
O5xiii—Sr1—O2xiv | 119.77 (15) | Ba2xix—Nb2—Ba2xxi | 63.16 (2) |
O5—Sr1—O2xiv | 63.23 (14) | Sr2xix—Nb2—Ba2xxi | 63.16 (2) |
O5xiv—Sr1—O2xiv | 61.12 (15) | Nb2xxiii—O1—Nb2xxiv | 141.03 (19) |
O5xv—Sr1—O2xiv | 121.94 (16) | Nb2xxiii—O1—Ba2 | 106.54 (14) |
O2x—Sr1—O2xv | 91.11 (8) | Nb2xxiv—O1—Ba2 | 106.54 (14) |
O2xi—Sr1—O2xv | 178.9 (3) | Nb2xxiii—O1—Ba2xxv | 99.74 (16) |
O2xii—Sr1—O2xv | 120.64 (5) | Nb2xxiv—O1—Ba2xxv | 99.74 (16) |
O2iii—Sr1—O2xv | 120.63 (5) | Ba2—O1—Ba2xxv | 90.94 (11) |
O5xiii—Sr1—O2xv | 63.23 (14) | Nb2xxiii—O1—Sr2xxv | 99.74 (16) |
O5—Sr1—O2xv | 119.77 (15) | Nb2xxiv—O1—Sr2xxv | 99.74 (16) |
O5xiv—Sr1—O2xv | 121.94 (16) | Ba2—O1—Sr2xxv | 90.94 (11) |
O5xv—Sr1—O2xv | 61.12 (15) | Nb2xxv—O2—Nb2xxvi | 176.1 (3) |
O2xiv—Sr1—O2xv | 87.8 (3) | Nb2xxv—O2—Sr1xxv | 92.34 (19) |
O2x—Sr1—O2 | 120.63 (5) | Nb2xxvi—O2—Sr1xxv | 91.46 (19) |
O2xi—Sr1—O2 | 120.64 (5) | Nb2xxv—O2—Sr1 | 90.7 (2) |
O2xii—Sr1—O2 | 178.9 (3) | Nb2xxvi—O2—Sr1 | 89.91 (19) |
O2iii—Sr1—O2 | 91.11 (8) | Sr1xxv—O2—Sr1 | 91.11 (8) |
O5xiii—Sr1—O2 | 121.94 (16) | Nb2xxv—O2—Ba2xxvii | 86.60 (16) |
O5—Sr1—O2 | 61.12 (15) | Nb2xxvi—O2—Ba2xxvii | 92.08 (18) |
O5xiv—Sr1—O2 | 119.77 (15) | Sr1xxv—O2—Ba2xxvii | 99.0 (3) |
O5xv—Sr1—O2 | 63.23 (14) | Sr1—O2—Ba2xxvii | 169.7 (2) |
O2xiv—Sr1—O2 | 58.71 (16) | Nb2xxv—O2—Ba2xxi | 85.31 (16) |
O2xv—Sr1—O2 | 58.71 (16) | Nb2xxvi—O2—Ba2xxi | 90.82 (16) |
O2x—Sr1—O2xiii | 120.64 (5) | Sr1xxv—O2—Ba2xxi | 170.8 (3) |
O2xi—Sr1—O2xiii | 120.63 (5) | Sr1—O2—Ba2xxi | 97.8 (2) |
O2xii—Sr1—O2xiii | 91.11 (8) | Ba2xxvii—O2—Ba2xxi | 72.04 (6) |
O2iii—Sr1—O2xiii | 178.9 (3) | Nb2xxviii—O3—Nb1xxix | 142.53 (16) |
O5xiii—Sr1—O2xiii | 61.12 (15) | Nb2xxviii—O3—Ba2ii | 115.56 (12) |
O5—Sr1—O2xiii | 121.94 (16) | Nb1xxix—O3—Ba2ii | 100.94 (11) |
O5xiv—Sr1—O2xiii | 63.23 (14) | Nb2xxviii—O3—Sr2ii | 115.56 (12) |
O5xv—Sr1—O2xiii | 119.77 (15) | Nb1xxix—O3—Sr2ii | 100.94 (11) |
O2xiv—Sr1—O2xiii | 58.71 (16) | Nb2xxviii—O3—Sr2xxx | 101.28 (11) |
O2xv—Sr1—O2xiii | 58.71 (16) | Nb1xxix—O3—Sr2xxx | 88.96 (10) |
O2—Sr1—O2xiii | 87.8 (3) | Ba2ii—O3—Sr2xxx | 85.94 (8) |
O4—Nb1—O3xvi | 98.22 (9) | Sr2ii—O3—Sr2xxx | 85.94 (8) |
O4—Nb1—O3xvii | 98.22 (9) | Nb2xxviii—O3—Ba2xxx | 101.28 (11) |
O3xvi—Nb1—O3xvii | 163.56 (19) | Nb1xxix—O3—Ba2xxx | 88.96 (10) |
O4—Nb1—O3xviii | 98.22 (9) | Ba2ii—O3—Ba2xxx | 85.94 (8) |
O3xvi—Nb1—O3xviii | 84.40 (16) | Sr2ii—O3—Ba2xxx | 85.94 (8) |
O3xvii—Nb1—O3xviii | 93.25 (17) | Nb1—O4—Nb1xxv | 180.0 |
O4—Nb1—O3viii | 98.22 (9) | Nb1—O4—Ba2xxi | 92.80 (17) |
O3xvi—Nb1—O3viii | 93.25 (17) | Nb1xxv—O4—Ba2xxi | 87.20 (17) |
O3xvii—Nb1—O3viii | 84.40 (16) | Nb1—O4—Ba2xxxi | 92.80 (17) |
O3xviii—Nb1—O3viii | 163.56 (19) | Nb1xxv—O4—Ba2xxxi | 87.20 (17) |
O4—Nb1—O4iii | 180.000 (1) | Ba2xxi—O4—Ba2xxxi | 174.4 (3) |
O3xvi—Nb1—O4iii | 81.78 (9) | Nb1—O4—Sr2xxi | 92.80 (17) |
O3xvii—Nb1—O4iii | 81.78 (9) | Nb1xxv—O4—Sr2xxi | 87.20 (17) |
O3xviii—Nb1—O4iii | 81.78 (9) | Ba2xxxi—O4—Sr2xxi | 174.4 (3) |
O3viii—Nb1—O4iii | 81.78 (9) | Nb1—O4—Sr2xxxi | 92.80 (17) |
O4—Nb1—Sr2xix | 122.53 (3) | Nb1xxv—O4—Sr2xxxi | 87.20 (17) |
O3xvi—Nb1—Sr2xix | 122.41 (9) | Ba2xxi—O4—Sr2xxxi | 174.4 (3) |
O3xvii—Nb1—Sr2xix | 46.39 (8) | Sr2xxi—O4—Sr2xxxi | 174.4 (3) |
O3xviii—Nb1—Sr2xix | 122.41 (9) | Nb2—O5—Nb2xxv | 174.9 (3) |
O3viii—Nb1—Sr2xix | 46.39 (8) | Nb2—O5—Sr1 | 93.66 (17) |
O4iii—Nb1—Sr2xix | 57.47 (3) | Nb2xxv—O5—Sr1 | 89.84 (16) |
O4—Nb1—Ba2xx | 122.53 (3) | Nb2—O5—Ba2xxi | 93.71 (19) |
O3xvi—Nb1—Ba2xx | 46.39 (8) | Nb2xxv—O5—Ba2xxi | 89.11 (18) |
O3xvii—Nb1—Ba2xx | 122.41 (9) | Sr1—O5—Ba2xxi | 103.23 (15) |
O3xviii—Nb1—Ba2xx | 46.39 (8) | Nb2—O5—Sr2xxi | 93.71 (19) |
O3viii—Nb1—Ba2xx | 122.41 (9) | Nb2xxv—O5—Sr2xxi | 89.11 (18) |
O4iii—Nb1—Ba2xx | 57.47 (3) | Sr1—O5—Sr2xxi | 103.23 (15) |
Symmetry codes: (i) −y+1/2, −x+3/2, z; (ii) −x+1, −y+1, z; (iii) x, y, z−1; (iv) −x+1/2, y+1/2, z; (v) −y+1/2, −x+3/2, z−1; (vi) −x+1, −y+1, z−1; (vii) y, −x+1, z; (viii) y, −x+1, z−1; (ix) −x+1/2, y+1/2, z−1; (x) y, −x, z−1; (xi) −y, x, z−1; (xii) −x, −y, z−1; (xiii) −x, −y, z; (xiv) −y, x, z; (xv) y, −x, z; (xvi) −x+3/2, y−1/2, z−1; (xvii) x−1/2, −y+1/2, z−1; (xviii) −y+1, x−1, z−1; (xix) −x+1/2, y−1/2, z−1; (xx) x+1/2, −y+1/2, z−1; (xxi) −x+1/2, y−1/2, z; (xxii) x−1, y, z−1; (xxiii) y, −x+1, z+1; (xxiv) −x+1/2, y+1/2, z+1; (xxv) x, y, z+1; (xxvi) y, −x, z+1; (xxvii) −x+1/2, y−1/2, z+1; (xxviii) x+1, y, z+1; (xxix) −x+3/2, y+1/2, z+1; (xxx) −x+1, −y+1, z+1; (xxxi) x+1/2, −y+1/2, z. |
Experimental details
(k2shape) | (sr477) | (shape137) | (sbn159k3) | |
Crystal data | ||||
Chemical formula | Ba0.67Nb2O6Sr0.33 | Ba0.52Nb2O6Sr0.48 | Ba0.39Nb2O6Sr0.61 | Ba0.14Nb2O6Sr0.86 |
Mr | 402.26 | 395.44 | 388.68 | 378.29 |
Crystal system, space group | Tetragonal, P4bm | Tetragonal, P4bm | Tetragonal, P4bm | Tetragonal, P4bm |
Temperature (K) | 298 | 298 | 298 | 298 |
a, c (Å) | 12.4840 (4), 3.9742 (3) | 12.4844 (5), 3.9572 (3) | 12.4575 (7), 3.9382 (3) | 12.4179 (9), 3.9074 (5) |
V (Å3) | 619.38 (5) | 616.77 (6) | 611.17 (7) | 602.54 (10) |
Z | 5 | 5 | 5 | 5 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 13.33 | 13.78 | 14.31 | 15.13 |
Crystal size (mm) | 0.26 × 0.22 × 0.19 × 0.11 (radius) | 0.18 × 0.17 × 0.16 × 0.08 (radius) | 0.20 × 0.19 × 0.13 × 0.10 (radius) | 0.17 × 0.17 × 0.12 × 0.09 (radius) |
Data collection | ||||
Diffractometer | Xcalibur CCD diffractometer | Xcalibur CCD diffractometer | Xcalibur CCD diffractometer | Xcalibur CCD diffractometer |
Absorption correction | Numerical after shape optimisation | Numerical after shape optimisation | Numerical after shape optimisation | Numerical after shape optimisation |
Tmin, Tmax | 0.097, 0.177 | 0.159, 0.221 | 0.130, 0.267 | 0.099, 0.169 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11682, 2077, 1852 | 11771, 2157, 1635 | 11458, 2096, 1740 | 11273, 2153, 1365 |
Rint | 0.034 | 0.038 | 0.039 | 0.060 |
(sin θ/λ)max (Å−1) | 0.910 | 0.928 | 0.895 | 0.964 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.065, 1.12 | 0.030, 0.055, 1.00 | 0.033, 0.076, 1.14 | 0.045, 0.091, 0.96 |
No. of reflections | 2077 | 2157 | 2096 | 2153 |
No. of parameters | 65 | 65 | 65 | 65 |
No. of restraints | 2 | 2 | 2 | 2 |
Δρmax, Δρmin (e Å−3) | 2.18, −2.79 | 2.12, −2.81 | 2.54, −3.17 | 3.63, −3.54 |
Absolute structure | Flack H D (1983), 807 Friedel pairs | Flack H D (1983), 877 Friedel pairs | Flack H D (1983), 866 Friedel pairs | Flack H D (1983), 891 Friedel pairs |
Computer programs: CrysAlis CCD Oxford Diffraction, 2002), CrysAlis RED Oxford Diffraction, 2002), CrysAlisREDOxford Diffraction, 2002), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by the Graduate College 695 `Nonlinearities of Optical Materials' financed by the Deutsche Forschungsgemeinschaft and the Federal State of Niedersachsen.
References
Bhalla, A. S., Guo, R., Cross, L. E., Burns, G., Dacol, F. H. & Neurgaonkar, R. R. (1987). Phys. Rev. B, 36, 2030–2035. CrossRef CAS Web of Science Google Scholar
Chernaya, T. S., Maksimov, B. A., Verin, I. V., Ivleva, L. I. & Simonov, V. I. (1997). Crystallogr. Rep. 42, 375–380. Google Scholar
Chernaya, T. S., Maksimov, B. A., Volk, T. R., Ivleva, L. I. & Simonov, V. I. (2000). Phys. Solid State, 42, 1716–1721. Web of Science CrossRef CAS Google Scholar
Cross, L. E., Shrout, T. & Neurgaonkar, R. R. (1980). Am. Ceram. Soc. Bull. 59, 832. Google Scholar
David, C., Granzow, T., Tunyagi, A., Wöhlecke, M., Woike, T., Betzler, K., Ulex, M., Imlau, M. & Pankrath, R. (2004). Phys. Status Solidi A Appl. Res. 201, R49–R52. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). WinGX, Version 1.61. University of Glasgow, Scotland. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881 CrossRef CAS Web of Science IUCr Journals Google Scholar
Jamieson, P. B., Abrahams, S. C. & Bernstein, J. L. (1968). J. Chem. Phys. 48, 5048. CrossRef Google Scholar
Neurgaonkar, R. R. & Cory, W. K. (1986). J. Opt. Soc. Am. B, 3, 274. CrossRef Google Scholar
Neurgaonkar, R. R., Oliver, J. R. & Cross, L. E. (1984). Ferroelectrics, 56, 31–36. CrossRef Google Scholar
Oxford Diffraction (2002). CrysAlisRED, Version 1.69. Oxford Diffraction, UK. Google Scholar
Qadri, S. B., Bellotti, J. A., Garzarella, A. & Wu, D. H. (2005). Appl. Phys. Lett. 86, 251914. CrossRef Google Scholar
Schefer, J., Schaniel, D., Pomjakushin, V., Stuhr, U., Petricek, V., Woike, Th., Wöhlecke, M. & Imlau, M. (2006). Phys. Rev. B, 74, 134103. CrossRef Google Scholar
Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946. CrossRef CAS IUCr Journals Web of Science Google Scholar
Shannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046–1048. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Shorrocks, N. M., Whatmore, R. W. & Liu, S. T. (1982). J. Phys. D Appl. Phys. 15, 2469–2481. CrossRef CAS Web of Science Google Scholar
Shrout, T. R., Cross, L. E., Moses, P., McKinstry, H. A. & Neurgaonkar, R. R. (1981a). Ferroelectrics, 38, 881. CrossRef Google Scholar
Shrout, T. R., Cross, L. E., Moses, P., McKinstry, H. A. & Neurgaonkar, R. R. (1981b). IEEE Trans. Son. Ultrason. 28, 397. Google Scholar
Ulex, M., Pankrath, R. & Betzler, K. (2004). J. Cryst. Growth, 271, 128–133. Web of Science CrossRef CAS Google Scholar
Volk, T., Woike, T., Dörfler, U., Pankrath, R., Ivleva, L. & Wöhlecke, M. (1997). Ferroelectrics, 203, 457–470. CrossRef CAS Google Scholar
Woike, T., Petricek, V., Dusek, M., Hansen, N. K., Fertey, P., Lecomte, C., Arakcheeva, A., Chapuis, G., Imlau, M. & Pankrath, R. (2003). Acta Cryst. B59, 28. Web of Science CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.