research papers
Single-crystal neutron and X-ray diffraction study of garnet-type solid-state electrolyte Li6La3ZrTaO12: an in situ temperature-dependence investigation (2.5 ≤ T ≤ 873 K)
aDepartment of Chemistry and Physics of Materials, Division of Materials Science and Mineralogy, University of Salzburg, Jakob-Haringerstr. 2A, Salzburg, 5020, Austria, bInstitute of Crystallography, RWTH Aachen University, Jaegerstrasse 17/19, Aachen, 52056, Germany, cJülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstrasse 1, Garching, 85748, Germany, dLeibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Strasse 2, Berlin, 12489, Germany, and eInstitute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
*Correspondence e-mail: guenther.redhammer@sbg.ac.at, rettenwander@tugraz.at
Large single crystals of garnet-type Li6La3ZrTaO12 (LLZTO) were grown by the Czochralski method and analysed using neutron diffraction between 2.5 and 873 K in order to fully characterize the Li atom distribution, and possible Li ion mobility in this class of potential candidates for solid-state electrolyte battery material. LLZTO retains its cubic symmetry (space group Ia3d) over the complete temperature range. When compared to other sites, the octahedral sites behave as the most rigid unit and show the smallest increase in atomic displacement parameters and bond length. The La and Li sites show similar in their bond lengths with temperature, and the anisotropic and equivalent atomic displacement parameters exhibit a distinctly larger increase at temperatures above 400 K. Detailed inspection of nuclear densities at the Li1 site reveal a small but significant displacement from the 24d position to the typical 96h position, which cannot, however, be resolved from the single-crystal X-ray diffraction data. The site occupation of LiI ions on Li1 and Li2 sites remains constant, so there is no change in site occupation with temperature.
1. Introduction
Modern and high-performance energy storage devices based on the Li ion battery technology require the choice of a safe electrolyte to overcome known problems with the electrochemical and thermodynamic stability of metallic Li and/or the formation of dendrites when using liquid electrolytes. Such ion-conducting electrolytes should have exceptionally high ionic conductivities at room temperature coupled with negligible electronic conductivities, high stability and resistance to chemical reaction with both the anode and cathode, especially elemental Li, a high electrochemical decomposition voltage and, last but not least, should also be environmentally friendly and of low cost (Thangadurai et al., 2014; Ramakumar et al., 2017; Knauth, 2009; Wang et al., 2020). Solid (ceramic) electrolytes are proposed to overcome these limitations and facilitate a large step towards all-oxide, solid-state Li batteries.
The garnet family, well known for decades in mineralogy and crystallography (Novak & Gibbs, 1971), has been identified to be one of a few promising candidates for such demanding applications (Murugan et al., 2007). Total conductivities of 0.4 m S cm−1 were observed at room temperature, e.g. in the compound Li7La3Zr2O12 (LLZO), however, only in the cubic modification. The latter can be stabilized by doping with aliovalent cations such as AlIII (Buschmann et al., 2011; Geiger et al., 2011) instead of LiI at the tetrahedral site, thereby introducing a degree of Li disorder. The pure end-member LLZO is tetragonal and has distinctly lower ionic conductivities (Awaka et al., 2009). A large amount of work has been carried out on the different possible cations and substitutions that can be used to stabilize the cubic modification by replacing LiI, with, for example, AlIII, GaIII, FeIII (Rettenwander et al., 2014; Rettenwander, Wagner et al., 2016; Wagner, Redhammer, Rettenwander, Senyshyn et al., 2016; Wagner, Redhammer, Rettenwander, Tippelt et al., 2016; Rettenwander, Redhammer et al., 2016; Wagner et al., 2017) and references therein.
Replacement of ZrIV by TaV, among others, also stabilizes the garnet in its body-centred cubic modification (Hamao et al., 2017) and, thereby, also reduces the Li content. While some studies found a stabilization of the cubic phase at low TaV contents of x = 0.125 (Logéat et al., 2012) or x = 0.2 (Gong et al., 2019; Yi et al., 2019) along the Li7–xLa3Zr2–xTaxO12 series, a phase-pure cubic phase is reported to occur above x = 0.6 in Al-free environments (Wang & Lai, 2015; Hamao et al., 2017). It has been shown that at Li contents of around 6.5 formula units, the cubic modification undergoes a symmetry reduction to its tetragonal form (Thompson et al., 2015, 2014). LLZOs, substituted with TaV, are of special interest as they have among the highest ionic conductivities of any Li garnet-type materials and, as such, have a wide range of potential applications. Consequently, the system Li7–xLa3Zr2–xTaxO12 has been the subject of several studies (Hamao et al., 2016; Wang et al., 2014, 2017; Wang & Lai, 2012). Recently, ionic conductivities as high as 1.39 × 10−3 S cm−1 at room temperature for x = 0 have been reported for five large single crystals of Li6.5La3Zr1.5Ta0.5O12 and Li7–xLa3Zr2–xNbxO12 (Kataoka & Akimoto, 2018; Kataoka et al., 2018). The high is explained by a small positional disorder of the normally tetragonally coordinated Li at the 24d position, which is split into four partially occupied 96h positions (Kataoka et al., 2018).
This study further investigates these initial findings with an in-depth look at the 6La3ZrTaO12 (Stanje et al., 2017) over a wide temperature range, with special emphasis on the Li distribution, using combined single-crystal neutron and X-ray diffraction methods. A companion paper deals with the stability of LLZTO in the presence of moisture and different wet environments such as distilled water and acetic acid (Redhammer et al., 2021).
of high-quality Czochralski-grown single crystals of Li2. Experimental
2.1. Synthesis
For the neutron diffraction experiment, a single crystal was grown using the Czochralski pulling technique. The starting material for growth experiments comprised a mixture of dry 50 mol% Li2CO3, 25 mol% La2O3, 16.7 mol% ZrO2 and 8.3 mol% Ta2O5 (corresponding to a sum formula Li6La3ZrTaO12) with an additional excess of 20 mol% Li2O. The mixed powders were pressed isostatically at 500 bar (1 bar = 105 Pa), fired for 6 h at 850°C, ground, pressed at 2000 bar and fired again for 6 h at 1230°C, before being melted in an inductively heated 40 ml iridium crucible with alumina ceramic insulation. After a period of melt homogenization, a randomly oriented seed crystal, obtained in a previous experiment, was added to initiate crystallization. A 50 mm × 15 mm crystal was pulled at a rate of 0.4 mm h−1 using automatic diameter control of the growth apparatus. After the growth was completed, the crystal was withdrawn from the melt and cooled to room temperature over 15 h. The whole growth process was carried out in a pure N2 atmosphere. The as-grown crystal (Fig. 1) was cut perpendicular to the growth direction and slabs and cuboids ∼ 2.0–2.5 mm in length were prepared for various analytical techniques from the clear and flawless parts of the ingot. Chips from the central clear part of the crystal were gently crushed to reduce the crystallite size to around 0.1–0.3 mm, which were then used for single-crystal X-ray diffraction measurements between 90 K and 300 K.
2.2. Single-crystal X-ray diffraction (SCXRD)
Single-crystal X-ray diffraction data were collected on a Bruker SMART APEX CCD diffractometer. The single crystals were selected on the basis of their optical properties (sharp extinction, regular shape and Kα X-ray radiation (50 kV, 20 mA) with an ω-scan mode set-up at four different φ positions (0°, 90°, 180° and 270°). A total of 665 frames with Δω = 0.3° were acquired for each run. Three-dimensional data were integrated and corrected for and background effects using APEX2 software (Bruker, 2012). Structure solution using and subsequent weighted full-matrix least-squares refinements on F2 were carried out with SHELX-2012 (Sheldrick, 2015) incorporated in the program suite WinGX 2014.1 (Farrugia, 2012).
in colour) and glued on a glass capillary (0.1 mm in diameter). Intensity data were collected using graphite-monochromated MoAnalysis of X-ray diffraction intensity data sets for samples sometimes showed the presence of weak et al. (2018) for their LLZTa0.5O single crystals, which were of a similar size (∼0.15 mm) to those used in this study. To judge whether the reflections could be artefacts from the data collection methodology, the crystals were reanalysed with reduced operation voltages of the X-ray tube (30 kV instead of 50 kV) and longer integration times (to have comparable intensities on the main peaks); in these experiments λ/2 radiation was not stimulated. Indeed, the peaks corresponding to the body-centred cell are absent in the reduced generator power experiments. Thus, it is concluded that, at least in our experiments, the additional observed Bragg peaks in some of the investigated samples can be assigned to λ/2 contributions, a phenomenon which is especially found in area detector data and for I body-centred cells (Kirschbaum et al., 1997; Gianopoulos et al., 2017; Secco et al., 2008).
reflections that obey the symmetry, but indicate a primitive A similar phenomenon was described by Kataoka2.3. Single-crystal neutron diffraction
Single-crystal neutron diffraction intensity data were collected on the HEiDi diffractometer at temperatures between 2.5 and 830 K with λ = 0.793 Å [Ge(420) monochromator]. HEiDi is a four-circle, single-crystal diffractometer with an acentric Eulerian cradle and a high of hot neutrons from beam tube SR9B from the FRM II reactor at the Heinz Maier-Leibnitz Zentrum (Meven & Sazonov, 2015). Data acquisition was carried out up to sinθ/λ = 0.808 Å−1 with about 675 Bragg reflections to ensure full structure characterization. The WinGX (Farrugia, 2012) package of programs and SHELXL2014 (Sheldrick, 2015), in combination with the FullProf suite for combined simultaneous of single-crystal X-ray (SCXRD) and single-crystal neutron diffraction (SCND) analysis and bond-valence sum map display, were used for full structural analysis.
Details on data collection, crystal data and refinements at selected temperatures for the neutron data and sample treatment procedures of the single crystals are given in Table 1. Selected structural parameters are compiled in Table 2, whereas the atomic coordinates and equivalent atomic displacement parameters can be found in supplementary Table S1. The anisotropic atomic displacement parameters are accessible from the Analysis of possible ion-diffusion pathways and estimation of migration energy barriers was carried out using BondStr (Katcho et al., 2019) and SoftBV (Chen et al., 2019). Maximum method (MEM) reconstructions of the nuclear densities were performed using Dysnomia, within the FullProf suite. Structural drawings were constructed using VESTA (Momma & Izumi, 2011).
|
3. Results and discussion
3.1. Structure model building of Li6La3ZrTaO12
Neutron diffraction data on a large piece of the Czochralski grown LLZTO (CZ-LLZTO) crystal were collected at 2.5 K, 200 K, 300 K, 400 K, 573 K and 873 K. At all temperatures, the analysis of systematic III ions reside on 24c sites and are eightfold coordinated with oxygen atoms, with two different La—O bond distances of 2.4945 (5) and 2.5940 (5) Å. A small deficit of LaIII on this site is in accordance with a more general finding of a small deficit in site occupation in previous published studies of our working group (Wagner, Redhammer, Rettenwander, Senyshyn et al., 2016; Wagner, Redhammer, Rettenwander, Tippelt et al., 2016). ZrIV/TaV ions occupy 16a sites, which have a regular octahedral coordination with Zr/Ta—O bond length of 2.0446 (5) Å. One octahedron shares its edges with six neighbouring dodecahedral sites, thereby forming an open, integrated framework, in which the Li atoms are positioned. A display of the is given in Fig. 2.
yields the , and no systematic absence violations were observed. Unfortunately, the crystal started to develop some cracks which caused small disorientations of the fragments at 573 K and more severely at 873 K, so the higher temperature data sets are considered to be of an inferior quality. The 300 K data were used for full using and the Li position was determined from analysis of negative residual nuclear densities in multiple Fourier maps. LLZTO adopts the typical garnet structure. LaThe Fourier maps (note, only the framework atoms La, Zr/Ta and O were used in the refinement) revealed two strong negative nuclear densities corresponding to the two Li positions, which supports the model generally assumed for LLZO material as reported by Stanje et al. (2017). Li1 occupies the regular tetrahedrally coordinated 24d site at (, 0, ¼) of the garnet structure (normally occupied by SiIV in silicate garnets), and Li2 resides at an interstitial site at usual 96h position with coordinates of 0.15, 0.17, 0.44. Both Li atomic positions show distinct anisotropic atomic displacement parameters with Li1 showing slightly larger vibrations; the principal mean-square atomic displacement Umax/Umin include values of 4.46 and 4.06 for Li1 and Li2, respectively, indicative of distinct (thermal atomic) motion of the Li atoms in the dodecahedral–octahedral framework. It is worth noting that no significant residual nuclear densities can be detected in the different Fourier syntheses of the final model. Therefore, it is clear that Li ions occupy only these two positions in LLZTO, which is in contrast to some previous work (Wang et al., 2020; Thangadurai et al., 2014) and suggests that 48g also hosts Li ions.
In detail, the negative residual nuclear density at the Li1 site is less spherical and is more square shaped than that at the Li2 site. This is interpreted to be a manifestation of a small displacement of Li atoms away from 24d towards the usual 96h position (Fig. 3). The very same observation was also recently reported by Kataoka & Akimoto (2018) for the Li1 position in Li6.5La3Zr1.5Ta0.5O12 based on neutron diffraction on a large single crystal.
This shift from 24d to 96h is small but refinable, and amounts to 0.248 (18) Å, yielding atomic positions for Li1 of 0.3739 (14), −0.012 (3), 0.235 (2) at 300 K. However, in shifting this position, only an isotropic of the atomic displacement parameters for Li1 is possible at any temperature tested (Fig. 3d). In this `shift' model, the Li1 atoms are displaced from each other by 0.360 (11) and 0.509 (15) Å at 300 K, allowing shorter Li1⋯Li2 jump distances of 1.398 (14) Å and 1.63 (4) Å, respectively. The Li2⋯Li2 distance remains at 0.72 (13). The corresponding values in the 24d model are 1.628 (6) and 0.722 (11) Å for Li1⋯Li2 and Li2⋯Li2, respectively. So, the shift model would allow for shorter possible jump distances. The (isotropic) 96h position model and the 24d position (anisotropic) model for Li1 yield equally good refinements as both fit the observed negative nuclear densities similarly well [Figs. 3(c) and 3(d)]. In single-crystal X-ray diffraction data however, the refinements of the shifted position are unstable, most probably due to the low scattering power of Li. Regardless, for the purpose of comparison, the widely applied model with Li1 at 24d is preferred in the further discussion below.
Bond valence energy landscape (BVEL) map calculations (Chen et al., 2019; Chen & Adams, 2017; Adams & Rao, 2014) were applied to investigate possible ion diffusion pathways. In the calculated three-dimensional network for LiI ion migration in LLZTO, the LiI positions fit very well with the energy minima in the BVEL map (Fig. 4). Also, an activation energy for Li ion jumps is calculated to be 0.35 eV, which is in good agreement with published values (Stanje et al., 2017).
The Zr/Ta value of the studied CZ-LLZTO crystal departs from the ideal 1:1 ratio as has already been noted by Stanje et al. (2017). As the nuclear bound scattering lengths of Zr and Ta are similar in neutron diffraction (7.16 and 6.91 fm respectively), the final site distribution of the two elements on the octahedrally coordinated 16a site was determined by simultaneous of both the 300 K SCND and SCXRD data (with slightly more weight given to the neutron diffraction data). The result was a cation distribution of Zr0.90Ta1.10, which was then fixed in the refinements of neutron data for all other temperatures. Due to its sensitivity to Li ions, the neutron diffraction data provided very reliable Li ion site occupation. Significant vacancies are present at both Li sites; the Li1 site is only two-thirds filled and the interstitial 96h position shows an occupation of only one-third. The refinements on the SCND data alone yield similar values to those from the simultaneous for Li occupation at the Li1 and Li2 sites, i.e. 0.676 (19) and 0.351 (8) compared to 0.659 (19) and 0.341 (7), respectively. On applying the latter values in addition to the slight deficit on the La site, which is also revealed in the simultaneous a charge balanced formula of Li6.07La2.95Zr0.90Ta1.10O12 is obtained. Using the `standard' model with unsplit 24d site allows all atoms to be refined with their anisotropic atomic displacement parameters up to 573 K. The resultant reliability factors are low and attest to the high quality of the data and refinements.
3.2. The structure of Li6La3ZrTaO12 between 2.5 K and 873 K
The unit-cell parameters, determined for the temperatures between 120 K and 300 K in the neutron diffraction experiments using single-crystal X-ray diffraction, overlap. Saturation of the ) by using the equation suggested by Salje et al. (1991) that is implemented in EosFit7 (Gonzalez-Platas et al., 2016);
is observed at low temperature. This can be addressed when fitting the data (Fig. 5Here, a0 corresponds to the unit-cell parameter a at the reference temperature Tref = 0 K, Ts is saturation temperature above which the becomes constant. The value of p1 is described to be approximately three times the high-temperature value of the coefficient α. Using this equation, a0 = 12.8522 (5) Å, p1 = 14.50 (16) with α ∼ 4.8 × 10−5 and a saturation temperature Ts of 409 (7) K.
With increasing temperature, the dodecahedral site shows a larger and Fig. 6). The equivalent thermal displacement parameter, Ueq, also is lowest for the Zr/Ta at the octahedral site, and increases gradually with increasing temperature (Fig. 6). A very similar behaviour is shown by the oxygen atom; Ueq values are intermediate between Zr/Ta, but O atoms show a more marked non-linear increase. The low temperature Ueq values are close to those for Zr/Ta, but are more similar to those for the oxygen atom at higher T. The La atoms, in particular, show some distinct anisotropic thermal motion, with a Umax/Umin ratio at 2.5 K of 3.12, 1.77 and 1.58 for La, Zr/Ta and O atoms, respectively. Interestingly, the anisotropy of these three atoms decreases as temperature increases, with principal square atomic displacements Umax/Umin at 400 K of 1.71, 1.18 and 1.67 for La, Zr/Ta and O atoms, respectively. The single-crystal X-ray diffraction data show the very same trends. However, there is more scatter in the displacement parameters and bond lengths.
than the octahedral site. La—O1 and La—O1 bond lengths increase between 2.5 K and 800 K by 0.032 and 0.056 Å, respectively, and the Zr/Ta—O1 bonds expand by 0.028 Å (Table 2In the unsplit model, the 24d Li1 site corresponds to the regular tetrahedral site of the garnet structure. In silicate garnets, the tetrahedron typically remains very rigid during temperature change, which is in contrast to what is observed here. The Li1—O bond lengths increase slowly at low temperatures from 1.9169 (5) Å at 2.5 K to 1.9291 (9) at 400 K, and then more rapidly to 1.959 (4) Å at 800 K, with associated increases in the polyhedral volume of 2.7% in the 2.5 K to 400 K range and 14% up to 800 K. These changes must be due to shifts in the oxygen positions, as Li resides on a fixed 24d position. Unfortunately, the Li—O bond length, in particular, suffered larger estimated standard uncertainties and uncertainties due to the breaking of the crystal during data collection. Nevertheless, the data from Li1—Oi (i = z, x, y) fit a trend well as would, perhaps, be expected from the fit of the data with the model of Salje et al. (1991). The separation of Li1–Li2 also changes with T: the shortest distance is 1.628 (6) Å at 2.5 K. It then increases slowly by 0.006 Å with temperature towards 300 K, above which it then extends by ≃0.06 Å nearing 800 K. In contrast, the longer Li1–Li2 interatomic distance increases by only ≃ 0.015 Å over the whole T range. The separation of the Li2–Li2 sites remains constant within the estimated standard deviation. It should be recalled that the simultaneous occupation of both positions is not possible. However, jumps between the two positions are to be expected, and probably have low activation energies. The Li2 site can also be regarded as fourfold coordinated, with bond lengths ranging between 1.858 (6) Å and 2.280 (5) Å at 2.5 K, with an average 〈Li2—O〉 bond length of 2.089 (6) Å. Two more distant oxygen atoms are 2.654 (5) and 2.675 (5) Å away from Li2. As temperature increases, the Li2—O bond lengths generally also increase, although the trends are not smooth and there is some scatter. On average, 〈Li2—O〉 increases by ≃ 2.1% to 2.133 (9) Å at 800 K, but it is important to note that some of the individual Li2—O bond lengths change more than others (e.g. the shortest Li2—O distance increases by 0.065 Å). An even larger stretching of the 〈Li2—O〉 bonds might be expected when assuming a constant at high temperature (Fig. 6b).
Over the entire temperature range, the Li1 site at 24d exhibits the largest equivalent atomic displacement parameter Ueq, which distinctly increases with increasing temperature. Furthermore, there is a much steeper increase above 400 K when compared to the change at the Li2 site and especially so when compared to the changes associated with the La, Zr/Ta and O atoms (Fig. 7). This may indicate that there is, indeed, some shift at the Li1 site from the special to the general 96h position, and that Li is highly mobile at high temperatures. Also, the increase of Ueq at the Li2 site is steeper than for the framework atoms. Generally, both Li sites appear to be highly anisotropic even at the lowest temperature of 2.5 K with Umax/Umin ratios of 5.5 and 4.6 for Li1 and Li2, respectively. These ratios do not change much with increasing temperature. The largest elongation of the thermal ellipsoids follows the direction of the most probable Li ion mobility pathway within the channels of minimum energy (cf. Fig. 4).
An increase in thermal motion is also visible in the reconstruction of the nuclear density maps from the experimental structure factors, using the maximum . It is evident that at 2.5 K, Li ions at Li1 and Li2 are very focused, but with increasing T, the nuclear densities at Li2 become more elongated or adapt a more pronounced square-like shape. Unfortunately, the MEM data collected at higher T are of insufficient quality to be useful. Nevertheless, it is worth noting that the site occupation factors at Li1 and Li2 sites remain remarkably constant, so there is no evident change in the distribution of LiI atoms over the two possible sites as temperature changes.
method as depicted in Fig. 8Finally, some comment on the split model should be given: there is an increased shift from the 24d position with increasing temperature. The shift is 0.246 (13) Å at 2.5 K and remains similar at 300 K, but increases to 0.307 (16) Å at 400 K and 0.42 (3) at 523 K. The Li1⋯Li1 distances in the split model increase accordingly with 0.43 (2) and 0.61 (2) Å recorded at 400 K. The Li1⋯Li2 distances also increase from 1.473 (13) and 1.492 (13) at 2.5 K to 1.57 (2) and 1.91 (6) Å at 573 K.
4. Conclusion
Very accurate structural data for Li6La3ZrTaO12 garnet-type material have been obtained from the neutron diffraction analyses: the Li atom location, including site occupation factors and atomic displacement parameters. Detailed inspection of nuclear density data reveals some displacement of the tetrahedrally coordinated Li1 site from the 24d position to the more typical 96h position. However, this displacement is small and cannot be resolved in the X-ray diffraction data on the very same material, however, it may explain fast ion transport due to possible shorter jump distances. No indications were found to support Li occupation of a site other than 24d and 96h. Finally, and most importantly, from the high-resolution single crystal data it was found that, although the anisotropic atomic displacement increases distinctly with temperature, the site occupation of Li1 and Li2 sites remains almost constant. Using powder diffraction data, this is not fully resolvable due to limited resolution and the high correlation of occupation numbers and atomic displacement parameters. In other words, there is no evident migration or change in average site occupation with temperature change. Since no change in the Li ion distribution and no additional sites get occupied by increasing temperature we conclude that the predominating diffusion pathways in LLZTO remain between the 24d and 96h sites in the Li6La3ZrTaO12 garnet framework.
Supporting information
https://doi.org/10.1107/S2052520620016145/ra5085sup1.cif
contains datablocks global, 2.5K, 200K, 300K, 400K. DOI:Structure factors: contains datablock 2.5K. DOI: https://doi.org/10.1107/S2052520620016145/ra50852.5Ksup2.hkl
Structure factors: contains datablock 200K. DOI: https://doi.org/10.1107/S2052520620016145/ra5085200Ksup3.hkl
Structure factors: contains datablock 300K. DOI: https://doi.org/10.1107/S2052520620016145/ra5085300Ksup4.hkl
Structure factors: contains datablock 400K. DOI: https://doi.org/10.1107/S2052520620016145/ra5085400Ksup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2052520620016145/ra5085sup6.pdf
For all structures, data collection: Bruker APEX2 (Bruker, 2012); cell
Bruker APEX2 (Bruker, 2012); data reduction: Bruker APEX2 (Bruker, 2012); program(s) used to solve structure: SHELXL2014/7 (Sheldrick, 2014); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).Li6O12TaZrLa3 | Dx = 5.839 Mg m−3 |
Mr = 932.8 | Neutron radiation, λ = 0.793 Å |
Cubic, Ia3d | Cell parameters from 25 reflections |
Hall symbol: -I 4bd 2c 3 | θ = 4.3–40.0° |
a = 12.8511 (2) Å | µ = 0.04 mm−1 |
V = 2122.37 (10) Å3 | T = 3 K |
Z = 8 | Box-shaped, colourless |
F(000) = 3215 | 2.35 × 2.15 × 1.95 mm |
Huber Eulerian Cradle diffractometer | Rint = 0.044 |
Ge 422 monochromator | θmax = 40.0°, θmin = 4.3° |
rotation, ω–scans at 4 different φ positions | h = −20→20 |
624 measured reflections | k = −14→14 |
347 independent reflections | l = 0→10 |
289 reflections with I > 2σ(I) |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max = 0.048 |
wR(F2) = 0.038 | Δρmax = 0.53 e Å−3 |
S = 0.98 | Δρmin = −0.40 e Å−3 |
347 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
32 parameters | Extinction coefficient: 0.0088 (4) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.125 | 0 | 0.25 | 0.00504 (17) | 1.000 (5) |
Zr1 | 0 | 0 | 0 | 0.00276 (13) | 0.440 (3) |
Ta1 | 0 | 0 | 0 | 0.00276 (13) | 0.560 (3) |
O1 | 0.10301 (3) | 0.19774 (4) | 0.28062 (4) | 0.00889 (12) | |
Li1 | 0.375 | 0 | 0.25 | 0.0304 (15) | 0.642 (5) |
Li2 | 0.1516 (4) | 0.1748 (4) | 0.4376 (4) | 0.0190 (11) | 0.3455 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0078 (3) | 0.00368 (19) | 0.00368 (19) | 0 | 0 | 0.00123 (19) |
Zr1 | 0.00276 (13) | 0.00276 (13) | 0.00276 (13) | 0.00055 (15) | 0.00055 (15) | 0.00055 (15) |
Ta1 | 0.00276 (13) | 0.00276 (13) | 0.00276 (13) | 0.00055 (15) | 0.00055 (15) | 0.00055 (15) |
O1 | 0.00745 (18) | 0.0085 (2) | 0.0108 (2) | 0.00049 (15) | 0.00041 (15) | 0.00126 (14) |
Li1 | 0.0076 (18) | 0.042 (2) | 0.042 (2) | 0 | 0 | 0 |
Li2 | 0.026 (3) | 0.017 (2) | 0.014 (2) | −0.008 (2) | 0.010 (2) | −0.0023 (16) |
La1—O1i | 2.4906 (5) | O1—Li2 | 2.133 (6) |
La1—O1ii | 2.4906 (5) | O1—Li2xvii | 2.280 (5) |
La1—O1iii | 2.4906 (5) | O1—La1xv | 2.4906 (5) |
La1—O1iv | 2.4906 (5) | O1—Li2xi | 2.654 (5) |
La1—O1 | 2.5869 (5) | O1—Li2xviii | 2.675 (5) |
La1—O1v | 2.5869 (5) | Li1—Li2x | 1.628 (6) |
La1—O1vi | 2.5869 (5) | Li1—Li2viii | 1.628 (6) |
La1—O1vii | 2.5869 (5) | Li1—Li2xix | 1.628 (6) |
La1—Li2viii | 2.977 (5) | Li1—Li2xx | 1.628 (6) |
La1—Li2ix | 2.977 (5) | Li1—O1xxi | 1.9170 (5) |
La1—Li2x | 2.977 (5) | Li1—O1iii | 1.9170 (5) |
La1—Li2xi | 2.977 (5) | Li1—O1i | 1.9170 (5) |
Zr1—O1xii | 2.0431 (4) | Li1—O1xxii | 1.9170 (5) |
Zr1—O1vii | 2.0431 (4) | Li1—Li2xxii | 2.319 (6) |
Zr1—O1xiii | 2.0431 (4) | Li1—Li2xxi | 2.319 (6) |
Zr1—O1ii | 2.0431 (4) | Li1—Li2i | 2.319 (6) |
Zr1—O1ix | 2.0431 (4) | Li1—Li2iii | 2.319 (6) |
Zr1—O1xiv | 2.0431 (4) | Li2—Li2v | 0.722 (11) |
Zr1—Li2xii | 2.890 (5) | Li2—Li1xxiii | 1.628 (6) |
Zr1—Li2vii | 2.890 (5) | Li2—O1v | 1.858 (6) |
Zr1—Li2ix | 2.890 (5) | Li2—O1viii | 2.086 (5) |
Zr1—Li2xiv | 2.890 (5) | Li2—O1xxiv | 2.280 (5) |
Zr1—Li2xiii | 2.890 (5) | Li2—Li1xv | 2.319 (6) |
Zr1—Li2ii | 2.890 (5) | Li2—Li2xxv | 2.474 (10) |
O1—Li2v | 1.858 (6) | Li2—Li2xxi | 2.474 (10) |
O1—Li1xv | 1.9169 (5) | Li2—O1xviii | 2.654 (5) |
O1—Ta1xiv | 2.0431 (4) | Li2—O1xi | 2.675 (5) |
O1—Zr1xiv | 2.0431 (4) | Li2—Ta1xiv | 2.890 (5) |
O1—Li2xvi | 2.086 (5) | ||
O1i—La1—O1ii | 110.98 (2) | Li2v—O1—La1 | 94.96 (16) |
O1i—La1—O1iii | 73.17 (2) | Li1xv—O1—La1 | 121.06 (2) |
O1ii—La1—O1iii | 158.66 (2) | Ta1xiv—O1—La1 | 101.106 (18) |
O1i—La1—O1iv | 158.66 (2) | Zr1xiv—O1—La1 | 101.106 (18) |
O1ii—La1—O1iv | 73.17 (2) | Li2xvi—O1—La1 | 168.82 (17) |
O1iii—La1—O1iv | 110.98 (2) | Li2—O1—La1 | 88.62 (14) |
O1i—La1—O1 | 66.83 (2) | Li2xvii—O1—La1 | 83.37 (13) |
O1ii—La1—O1 | 74.230 (16) | La1xv—O1—La1 | 101.586 (16) |
O1iii—La1—O1 | 124.669 (10) | Li2v—O1—Li2xi | 77.6 (2) |
O1iv—La1—O1 | 95.527 (13) | Li1xv—O1—Li2xi | 58.34 (12) |
O1i—La1—O1v | 95.528 (13) | Ta1xiv—O1—Li2xi | 170.33 (12) |
O1ii—La1—O1v | 124.668 (10) | Zr1xiv—O1—Li2xi | 170.33 (12) |
O1iii—La1—O1v | 74.231 (16) | Li2xvi—O1—Li2xi | 100.84 (14) |
O1iv—La1—O1v | 66.83 (2) | Li2—O1—Li2xi | 92.32 (14) |
O1—La1—O1v | 73.33 (2) | Li2xvii—O1—Li2xi | 14.4 (2) |
O1i—La1—O1vi | 124.668 (10) | La1xv—O1—Li2xi | 78.13 (11) |
O1ii—La1—O1vi | 95.528 (13) | La1—O1—Li2xi | 69.22 (11) |
O1iii—La1—O1vi | 66.83 (2) | Li2v—O1—Li2xviii | 84.96 (5) |
O1iv—La1—O1vi | 74.231 (16) | Li1xv—O1—Li2xviii | 57.88 (13) |
O1—La1—O1vi | 167.457 (19) | Ta1xiv—O1—Li2xviii | 80.26 (13) |
O1v—La1—O1vi | 108.10 (2) | Zr1xiv—O1—Li2xviii | 80.26 (13) |
O1i—La1—O1vii | 74.231 (16) | Li2xvi—O1—Li2xviii | 10.1 (3) |
O1ii—La1—O1vii | 66.83 (2) | Li2—O1—Li2xviii | 91.74 (16) |
O1iii—La1—O1vii | 95.528 (13) | Li2xvii—O1—Li2xviii | 95.29 (15) |
O1iv—La1—O1vii | 124.668 (10) | La1xv—O1—Li2xviii | 77.73 (10) |
O1—La1—O1vii | 108.10 (2) | La1—O1—Li2xviii | 178.61 (12) |
O1v—La1—O1vii | 167.458 (19) | Li2xi—O1—Li2xviii | 109.41 (16) |
O1vi—La1—O1vii | 73.33 (2) | Li2x—Li1—Li2viii | 133.8 (4) |
O1i—La1—Li2viii | 43.74 (9) | Li2x—Li1—Li2xix | 98.87 (13) |
O1ii—La1—Li2viii | 147.91 (10) | Li2viii—Li1—Li2xix | 98.87 (13) |
O1iii—La1—Li2viii | 48.28 (11) | Li2x—Li1—Li2xx | 98.87 (13) |
O1iv—La1—Li2viii | 122.74 (10) | Li2viii—Li1—Li2xx | 98.87 (13) |
O1—La1—Li2viii | 76.43 (11) | Li2xix—Li1—Li2xx | 133.8 (4) |
O1v—La1—Li2viii | 56.45 (11) | Li2x—Li1—O1xxi | 163.22 (18) |
O1vi—La1—Li2viii | 115.05 (11) | Li2viii—Li1—O1xxi | 62.58 (19) |
O1vii—La1—Li2viii | 111.34 (11) | Li2xix—Li1—O1xxi | 79.59 (16) |
O1i—La1—Li2ix | 147.91 (10) | Li2xx—Li1—O1xxi | 71.57 (18) |
O1ii—La1—Li2ix | 43.74 (9) | Li2x—Li1—O1iii | 71.57 (18) |
O1iii—La1—Li2ix | 122.74 (10) | Li2viii—Li1—O1iii | 79.59 (16) |
O1iv—La1—Li2ix | 48.28 (11) | Li2xix—Li1—O1iii | 163.22 (18) |
O1—La1—Li2ix | 111.34 (11) | Li2xx—Li1—O1iii | 62.58 (19) |
O1v—La1—Li2ix | 115.05 (11) | O1xxi—Li1—O1iii | 113.600 (15) |
O1vi—La1—Li2ix | 56.45 (11) | Li2x—Li1—O1i | 79.59 (16) |
O1vii—La1—Li2ix | 76.43 (11) | Li2viii—Li1—O1i | 71.57 (18) |
Li2viii—La1—Li2ix | 167.36 (18) | Li2xix—Li1—O1i | 62.58 (19) |
O1i—La1—Li2x | 48.28 (11) | Li2xx—Li1—O1i | 163.22 (18) |
O1ii—La1—Li2x | 122.74 (10) | O1xxi—Li1—O1i | 113.600 (15) |
O1iii—La1—Li2x | 43.74 (9) | O1iii—Li1—O1i | 101.50 (3) |
O1iv—La1—Li2x | 147.91 (10) | Li2x—Li1—O1xxii | 62.58 (19) |
O1—La1—Li2x | 115.05 (11) | Li2viii—Li1—O1xxii | 163.22 (18) |
O1v—La1—Li2x | 111.34 (11) | Li2xix—Li1—O1xxii | 71.57 (18) |
O1vi—La1—Li2x | 76.43 (11) | Li2xx—Li1—O1xxii | 79.59 (16) |
O1vii—La1—Li2x | 56.45 (11) | O1xxi—Li1—O1xxii | 101.50 (3) |
Li2viii—La1—Li2x | 60.4 (2) | O1iii—Li1—O1xxii | 113.600 (15) |
Li2ix—La1—Li2x | 121.2 (2) | O1i—Li1—O1xxii | 113.600 (15) |
O1i—La1—Li2xi | 122.74 (10) | Li2x—Li1—Li2xxii | 6.2 (3) |
O1ii—La1—Li2xi | 48.28 (11) | Li2viii—Li1—Li2xxii | 136.2 (2) |
O1iii—La1—Li2xi | 147.91 (10) | Li2xix—Li1—Li2xxii | 92.7 (2) |
O1iv—La1—Li2xi | 43.74 (9) | Li2xx—Li1—Li2xxii | 103.1 (2) |
O1—La1—Li2xi | 56.45 (11) | O1xxi—Li1—Li2xxii | 161.05 (12) |
O1v—La1—Li2xi | 76.43 (11) | O1iii—Li1—Li2xxii | 77.68 (13) |
O1vi—La1—Li2xi | 111.34 (11) | O1i—Li1—Li2xxii | 76.94 (12) |
O1vii—La1—Li2xi | 115.05 (11) | O1xxii—Li1—Li2xxii | 59.57 (12) |
Li2viii—La1—Li2xi | 121.2 (2) | Li2x—Li1—Li2xxi | 136.2 (2) |
Li2ix—La1—Li2xi | 60.4 (2) | Li2viii—Li1—Li2xxi | 6.2 (3) |
Li2x—La1—Li2xi | 167.36 (18) | Li2xix—Li1—Li2xxi | 103.1 (2) |
O1xii—Zr1—O1vii | 180.00 (4) | Li2xx—Li1—Li2xxi | 92.7 (2) |
O1xii—Zr1—O1xiii | 86.41 (2) | O1xxi—Li1—Li2xxi | 59.57 (12) |
O1vii—Zr1—O1xiii | 93.59 (2) | O1iii—Li1—Li2xxi | 76.94 (12) |
O1xii—Zr1—O1ii | 93.59 (2) | O1i—Li1—Li2xxi | 77.68 (13) |
O1vii—Zr1—O1ii | 86.41 (2) | O1xxii—Li1—Li2xxi | 161.05 (12) |
O1xiii—Zr1—O1ii | 180.00 (3) | Li2xxii—Li1—Li2xxi | 139.4 (2) |
O1xii—Zr1—O1ix | 86.41 (2) | Li2x—Li1—Li2i | 103.1 (2) |
O1vii—Zr1—O1ix | 93.59 (2) | Li2viii—Li1—Li2i | 92.7 (2) |
O1xiii—Zr1—O1ix | 86.41 (2) | Li2xix—Li1—Li2i | 6.2 (3) |
O1ii—Zr1—O1ix | 93.59 (2) | Li2xx—Li1—Li2i | 136.2 (2) |
O1xii—Zr1—O1xiv | 93.59 (2) | O1xxi—Li1—Li2i | 76.94 (12) |
O1vii—Zr1—O1xiv | 86.41 (2) | O1iii—Li1—Li2i | 161.05 (12) |
O1xiii—Zr1—O1xiv | 93.59 (2) | O1i—Li1—Li2i | 59.57 (12) |
O1ii—Zr1—O1xiv | 86.41 (2) | O1xxii—Li1—Li2i | 77.68 (13) |
O1ix—Zr1—O1xiv | 180.00 (4) | Li2xxii—Li1—Li2i | 96.92 (8) |
O1xii—Zr1—Li2xii | 47.51 (11) | Li2xxi—Li1—Li2i | 96.92 (8) |
O1vii—Zr1—Li2xii | 132.49 (11) | Li2x—Li1—Li2iii | 92.7 (2) |
O1xiii—Zr1—Li2xii | 92.82 (10) | Li2viii—Li1—Li2iii | 103.1 (2) |
O1ii—Zr1—Li2xii | 87.18 (10) | Li2xix—Li1—Li2iii | 136.2 (2) |
O1ix—Zr1—Li2xii | 133.80 (11) | Li2xx—Li1—Li2iii | 6.2 (3) |
O1xiv—Zr1—Li2xii | 46.20 (11) | O1xxi—Li1—Li2iii | 77.68 (13) |
O1xii—Zr1—Li2vii | 132.49 (11) | O1iii—Li1—Li2iii | 59.57 (12) |
O1vii—Zr1—Li2vii | 47.51 (11) | O1i—Li1—Li2iii | 161.05 (12) |
O1xiii—Zr1—Li2vii | 87.18 (10) | O1xxii—Li1—Li2iii | 76.94 (12) |
O1ii—Zr1—Li2vii | 92.82 (10) | Li2xxii—Li1—Li2iii | 96.92 (8) |
O1ix—Zr1—Li2vii | 46.20 (11) | Li2xxi—Li1—Li2iii | 96.92 (8) |
O1xiv—Zr1—Li2vii | 133.80 (11) | Li2i—Li1—Li2iii | 139.4 (2) |
Li2xii—Zr1—Li2vii | 180.0 (3) | Li2v—Li2—Li1xxiii | 159.7 (10) |
O1xii—Zr1—Li2ix | 92.82 (10) | Li2v—Li2—O1v | 102.4 (7) |
O1vii—Zr1—Li2ix | 87.18 (10) | Li1xxiii—Li2—O1v | 66.3 (2) |
O1xiii—Zr1—Li2ix | 133.80 (11) | Li2v—Li2—O1viii | 139.3 (10) |
O1ii—Zr1—Li2ix | 46.20 (11) | Li1xxiii—Li2—O1viii | 60.66 (17) |
O1ix—Zr1—Li2ix | 47.51 (11) | O1v—Li2—O1viii | 108.7 (3) |
O1xiv—Zr1—Li2ix | 132.49 (11) | Li2v—Li2—O1 | 58.3 (6) |
Li2xii—Zr1—Li2ix | 119.873 (13) | Li1xxiii—Li2—O1 | 138.4 (3) |
Li2vii—Zr1—Li2ix | 60.127 (12) | O1v—Li2—O1 | 101.2 (2) |
O1xii—Zr1—Li2xiv | 87.18 (10) | O1viii—Li2—O1 | 89.8 (2) |
O1vii—Zr1—Li2xiv | 92.82 (10) | Li2v—Li2—O1xxiv | 113.7 (4) |
O1xiii—Zr1—Li2xiv | 46.20 (11) | Li1xxiii—Li2—O1xxiv | 55.79 (16) |
O1ii—Zr1—Li2xiv | 133.80 (11) | O1v—Li2—O1xxiv | 101.2 (3) |
O1ix—Zr1—Li2xiv | 132.49 (11) | O1viii—Li2—O1xxiv | 85.57 (19) |
O1xiv—Zr1—Li2xiv | 47.51 (11) | O1—Li2—O1xxiv | 157.4 (3) |
Li2xii—Zr1—Li2xiv | 60.127 (12) | Li2v—Li2—Li1xv | 14.1 (7) |
Li2vii—Zr1—Li2xiv | 119.873 (13) | Li1xxiii—Li2—Li1xv | 170.8 (3) |
Li2ix—Zr1—Li2xiv | 180.0 (3) | O1v—Li2—Li1xv | 114.4 (2) |
O1xii—Zr1—Li2xiii | 133.80 (11) | O1viii—Li2—Li1xv | 125.3 (3) |
O1vii—Zr1—Li2xiii | 46.20 (11) | O1—Li2—Li1xv | 50.80 (13) |
O1xiii—Zr1—Li2xiii | 47.51 (11) | O1xxiv—Li2—Li1xv | 115.9 (2) |
O1ii—Zr1—Li2xiii | 132.49 (11) | Li2v—Li2—Li2xxv | 119.2 (10) |
O1ix—Zr1—Li2xiii | 92.82 (10) | Li1xxiii—Li2—Li2xxv | 40.57 (7) |
O1xiv—Zr1—Li2xiii | 87.18 (10) | O1v—Li2—Li2xxv | 55.4 (3) |
Li2xii—Zr1—Li2xiii | 119.873 (13) | O1viii—Li2—Li2xxv | 100.22 (16) |
Li2vii—Zr1—Li2xiii | 60.127 (13) | O1—Li2—Li2xxv | 156.4 (4) |
Li2ix—Zr1—Li2xiii | 119.873 (13) | O1xxiv—Li2—Li2xxv | 45.79 (13) |
Li2xiv—Zr1—Li2xiii | 60.127 (12) | Li1xv—Li2—Li2xxv | 131.5 (3) |
O1xii—Zr1—Li2ii | 46.20 (11) | Li2v—Li2—Li2xxi | 150.0 (2) |
O1vii—Zr1—Li2ii | 133.80 (11) | Li1xxiii—Li2—Li2xxi | 40.56 (7) |
O1xiii—Zr1—Li2ii | 132.49 (11) | O1v—Li2—Li2xxi | 61.6 (2) |
O1ii—Zr1—Li2ii | 47.51 (11) | O1viii—Li2—Li2xxi | 47.14 (14) |
O1ix—Zr1—Li2ii | 87.18 (10) | O1—Li2—Li2xxi | 98.0 (3) |
O1xiv—Zr1—Li2ii | 92.82 (10) | O1xxiv—Li2—Li2xxi | 95.01 (15) |
Li2xii—Zr1—Li2ii | 60.127 (13) | Li1xv—Li2—Li2xxi | 148.4 (3) |
Li2vii—Zr1—Li2ii | 119.873 (13) | Li2xxv—Li2—Li2xxi | 74.5 (2) |
Li2ix—Zr1—Li2ii | 60.127 (12) | Li2v—Li2—O1xviii | 51.9 (4) |
Li2xiv—Zr1—Li2ii | 119.873 (13) | Li1xxiii—Li2—O1xviii | 129.6 (3) |
Li2xiii—Zr1—Li2ii | 180.0 (2) | O1v—Li2—O1xviii | 146.6 (3) |
Li2v—O1—Li1xv | 51.08 (17) | O1viii—Li2—O1xviii | 104.3 (2) |
Li2v—O1—Ta1xiv | 104.14 (16) | O1—Li2—O1xviii | 83.4 (2) |
Li1xv—O1—Ta1xiv | 130.18 (2) | O1xxiv—Li2—O1xviii | 76.39 (14) |
Li2v—O1—Zr1xiv | 104.14 (16) | Li1xv—Li2—O1xviii | 44.72 (10) |
Li1xv—O1—Zr1xiv | 130.18 (2) | Li2xxv—Li2—O1xviii | 114.1 (3) |
Ta1xiv—O1—Zr1xiv | 0 | Li2xxi—Li2—O1xviii | 151.2 (3) |
Li2v—O1—Li2xvi | 77.5 (2) | Li2v—Li2—O1xi | 30.6 (8) |
Li1xv—O1—Li2xvi | 47.77 (17) | Li1xxiii—Li2—O1xi | 129.3 (3) |
Ta1xiv—O1—Li2xvi | 88.81 (15) | O1v—Li2—O1xi | 79.94 (18) |
Zr1xiv—O1—Li2xvi | 88.81 (15) | O1viii—Li2—O1xi | 169.7 (3) |
Li2v—O1—Li2 | 19.3 (3) | O1—Li2—O1xi | 82.89 (18) |
Li1xv—O1—Li2 | 69.63 (14) | O1xxiv—Li2—O1xi | 98.41 (17) |
Ta1xiv—O1—Li2 | 87.55 (14) | Li1xv—Li2—O1xi | 44.44 (10) |
Zr1xiv—O1—Li2 | 87.55 (14) | Li2xxv—Li2—O1xi | 89.3 (3) |
Li2xvi—O1—Li2 | 86.66 (2) | Li2xxi—Li2—O1xi | 141.0 (3) |
Li2v—O1—Li2xvii | 72.6 (2) | O1xviii—Li2—O1xi | 67.71 (13) |
Li1xv—O1—Li2xvii | 44.62 (14) | Li2v—Li2—Ta1xiv | 98.4 (9) |
Ta1xiv—O1—Li2xvii | 174.80 (14) | Li1xxiii—Li2—Ta1xiv | 101.7 (2) |
Zr1xiv—O1—Li2xvii | 174.80 (14) | O1v—Li2—Ta1xiv | 113.9 (2) |
Li2xvi—O1—Li2xvii | 86.5 (2) | O1viii—Li2—Ta1xiv | 44.98 (10) |
Li2—O1—Li2xvii | 89.9 (2) | O1—Li2—Ta1xiv | 44.94 (10) |
Li2v—O1—La1xv | 143.38 (17) | O1xxiv—Li2—Ta1xiv | 125.4 (2) |
Li1xv—O1—La1xv | 92.667 (17) | Li1xv—Li2—Ta1xiv | 86.47 (18) |
Ta1xiv—O1—La1xv | 104.37 (2) | Li2xxv—Li2—Ta1xiv | 142.0 (2) |
Zr1xiv—O1—La1xv | 104.37 (2) | Li2xxi—Li2—Ta1xiv | 69.6 (2) |
Li2xvi—O1—La1xv | 80.64 (14) | O1xviii—Li2—Ta1xiv | 92.86 (18) |
Li2—O1—La1xv | 162.29 (14) | O1xi—Li2—Ta1xiv | 126.9 (2) |
Li2xvii—O1—La1xv | 77.10 (14) |
Symmetry codes: (i) z, x, y; (ii) −z+1/4, −y+1/4, −x+1/4; (iii) z, −x, −y+1/2; (iv) −z+1/4, y−1/4, x+1/4; (v) −x+1/4, z−1/4, y+1/4; (vi) x, −y, −z+1/2; (vii) −x+1/4, −z+1/4, −y+1/4; (viii) −y+1/2, −z+1/2, −x+1/2; (ix) y−1/4, x−1/4, z−1/4; (x) −y+1/2, z−1/2, x; (xi) y−1/4, −x+1/4, −z+3/4; (xii) x−1/4, z−1/4, y−1/4; (xiii) z−1/4, y−1/4, x−1/4; (xiv) −y+1/4, −x+1/4, −z+1/4; (xv) y, z, x; (xvi) −z+1/2, −x+1/2, −y+1/2; (xvii) z−1/2, x, −y+1/2; (xviii) −y+1/4, x+1/4, −z+3/4; (xix) y+1/4, −x+1/4, z−1/4; (xx) y+1/4, x−1/4, −z+3/4; (xxi) −z+3/4, −y+1/4, x+1/4; (xxii) −z+3/4, y−1/4, −x+1/4; (xxiii) −y+1/4, x−1/4, z+1/4; (xxiv) y, −z+1/2, x+1/2; (xxv) z−1/4, −y+1/4, −x+3/4. |
Li6O12TaZrLa3 | Dx = 5.828 Mg m−3 |
Mr = 932.8 | Neutron radiation, λ = 0.793 Å |
Cubic, Ia3d | Cell parameters from 25 reflections |
Hall symbol: -I 4bd 2c 3 | θ = 4.3–40.0° |
a = 12.8592 (2) Å | µ = 0.03 mm−1 |
V = 2126.39 (10) Å3 | T = 200 K |
Z = 8 | Box-shaped, colourless |
F(000) = 3215 | 2.35 × 2.15 × 1.95 mm |
Huber Eulerian Cradle diffractometer | Rint = 0.043 |
Ge 422 monochromator | θmax = 40.0°, θmin = 4.3° |
rotation, ω–scans at 4 different φ positions | h = −20→20 |
676 measured reflections | k = −14→14 |
404 independent reflections | l = 0→12 |
289 reflections with I > 2σ(I) |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.027 | (Δ/σ)max = 0.022 |
wR(F2) = 0.041 | Δρmax = 0.59 e Å−3 |
S = 0.97 | Δρmin = −0.64 e Å−3 |
404 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
32 parameters | Extinction coefficient: 0.0081 (4) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.125 | 0 | 0.25 | 0.00638 (17) | 0.987 (5) |
Zr1 | 0 | 0 | 0 | 0.00391 (14) | 0.449 (3) |
Ta1 | 0 | 0 | 0 | 0.00391 (14) | 0.551 (3) |
O1 | 0.10308 (4) | 0.19787 (4) | 0.28057 (4) | 0.01011 (13) | |
Li1 | 0.375 | 0 | 0.25 | 0.0343 (16) | 0.674 (5) |
Li2 | 0.1512 (4) | 0.1745 (5) | 0.4377 (5) | 0.0196 (11) | 0.3375 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0089 (3) | 0.0051 (2) | 0.0051 (2) | 0 | 0 | 0.0017 (2) |
Zr1 | 0.00391 (14) | 0.00391 (14) | 0.00391 (14) | 0.00033 (16) | 0.00033 (16) | 0.00033 (16) |
Ta1 | 0.00391 (14) | 0.00391 (14) | 0.00391 (14) | 0.00033 (16) | 0.00033 (16) | 0.00033 (16) |
O1 | 0.00821 (19) | 0.0106 (2) | 0.0116 (2) | 0.00031 (15) | 0.00033 (17) | 0.00117 (15) |
Li1 | 0.0106 (19) | 0.046 (2) | 0.046 (2) | 0 | 0 | 0 |
Li2 | 0.025 (3) | 0.016 (2) | 0.018 (2) | −0.008 (2) | 0.012 (2) | −0.0026 (18) |
La1—O1i | 2.4916 (5) | O1—Li2 | 2.135 (6) |
La1—O1ii | 2.4916 (5) | O1—Li2xvii | 2.284 (6) |
La1—O1iii | 2.4916 (5) | O1—La1xv | 2.4916 (5) |
La1—O1iv | 2.4916 (5) | O1—Li2x | 2.657 (6) |
La1—O1 | 2.5901 (5) | O1—Li2xviii | 2.670 (5) |
La1—O1v | 2.5901 (5) | Li1—Li2xi | 1.631 (6) |
La1—O1vi | 2.5901 (5) | Li1—Li2viii | 1.631 (6) |
La1—O1vii | 2.5901 (5) | Li1—Li2xix | 1.631 (6) |
La1—Li2viii | 2.984 (5) | Li1—Li2xx | 1.631 (6) |
La1—Li2ix | 2.984 (5) | Li1—O1xxi | 1.9185 (5) |
La1—Li2x | 2.984 (5) | Li1—O1iii | 1.9185 (5) |
La1—Li2xi | 2.984 (5) | Li1—O1xxii | 1.9185 (5) |
Zr1—O1xii | 2.0429 (5) | Li1—O1i | 1.9185 (5) |
Zr1—O1vii | 2.0429 (5) | Li1—Li2xxii | 2.318 (6) |
Zr1—O1xiii | 2.0429 (5) | Li1—Li2xxi | 2.318 (6) |
Zr1—O1ii | 2.0429 (5) | Li1—Li2i | 2.318 (6) |
Zr1—O1ix | 2.0429 (5) | Li1—Li2iii | 2.318 (6) |
Zr1—O1xiv | 2.0429 (5) | Li2—Li2v | 0.715 (11) |
Zr1—Li2xii | 2.896 (6) | Li2—Li1xxiii | 1.631 (6) |
Zr1—Li2vii | 2.896 (6) | Li2—O1v | 1.856 (6) |
Zr1—Li2xiii | 2.896 (6) | Li2—O1viii | 2.092 (5) |
Zr1—Li2ii | 2.896 (6) | Li2—O1xxiv | 2.284 (6) |
Zr1—Li2ix | 2.896 (6) | Li2—Li1xv | 2.318 (6) |
Zr1—Li2xiv | 2.896 (6) | Li2—Li2xxi | 2.477 (10) |
O1—Li2v | 1.856 (6) | Li2—Li2xxv | 2.477 (10) |
O1—Li1xv | 1.9185 (5) | Li2—O1xviii | 2.657 (6) |
O1—Ta1xiv | 2.0429 (5) | Li2—O1x | 2.670 (5) |
O1—Zr1xiv | 2.0429 (5) | Li2—Ta1xiv | 2.896 (6) |
O1—Li2xvi | 2.092 (5) | ||
O1i—La1—O1ii | 111.00 (2) | Li2v—O1—La1 | 94.90 (18) |
O1i—La1—O1iii | 73.18 (2) | Li1xv—O1—La1 | 120.96 (2) |
O1ii—La1—O1iii | 158.57 (2) | Ta1xiv—O1—La1 | 101.097 (19) |
O1i—La1—O1iv | 158.57 (2) | Zr1xiv—O1—La1 | 101.097 (19) |
O1ii—La1—O1iv | 73.18 (2) | Li2xvi—O1—La1 | 168.73 (19) |
O1iii—La1—O1iv | 111.00 (2) | Li2—O1—La1 | 88.50 (15) |
O1i—La1—O1 | 66.77 (2) | Li2xvii—O1—La1 | 83.19 (13) |
O1ii—La1—O1 | 74.280 (18) | La1xv—O1—La1 | 101.557 (18) |
O1iii—La1—O1 | 124.692 (10) | Li2v—O1—Li2x | 77.8 (2) |
O1iv—La1—O1 | 95.518 (14) | Li1xv—O1—Li2x | 58.22 (12) |
O1i—La1—O1v | 95.517 (14) | Ta1xiv—O1—Li2x | 170.39 (11) |
O1ii—La1—O1v | 124.693 (10) | Zr1xiv—O1—Li2x | 170.39 (11) |
O1iii—La1—O1v | 74.279 (18) | Li2xvi—O1—Li2x | 100.70 (16) |
O1iv—La1—O1v | 66.77 (2) | Li2—O1—Li2x | 92.16 (14) |
O1—La1—O1v | 73.36 (2) | Li2xvii—O1—Li2x | 14.2 (2) |
O1i—La1—O1vi | 124.693 (10) | La1xv—O1—Li2x | 78.02 (13) |
O1ii—La1—O1vi | 95.517 (14) | La1—O1—Li2x | 69.30 (11) |
O1iii—La1—O1vi | 66.77 (2) | Li2v—O1—Li2xviii | 84.99 (6) |
O1iv—La1—O1vi | 74.279 (18) | Li1xv—O1—Li2xviii | 57.95 (15) |
O1—La1—O1vi | 167.50 (2) | Ta1xiv—O1—Li2xviii | 80.27 (14) |
O1v—La1—O1vi | 108.06 (2) | Zr1xiv—O1—Li2xviii | 80.27 (14) |
O1i—La1—O1vii | 74.279 (18) | Li2xvi—O1—Li2xviii | 10.2 (3) |
O1ii—La1—O1vii | 66.77 (2) | Li2—O1—Li2xviii | 91.82 (18) |
O1iii—La1—O1vii | 95.517 (14) | Li2xvii—O1—Li2xviii | 95.46 (15) |
O1iv—La1—O1vii | 124.693 (10) | La1xv—O1—Li2xviii | 77.79 (11) |
O1—La1—O1vii | 108.06 (2) | La1—O1—Li2xviii | 178.61 (13) |
O1v—La1—O1vii | 167.50 (2) | Li2x—O1—Li2xviii | 109.34 (16) |
O1vi—La1—O1vii | 73.36 (2) | Li2xi—Li1—Li2viii | 134.1 (4) |
O1i—La1—Li2viii | 43.78 (9) | Li2xi—Li1—Li2xix | 98.76 (14) |
O1ii—La1—Li2viii | 148.01 (11) | Li2viii—Li1—Li2xix | 98.76 (14) |
O1iii—La1—Li2viii | 48.28 (12) | Li2xi—Li1—Li2xx | 98.76 (14) |
O1iv—La1—Li2viii | 122.64 (10) | Li2viii—Li1—Li2xx | 98.76 (14) |
O1—La1—Li2viii | 76.45 (12) | Li2xix—Li1—Li2xx | 134.1 (4) |
O1v—La1—Li2viii | 56.41 (11) | Li2xi—Li1—O1xxi | 163.07 (18) |
O1vi—La1—Li2viii | 114.98 (12) | Li2viii—Li1—O1xxi | 62.44 (19) |
O1vii—La1—Li2viii | 111.41 (11) | Li2xix—Li1—O1xxi | 79.63 (17) |
O1i—La1—Li2ix | 148.01 (11) | Li2xx—Li1—O1xxi | 71.7 (2) |
O1ii—La1—Li2ix | 43.78 (9) | Li2xi—Li1—O1iii | 71.7 (2) |
O1iii—La1—Li2ix | 122.64 (10) | Li2viii—Li1—O1iii | 79.63 (17) |
O1iv—La1—Li2ix | 48.28 (12) | Li2xix—Li1—O1iii | 163.07 (18) |
O1—La1—Li2ix | 111.41 (11) | Li2xx—Li1—O1iii | 62.44 (19) |
O1v—La1—Li2ix | 114.98 (12) | O1xxi—Li1—O1iii | 113.617 (16) |
O1vi—La1—Li2ix | 56.41 (11) | Li2xi—Li1—O1xxii | 62.44 (19) |
O1vii—La1—Li2ix | 76.45 (12) | Li2viii—Li1—O1xxii | 163.07 (18) |
Li2viii—La1—Li2ix | 167.21 (19) | Li2xix—Li1—O1xxii | 71.7 (2) |
O1i—La1—Li2x | 122.64 (10) | Li2xx—Li1—O1xxii | 79.63 (17) |
O1ii—La1—Li2x | 48.28 (12) | O1xxi—Li1—O1xxii | 101.46 (3) |
O1iii—La1—Li2x | 148.01 (11) | O1iii—Li1—O1xxii | 113.617 (16) |
O1iv—La1—Li2x | 43.78 (9) | Li2xi—Li1—O1i | 79.63 (17) |
O1—La1—Li2x | 56.41 (11) | Li2viii—Li1—O1i | 71.7 (2) |
O1v—La1—Li2x | 76.45 (12) | Li2xix—Li1—O1i | 62.44 (19) |
O1vi—La1—Li2x | 111.41 (11) | Li2xx—Li1—O1i | 163.07 (18) |
O1vii—La1—Li2x | 114.98 (12) | O1xxi—Li1—O1i | 113.617 (16) |
Li2viii—La1—Li2x | 121.2 (3) | O1iii—Li1—O1i | 101.46 (3) |
Li2ix—La1—Li2x | 60.5 (2) | O1xxii—Li1—O1i | 113.617 (16) |
O1i—La1—Li2xi | 48.28 (12) | Li2xi—Li1—Li2xxii | 5.9 (3) |
O1ii—La1—Li2xi | 122.64 (10) | Li2viii—Li1—Li2xxii | 136.3 (2) |
O1iii—La1—Li2xi | 43.78 (9) | Li2xix—Li1—Li2xxii | 92.9 (3) |
O1iv—La1—Li2xi | 148.01 (11) | Li2xx—Li1—Li2xxii | 102.8 (3) |
O1—La1—Li2xi | 114.98 (12) | O1xxi—Li1—Li2xxii | 161.09 (13) |
O1v—La1—Li2xi | 111.41 (11) | O1iii—Li1—Li2xxii | 77.49 (15) |
O1vi—La1—Li2xi | 76.45 (12) | O1xxii—Li1—Li2xxii | 59.63 (13) |
O1vii—La1—Li2xi | 56.41 (11) | O1i—Li1—Li2xxii | 77.06 (12) |
Li2viii—La1—Li2xi | 60.5 (2) | Li2xi—Li1—Li2xxi | 136.3 (2) |
Li2ix—La1—Li2xi | 121.2 (3) | Li2viii—Li1—Li2xxi | 5.9 (3) |
Li2x—La1—Li2xi | 167.21 (19) | Li2xix—Li1—Li2xxi | 102.8 (3) |
O1xii—Zr1—O1vii | 180.00 (4) | Li2xx—Li1—Li2xxi | 92.9 (3) |
O1xii—Zr1—O1xiii | 86.43 (2) | O1xxi—Li1—Li2xxi | 59.63 (13) |
O1vii—Zr1—O1xiii | 93.57 (2) | O1iii—Li1—Li2xxi | 77.06 (12) |
O1xii—Zr1—O1ii | 93.57 (2) | O1xxii—Li1—Li2xxi | 161.09 (13) |
O1vii—Zr1—O1ii | 86.43 (2) | O1i—Li1—Li2xxi | 77.49 (15) |
O1xiii—Zr1—O1ii | 180.00 (4) | Li2xxii—Li1—Li2xxi | 139.3 (3) |
O1xii—Zr1—O1ix | 86.43 (2) | Li2xi—Li1—Li2i | 102.8 (3) |
O1vii—Zr1—O1ix | 93.57 (2) | Li2viii—Li1—Li2i | 92.9 (3) |
O1xiii—Zr1—O1ix | 86.43 (2) | Li2xix—Li1—Li2i | 5.9 (3) |
O1ii—Zr1—O1ix | 93.57 (2) | Li2xx—Li1—Li2i | 136.3 (2) |
O1xii—Zr1—O1xiv | 93.57 (2) | O1xxi—Li1—Li2i | 77.06 (12) |
O1vii—Zr1—O1xiv | 86.43 (2) | O1iii—Li1—Li2i | 161.09 (13) |
O1xiii—Zr1—O1xiv | 93.57 (2) | O1xxii—Li1—Li2i | 77.49 (15) |
O1ii—Zr1—O1xiv | 86.43 (2) | O1i—Li1—Li2i | 59.63 (13) |
O1ix—Zr1—O1xiv | 180.00 (4) | Li2xxii—Li1—Li2i | 96.96 (9) |
O1xii—Zr1—Li2xii | 47.44 (11) | Li2xxi—Li1—Li2i | 96.96 (9) |
O1vii—Zr1—Li2xii | 132.56 (11) | Li2xi—Li1—Li2iii | 92.9 (3) |
O1xiii—Zr1—Li2xii | 92.75 (11) | Li2viii—Li1—Li2iii | 102.8 (3) |
O1ii—Zr1—Li2xii | 87.25 (11) | Li2xix—Li1—Li2iii | 136.3 (2) |
O1ix—Zr1—Li2xii | 133.75 (11) | Li2xx—Li1—Li2iii | 5.9 (3) |
O1xiv—Zr1—Li2xii | 46.25 (11) | O1xxi—Li1—Li2iii | 77.49 (15) |
O1xii—Zr1—Li2vii | 132.56 (11) | O1iii—Li1—Li2iii | 59.63 (13) |
O1vii—Zr1—Li2vii | 47.44 (11) | O1xxii—Li1—Li2iii | 77.06 (12) |
O1xiii—Zr1—Li2vii | 87.25 (11) | O1i—Li1—Li2iii | 161.09 (13) |
O1ii—Zr1—Li2vii | 92.75 (11) | Li2xxii—Li1—Li2iii | 96.96 (9) |
O1ix—Zr1—Li2vii | 46.25 (11) | Li2xxi—Li1—Li2iii | 96.96 (9) |
O1xiv—Zr1—Li2vii | 133.75 (11) | Li2i—Li1—Li2iii | 139.3 (3) |
Li2xii—Zr1—Li2vii | 180.0 (3) | Li2v—Li2—Li1xxiii | 160.6 (12) |
O1xii—Zr1—Li2xiii | 133.75 (11) | Li2v—Li2—O1v | 103.1 (7) |
O1vii—Zr1—Li2xiii | 46.25 (11) | Li1xxiii—Li2—O1v | 66.4 (2) |
O1xiii—Zr1—Li2xiii | 47.44 (11) | Li2v—Li2—O1viii | 138.5 (12) |
O1ii—Zr1—Li2xiii | 132.56 (11) | Li1xxiii—Li2—O1viii | 60.54 (16) |
O1ix—Zr1—Li2xiii | 92.75 (11) | O1v—Li2—O1viii | 108.7 (3) |
O1xiv—Zr1—Li2xiii | 87.25 (11) | Li2v—Li2—O1 | 57.9 (7) |
Li2xii—Zr1—Li2xiii | 119.883 (12) | Li1xxiii—Li2—O1 | 138.2 (3) |
Li2vii—Zr1—Li2xiii | 60.117 (12) | O1v—Li2—O1 | 101.4 (2) |
O1xii—Zr1—Li2ii | 46.25 (11) | O1viii—Li2—O1 | 89.6 (2) |
O1vii—Zr1—Li2ii | 133.75 (11) | Li2v—Li2—O1xxiv | 114.1 (4) |
O1xiii—Zr1—Li2ii | 132.56 (11) | Li1xxiii—Li2—O1xxiv | 55.72 (17) |
O1ii—Zr1—Li2ii | 47.44 (11) | O1v—Li2—O1xxiv | 101.2 (3) |
O1ix—Zr1—Li2ii | 87.25 (11) | O1viii—Li2—O1xxiv | 85.39 (19) |
O1xiv—Zr1—Li2ii | 92.75 (11) | O1—Li2—O1xxiv | 157.2 (3) |
Li2xii—Zr1—Li2ii | 60.117 (12) | Li2v—Li2—Li1xv | 13.5 (8) |
Li2vii—Zr1—Li2ii | 119.883 (12) | Li1xxiii—Li2—Li1xv | 171.0 (3) |
Li2xiii—Zr1—Li2ii | 180.0 (3) | O1v—Li2—Li1xv | 114.7 (2) |
O1xii—Zr1—Li2ix | 92.75 (11) | O1viii—Li2—Li1xv | 125.1 (3) |
O1vii—Zr1—Li2ix | 87.25 (11) | O1—Li2—Li1xv | 50.84 (14) |
O1xiii—Zr1—Li2ix | 133.75 (11) | O1xxiv—Li2—Li1xv | 116.0 (2) |
O1ii—Zr1—Li2ix | 46.25 (11) | Li2v—Li2—Li2xxi | 149.9 (2) |
O1ix—Zr1—Li2ix | 47.44 (11) | Li1xxiii—Li2—Li2xxi | 40.62 (7) |
O1xiv—Zr1—Li2ix | 132.56 (11) | O1v—Li2—Li2xxi | 61.7 (2) |
Li2xii—Zr1—Li2ix | 119.883 (12) | O1viii—Li2—Li2xxi | 47.02 (14) |
Li2vii—Zr1—Li2ix | 60.117 (12) | O1—Li2—Li2xxi | 97.8 (3) |
Li2xiii—Zr1—Li2ix | 119.883 (12) | O1xxiv—Li2—Li2xxi | 94.98 (17) |
Li2ii—Zr1—Li2ix | 60.117 (12) | Li1xv—Li2—Li2xxi | 148.3 (3) |
O1xii—Zr1—Li2xiv | 87.25 (11) | Li2v—Li2—Li2xxv | 120.0 (11) |
O1vii—Zr1—Li2xiv | 92.75 (11) | Li1xxiii—Li2—Li2xxv | 40.62 (7) |
O1xiii—Zr1—Li2xiv | 46.25 (11) | O1v—Li2—Li2xxv | 55.5 (3) |
O1ii—Zr1—Li2xiv | 133.75 (11) | O1viii—Li2—Li2xxv | 100.12 (16) |
O1ix—Zr1—Li2xiv | 132.56 (11) | O1—Li2—Li2xxv | 156.8 (4) |
O1xiv—Zr1—Li2xiv | 47.44 (11) | O1xxiv—Li2—Li2xxv | 45.68 (13) |
Li2xii—Zr1—Li2xiv | 60.117 (12) | Li1xv—Li2—Li2xxv | 131.7 (3) |
Li2vii—Zr1—Li2xiv | 119.883 (12) | Li2xxi—Li2—Li2xxv | 74.7 (2) |
Li2xiii—Zr1—Li2xiv | 60.117 (12) | Li2v—Li2—O1xviii | 51.7 (4) |
Li2ii—Zr1—Li2xiv | 119.883 (12) | Li1xxiii—Li2—O1xviii | 129.4 (3) |
Li2ix—Zr1—Li2xiv | 180.0 (3) | O1v—Li2—O1xviii | 146.8 (2) |
Li2v—O1—Li1xv | 51.18 (18) | O1viii—Li2—O1xviii | 104.2 (2) |
Li2v—O1—Ta1xiv | 104.01 (15) | O1—Li2—O1xviii | 83.4 (2) |
Li1xv—O1—Ta1xiv | 130.25 (3) | O1xxiv—Li2—O1xviii | 76.38 (15) |
Li2v—O1—Zr1xiv | 104.01 (15) | Li1xv—Li2—O1xviii | 44.72 (10) |
Li1xv—O1—Zr1xiv | 130.25 (3) | Li2xxi—Li2—O1xviii | 151.0 (3) |
Ta1xiv—O1—Zr1xiv | 0 | Li2xxv—Li2—O1xviii | 114.0 (3) |
Li2v—O1—Li2xvi | 77.4 (3) | Li2v—Li2—O1x | 31.3 (9) |
Li1xv—O1—Li2xvi | 47.76 (19) | Li1xxiii—Li2—O1x | 129.5 (3) |
Ta1xiv—O1—Li2xvi | 88.89 (18) | O1v—Li2—O1x | 80.09 (18) |
Zr1xiv—O1—Li2xvi | 88.89 (18) | O1viii—Li2—O1x | 169.6 (3) |
Li2v—O1—Li2 | 19.0 (3) | O1—Li2—O1x | 83.08 (18) |
Li1xv—O1—Li2 | 69.52 (14) | O1xxiv—Li2—O1x | 98.56 (18) |
Ta1xiv—O1—Li2 | 87.73 (14) | Li1xv—Li2—O1x | 44.55 (9) |
Zr1xiv—O1—Li2 | 87.73 (14) | Li2xxi—Li2—O1x | 141.2 (3) |
Li2xvi—O1—Li2 | 86.67 (3) | Li2xxv—Li2—O1x | 89.4 (3) |
Li2v—O1—Li2xvii | 72.7 (2) | O1xviii—Li2—O1x | 67.79 (13) |
Li1xv—O1—Li2xvii | 44.64 (14) | Li2v—Li2—Ta1xiv | 97.8 (10) |
Ta1xiv—O1—Li2xvii | 174.89 (15) | Li1xxiii—Li2—Ta1xiv | 101.4 (2) |
Zr1xiv—O1—Li2xvii | 174.89 (15) | O1v—Li2—Ta1xiv | 113.9 (2) |
Li2xvi—O1—Li2xvii | 86.6 (3) | O1viii—Li2—Ta1xiv | 44.86 (11) |
Li2—O1—Li2xvii | 89.6 (2) | O1—Li2—Ta1xiv | 44.83 (11) |
Li2v—O1—La1xv | 143.49 (17) | O1xxiv—Li2—Ta1xiv | 125.2 (2) |
Li1xv—O1—La1xv | 92.675 (19) | Li1xv—Li2—Ta1xiv | 86.4 (2) |
Ta1xiv—O1—La1xv | 104.43 (2) | Li2xxi—Li2—Ta1xiv | 69.3 (2) |
Zr1xiv—O1—La1xv | 104.43 (2) | Li2xxv—Li2—Ta1xiv | 141.9 (2) |
Li2xvi—O1—La1xv | 80.72 (14) | O1xviii—Li2—Ta1xiv | 92.8 (2) |
Li2—O1—La1xv | 162.20 (14) | O1x—Li2—Ta1xiv | 127.0 (2) |
Li2xvii—O1—La1xv | 77.20 (15) |
Symmetry codes: (i) z, x, y; (ii) −z+1/4, −y+1/4, −x+1/4; (iii) z, −x, −y+1/2; (iv) −z+1/4, y−1/4, x+1/4; (v) −x+1/4, z−1/4, y+1/4; (vi) x, −y, −z+1/2; (vii) −x+1/4, −z+1/4, −y+1/4; (viii) −y+1/2, −z+1/2, −x+1/2; (ix) y−1/4, x−1/4, z−1/4; (x) y−1/4, −x+1/4, −z+3/4; (xi) −y+1/2, z−1/2, x; (xii) x−1/4, z−1/4, y−1/4; (xiii) z−1/4, y−1/4, x−1/4; (xiv) −y+1/4, −x+1/4, −z+1/4; (xv) y, z, x; (xvi) −z+1/2, −x+1/2, −y+1/2; (xvii) z−1/2, x, −y+1/2; (xviii) −y+1/4, x+1/4, −z+3/4; (xix) y+1/4, −x+1/4, z−1/4; (xx) y+1/4, x−1/4, −z+3/4; (xxi) −z+3/4, −y+1/4, x+1/4; (xxii) −z+3/4, y−1/4, −x+1/4; (xxiii) −y+1/4, x−1/4, z+1/4; (xxiv) y, −z+1/2, x+1/2; (xxv) z−1/4, −y+1/4, −x+3/4. |
Li6O12TaZrLa3 | Dx = 5.803 Mg m−3 |
Mr = 932.8 | Neutron radiation, λ = 0.793 Å |
Cubic, Ia3d | Cell parameters from 25 reflections |
Hall symbol: -I 4bd 2c 3 | θ = 4.3–40.0° |
a = 12.8775 (2) Å | µ = 0.03 mm−1 |
V = 2135.48 (10) Å3 | T = 300 K |
Z = 8 | Box-shaped, colourless |
F(000) = 3215 | 2.35 × 2.15 × 1.95 mm |
Huber Eulerian Cradle diffractometer | Rint = 0.028 |
Ge 422 monochromator | θmax = 39.9°, θmin = 4.3° |
rotation, ω–scans at 4 different φ positions | h = 1→20 |
674 measured reflections | k = −14→14 |
401 independent reflections | l = 0→14 |
291 reflections with I > 2σ(I) |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.026 | (Δ/σ)max = 0.001 |
wR(F2) = 0.033 | Δρmax = 0.39 e Å−3 |
S = 1.01 | Δρmin = −0.49 e Å−3 |
401 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
32 parameters | Extinction coefficient: 0.0076 (3) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.125 | 0 | 0.25 | 0.00795 (15) | 1.001 (4) |
Zr1 | 0 | 0 | 0 | 0.00529 (12) | 0.456 (3) |
Ta1 | 0 | 0 | 0 | 0.00529 (12) | 0.544 (3) |
O1 | 0.10314 (4) | 0.19792 (4) | 0.28048 (4) | 0.01204 (12) | |
Li1 | 0.375 | 0 | 0.25 | 0.0390 (16) | 0.659 (5) |
Li2 | 0.1511 (4) | 0.1737 (4) | 0.4372 (4) | 0.0231 (12) | 0.3413 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0104 (2) | 0.00675 (17) | 0.00675 (17) | 0 | 0 | 0.0018 (2) |
Zr1 | 0.00529 (12) | 0.00529 (12) | 0.00529 (12) | −0.00007 (15) | −0.00007 (15) | −0.00007 (15) |
Ta1 | 0.00529 (12) | 0.00529 (12) | 0.00529 (12) | −0.00007 (15) | −0.00007 (15) | −0.00007 (15) |
O1 | 0.00931 (18) | 0.0132 (2) | 0.01364 (19) | 0.00043 (15) | 0.00074 (14) | 0.00173 (15) |
Li1 | 0.0118 (19) | 0.053 (3) | 0.053 (3) | 0 | 0 | 0 |
Li2 | 0.032 (3) | 0.016 (2) | 0.021 (2) | −0.011 (2) | 0.012 (2) | −0.0051 (18) |
La1—O1i | 2.4945 (5) | O1—Li2 | 2.133 (6) |
La1—O1ii | 2.4945 (5) | O1—Li2xvii | 2.297 (5) |
La1—O1iii | 2.4945 (5) | O1—La1xv | 2.4946 (5) |
La1—O1iv | 2.4945 (5) | O1—Li2xi | 2.671 (5) |
La1—O1v | 2.5940 (5) | O1—Li2xviii | 2.672 (5) |
La1—O1vi | 2.5940 (5) | Li1—Li2x | 1.634 (6) |
La1—O1vii | 2.5940 (5) | Li1—Li2ix | 1.634 (6) |
La1—O1 | 2.5940 (5) | Li1—Li2xix | 1.634 (6) |
La1—Li2viii | 2.999 (5) | Li1—Li2xx | 1.634 (6) |
La1—Li2ix | 2.999 (5) | Li1—O1xxi | 1.9224 (4) |
La1—Li2x | 2.999 (5) | Li1—O1iii | 1.9224 (4) |
La1—Li2xi | 2.999 (5) | Li1—O1xxii | 1.9224 (4) |
Zr1—O1xii | 2.0446 (5) | Li1—O1i | 1.9224 (4) |
Zr1—O1vii | 2.0446 (5) | Li1—Li2xxii | 2.322 (6) |
Zr1—O1xiii | 2.0446 (5) | Li1—Li2xxi | 2.322 (6) |
Zr1—O1ii | 2.0446 (5) | Li1—Li2i | 2.322 (6) |
Zr1—O1viii | 2.0446 (5) | Li1—Li2iii | 2.322 (6) |
Zr1—O1xiv | 2.0446 (5) | Li2—Li2v | 0.715 (10) |
Zr1—Li2xiii | 2.898 (6) | Li2—Li1xxiii | 1.634 (6) |
Zr1—Li2ii | 2.898 (6) | Li2—O1v | 1.851 (6) |
Zr1—Li2viii | 2.898 (6) | Li2—O1ix | 2.097 (5) |
Zr1—Li2xiv | 2.898 (6) | Li2—O1xxiv | 2.297 (5) |
Zr1—Li2xii | 2.898 (6) | Li2—Li1xv | 2.322 (6) |
Zr1—Li2vii | 2.898 (6) | Li2—Li2xxi | 2.475 (9) |
O1—Li2v | 1.851 (6) | Li2—Li2xxv | 2.475 (9) |
O1—Li1xv | 1.9224 (4) | Li2—O1xviii | 2.671 (5) |
O1—Ta1xiv | 2.0446 (5) | Li2—O1xi | 2.672 (5) |
O1—Zr1xiv | 2.0446 (5) | Li2—Ta1xiv | 2.898 (6) |
O1—Li2xvi | 2.097 (5) | ||
O1i—La1—O1ii | 110.97 (2) | Li2v—O1—La1 | 94.64 (17) |
O1i—La1—O1iii | 73.24 (2) | Li1xv—O1—La1 | 120.90 (2) |
O1ii—La1—O1iii | 158.52 (2) | Ta1xiv—O1—La1 | 101.122 (18) |
O1i—La1—O1iv | 158.52 (2) | Zr1xiv—O1—La1 | 101.122 (18) |
O1ii—La1—O1iv | 73.24 (2) | Li2xvi—O1—La1 | 168.62 (18) |
O1iii—La1—O1iv | 110.97 (2) | Li2—O1—La1 | 88.19 (14) |
O1i—La1—O1v | 95.539 (13) | Li2xvii—O1—La1 | 83.22 (12) |
O1ii—La1—O1v | 124.718 (10) | La1xv—O1—La1 | 101.566 (17) |
O1iii—La1—O1v | 74.294 (18) | Li2v—O1—Li2xi | 77.5 (2) |
O1iv—La1—O1v | 66.71 (2) | Li1xv—O1—Li2xi | 58.02 (11) |
O1i—La1—O1vi | 124.718 (10) | Ta1xiv—O1—Li2xi | 170.54 (11) |
O1ii—La1—O1vi | 95.539 (13) | Zr1xiv—O1—Li2xi | 170.54 (11) |
O1iii—La1—O1vi | 66.71 (2) | Li2xvi—O1—Li2xi | 100.63 (16) |
O1iv—La1—O1vi | 74.294 (18) | Li2—O1—Li2xi | 91.91 (13) |
O1v—La1—O1vi | 108.01 (2) | Li2xvii—O1—Li2xi | 14.1 (2) |
O1i—La1—O1vii | 74.294 (18) | La1xv—O1—Li2xi | 78.04 (13) |
O1ii—La1—O1vii | 66.71 (2) | La1—O1—Li2xi | 69.42 (10) |
O1iii—La1—O1vii | 95.539 (13) | Li2v—O1—Li2xviii | 85.06 (5) |
O1iv—La1—O1vii | 124.718 (10) | Li1xv—O1—Li2xviii | 58.01 (14) |
O1v—La1—O1vii | 167.54 (2) | Ta1xiv—O1—Li2xviii | 80.12 (13) |
O1vi—La1—O1vii | 73.41 (2) | Zr1xiv—O1—Li2xviii | 80.12 (13) |
O1i—La1—O1 | 66.71 (2) | Li2xvi—O1—Li2xviii | 10.3 (3) |
O1ii—La1—O1 | 74.294 (18) | Li2—O1—Li2xviii | 91.90 (17) |
O1iii—La1—O1 | 124.718 (10) | Li2xvii—O1—Li2xviii | 95.54 (15) |
O1iv—La1—O1 | 95.539 (13) | La1xv—O1—Li2xviii | 78.04 (10) |
O1v—La1—O1 | 73.41 (2) | La1—O1—Li2xviii | 178.75 (13) |
O1vi—La1—O1 | 167.54 (2) | Li2xi—O1—Li2xviii | 109.33 (15) |
O1vii—La1—O1 | 108.01 (2) | Li2x—Li1—Li2ix | 134.8 (3) |
O1i—La1—Li2viii | 147.92 (11) | Li2x—Li1—Li2xix | 98.48 (12) |
O1ii—La1—Li2viii | 43.70 (9) | Li2ix—Li1—Li2xix | 98.48 (12) |
O1iii—La1—Li2viii | 122.69 (10) | Li2x—Li1—Li2xx | 98.48 (12) |
O1iv—La1—Li2viii | 48.37 (12) | Li2ix—Li1—Li2xx | 98.48 (12) |
O1v—La1—Li2viii | 115.02 (12) | Li2xix—Li1—Li2xx | 134.8 (3) |
O1vi—La1—Li2viii | 56.50 (10) | Li2x—Li1—O1xxi | 162.63 (16) |
O1vii—La1—Li2viii | 76.39 (12) | Li2ix—Li1—O1xxi | 62.09 (17) |
O1—La1—Li2viii | 111.37 (10) | Li2xix—Li1—O1xxi | 80.02 (16) |
O1i—La1—Li2ix | 43.70 (9) | Li2xx—Li1—O1xxi | 71.8 (2) |
O1ii—La1—Li2ix | 147.92 (11) | Li2x—Li1—O1iii | 71.8 (2) |
O1iii—La1—Li2ix | 48.37 (12) | Li2ix—Li1—O1iii | 80.02 (16) |
O1iv—La1—Li2ix | 122.69 (10) | Li2xix—Li1—O1iii | 162.63 (16) |
O1v—La1—Li2ix | 56.50 (10) | Li2xx—Li1—O1iii | 62.09 (17) |
O1vi—La1—Li2ix | 115.02 (12) | O1xxi—Li1—O1iii | 113.634 (15) |
O1vii—La1—Li2ix | 111.36 (10) | Li2x—Li1—O1xxii | 62.09 (17) |
O1—La1—Li2ix | 76.38 (12) | Li2ix—Li1—O1xxii | 162.63 (16) |
Li2viii—La1—Li2ix | 167.4 (2) | Li2xix—Li1—O1xxii | 71.8 (2) |
O1i—La1—Li2x | 48.37 (12) | Li2xx—Li1—O1xxii | 80.02 (16) |
O1ii—La1—Li2x | 122.69 (10) | O1xxi—Li1—O1xxii | 101.43 (3) |
O1iii—La1—Li2x | 43.70 (9) | O1iii—Li1—O1xxii | 113.634 (15) |
O1iv—La1—Li2x | 147.92 (11) | Li2x—Li1—O1i | 80.02 (16) |
O1v—La1—Li2x | 111.36 (10) | Li2ix—Li1—O1i | 71.8 (2) |
O1vi—La1—Li2x | 76.39 (12) | Li2xix—Li1—O1i | 62.09 (17) |
O1vii—La1—Li2x | 56.50 (10) | Li2xx—Li1—O1i | 162.63 (16) |
O1—La1—Li2x | 115.02 (12) | O1xxi—Li1—O1i | 113.634 (15) |
Li2viii—La1—Li2x | 121.2 (2) | O1iii—Li1—O1i | 101.43 (3) |
Li2ix—La1—Li2x | 60.4 (2) | O1xxii—Li1—O1i | 113.634 (15) |
O1i—La1—Li2xi | 122.69 (10) | Li2x—Li1—Li2xxii | 5.8 (3) |
O1ii—La1—Li2xi | 48.37 (12) | Li2ix—Li1—Li2xxii | 136.9 (2) |
O1iii—La1—Li2xi | 147.92 (11) | Li2xix—Li1—Li2xxii | 92.7 (3) |
O1iv—La1—Li2xi | 43.70 (9) | Li2xx—Li1—Li2xxii | 102.6 (3) |
O1v—La1—Li2xi | 76.39 (12) | O1xxi—Li1—Li2xxii | 160.90 (13) |
O1vi—La1—Li2xi | 111.36 (10) | O1iii—Li1—Li2xxii | 77.39 (15) |
O1vii—La1—Li2xi | 115.02 (12) | O1xxii—Li1—Li2xxii | 59.47 (13) |
O1—La1—Li2xi | 56.51 (10) | O1i—Li1—Li2xxii | 77.37 (11) |
Li2viii—La1—Li2xi | 60.4 (2) | Li2x—Li1—Li2xxi | 136.9 (2) |
Li2ix—La1—Li2xi | 121.2 (2) | Li2ix—Li1—Li2xxi | 5.8 (3) |
Li2x—La1—Li2xi | 167.4 (2) | Li2xix—Li1—Li2xxi | 102.6 (3) |
O1xii—Zr1—O1vii | 180.00 (4) | Li2xx—Li1—Li2xxi | 92.7 (3) |
O1xii—Zr1—O1xiii | 86.394 (19) | O1xxi—Li1—Li2xxi | 59.47 (13) |
O1vii—Zr1—O1xiii | 93.606 (19) | O1iii—Li1—Li2xxi | 77.37 (11) |
O1xii—Zr1—O1ii | 93.606 (19) | O1xxii—Li1—Li2xxi | 160.90 (13) |
O1vii—Zr1—O1ii | 86.394 (19) | O1i—Li1—Li2xxi | 77.39 (15) |
O1xiii—Zr1—O1ii | 180.00 (4) | Li2xxii—Li1—Li2xxi | 139.6 (3) |
O1xii—Zr1—O1viii | 86.394 (19) | Li2x—Li1—Li2i | 102.6 (3) |
O1vii—Zr1—O1viii | 93.606 (19) | Li2ix—Li1—Li2i | 92.7 (3) |
O1xiii—Zr1—O1viii | 86.394 (19) | Li2xix—Li1—Li2i | 5.8 (3) |
O1ii—Zr1—O1viii | 93.606 (19) | Li2xx—Li1—Li2i | 136.9 (2) |
O1xii—Zr1—O1xiv | 93.606 (19) | O1xxi—Li1—Li2i | 77.37 (11) |
O1vii—Zr1—O1xiv | 86.394 (19) | O1iii—Li1—Li2i | 160.90 (13) |
O1xiii—Zr1—O1xiv | 93.606 (19) | O1xxii—Li1—Li2i | 77.39 (15) |
O1ii—Zr1—O1xiv | 86.394 (19) | O1i—Li1—Li2i | 59.47 (13) |
O1viii—Zr1—O1xiv | 180.00 (4) | Li2xxii—Li1—Li2i | 96.84 (9) |
O1xii—Zr1—Li2xiii | 133.65 (10) | Li2xxi—Li1—Li2i | 96.84 (9) |
O1vii—Zr1—Li2xiii | 46.35 (10) | Li2x—Li1—Li2iii | 92.7 (3) |
O1xiii—Zr1—Li2xiii | 47.36 (10) | Li2ix—Li1—Li2iii | 102.6 (3) |
O1ii—Zr1—Li2xiii | 132.64 (10) | Li2xix—Li1—Li2iii | 136.9 (2) |
O1viii—Zr1—Li2xiii | 92.51 (10) | Li2xx—Li1—Li2iii | 5.8 (3) |
O1xiv—Zr1—Li2xiii | 87.49 (10) | O1xxi—Li1—Li2iii | 77.39 (15) |
O1xii—Zr1—Li2ii | 46.35 (10) | O1iii—Li1—Li2iii | 59.47 (13) |
O1vii—Zr1—Li2ii | 133.65 (10) | O1xxii—Li1—Li2iii | 77.37 (11) |
O1xiii—Zr1—Li2ii | 132.64 (10) | O1i—Li1—Li2iii | 160.90 (13) |
O1ii—Zr1—Li2ii | 47.36 (10) | Li2xxii—Li1—Li2iii | 96.84 (9) |
O1viii—Zr1—Li2ii | 87.49 (10) | Li2xxi—Li1—Li2iii | 96.84 (9) |
O1xiv—Zr1—Li2ii | 92.51 (10) | Li2i—Li1—Li2iii | 139.6 (3) |
Li2xiii—Zr1—Li2ii | 180.0 (2) | Li2v—Li2—Li1xxiii | 161.0 (12) |
O1xii—Zr1—Li2viii | 92.51 (10) | Li2v—Li2—O1v | 103.4 (7) |
O1vii—Zr1—Li2viii | 87.49 (10) | Li1xxiii—Li2—O1v | 66.6 (2) |
O1xiii—Zr1—Li2viii | 133.65 (10) | Li2v—Li2—O1ix | 138.0 (11) |
O1ii—Zr1—Li2viii | 46.35 (10) | Li1xxiii—Li2—O1ix | 60.52 (15) |
O1viii—Zr1—Li2viii | 47.36 (10) | O1v—Li2—O1ix | 109.0 (2) |
O1xiv—Zr1—Li2viii | 132.64 (10) | Li2v—Li2—O1 | 57.5 (7) |
Li2xiii—Zr1—Li2viii | 119.905 (10) | Li1xxiii—Li2—O1 | 138.6 (3) |
Li2ii—Zr1—Li2viii | 60.095 (10) | O1v—Li2—O1 | 102.0 (2) |
O1xii—Zr1—Li2xiv | 87.49 (10) | O1ix—Li2—O1 | 89.6 (2) |
O1vii—Zr1—Li2xiv | 92.51 (10) | Li2v—Li2—O1xxiv | 114.2 (4) |
O1xiii—Zr1—Li2xiv | 46.35 (10) | Li1xxiii—Li2—O1xxiv | 55.50 (16) |
O1ii—Zr1—Li2xiv | 133.65 (10) | O1v—Li2—O1xxiv | 101.2 (3) |
O1viii—Zr1—Li2xiv | 132.64 (10) | O1ix—Li2—O1xxiv | 85.12 (17) |
O1xiv—Zr1—Li2xiv | 47.36 (10) | O1—Li2—O1xxiv | 156.7 (3) |
Li2xiii—Zr1—Li2xiv | 60.095 (10) | Li2v—Li2—Li1xv | 13.3 (8) |
Li2ii—Zr1—Li2xiv | 119.905 (10) | Li1xxiii—Li2—Li1xv | 170.5 (3) |
Li2viii—Zr1—Li2xiv | 180.00 (17) | O1v—Li2—Li1xv | 115.0 (2) |
O1xii—Zr1—Li2xii | 47.36 (10) | O1ix—Li2—Li1xv | 124.9 (3) |
O1vii—Zr1—Li2xii | 132.64 (10) | O1—Li2—Li1xv | 50.91 (13) |
O1xiii—Zr1—Li2xii | 92.51 (10) | O1xxiv—Li2—Li1xv | 115.6 (2) |
O1ii—Zr1—Li2xii | 87.49 (10) | Li2v—Li2—Li2xxi | 150.2 (3) |
O1viii—Zr1—Li2xii | 133.65 (10) | Li1xxiii—Li2—Li2xxi | 40.76 (6) |
O1xiv—Zr1—Li2xii | 46.35 (10) | O1v—Li2—Li2xxi | 62.2 (2) |
Li2xiii—Zr1—Li2xii | 119.905 (10) | O1ix—Li2—Li2xxi | 46.85 (13) |
Li2ii—Zr1—Li2xii | 60.095 (10) | O1—Li2—Li2xxi | 98.0 (3) |
Li2viii—Zr1—Li2xii | 119.905 (10) | O1xxiv—Li2—Li2xxi | 94.82 (16) |
Li2xiv—Zr1—Li2xii | 60.095 (10) | Li1xv—Li2—Li2xxi | 148.7 (3) |
O1xii—Zr1—Li2vii | 132.64 (10) | Li2v—Li2—Li2xxv | 120.2 (11) |
O1vii—Zr1—Li2vii | 47.36 (10) | Li1xxiii—Li2—Li2xxv | 40.76 (6) |
O1xiii—Zr1—Li2vii | 87.49 (10) | O1v—Li2—Li2xxv | 55.8 (3) |
O1ii—Zr1—Li2vii | 92.51 (10) | O1ix—Li2—Li2xxv | 100.18 (14) |
O1viii—Zr1—Li2vii | 46.35 (10) | O1—Li2—Li2xxv | 157.5 (4) |
O1xiv—Zr1—Li2vii | 133.65 (10) | O1xxiv—Li2—Li2xxv | 45.44 (12) |
Li2xiii—Zr1—Li2vii | 60.095 (10) | Li1xv—Li2—Li2xxv | 131.5 (3) |
Li2ii—Zr1—Li2vii | 119.905 (10) | Li2xxi—Li2—Li2xxv | 75.10 (19) |
Li2viii—Zr1—Li2vii | 60.095 (10) | Li2v—Li2—O1xviii | 51.7 (4) |
Li2xiv—Zr1—Li2vii | 119.905 (10) | Li1xxiii—Li2—O1xviii | 128.8 (2) |
Li2xii—Zr1—Li2vii | 180.0 (2) | O1v—Li2—O1xviii | 146.8 (3) |
Li2v—O1—Li1xv | 51.28 (16) | O1ix—Li2—O1xviii | 103.8 (2) |
Li2v—O1—Ta1xiv | 104.07 (15) | O1—Li2—O1xviii | 83.3 (2) |
Li1xv—O1—Ta1xiv | 130.25 (3) | O1xxiv—Li2—O1xviii | 76.02 (13) |
Li2v—O1—Zr1xiv | 104.07 (15) | Li1xv—Li2—O1xviii | 44.61 (9) |
Li1xv—O1—Zr1xiv | 130.25 (3) | Li2xxi—Li2—O1xviii | 150.4 (3) |
Ta1xiv—O1—Zr1xiv | 0 | Li2xxv—Li2—O1xviii | 113.4 (2) |
Li2v—O1—Li2xvi | 77.4 (3) | Li2v—Li2—O1xi | 31.7 (9) |
Li1xv—O1—Li2xvi | 47.73 (17) | Li1xxiii—Li2—O1xi | 129.5 (3) |
Ta1xiv—O1—Li2xvi | 88.80 (17) | O1v—Li2—O1xi | 80.24 (17) |
Zr1xiv—O1—Li2xvi | 88.80 (17) | O1ix—Li2—O1xi | 169.4 (3) |
Li2v—O1—Li2 | 19.0 (3) | O1—Li2—O1xi | 83.27 (17) |
Li1xv—O1—Li2 | 69.63 (13) | O1xxiv—Li2—O1xi | 98.36 (19) |
Ta1xiv—O1—Li2 | 87.81 (14) | Li1xv—Li2—O1xi | 44.60 (9) |
Zr1xiv—O1—Li2 | 87.81 (14) | Li2xxi—Li2—O1xi | 141.9 (3) |
Li2xvi—O1—Li2 | 86.62 (2) | Li2xxv—Li2—O1xi | 89.3 (3) |
Li2v—O1—Li2xvii | 72.4 (2) | O1xviii—Li2—O1xi | 67.69 (12) |
Li1xv—O1—Li2xvii | 44.47 (13) | Li2v—Li2—Ta1xiv | 97.4 (10) |
Ta1xiv—O1—Li2xvii | 174.71 (13) | Li1xxiii—Li2—Ta1xiv | 101.5 (2) |
Zr1xiv—O1—Li2xvii | 174.71 (13) | O1v—Li2—Ta1xiv | 114.4 (2) |
Li2xvi—O1—Li2xvii | 86.6 (2) | O1ix—Li2—Ta1xiv | 44.86 (12) |
Li2—O1—Li2xvii | 89.3 (2) | O1—Li2—Ta1xiv | 44.83 (12) |
Li2v—O1—La1xv | 143.55 (15) | O1xxiv—Li2—Ta1xiv | 124.85 (19) |
Li1xv—O1—La1xv | 92.665 (18) | Li1xv—Li2—Ta1xiv | 86.4 (2) |
Ta1xiv—O1—La1xv | 104.489 (19) | Li2xxi—Li2—Ta1xiv | 69.3 (2) |
Zr1xiv—O1—La1xv | 104.489 (19) | Li2xxv—Li2—Ta1xiv | 142.1 (2) |
Li2xvi—O1—La1xv | 81.05 (13) | O1xviii—Li2—Ta1xiv | 92.65 (19) |
Li2—O1—La1xv | 162.29 (13) | O1xi—Li2—Ta1xiv | 127.1 (2) |
Li2xvii—O1—La1xv | 77.37 (15) |
Symmetry codes: (i) z, x, y; (ii) −z+1/4, −y+1/4, −x+1/4; (iii) z, −x, −y+1/2; (iv) −z+1/4, y−1/4, x+1/4; (v) −x+1/4, z−1/4, y+1/4; (vi) x, −y, −z+1/2; (vii) −x+1/4, −z+1/4, −y+1/4; (viii) y−1/4, x−1/4, z−1/4; (ix) −y+1/2, −z+1/2, −x+1/2; (x) −y+1/2, z−1/2, x; (xi) y−1/4, −x+1/4, −z+3/4; (xii) x−1/4, z−1/4, y−1/4; (xiii) z−1/4, y−1/4, x−1/4; (xiv) −y+1/4, −x+1/4, −z+1/4; (xv) y, z, x; (xvi) −z+1/2, −x+1/2, −y+1/2; (xvii) z−1/2, x, −y+1/2; (xviii) −y+1/4, x+1/4, −z+3/4; (xix) y+1/4, −x+1/4, z−1/4; (xx) y+1/4, x−1/4, −z+3/4; (xxi) −z+3/4, −y+1/4, x+1/4; (xxii) −z+3/4, y−1/4, −x+1/4; (xxiii) −y+1/4, x−1/4, z+1/4; (xxiv) y, −z+1/2, x+1/2; (xxv) z−1/4, −y+1/4, −x+3/4. |
Li6O12TaZr0La3 | Dx = 5.766 Mg m−3 |
Mr = 932.8 | Neutron radiation, λ = 0.793 Å |
Cubic, Ia3d | Cell parameters from 25 reflections |
Hall symbol: -I 4bd 2c 3 | θ = 4.3–40.0° |
a = 12.9051 (2) Å | µ = 0.03 mm−1 |
V = 2149.24 (10) Å3 | T = 400 K |
Z = 8 | Box-shaped, colourless |
F(000) = 3215 | 2.35 × 2.15 × 1.95 mm |
Huber Eulerian Cradle diffractometer | Rint = 0.043 |
Ge 422 monochromator | θmax = 40.0°, θmin = 4.3° |
rotation, ω–scans at 4 different φ positions | h = −20→20 |
645 measured reflections | k = −14→14 |
408 independent reflections | l = 0→12 |
267 reflections with I > 2σ(I) |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.046 | (Δ/σ)max = 0.014 |
wR(F2) = 0.065 | Δρmax = 0.99 e Å−3 |
S = 1.35 | Δρmin = −0.97 e Å−3 |
408 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
32 parameters | Extinction coefficient: 0.0086 (7) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.125 | 0 | 0.25 | 0.0098 (3) | 0.994 (7) |
Zr1 | 0 | 0 | 0 | 0.0075 (2) | 0.454 (3) |
Ta1 | 0 | 0 | 0 | 0.0075 (2) | 0.546 (3) |
O1 | 0.10333 (6) | 0.19801 (7) | 0.28031 (7) | 0.0148 (2) | |
Li1 | 0.375 | 0 | 0.25 | 0.051 (4) | 0.644 (6) |
Li2 | 0.1495 (8) | 0.1754 (11) | 0.4363 (11) | 0.032 (3) | 0.3451 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0113 (5) | 0.0091 (3) | 0.0091 (3) | 0 | 0 | 0.0024 (4) |
Zr1 | 0.0075 (2) | 0.0075 (2) | 0.0075 (2) | −0.0004 (3) | −0.0004 (3) | −0.0004 (3) |
Ta1 | 0.0075 (2) | 0.0075 (2) | 0.0075 (2) | −0.0004 (3) | −0.0004 (3) | −0.0004 (3) |
O1 | 0.0114 (4) | 0.0169 (4) | 0.0161 (4) | 0.0003 (3) | 0.0008 (3) | 0.0023 (3) |
Li1 | 0.005 (3) | 0.074 (6) | 0.074 (6) | 0 | 0 | 0 |
Li2 | 0.038 (8) | 0.028 (5) | 0.031 (6) | −0.013 (6) | 0.021 (6) | −0.006 (4) |
La1—O1i | 2.4991 (9) | O1—Li2 | 2.120 (15) |
La1—O1ii | 2.4991 (9) | O1—Li2xvii | 2.316 (12) |
La1—O1iii | 2.4991 (9) | O1—La1xv | 2.4991 (9) |
La1—O1iv | 2.4991 (9) | O1—Li2xi | 2.653 (13) |
La1—O1v | 2.6002 (9) | O1—Li2xviii | 2.661 (10) |
La1—O1vi | 2.6002 (9) | Li1—Li2x | 1.668 (15) |
La1—O1vii | 2.6002 (9) | Li1—Li2viii | 1.668 (15) |
La1—O1 | 2.6002 (9) | Li1—Li2xix | 1.668 (15) |
La1—Li2viii | 2.998 (11) | Li1—Li2xx | 1.668 (15) |
La1—Li2ix | 2.998 (11) | Li1—O1xxi | 1.9291 (9) |
La1—Li2x | 2.998 (11) | Li1—O1iv | 1.9291 (9) |
La1—Li2xi | 2.998 (11) | Li1—O1i | 1.9291 (9) |
Zr1—O1xii | 2.0459 (9) | Li1—O1xxii | 1.9291 (9) |
Zr1—O1vii | 2.0459 (9) | Li1—Li2xxii | 2.296 (14) |
Zr1—O1xiii | 2.0459 (9) | Li1—Li2xxi | 2.296 (14) |
Zr1—O1ii | 2.0459 (9) | Li1—Li2i | 2.296 (14) |
Zr1—O1ix | 2.0459 (9) | Li1—Li2iv | 2.296 (14) |
Zr1—O1xiv | 2.0459 (9) | Li2—Li2vi | 0.66 (2) |
Zr1—Li2xii | 2.897 (14) | Li2—Li1xxiii | 1.668 (15) |
Zr1—Li2vii | 2.897 (14) | Li2—O1vi | 1.879 (14) |
Zr1—Li2xiii | 2.897 (14) | Li2—O1viii | 2.112 (10) |
Zr1—Li2ii | 2.897 (14) | Li2—Li1xv | 2.296 (14) |
Zr1—Li2ix | 2.897 (14) | Li2—O1xxiv | 2.316 (12) |
Zr1—Li2xiv | 2.897 (14) | Li2—Li2xxi | 2.53 (3) |
O1—Li2vi | 1.879 (14) | Li2—Li2xxv | 2.53 (3) |
O1—Li1xv | 1.9291 (9) | Li2—O1xviii | 2.653 (13) |
O1—Ta1xiv | 2.0459 (9) | Li2—O1xi | 2.661 (10) |
O1—Zr1xiv | 2.0459 (9) | Li2—Ta1xiv | 2.897 (14) |
O1—Li2xvi | 2.112 (10) | ||
O1i—La1—O1ii | 110.90 (4) | Li2vi—O1—La1 | 94.2 (4) |
O1i—La1—O1iii | 158.39 (4) | Li1xv—O1—La1 | 120.76 (4) |
O1ii—La1—O1iii | 73.36 (4) | Ta1xiv—O1—La1 | 101.19 (3) |
O1i—La1—O1iv | 73.36 (4) | Zr1xiv—O1—La1 | 101.19 (3) |
O1ii—La1—O1iv | 158.39 (4) | Li2xvi—O1—La1 | 169.2 (5) |
O1iii—La1—O1iv | 110.90 (4) | Li2—O1—La1 | 88.7 (3) |
O1i—La1—O1v | 124.77 (2) | Li2xvii—O1—La1 | 82.6 (2) |
O1ii—La1—O1v | 95.58 (3) | La1xv—O1—La1 | 101.57 (3) |
O1iii—La1—O1v | 74.35 (3) | Li2vi—O1—Li2xi | 77.5 (5) |
O1iv—La1—O1v | 66.56 (4) | Li1xv—O1—Li2xi | 57.6 (2) |
O1i—La1—O1vi | 95.58 (3) | Ta1xiv—O1—Li2xi | 170.8 (2) |
O1ii—La1—O1vi | 124.77 (2) | Zr1xiv—O1—Li2xi | 170.8 (2) |
O1iii—La1—O1vi | 66.56 (4) | Li2xvi—O1—Li2xi | 100.9 (4) |
O1iv—La1—O1vi | 74.35 (3) | Li2—O1—Li2xi | 91.4 (3) |
O1v—La1—O1vi | 107.89 (4) | Li2xvii—O1—Li2xi | 13.2 (4) |
O1i—La1—O1vii | 74.35 (3) | La1xv—O1—Li2xi | 78.2 (3) |
O1ii—La1—O1vii | 66.56 (4) | La1—O1—Li2xi | 69.6 (2) |
O1iii—La1—O1vii | 124.77 (2) | Li2vi—O1—Li2xviii | 85.09 (12) |
O1iv—La1—O1vii | 95.58 (3) | Li1xv—O1—Li2xviii | 57.4 (4) |
O1v—La1—O1vii | 73.49 (4) | Ta1xiv—O1—Li2xviii | 80.8 (3) |
O1vi—La1—O1vii | 167.65 (4) | Zr1xiv—O1—Li2xviii | 80.8 (3) |
O1i—La1—O1 | 66.56 (4) | Li2xvi—O1—Li2xviii | 8.9 (8) |
O1ii—La1—O1 | 74.35 (3) | Li2—O1—Li2xviii | 91.1 (5) |
O1iii—La1—O1 | 95.58 (3) | Li2xvii—O1—Li2xviii | 95.4 (3) |
O1iv—La1—O1 | 124.77 (2) | La1xv—O1—Li2xviii | 78.1 (2) |
O1v—La1—O1 | 167.65 (4) | La1—O1—Li2xviii | 178.0 (4) |
O1vi—La1—O1 | 73.49 (4) | Li2xi—O1—Li2xviii | 108.4 (4) |
O1vii—La1—O1 | 107.89 (4) | Li2x—Li1—Li2viii | 134.1 (8) |
O1i—La1—Li2viii | 44.04 (18) | Li2x—Li1—Li2xix | 98.8 (3) |
O1ii—La1—Li2viii | 147.8 (3) | Li2viii—Li1—Li2xix | 98.8 (3) |
O1iii—La1—Li2viii | 122.1 (2) | Li2x—Li1—Li2xx | 98.8 (3) |
O1iv—La1—Li2viii | 48.8 (3) | Li2viii—Li1—Li2xx | 98.8 (3) |
O1v—La1—Li2viii | 115.3 (3) | Li2xix—Li1—Li2xx | 134.1 (8) |
O1vi—La1—Li2viii | 56.0 (2) | Li2x—Li1—O1xxi | 163.0 (4) |
O1vii—La1—Li2viii | 112.0 (2) | Li2viii—Li1—O1xxi | 62.5 (4) |
O1—La1—Li2viii | 76.0 (3) | Li2xix—Li1—O1xxi | 79.8 (3) |
O1i—La1—Li2ix | 147.8 (3) | Li2xx—Li1—O1xxi | 71.5 (5) |
O1ii—La1—Li2ix | 44.04 (18) | Li2x—Li1—O1iv | 71.5 (5) |
O1iii—La1—Li2ix | 48.8 (3) | Li2viii—Li1—O1iv | 79.8 (3) |
O1iv—La1—Li2ix | 122.1 (2) | Li2xix—Li1—O1iv | 163.0 (4) |
O1v—La1—Li2ix | 56.0 (2) | Li2xx—Li1—O1iv | 62.5 (4) |
O1vi—La1—Li2ix | 115.3 (3) | O1xxi—Li1—O1iv | 113.65 (3) |
O1vii—La1—Li2ix | 76.0 (3) | Li2x—Li1—O1i | 79.8 (3) |
O1—La1—Li2ix | 112.0 (2) | Li2viii—Li1—O1i | 71.5 (5) |
Li2viii—La1—Li2ix | 167.1 (4) | Li2xix—Li1—O1i | 62.5 (4) |
O1i—La1—Li2x | 48.8 (3) | Li2xx—Li1—O1i | 163.0 (4) |
O1ii—La1—Li2x | 122.1 (2) | O1xxi—Li1—O1i | 113.65 (3) |
O1iii—La1—Li2x | 147.8 (3) | O1iv—Li1—O1i | 101.39 (5) |
O1iv—La1—Li2x | 44.04 (18) | Li2x—Li1—O1xxii | 62.5 (4) |
O1v—La1—Li2x | 76.0 (3) | Li2viii—Li1—O1xxii | 163.0 (4) |
O1vi—La1—Li2x | 112.0 (2) | Li2xix—Li1—O1xxii | 71.5 (5) |
O1vii—La1—Li2x | 56.0 (2) | Li2xx—Li1—O1xxii | 79.8 (3) |
O1—La1—Li2x | 115.3 (3) | O1xxi—Li1—O1xxii | 101.39 (5) |
Li2viii—La1—Li2x | 61.6 (6) | O1iv—Li1—O1xxii | 113.65 (3) |
Li2ix—La1—Li2x | 120.0 (6) | O1i—Li1—O1xxii | 113.65 (3) |
O1i—La1—Li2xi | 122.1 (2) | Li2x—Li1—Li2xxii | 6.1 (8) |
O1ii—La1—Li2xi | 48.8 (3) | Li2viii—Li1—Li2xxii | 136.5 (5) |
O1iii—La1—Li2xi | 44.04 (18) | Li2xix—Li1—Li2xxii | 92.7 (6) |
O1iv—La1—Li2xi | 147.8 (3) | Li2xx—Li1—Li2xxii | 102.9 (6) |
O1v—La1—Li2xi | 112.0 (2) | O1xxi—Li1—Li2xxii | 160.9 (3) |
O1vi—La1—Li2xi | 76.0 (3) | O1iv—Li1—Li2xxii | 77.5 (4) |
O1vii—La1—Li2xi | 115.3 (3) | O1i—Li1—Li2xxii | 77.2 (2) |
O1—La1—Li2xi | 56.0 (2) | O1xxii—Li1—Li2xxii | 59.5 (3) |
Li2viii—La1—Li2xi | 120.0 (6) | Li2x—Li1—Li2xxi | 136.5 (5) |
Li2ix—La1—Li2xi | 61.6 (6) | Li2viii—Li1—Li2xxi | 6.1 (8) |
Li2x—La1—Li2xi | 167.1 (4) | Li2xix—Li1—Li2xxi | 102.9 (6) |
O1xii—Zr1—O1vii | 180.00 (7) | Li2xx—Li1—Li2xxi | 92.7 (6) |
O1xii—Zr1—O1xiii | 86.34 (4) | O1xxi—Li1—Li2xxi | 59.5 (3) |
O1vii—Zr1—O1xiii | 93.66 (4) | O1iv—Li1—Li2xxi | 77.2 (2) |
O1xii—Zr1—O1ii | 93.66 (4) | O1i—Li1—Li2xxi | 77.5 (4) |
O1vii—Zr1—O1ii | 86.34 (4) | O1xxii—Li1—Li2xxi | 160.9 (3) |
O1xiii—Zr1—O1ii | 180.00 (7) | Li2xxii—Li1—Li2xxi | 139.7 (6) |
O1xii—Zr1—O1ix | 86.34 (4) | Li2x—Li1—Li2i | 102.9 (6) |
O1vii—Zr1—O1ix | 93.66 (4) | Li2viii—Li1—Li2i | 92.7 (6) |
O1xiii—Zr1—O1ix | 86.34 (4) | Li2xix—Li1—Li2i | 6.1 (8) |
O1ii—Zr1—O1ix | 93.66 (4) | Li2xx—Li1—Li2i | 136.5 (5) |
O1xii—Zr1—O1xiv | 93.66 (4) | O1xxi—Li1—Li2i | 77.2 (2) |
O1vii—Zr1—O1xiv | 86.34 (4) | O1iv—Li1—Li2i | 160.9 (3) |
O1xiii—Zr1—O1xiv | 93.66 (4) | O1i—Li1—Li2i | 59.5 (3) |
O1ii—Zr1—O1xiv | 86.34 (4) | O1xxii—Li1—Li2i | 77.5 (4) |
O1ix—Zr1—O1xiv | 180.00 (7) | Li2xxii—Li1—Li2i | 96.82 (19) |
O1xii—Zr1—Li2xii | 47.0 (2) | Li2xxi—Li1—Li2i | 96.82 (19) |
O1vii—Zr1—Li2xii | 133.0 (2) | Li2x—Li1—Li2iv | 92.7 (6) |
O1xiii—Zr1—Li2xii | 92.9 (2) | Li2viii—Li1—Li2iv | 102.9 (6) |
O1ii—Zr1—Li2xii | 87.1 (2) | Li2xix—Li1—Li2iv | 136.5 (5) |
O1ix—Zr1—Li2xii | 133.2 (2) | Li2xx—Li1—Li2iv | 6.1 (8) |
O1xiv—Zr1—Li2xii | 46.8 (2) | O1xxi—Li1—Li2iv | 77.5 (4) |
O1xii—Zr1—Li2vii | 133.0 (2) | O1iv—Li1—Li2iv | 59.5 (3) |
O1vii—Zr1—Li2vii | 47.0 (2) | O1i—Li1—Li2iv | 160.9 (3) |
O1xiii—Zr1—Li2vii | 87.1 (2) | O1xxii—Li1—Li2iv | 77.2 (2) |
O1ii—Zr1—Li2vii | 92.9 (2) | Li2xxii—Li1—Li2iv | 96.82 (19) |
O1ix—Zr1—Li2vii | 46.8 (2) | Li2xxi—Li1—Li2iv | 96.82 (19) |
O1xiv—Zr1—Li2vii | 133.2 (2) | Li2i—Li1—Li2iv | 139.7 (6) |
Li2xii—Zr1—Li2vii | 180.0 (7) | Li2vi—Li2—Li1xxiii | 158 (3) |
O1xii—Zr1—Li2xiii | 133.2 (2) | Li2vi—Li2—O1vi | 102 (2) |
O1vii—Zr1—Li2xiii | 46.8 (2) | Li1xxiii—Li2—O1vi | 65.6 (6) |
O1xiii—Zr1—Li2xiii | 47.0 (2) | Li2vi—Li2—O1viii | 141 (3) |
O1ii—Zr1—Li2xiii | 133.0 (2) | Li1xxiii—Li2—O1viii | 60.0 (3) |
O1ix—Zr1—Li2xiii | 92.9 (2) | O1vi—Li2—O1viii | 107.9 (5) |
O1xiv—Zr1—Li2xiii | 87.1 (2) | Li2vi—Li2—O1 | 60 (2) |
Li2xii—Zr1—Li2xiii | 119.92 (2) | Li1xxiii—Li2—O1 | 137.7 (5) |
Li2vii—Zr1—Li2xiii | 60.08 (2) | O1vi—Li2—O1 | 102.0 (4) |
O1xii—Zr1—Li2ii | 46.8 (2) | O1viii—Li2—O1 | 89.7 (5) |
O1vii—Zr1—Li2ii | 133.2 (2) | Li2vi—Li2—Li1xv | 16 (2) |
O1xiii—Zr1—Li2ii | 133.0 (2) | Li1xxiii—Li2—Li1xv | 170.6 (7) |
O1ii—Zr1—Li2ii | 47.0 (2) | O1vi—Li2—Li1xv | 115.4 (5) |
O1ix—Zr1—Li2ii | 87.1 (2) | O1viii—Li2—Li1xv | 125.9 (8) |
O1xiv—Zr1—Li2ii | 92.9 (2) | O1—Li2—Li1xv | 51.6 (4) |
Li2xii—Zr1—Li2ii | 60.08 (2) | Li2vi—Li2—O1xxiv | 113.8 (11) |
Li2vii—Zr1—Li2ii | 119.92 (2) | Li1xxiii—Li2—O1xxiv | 55.1 (4) |
Li2xiii—Zr1—Li2ii | 180.0 (7) | O1vi—Li2—O1xxiv | 100.1 (7) |
O1xii—Zr1—Li2ix | 92.9 (2) | O1viii—Li2—O1xxiv | 84.7 (4) |
O1vii—Zr1—Li2ix | 87.1 (2) | O1—Li2—O1xxiv | 157.8 (7) |
O1xiii—Zr1—Li2ix | 133.2 (2) | Li1xv—Li2—O1xxiv | 116.4 (4) |
O1ii—Zr1—Li2ix | 46.8 (2) | Li2vi—Li2—Li2xxi | 150.2 (4) |
O1ix—Zr1—Li2ix | 47.0 (2) | Li1xxiii—Li2—Li2xxi | 40.62 (14) |
O1xiv—Zr1—Li2ix | 133.0 (2) | O1vi—Li2—Li2xxi | 61.2 (5) |
Li2xii—Zr1—Li2ix | 119.92 (2) | O1viii—Li2—Li2xxi | 46.7 (3) |
Li2vii—Zr1—Li2ix | 60.08 (2) | O1—Li2—Li2xxi | 97.3 (5) |
Li2xiii—Zr1—Li2ix | 119.92 (2) | Li1xv—Li2—Li2xxi | 148.6 (6) |
Li2ii—Zr1—Li2ix | 60.08 (2) | O1xxiv—Li2—Li2xxi | 94.3 (4) |
O1xii—Zr1—Li2xiv | 87.1 (2) | Li2vi—Li2—Li2xxv | 118 (3) |
O1vii—Zr1—Li2xiv | 92.9 (2) | Li1xxiii—Li2—Li2xxv | 40.62 (14) |
O1xiii—Zr1—Li2xiv | 46.8 (2) | O1vi—Li2—Li2xxv | 54.8 (7) |
O1ii—Zr1—Li2xiv | 133.2 (2) | O1viii—Li2—Li2xxv | 99.6 (3) |
O1ix—Zr1—Li2xiv | 133.0 (2) | O1—Li2—Li2xxv | 156.7 (8) |
O1xiv—Zr1—Li2xiv | 47.0 (2) | Li1xv—Li2—Li2xxv | 131.4 (7) |
Li2xii—Zr1—Li2xiv | 60.08 (2) | O1xxiv—Li2—Li2xxv | 45.3 (2) |
Li2vii—Zr1—Li2xiv | 119.92 (2) | Li2xxi—Li2—Li2xxv | 74.7 (4) |
Li2xiii—Zr1—Li2xiv | 60.08 (2) | Li2vi—Li2—O1xviii | 53.0 (12) |
Li2ii—Zr1—Li2xiv | 119.92 (2) | Li1xxiii—Li2—O1xviii | 128.8 (5) |
Li2ix—Zr1—Li2xiv | 180.0 (6) | O1vi—Li2—O1xviii | 147.2 (5) |
Li2vi—O1—Li1xv | 51.9 (4) | O1viii—Li2—O1xviii | 104.3 (5) |
Li2vi—O1—Ta1xiv | 103.6 (3) | O1—Li2—O1xviii | 84.4 (5) |
Li1xv—O1—Ta1xiv | 130.28 (5) | Li1xv—Li2—O1xviii | 45.2 (2) |
Li2vi—O1—Zr1xiv | 103.6 (3) | O1xxiv—Li2—O1xviii | 76.3 (3) |
Li1xv—O1—Zr1xiv | 130.28 (5) | Li2xxi—Li2—O1xviii | 150.7 (7) |
Ta1xiv—O1—Zr1xiv | 0 | Li2xxv—Li2—O1xviii | 113.5 (5) |
Li2vi—O1—Li2xvi | 78.5 (7) | Li2vi—Li2—O1xi | 30 (2) |
Li1xv—O1—Li2xvi | 48.5 (5) | Li1xxiii—Li2—O1xi | 128.7 (8) |
Ta1xiv—O1—Li2xvi | 88.3 (4) | O1vi—Li2—O1xi | 80.2 (4) |
Zr1xiv—O1—Li2xvi | 88.3 (4) | O1viii—Li2—O1xi | 170.8 (8) |
Li2vi—O1—Li2 | 17.8 (6) | O1—Li2—O1xi | 84.2 (4) |
Li1xv—O1—Li2 | 68.9 (3) | Li1xv—Li2—O1xi | 45.06 (19) |
Ta1xiv—O1—Li2 | 88.1 (3) | O1xxiv—Li2—O1xi | 98.5 (4) |
Zr1xiv—O1—Li2 | 88.1 (3) | Li2xxi—Li2—O1xi | 140.9 (7) |
Li2xvi—O1—Li2 | 86.52 (5) | Li2xxv—Li2—O1xi | 88.6 (7) |
Li2vi—O1—Li2xvii | 73.4 (5) | O1xviii—Li2—O1xi | 68.4 (3) |
Li1xv—O1—Li2xvii | 45.1 (3) | Li2vi—Li2—Ta1xiv | 100 (3) |
Ta1xiv—O1—Li2xvii | 175.4 (3) | Li1xxiii—Li2—Ta1xiv | 101.0 (4) |
Zr1xiv—O1—Li2xvii | 175.4 (3) | O1vi—Li2—Ta1xiv | 114.0 (4) |
Li2xvi—O1—Li2xvii | 87.7 (6) | O1viii—Li2—Ta1xiv | 44.9 (3) |
Li2—O1—Li2xvii | 89.4 (6) | O1—Li2—Ta1xiv | 44.9 (3) |
Li2vi—O1—La1xv | 144.2 (4) | Li1xv—Li2—Ta1xiv | 87.2 (5) |
Li1xv—O1—La1xv | 92.63 (3) | O1xxiv—Li2—Ta1xiv | 124.7 (4) |
Ta1xiv—O1—La1xv | 104.61 (4) | Li2xxi—Li2—Ta1xiv | 68.9 (4) |
Zr1xiv—O1—La1xv | 104.61 (4) | Li2xxv—Li2—Ta1xiv | 141.4 (4) |
Li2xvi—O1—La1xv | 80.6 (3) | O1xviii—Li2—Ta1xiv | 93.4 (5) |
Li2—O1—La1xv | 161.5 (3) | O1xi—Li2—Ta1xiv | 128.2 (6) |
Li2xvii—O1—La1xv | 76.9 (4) |
Symmetry codes: (i) z, x, y; (ii) −z+1/4, −y+1/4, −x+1/4; (iii) −z+1/4, y−1/4, x+1/4; (iv) z, −x, −y+1/2; (v) x, −y, −z+1/2; (vi) −x+1/4, z−1/4, y+1/4; (vii) −x+1/4, −z+1/4, −y+1/4; (viii) −y+1/2, −z+1/2, −x+1/2; (ix) y−1/4, x−1/4, z−1/4; (x) −y+1/2, z−1/2, x; (xi) y−1/4, −x+1/4, −z+3/4; (xii) x−1/4, z−1/4, y−1/4; (xiii) z−1/4, y−1/4, x−1/4; (xiv) −y+1/4, −x+1/4, −z+1/4; (xv) y, z, x; (xvi) −z+1/2, −x+1/2, −y+1/2; (xvii) z−1/2, x, −y+1/2; (xviii) −y+1/4, x+1/4, −z+3/4; (xix) y+1/4, −x+1/4, z−1/4; (xx) y+1/4, x−1/4, −z+3/4; (xxi) −z+3/4, −y+1/4, x+1/4; (xxii) −z+3/4, y−1/4, −x+1/4; (xxiii) −y+1/4, x−1/4, z+1/4; (xxiv) y, −z+1/2, x+1/2; (xxv) z−1/4, −y+1/4, −x+3/4. |
Acknowledgements
The neutron measurements were performed on the single-crystal diffraction beamline HEiDi which is jointly operated by RWTH Aachen (Institute of Crystallography) and Forschungszentrum Jülich GmbH (JCNS) within the JARA cooperation. We would like to thank Andreas Portenkirchner for technical assistance during sample preparation and Mario Brützam for crystal pulling. Open access funding enabled and organized by Projekt DEAL.
References
Adams, S. & Rao, R. P. (2014). Bond Valences, edited by I. D. Brown & K. R. Poeppelmeier, pp. 129–159. Berlin, Heidelberg: Springer. Google Scholar
Awaka, J., Kijima, N., Hayakawa, H. & Akimoto, J. (2009). J. Solid State Chem. 182, 2046–2052. Web of Science CrossRef ICSD CAS Google Scholar
Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buschmann, H., Dölle, J., Berendts, S., Kuhn, A., Bottke, P., Wilkening, M., Heitjans, P., Senyshyn, A., Ehrenberg, H., Lotnyk, A., Duppel, V., Kienle, L. & Janek, J. (2011). Phys. Chem. Chem. Phys. 13, 19378–19392. CrossRef ICSD CAS PubMed Google Scholar
Chen, H. & Adams, S. (2017). IUCrJ, 4, 614–625. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Chen, H., Wong, L. L. & Adams, S. (2019). Acta Cryst. B75, 18–33. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geiger, C. A., Alekseev, E., Lazic, B., Fisch, M., Armbruster, T., Langner, R., Fechtelkord, M., Kim, N., Pettke, T. & Weppner, W. (2011). Inorg. Chem. 50, 1089–1097. CrossRef ICSD CAS PubMed Google Scholar
Gianopoulos, C. G., Chua, Z., Zhurov, V. V. & Pinkerton, A. A. (2017). J. Appl. Cryst. 50, 643–646. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gong, Y., Liu, Z.-G., Jin, Y.-J., Ouyang, J.-H., Chen, L. & Wang, Y.-J. (2019). Ceram. Int. 45, 18439–18444. CrossRef CAS Google Scholar
Gonzalez-Platas, J., Alvaro, M., Nestola, F. & Angel, R. (2016). J. Appl. Cryst. 49, 1377–1382. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hamao, N., Kataoka, K. & Akimoto, J. (2017). J. Ceram. Soc. Japan, 125, 272–275. CrossRef ICSD CAS Google Scholar
Hamao, N., Kataoka, K., Kijima, N. & Akimoto, J. (2016). J. Ceram. Soc. Japan, 124, 678–683. CrossRef CAS Google Scholar
Kataoka, K. & Akimoto, J. (2018). ChemElectroChem, 5, 2551–2557. CrossRef CAS Google Scholar
Kataoka, K., Nagata, H. & Akimoto, J. (2018). Sci. Rep. 8, 9965. CrossRef PubMed Google Scholar
Katcho, N. A., Carrete, J., Reynaud, M., Rousse, G., Casas-Cabanas, M., Mingo, N., Rodríguez-Carvajal, J. & Carrasco, J. (2019). J. Appl. Cryst. 52, 148–157. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kirschbaum, K., Martin, A. & Pinkerton, A. A. (1997). J. Appl. Cryst. 30, 514–516. CrossRef CAS Web of Science IUCr Journals Google Scholar
Knauth, P. (2009). Solid State Ionics, 180, 911–916. CrossRef CAS Google Scholar
Logéat, A., Köhler, T., Eisele, U., Stiaszny, B., Harzer, A., Tovar, M., Senyshyn, A., Ehrenberg, H. & Kozinsky, B. (2012). Solid State Ionics, 206, 33–38. Google Scholar
Meven, M. & Sazonov, A. (2015). J. Large-Scale Res. Facil. 1, 1–4. Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murugan, R., Thangadurai, V. & Weppner, W. (2007). Angew. Chem. Int. Ed. 46, 7778–7781. CrossRef CAS Google Scholar
Novak, G. A. & Gibbs, G. V. (1971). Am. Mineral. 56, 791–825. CAS Google Scholar
Ramakumar, S., Deviannapoorani, C., Dhivya, L., Shankar, L. S. & Murugan, R. (2017). Prog. Mater. Sci. 88, 325–411. CrossRef CAS Google Scholar
Redhammer, G., Badami, P., Meven, M., Ganschow, S., Berendts, S., Tippelt, G. & Rettenwander, D. (2021). ACS Appl. Mater. Interfaces, 13, 350–359. CrossRef CAS PubMed Google Scholar
Rettenwander, D., Geiger, C. A., Tribus, M., Tropper, P. & Amthauer, G. (2014). Inorg. Chem. 53, 6264–6269. Web of Science CrossRef CAS PubMed Google Scholar
Rettenwander, D., Redhammer, G., Preishuber-Pflügl, F., Cheng, L., Miara, L., Wagner, R., Welzl, A., Suard, E., Doeff, M. M., Wilkening, M., Fleig, J. & Amthauer, G. (2016). Chem. Mater. 28, 2384–2392. CrossRef ICSD CAS PubMed Google Scholar
Rettenwander, D., Wagner, R., Langer, J., Maier, M. E., Wilkening, M. & Amthauer, G. (2016). Eur. J. Mineral. 28, 619–629. CrossRef CAS Google Scholar
Salje, E. K. H., Wruck, B. & Thomas, H. (1991). Z. Phys. B Condensed Matter, 82, 399–404. CrossRef Google Scholar
Secco, L., Nestola, F. & Dal Negro, A. (2008). Mineral. Mag. 72, 987–990. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stanje, B., Rettenwander, D., Breuer, S., Uitz, M., Berendts, S., Lerch, M., Uecker, R., Redhammer, G., Hanzu, I. & Wilkening, M. (2017). Ann. Phys. 529, 1700140. CrossRef Google Scholar
Thangadurai, V., Narayanan, S. & Pinzaru, D. (2014). Chem. Soc. Rev. 43, 4714–4727. Web of Science CrossRef CAS PubMed Google Scholar
Thompson, T., Sharafi, A., Johannes, M. D., Huq, A., Allen, J. L., Wolfenstine, J. & Sakamoto, J. (2015). Adv. Energy Mater. 5, 1500096. CrossRef ICSD Google Scholar
Thompson, T., Wolfenstine, J., Allen, J. L., Johannes, M., Huq, A., David, I. N. & Sakamoto, J. (2014). J. Mater. Chem. A, 2, 13431–13436. CrossRef CAS Google Scholar
Wagner, R., Redhammer, G. J., Rettenwander, D., Senyshyn, A., Schmidt, W., Wilkening, M. & Amthauer, G. (2016). Chem. Mater. 28, 1861–1871. CrossRef ICSD CAS PubMed Google Scholar
Wagner, R., Redhammer, G. J., Rettenwander, D., Tippelt, G., Welzl, A., Taibl, S., Fleig, J., Franz, A., Lottermoser, W. & Amthauer, G. (2016). Chem. Mater. 28, 5943–5951. CrossRef ICSD CAS PubMed Google Scholar
Wagner, R., Rettenwander, D. & Amthauer, G. (2017). In Highlights in Applied Mineralogy, edited by S. Heuss-Assbichler, G. Amthauer & M. John, p. 3–22. De Gruyter. Google Scholar
Wang, C., Fu, K., Kammampata, S. P., McOwen, D. W., Samson, A. J., Zhang, L., Hitz, G. T., Nolan, A. M., Wachsman, E. D., Mo, Y., Thangadurai, V. & Hu, L. (2020). Chem. Rev. 120, 4257–4300. CrossRef CAS PubMed Google Scholar
Wang, Y. X., Huq, A. & Lai, W. (2014). Solid State Ionics, 255, 39–49. CrossRef ICSD CAS Google Scholar
Wang, Y. X. & Lai, W. (2012). Electrochem. Solid-State Lett. 15, A68–A71. CrossRef CAS Google Scholar
Wang, Y. X. & Lai, W. (2015). J. Power Sources, 275, 612–620. CrossRef CAS Google Scholar
Wang, Z. A., Mo, J., Wu, Y. P., Ye, H. Q. & Wu, X. W. (2017). J. Wuhan Univ. Technol.-Mater. Sci. Edit. 32, 1261–1264. CrossRef CAS Google Scholar
Yi, M. Y., Liu, T., Wang, X. N., Li, J. Y., Wang, C. & Mo, Y. C. (2019). Ceram. Int. 45, 786–792. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.