research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structural studies of N-(meth­­oxy­salicyl­­idene)-fluoroaniline, N-(meth­­oxy­salicyl­­idene)-chloro­aniline and N-(meth­­oxy­salicyl­­idene)-bromo­aniline derivatives

crossmark logo

aDurham University, Department of Chemistry, University Science Site, South Road, Durham, DH1 3LE, United Kingdom, bUniversity of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom, and cISIS Facility, STFC-Rutherford Appleton Laboratory, Didcot, OX11 OQX, United Kingdom
*Correspondence e-mail: hazel.sparkes@bristol.ac.uk

Edited by C. M. Reddy, IISER Kolkata, India (Received 3 June 2021; accepted 21 September 2021; online 18 November 2021)

Twenty seven N-(meth­oxy­salicyl­idene)-haloaniline (halo = F, Cl or Br) compounds were synthesized. The crystal structures of all 27 compounds have been determined at low temperature and are reported herein, along with a variable-temperature neutron diffraction study on two of the compounds. New polymorphs were identified for two of the compounds along with a temperature-induced phase transition for one of the other compounds. Visual observations on the thermochromism of the 27 compounds are also reported. The interplanar angle between the two aromatic rings and the intermolecular interactions in the structures are examined and linked to the visual observations on the thermochromism.

1. Introduction

The relatively easy synthesis of a wide range of Schiff bases makes them versatile ligands and consequently they have found widespread use in many areas including organometallic chemistry (Kargar et al., 2020[Kargar, H., Torabi, V., Akbari, A., Behjatmanesh-Ardakani, R., Sahraei, A. & Tahir, M. N. (2020). J. Mol. Struct. 1205, 127642.]), polymer synthesis (Mighani, 2020[Mighani, H. (2020). J. Polym. Res. 27, 168.]), anticancer drugs (Parveen, 2020[Parveen, S. (2020). Appl. Organomet. Chem. 2020, e5687.]), catalysts (Kumari et al., 2019[Kumari, S., Das, B. & Ray, S. (2019). Dalton Trans. 48, 15942-15954.]) and sensors (Sahu et al., 2020[Sahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). Inorg. Chim. Acta, 508, 119633.]). In addition, Schiff bases themselves have been found to display interesting properties with anils, Schiff bases of salicyl­aldehyde derivatives with aniline derivatives, having been found to exhibit both thermo- and photochromism in the solid-state (Senier & Shepheard, 1909[Senier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943-1955.]; Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]). Originally the thermochromism and photochromism of anils were thought to be mutually exclusive (Cohen & Schmidt, 1962[Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442-2446.]; Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]) but this has since been found not to be the case and it is thought they all display thermochromism with some also displaying photochromism (Fujiwara et al., 2004[Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035-4038.]). The colour change was initially attributed to a light- or thermally-induced tautomeric equilibrium shift between colourless enol(-imine) and coloured keto(-amine) forms (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]) (see Fig. 1[link]). In both cases the chromism involves an intramolecular proton shift from the ortho-hy­droxy group, crucial for the mechanism to occur, to the imine nitro­gen atom. Evidence for the thermochromic mechanism was first observed in N-(5-chloro­salicyl­idene)-4-hy­droxy­aniline with the population of the cis-keto form increasing with decreasing temperature, with the ratio of OH to NH forms changing from 31:69 at 299 K to 10:90 at 90 K (Ogawa et al., 1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]) and at 15 K it is believed to be solely the NH form (Ogawa et al., 2000[Ogawa, K., Harada, J., Tamura, I. & Noda, Y. (2000). Chem. Lett. 29, 528-529.]). The photochromic mechanism has been observed in single crystals of N-3,5-di-tert-butyl­salicyl­idene-3-nitro­aniline (Harada et al., 1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]). After 4 h irradiation at room temperature, using two-photon excitation at 730 nm, the structure of the dark-red photo product at 90 K was found to contain both the enol and trans-keto form at a ratio of 90:10. Irradiation at room temperature using light with λ > 530 nm caused the crystal to return to the pale yellow colour of the enol form and demonstrated the reversibility of the mechanism.

[Figure 1]
Figure 1
Illustration of the enol to keto tautomerism mechanism which affects that colour change in anils.

The enol–keto tautomerism is not the whole picture, Harada et al. identified that thermochromism in anils can only be explained by taking into account the fluorescence and not just the tautomeric equilibrium between enol and cis-keto forms (Harada et al., 2007[Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.]). The impact of the fluorescence becomes particularly significant for thermochromic compounds at lower temperatures and can in fact dominate as the cause of the thermochromic colour change. While at higher temperatures the keto–enol tautomerism is dominant for thermochromic compounds.

The synthesis of 27 N-(meth­oxy­salicyl­idene)-haloaniline (halo = F, Cl or Br) compounds are reported. The crystal structures of all of the compounds are reported at low temperature. Ten of the structures had previously been reported at room temperature, however they are reported herein at low temperature for completeness. For two other compounds new polymorphs were identified herein while a further compound was found to undergo a temperature-induced phase transition. Visual observations were made of the thermochromic colour change upon cooling for all of the compounds. These were linked to the structural properties of the various compounds.

2. Experimental

2.1. Reagents and techniques

All reagents were used as supplied from Aldrich. Compounds were synthesized by direct condensation of the appropriate salicyl­aldehyde and aniline derivatives in ethanol. Salicyl­aldehyde (0.0025 moles) and aniline (0.0025 moles) were each dissolved in ethanol (25 ml), the resulting solutions combined and refluxed with stirring for four hours. Any precipitate was filtered off rinsed with ethanol and left to dry, the (remaining) solution was then rotary evaporated until (further) precipitate formed. Re-crystallization was carried out from ethanol and aceto­nitrile for all compounds. The compounds synthesized along with the reference numbers used to refer to them throughout this paper are listed in Table 1[link].

Table 1
Studied compounds and their reference numbers

 
[Scheme 1]
 
Compound reference number Substituents
1-F R1 = 3-OMe, R2 = 2-F
2-F R1 = 4-OMe, R2 = 2-F
3-F R1 = 5-OMe, R2 = 2-F
4-F R1 = 3-OMe, R2 = 3-F
5-F R1 = 4-OMe, R2 = 3-F
6-F R1 = 5-OMe, R2 = 3-F
7-F R1 = 3-OMe, R2 = 4-F
8-F R1 = 4-OMe, R2 = 4-F
9-F R1 = 5-OMe, R2 = 4-F
1-Cl R1 = 3-OMe, R2 = 2-Cl
2-Cl R1 = 4-OMe, R2 = 2-Cl
3-Cl R1 = 5-OMe, R2 = 2-Cl
4-Cl R1 = 3-OMe, R2 = 3-Cl
5-Cl R1 = 4-OMe, R2 = 3-Cl
6-Cl R1 = 5-OMe, R2 = 3-Cl
7-Cl R1 = 3-OMe, R2 = 4-Cl
8-Cl R1 = 4-OMe, R2 = 4-Cl
9-Cl R1 = 5-OMe, R2 = 4-Cl
1-Br R1 = 3-OMe, R2 = 2-Br
2-Br R1 = 4-OMe, R2 = 2-Br
3-Br R1 = 5-OMe, R2 = 2-Br
4-Br R1 = 3-OMe, R2 = 3-Br
5-Br R1 = 4-OMe, R2 = 3-Br
6-Br R1 = 5-OMe, R2 = 3-Br
7-Br R1 = 3-OMe, R2 = 4-Br
8-Br R1 = 4-OMe, R2 = 4-Br
9-Br R1 = 5-OMe, R2 = 4-Br

2.2. Crystallographic data collection

Single crystal X-ray diffraction measurements for 1-F to 9-F, 7-Cl to 9-Cl and 1-Br to 9-Br were collected at 120 (2) K, 9-Br was also collected at 220 (2) K on Bruker Smart 1K diffractometer, 1-Cl to 3-Cl were collected at 120 (2) K, 4-Cl and 6-Cl were collected at 100 (2) K and 5-Cl was collected at 150 (2) K on a Bruker Apex II diffractometer. All datasets were collected using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) and recorded on a CCD detector. Unit-cell parameters were also checked at 300 (2) K for all structures. Structures 1-F to 9-F, 7-Cl to 9-Cl and 1-Br to 9-Br were solved using direct methods in SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and 1-Cl to 6-Cl were solved using Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]). All structures were refined by full-matrix least squares on F2 using SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) in Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). All hydrogen atoms, apart from the OH hydrogen involved in the intramolecular hydrogen bonding with the imine nitro­gen atom were positioned geometrically (aromatic and C8—H8 C—H = 0.95 Å, methyl C—H = 0.98 Å) and refined using a riding model. The isotropic displacement parameter of the hydrogen atom was fixed at Uiso(H) = 1.2 times Ueq of the parent carbon atom for the aromatic hydrogen atoms and C8—H8, while Uiso(H) = 1.5 times Ueq for the parent carbon atom for the methyl hydrogens. The hydrogen atoms involved in the intramolecular hydrogen bond were located in the Fourier difference map (FDM) wherever feasible or fixed geometrically [O—H 0.84 Å, Uiso(H) = 1.2 times Ueq of the parent oxygen atom] for 6-F, 5-Br and 6-Br where this was not possible. Crystal packing diagrams were created and analyzed using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The interplanar dihedral angle was calculated by measuring the angle between planes computed through the six carbon atoms of the two aromatic rings. See Tables S1–S3 in the supporting information for further details of the crystallographic data collections.

Single-crystal neutron diffraction data for 3-Cl and 3-Br were collected at 120 and 300 K on SXD at ISIS (Keen et al., 2006[Keen, D. A., Gutmann, M. J. & Wilson, C. C. (2006). J. Appl. Cryst. 39, 714-722.]) by mounting a single crystal on a closed cycle refrigerator and using 4–5 crystal settings. Data were processed using SXD2001 (Gutmann, 2005[Gutmann, M. J. (2005). SXD2001. ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire, England.]).

2.3. Diffuse reflectance spectroscopy

Diffuse reflectance spectra were measured for 1-Br to 9-Br. The sample was ground to give uniform particle distribution and placed in a 40 × 10 × 2 mm quartz cuvette to ensure optical thickness. A cuvette sample holder with a white polytetra­fluoro­ethyl­ene (PTFE) block spacer was used to load the sample into an Oxford Instruments Cryostat. The sample was irradiated with an Ocean Optics halogen light source and an Avantes AvaSpec-2048-2 CCD detector (placed at an acute angle to minimize detection of specular reflectance) collected the reflectance spectra which were recorded using AvaSoft basic software. Cryostat temperature control was achieved using an Oxford Intelligent Temperature Controller, each temperature was stabilized by leaving for 10 min or waiting until a temperature variation of ±0.1 K before recording a spectrum. A white PTFE block was used to record a reference spectrum before each data set collection. The diffuse reflectance spectra are illustrated as % reflectance versus wavelength and Kubelka–Munk function, F(R), versus wavelength. If S is independent of λ, then F(R) versus λ is equivalent to the absorption spectrum for a diffuse reflector. To allow basic trends to be easily observed moving averages were applied to data during analysis.

3. Results and discussion

3.1. Crystal structures

The crystal structures of compounds 1-F (Ünver et al., 2002[Ünver, H., Kendi, E., Güven, K. & Durlu, T. N. (2002). Z. Naturforsch. 57, 685-690.]), 1-Cl (Francis et al., 2003[Francis, S., Muthiah, P. T., Venkatachalam, G. & Ramesh, R. (2003). Acta Cryst. E59, o1045-o1047.]), 2-Cl (Koşar et al., 2009[Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2009). Acta Cryst. C65, o517-o520.]), 3-Cl (Özek et al., 2008a[Özek, A., Büyükgüngör, O., Albayrak, C. & Odabaşoğlu, M. (2008a). Acta Cryst. E64, o1579-o1580.]), 6-Cl (Özek et. al., 2008b[Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2008b). J. Chem. Crystallogr. 39, 353-357.]), 8-Cl (Koşar et al., 2009[Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2009). Acta Cryst. C65, o517-o520.]), 9-Cl (Özek et al., 2008c[Özek, A., Büyükgüngör, O., Albayrak, C. & Odabaşoğlu, M. (2008c). Acta Cryst. E64, o1613-o1614.]), 3-Br (Özek et al., 2007[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]), 6-Br (Özek et al., 2007[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]) and 7-Br (Zheng et al., 2005[Zheng, C.-S., Yang, N., Li, M. & Jing, Z.-L. (2005). Acta Cryst. E61, o3613-o3614.]) have previously been reported. The structures obtained herein were consistent with the previously published structures. Different polymorphs to those previously published were obtained in this study for 8-F (Albayrak et. al., 2010[Albayrak, C., Özek, A., Koşar, B., Odabaşoğlu, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o315.]) and 7-Cl (Yeap et al., 2003[Yeap, G.-Y., Ha, S.-T., Ishizawa, N., Suda, K., Boey, P.-L. & Kamil Mahmood, W. A. (2003). J. Mol. Struct. 658, 87-99.]) and a phase transition upon cooling was observed for 9-Br (Özek et al., 2007[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]). The structures reported herein will be denoted as 8-F(2), 7-Cl(2) and 9-Br(LT). The structures of the remaining compounds are included here at low temperature for completeness as the published structures are at room temperature. They also demonstrate that for the majority of them no structural changes are observed upon cooling.

The 27 compounds all crystallized with one molecule in the asymmetric unit (Z′ = 1) with the exception of 7-Cl(2) which contained two unique molecules in the asymmetric unit (Z′ = 2) in this study. However, the previously published polymorph of 7-Cl(1) had one molecule in the asymmetric unit (Z′ = 1) (Yeap et al., 2003[Yeap, G.-Y., Ha, S.-T., Ishizawa, N., Suda, K., Boey, P.-L. & Kamil Mahmood, W. A. (2003). J. Mol. Struct. 658, 87-99.]). The basic structure of the 27 compounds is the same containing a meth­oxy-substituted hy­droxy-phenyl group and a halogen substituted phenyl group joined by an imine group (Fig. 2[link]). The imine group C8=N1 bond lengths range from 1.263 (12) Å in 6-Br to 1.299 (10) Å in 9-Br(LT), while the hydroxyl-phenyl C2—O2 bond lengths range from 1.343 (4) Å in 8-Cl to 1.364 (7) Å in 5-Br. These C8=N1 and C2—O2 are consistent with the bonds being double and single bonds, respectively (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]), indicating that the crystal structures are all in the enol form. An intramolecular hydrogen bond creates a quasi-six-membered ring O2—H2⋯N1—C8—C7—C2, which shows only small deviations from planarity (maximum 0.0293 Å for 2-F, calculated as deviations from the plane through the five non-hydrogen atoms, this value was less for the other compounds).

[Figure 2]
Figure 2
Structure of 8-F(2) at 120 (2) K shown with the atomic numbering scheme. The intramolecular hydrogen bond is shown as a dotted line.

Examining the intermolecular interactions in the structures showed the presence of C—H⋯O (Gu et al., 1999[Gu, Y. L., Kar, T. & Scheiner, S. (1999). J. Am. Chem. Soc. 121, 9411-9422.]), and also in the case of 1-F to 9-F C—H⋯F (D'Oria & Novoa, 2008[D'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423-436.]; Thalladi et al., 1998[Thalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.]) interactions in all of the structures. In addition, a small number of the structures also contained ππ interactions (Tables S4–S8). The C—H⋯O interactions involve the meth­oxy oxygen (O1) and/or hy­droxy oxygen (O2) atoms interacting mainly with aromatic C—H, although in the case of 5-F, 8-F(2), 5-Cl and 8-Br only methyl C—H are involved (Tables S4–S6). The C—H⋯F interactions also mainly involve aromatic hydrogen atoms, except 9-F which also involved a methyl hydrogen atom and 6-F which contains either short aromatic or methyl C—H⋯F interactions due to the disorder in the fluorine atoms (Tables S7).

3.2. Polymorph 8-F(2)

The structure of 8-F obtained in the current study, 8-F(2), see Fig. 2[link], differs significantly from the previously published structure, denoted 8-F(1) (Albayrak et al., 2010[Albayrak, C., Özek, A., Koşar, B., Odabaşoğlu, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o315.]). Both polymorphs crystallized in the monoclinic crystal system, with 8-F(1) in the space group Pc while 8-F(2) was in the space group P21/c. However, there are key differences in the molecular conformations of the two polymorphs. Firstly while both polymorphs have the methyl group of the —OMe group in approximately the same plane as the phenyl group to which it is attached, for 8-F(1) it is on the same side as the OH group while for 8-F(2) it is on the opposite side to the OH group. Secondly, the two phenyl rings are orientated differently with respect to each, in 8-F(1) the dihedral angle between the two phenyl rings is 48.17 (1)° while for 8-F(2) it is 2.07 (9)° (see Fig. 3[link]).

[Figure 3]
Figure 3
Overlay of a molecule of 8-F(1) (grey) at room temperature on 8-F(2) at 120 (2) K (blue).

The packing and intermolecular interactions for the two polymorphs are also quite different. In the case of 8-F(1) all of the molecules are orientated in the same direction, and the structure shows C—H⋯F interactions between the methyl group and the fluorine atom of adjacent molecules. While in the case of 8-F(2), C—H⋯F interactions exist between an aromatic H adjacent to the F on one molecule and the F on an adjacent molecule. The structure also contains ππ interactions between adjacent molecules forming a stack in approximate the a axis direction.

3.3. Polymorph 7-Cl(2)

In the case of 7-Cl, the previously published structure [7-Cl(1)] (Yeap et al., 2003[Yeap, G.-Y., Ha, S.-T., Ishizawa, N., Suda, K., Boey, P.-L. & Kamil Mahmood, W. A. (2003). J. Mol. Struct. 658, 87-99.]) was obtained in the orthorhombic space group P212121 with one molecule in the asymmetric unit. The dihedral angle between the two rings was ∼11.9°. The structure of 7-Cl(2) obtained herein crystallized in the monoclinic space group P21/c with two molecules in the asymmetric unit, see Fig. 4[link]. The dihedral angles between the two phenyl rings were 11.75 (11)° and 16.73 (11)° for the two independent molecules, very similar to that seen for 7-Cl(1). The structure of 7-Cl(2), unlike 7-Cl(1), contains Cl⋯Cl interactions with Cl⋯Cl distances of 3.3618 (7) Å and 3.3845 (7) Å. Examining the packing of the two polymorphs shows that 7-Cl(1) forms a herringbone-type motif. While 7-Cl(2) has a herringbone-type motif in the ab plane, however it is two molecules wide in the c-axis direction and then as a result of the c-glide the zigzag is the opposite direction still in the ab plane, see Fig. 5[link].

[Figure 4]
Figure 4
Structure of 7-Cl(2) at 120 (2) K shown with the atomic numbering scheme. Intramolecular hydrogen bonding shown with dotted lines.
[Figure 5]
Figure 5
Packing for (top) 7-Cl(1), (bottom) 7-Cl(2) with front pair of molecules shown with different colours for the various elements and next pair behind in blue to show opposite zigzag direction.

3.4. Temperature-induced phase transition 9-Br

The structure of 9-Br (Özek et al., 2007[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]) has previously been published at room temperature in the monoclinic space group Pc, see Fig. 6[link]. The structures obtained herein at 300 (2) K and 220 (2) K were consistent with the previously published structure. However, the structure was found to undergo a thermal phase transition upon cooling with no significant loss of crystallinity. At 120 (2) K the structure was found to be in the monoclinic space group Cc, with an approximate doubling of the a-axis length from 14.112 (3) Å at 300 (2) K to 27.874 (5) Å at 120 (2) K and a reduction in the β angle from 98.326 (4)° at 300 (2) K to 95.091 (4)° at 120 (2) K. The orientation of the molecule did not change significantly as a result of the phase transition, see Fig. 7[link], and the packing in both cases was almost identical.

[Figure 6]
Figure 6
Structure of 9-Br at 120 (2) K shown with the atomic numbering scheme. The intramolecular hydrogen bond is shown with as a dotted line.
[Figure 7]
Figure 7
Overlay of a molecule of 9-Br at 300 (2) K (red) on 9-Br at 120 (2) K (blue).

3.5. Thermochromic observations

The anils are known to display thermochromism. Here all of the 3- or 5-meth­oxy­salicylaldimine derivatives were found to be orange/red at room temperature and showed a reversible colour change to yellow when dipped in liquid nitro­gen (∼77 K). The 4-meth­oxy­salicylaldimine derivatives appear yellow at room temperature and show little or no colour change to the naked eye with decreasing temperature (see Fig. 8[link] for a representative example). The colour change for the strongly thermochromic compounds can also be followed clearly by eye as a function of temperature, see Fig. 9[link].

[Figure 8]
Figure 8
Microcrystalline powders of (left) 7-Br, (middle) 8-Br and (right) 9-Br at (a) room temperature and (b) after dipping in liquid nitro­gen.
[Figure 9]
Figure 9
Illustration of the colour change upon cooling for 4-F.

The thermochromic colour change was initially believed to be due solely to an enol to cis-keto tautomerism with the enol form being colourless and the keto form being coloured (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). However, it has also been found that temperature-induced fluorescence also plays a significant role in the colour change observed, particularly upon cooling (Harada et al., 2007[Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216-16221.]). Diffuse reflectance spectra were collected for 1-Br to 9-Br and are available in Figs. S1–S9. No account was taken of the potential effect of fluorescence, however the spectra are presented to support the visually observed trends. In the reflectance spectra for the more strongly thermochromic complexes (1, 3, 4, 6, 7 and 9) the reflectance decreases rapidly below ∼580 nm as the temperature is reduced, which is consistent with a lightening in colour. While for the weakly thermochromic compounds (2, 5 and 8) much smaller decreases in reflectance were observed upon cooling below ∼490 nm. To look for evidence of proton transfer in two of the crystals showing significant colour changes, 3-Cl and 3-Br, variable-temperature neutron diffraction was carried out. However, no evidence of the proton shifting was identified and the O—H proton was located at essentially the same position at both 300 (2) and 120 (2) K for both structures. It is possible that the level of the cis-keto form was too small to be detected crystallo­graphically.

3.6. Structural analysis

A packing similarity tree diagram for the structures, calculated using CSD Materials in Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and allowing for structural variations, highlights both links between structures with similar packing and the wide range of packing observed, Fig. 10[link]. The point at which structures meet at a node highlights the number of molecules in a cluster around the central molecule that are similar so for example 1-F and 7-Br have 12 molecules in common while 1-Cl and 1-Br are essentially isostructural with fifteen molecules in common. For completeness the location of the three published structures which differ from the structures determined in this study have been included on the diagram. Unsurprisingly for 9-Br which undergoes a space group change upon cooling (Pc to Cc) the packing in the room temperature structure (Özek et al., 2007[Özek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.]) has a very high similarity to the 120 (2) K structure. In general, it is worth noting that the structures showing high similarity in their packing with ≥ 12 molecules in common, in the cluster around the central molecule that are similar, tend to be pairs or groups that are either moderately/strongly thermochromic or weakly thermochromic. The main exception to this rule is that the weakly thermochromic 8-F and 8-Br have very similar structures to 9-Br which by eye show a larger colour change.

[Figure 10]
Figure 10
Packing similarity diagram calculated using CSD Materials in Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and allowing for structural variations. Both polymorphs of 8-F and 7-Cl are included along with the 300 K (HT) and 120 K (LT) structures of 9-Br.

The dihedral angles between the two phenyl rings are given in Table 2[link] and show wide variations from 2.07 (9)° in 8-F(2) to 56.74 (7)° in 2-F. In some Schiff bases a link between the dihedral angle and chromic behaviour has been proposed (Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Robert et al., 2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]), compounds with φ < 25° are expected to be strongly thermochromic due to the higher basicity of the imine nitro­gen and as φ increases the degree of thermochromism is expected to reduce. In the compounds studied here there is some variation from this expected trend with three of the strongly thermochromic compounds 4-F, 6-F and 9-Br having large φ values of 30.60 (8)°, 29.53 (4)° and 38.42 (16)°, respectively, while three of the weakly thermochromic compounds 5-F, 8-F(2) and 8-Cl have very small or small φ values of 2.40 (11)°, 2.07 (9)° and 16.33 (20)°, respectively. No significant correlation between the halogen substituent position and the thermochromic behaviour was identified in this study.

Table 2
Dihedral angles (φ) (°) between the two phenyl rings for all of the compounds

Both polymorphs of 7-Cl and 8-F are included. Note 7-Cl(2) has Z′ = 2.

Compound prefix Halogen position OMe position F Cl Br
1 2 3 6.19 (11) 7.20 (10) 6.9 (2)
2 2 4 56.75 (7) 24.15 (5) 23.70 (8)
3 2 5 5.66 (7) 11.13 (7) 13.86 (13)
4 3 3 30.60 (8) 0.60 (11) 24.09 (11)
5 3 4 2.40 (11) 28.38 (5) 42.72 (12)
6 3 5 29.52 (4) 5.64 (15) 5.4 (7)
7 4 3 10.48 (5) 7-Cl(1) 11.9° 10.9 (4)
7-Cl(2) 11.75 (11) 16.73 (11)
8 4 4 8-F(1) 48.17 (1) 16.3 (2) 48.67 (7)
8-F(2) 2.07 (9)
9 4 5 20.60 (4) 7.71 (9) 38.42 (16)
†Yeap et al. (2003[Yeap, G.-Y., Ha, S.-T., Ishizawa, N., Suda, K., Boey, P.-L. & Kamil Mahmood, W. A. (2003). J. Mol. Struct. 658, 87-99.]).
‡Albayrak et al. (2010[Albayrak, C., Özek, A., Koşar, B., Odabaşoğlu, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o315.]).

4. Conclusions

The structures of 27 N-(meth­oxy­salicyl­idene)-haloaniline (halo = F, Cl or Br) are reported at 150 (2), 120 (2) or 100 (2) K. Ten of these structures had previously been reported at room temperature and the structures herein were the same. While in the case of 8-F and 7-Cl new polymorphs are reported which show significant differences in their packing compared to the previously reported polymorphs. In addition, a phase transition was identified for 9-Br, which occurs somewhere between 200 (2) and 120 (2) K. No phase transitions were identified between 300 (2) and 120 (2) K for any of the other compounds.

The 4-meth­oxy­salicyl derivatives are yellow at room temperature and display very little colour change by eye when dipped in liquid nitro­gen, ∼77 K, whereas the 3- or 5-meth­oxy­salicyl compounds are orange–red at room temperature and show a dramatic colour change with decreasing temperature down to yellow at liquid nitro­gen temperatures. The colour change has previously been associated with the occurrence of a temperature-induced enol to cis-keto tautomerism with temperature-induced fluorescence also having a significant impact. Herein neutron diffraction studies on 3-Cl and 3-Br showed no evidence of proton shifting, so it is possible that the level of the cis-keto form was too small to be detected crystallographically but also no investigation was made into the effect of fluorescence on the or the colour change in the complexes.

While both the nature of the packing and the compounds' interplanar angle are believed to affect the thermo- and photochromic properties of the anils, the type and position of substituents can also be important. The position of the strongly electron donating meth­oxy group on the salicyl moiety appears to have a stronger influence on the colour and thermochromic properties of the anils than the location of the weakly electron withdrawing halogen on the aniline moiety. The 3- and 5-meth­oxy compounds visually showed significant colour changes upon cooling, while the 4-meth­oxy compounds showed relatively small colour changes. While the majority of the 3- and 5-meth­oxy compounds had dihedral angles φ of < 25° there were several exceptions to the rule.

Supporting information


Computing details top

Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) for (2F); SMART v5.049 (Bruker, 1999) for (6F), (7F); SMART version 5.054 (Bruker, 1999) for 9Cl. Cell refinement: SAINT v6.45A (Bruker, 2003) for (1F), (3F), (4F), (5F), (6F), (7F), (8F), (9F), 7Cl, 8Cl, 9Cl, 1Br, 2Br, 3Br, 4Br, 5Br, 6Br, 8Br, 9Br_220K, 9Br_120K; CrysAlis PRO, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) for (2F); SAINT v8.34A (Bruker, 2013) for 1Cl, 2Cl, 3Cl, 4Cl, 5Cl, 6Cl. Data reduction: SAINT v6.45A (Bruker, 2003) for (1F), (3F), (4F), (5F), (6F), (7F), (8F), (9F), 7Cl, 8Cl, 9Cl, 1Br, 2Br, 3Br, 4Br, 5Br, 6Br, 8Br, 9Br_220K, 9Br_120K; CrysAlis PRO, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) for (2F); SAINT v8.34A (Bruker, 2013) for 1Cl, 2Cl, 3Cl, 4Cl, 5Cl, 6Cl. Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (1F), (3F), (4F), (5F), (6F), (7F), (8F), (9F), 7Cl, 8Cl, 9Cl, 1Br, 2Br, 3Br, 4Br, 5Br, 6Br, 7Br, 8Br, 9Br_220K, 9Br_120K; Superflip (Palatinus & Chapuis, 2007;Palatinus & van der Lee, 2008; Palatinus et al., 2012) for (2F), 1Cl, 2Cl, 3Cl, 4Cl, 5Cl, 6Cl; SHELXS97 (Sheldrick, 2008) for 3Cl_300Kneutron, 3Cl_120Kneutron, 3Br_300Kneutron. Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for (1F), (3F), (4F), (7F), (8F), (9F), 1Cl, 2Cl, 3Cl, 4Cl, 5Cl, 6Cl, 7Cl, 9Cl, 2Br, 3Br, 4Br; SHELXL 2018/3 (Sheldrick, 2015) for (2F), (5F), (6F), 8Cl, 1Br, 5Br, 6Br, 8Br, 9Br_220K, 9Br_120K; XL (Sheldrick, 2008) for 7Br; SHELXL (Sheldrick, 2008) for 3Cl_300Kneutron, 3Cl_120Kneutron, 3Br_300Kneutron, 3Br_120Kneutron. Molecular graphics: Olex2 (Dolomanov et al., 2009) for (1F), (3F), (4F), (7F), (8F), (9F), 1Cl, 2Cl, 3Cl, 4Cl, 5Cl, 6Cl, 7Cl, 9Cl, 2Br, 3Br, 4Br, 3Cl_300Kneutron, 3Cl_120Kneutron, 3Br_300Kneutron, 3Br_120Kneutron; Olex2 1.3 (Dolomanov et al., 2009) for (2F), (5F), (6F), 8Cl, 1Br, 5Br, 6Br, 7Br, 8Br, 9Br_220K, 9Br_120K. Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for (1F), (3F), (4F), (7F), (8F), (9F), 1Cl, 2Cl, 3Cl, 4Cl, 5Cl, 6Cl, 7Cl, 9Cl, 2Br, 3Br, 4Br, 3Cl_300Kneutron, 3Cl_120Kneutron, 3Br_300Kneutron, 3Br_120Kneutron; Olex2 1.3 (Dolomanov et al., 2009) for (2F), (5F), (6F), 8Cl, 1Br, 5Br, 6Br, 7Br, 8Br, 9Br_220K, 9Br_120K.

(1F) top
Crystal data top
C14H12FNO2Dx = 1.419 Mg m3
Mr = 245.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5330 reflections
a = 5.0834 (2) Åθ = 2.8–29.9°
b = 12.4697 (5) ŵ = 0.11 mm1
c = 18.1059 (8) ÅT = 120 K
V = 1147.71 (8) Å3Block, orange
Z = 40.4 × 0.26 × 0.2 mm
F(000) = 512
Data collection top
CCD area detector
diffractometer
2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.0°
phi and ω scansh = 66
15619 measured reflectionsk = 1616
2845 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.2009P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2845 reflectionsΔρmax = 0.20 e Å3
168 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3563 (3)0.91203 (9)0.81235 (7)0.0369 (3)
O11.2066 (3)0.90244 (11)0.57811 (8)0.0317 (3)
O20.8483 (3)0.86835 (10)0.67900 (8)0.0289 (3)
H20.732 (5)0.843 (2)0.7157 (15)0.047 (8)*
N10.6231 (3)0.73977 (12)0.76951 (8)0.0245 (3)
C11.4054 (4)0.92282 (17)0.52452 (11)0.0314 (5)
H1A1.57820.90570.54550.047*
H1B1.40080.99860.51040.047*
H1C1.37420.87810.48090.047*
C21.0006 (4)0.78428 (14)0.66013 (10)0.0239 (4)
C31.1966 (4)0.80019 (14)0.60607 (10)0.0255 (4)
C41.3579 (4)0.71679 (15)0.58497 (10)0.0261 (4)
H41.48800.72820.54810.031*
C51.3314 (4)0.61531 (15)0.61745 (10)0.0267 (4)
H51.44440.55840.60290.032*
C61.1415 (4)0.59822 (15)0.67043 (10)0.0257 (4)
H61.12410.52940.69240.031*
C70.9730 (4)0.68206 (14)0.69234 (10)0.0236 (4)
C80.7759 (4)0.66327 (15)0.74862 (10)0.0244 (4)
H80.75940.59420.77020.029*
C90.4267 (4)0.72611 (15)0.82341 (10)0.0235 (4)
C140.3502 (4)0.62912 (16)0.85592 (11)0.0289 (4)
H140.43890.56470.84310.035*
C130.1461 (4)0.62625 (16)0.90669 (11)0.0319 (4)
H130.09550.55980.92800.038*
C120.0144 (5)0.71967 (17)0.92679 (11)0.0304 (4)
H120.12330.71710.96220.036*
C110.0854 (4)0.81652 (17)0.89480 (11)0.0297 (4)
H110.00380.88090.90750.036*
C100.2875 (4)0.81735 (15)0.84439 (10)0.0269 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0469 (8)0.0184 (5)0.0454 (7)0.0019 (5)0.0064 (6)0.0009 (5)
O10.0388 (8)0.0232 (6)0.0331 (7)0.0012 (6)0.0110 (7)0.0059 (6)
O20.0351 (8)0.0209 (6)0.0309 (7)0.0021 (6)0.0080 (6)0.0028 (5)
N10.0290 (8)0.0215 (7)0.0231 (7)0.0030 (6)0.0014 (6)0.0006 (6)
C10.0355 (12)0.0279 (10)0.0307 (10)0.0037 (9)0.0065 (9)0.0029 (8)
C20.0276 (9)0.0202 (8)0.0237 (8)0.0006 (7)0.0024 (8)0.0003 (7)
C30.0296 (10)0.0218 (8)0.0253 (8)0.0011 (8)0.0016 (8)0.0023 (7)
C40.0270 (10)0.0268 (9)0.0244 (8)0.0005 (8)0.0003 (8)0.0003 (7)
C50.0281 (9)0.0234 (9)0.0285 (9)0.0031 (8)0.0026 (8)0.0026 (7)
C60.0289 (10)0.0206 (8)0.0277 (9)0.0004 (8)0.0056 (8)0.0001 (7)
C70.0262 (9)0.0218 (8)0.0227 (8)0.0019 (8)0.0045 (8)0.0009 (7)
C80.0289 (10)0.0208 (8)0.0234 (9)0.0042 (8)0.0027 (7)0.0002 (7)
C90.0269 (9)0.0232 (8)0.0205 (8)0.0024 (8)0.0027 (7)0.0001 (7)
C140.0331 (10)0.0232 (9)0.0303 (9)0.0006 (8)0.0005 (9)0.0037 (7)
C130.0345 (10)0.0301 (10)0.0312 (10)0.0028 (9)0.0010 (9)0.0073 (8)
C120.0287 (11)0.0386 (11)0.0239 (9)0.0018 (9)0.0004 (8)0.0011 (8)
C110.0322 (11)0.0286 (10)0.0284 (9)0.0014 (8)0.0026 (8)0.0064 (8)
C100.0329 (11)0.0215 (8)0.0262 (9)0.0051 (8)0.0034 (8)0.0001 (7)
Geometric parameters (Å, º) top
F1—C101.361 (2)C5—C61.377 (3)
O1—C11.424 (2)C6—H60.9500
O1—C31.373 (2)C6—C71.409 (3)
O2—H20.94 (3)C7—C81.448 (3)
O2—C21.347 (2)C8—H80.9500
N1—C81.287 (2)C9—C141.400 (3)
N1—C91.407 (2)C9—C101.392 (3)
C1—H1A0.9800C14—H140.9500
C1—H1B0.9800C14—C131.387 (3)
C1—H1C0.9800C13—H130.9500
C2—C31.411 (3)C13—C121.392 (3)
C2—C71.409 (2)C12—H120.9500
C3—C41.378 (3)C12—C111.387 (3)
C4—H40.9500C11—H110.9500
C4—C51.402 (3)C11—C101.374 (3)
C5—H50.9500
C3—O1—C1116.32 (16)C2—C7—C8120.44 (17)
C2—O2—H2106.3 (16)C6—C7—C2119.62 (18)
C8—N1—C9122.86 (17)C6—C7—C8119.93 (17)
O1—C1—H1A109.5N1—C8—C7120.29 (17)
O1—C1—H1B109.5N1—C8—H8119.9
O1—C1—H1C109.5C7—C8—H8119.9
H1A—C1—H1B109.5C14—C9—N1126.40 (18)
H1A—C1—H1C109.5C10—C9—N1116.80 (17)
H1B—C1—H1C109.5C10—C9—C14116.74 (18)
O2—C2—C3118.18 (16)C9—C14—H14119.7
O2—C2—C7122.81 (17)C13—C14—C9120.58 (18)
C7—C2—C3119.01 (17)C13—C14—H14119.7
O1—C3—C2114.38 (17)C14—C13—H13119.6
O1—C3—C4125.20 (18)C14—C13—C12120.77 (19)
C4—C3—C2120.42 (16)C12—C13—H13119.6
C3—C4—H4119.7C13—C12—H12120.2
C3—C4—C5120.51 (18)C11—C12—C13119.62 (19)
C5—C4—H4119.7C11—C12—H12120.2
C4—C5—H5120.0C12—C11—H11120.7
C6—C5—C4119.93 (18)C10—C11—C12118.58 (19)
C6—C5—H5120.0C10—C11—H11120.7
C5—C6—H6119.7F1—C10—C9117.52 (17)
C5—C6—C7120.50 (17)F1—C10—C11118.78 (18)
C7—C6—H6119.7C11—C10—C9123.69 (18)
O1—C3—C4—C5179.71 (19)C5—C6—C7—C20.5 (3)
O2—C2—C3—O10.5 (3)C5—C6—C7—C8179.38 (17)
O2—C2—C3—C4179.84 (17)C6—C7—C8—N1179.24 (17)
O2—C2—C7—C6179.24 (17)C7—C2—C3—O1179.85 (17)
O2—C2—C7—C80.4 (3)C7—C2—C3—C40.2 (3)
N1—C9—C14—C13177.61 (19)C8—N1—C9—C147.0 (3)
N1—C9—C10—F11.3 (3)C8—N1—C9—C10175.72 (18)
N1—C9—C10—C11178.17 (18)C9—N1—C8—C7179.41 (16)
C1—O1—C3—C2178.66 (17)C9—C14—C13—C120.5 (3)
C1—O1—C3—C41.7 (3)C14—C9—C10—F1178.88 (17)
C2—C3—C4—C50.7 (3)C14—C9—C10—C110.6 (3)
C2—C7—C8—N10.4 (3)C14—C13—C12—C111.0 (3)
C3—C2—C7—C60.4 (3)C13—C12—C11—C100.7 (3)
C3—C2—C7—C8179.25 (17)C12—C11—C10—F1179.41 (18)
C3—C4—C5—C60.6 (3)C12—C11—C10—C90.1 (3)
C4—C5—C6—C70.0 (3)C10—C9—C14—C130.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.94 (3)1.71 (3)2.563 (2)149 (2)
(2F) top
Crystal data top
C14H12FNO2Dx = 1.420 Mg m3
Mr = 245.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 907 reflections
a = 6.2970 (8) Åθ = 3.3–23.6°
b = 25.465 (3) ŵ = 0.11 mm1
c = 14.3055 (14) ÅT = 120 K
V = 2294.0 (5) Å3Plate, yellow
Z = 80.41 × 0.28 × 0.03 mm
F(000) = 1024
Data collection top
Xcalibur, Sapphire3, Gemini ultra
diffractometer
2179 independent reflections
Radiation source: Enhance (Mo) X-ray Source1435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 8.0756 pixels mm-1θmax = 25.7°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3129
Tmin = 0.028, Tmax = 1.000l = 1717
8769 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.085H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.326P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2179 reflectionsΔρmax = 0.27 e Å3
168 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.4624 (3)0.57797 (9)0.53839 (13)0.0248 (6)
O10.2914 (3)0.90531 (10)0.62652 (15)0.0179 (6)
O20.2858 (4)0.71948 (11)0.67457 (16)0.0207 (6)
N10.6155 (4)0.66711 (12)0.61793 (18)0.0157 (7)
C131.0454 (6)0.57006 (15)0.6654 (2)0.0183 (9)
H131.1805880.5682200.6946880.022*
C70.5886 (5)0.76062 (15)0.6016 (2)0.0140 (8)
C10.1012 (5)0.91172 (15)0.6800 (2)0.0216 (9)
H1A0.0132630.8910670.6516290.032*
H1B0.0609330.9488960.6807970.032*
H1C0.1255330.8996060.7440990.032*
C120.9569 (6)0.52514 (15)0.6261 (2)0.0198 (9)
H121.0315330.4927340.6282350.024*
C90.7386 (5)0.62114 (14)0.6195 (2)0.0134 (8)
C50.5739 (5)0.85472 (15)0.5744 (2)0.0149 (8)
H50.6345930.8856760.5486840.018*
C40.3765 (5)0.85632 (15)0.6196 (2)0.0147 (8)
C140.9378 (5)0.61737 (15)0.6621 (2)0.0160 (8)
H141.0002030.6477460.6891310.019*
C80.7038 (5)0.71145 (15)0.5962 (2)0.0166 (9)
H80.8476250.7117110.5761060.020*
C30.2814 (5)0.81092 (15)0.6536 (2)0.0155 (8)
H30.1469640.8125060.6835990.019*
C100.6556 (5)0.57525 (16)0.5815 (2)0.0170 (9)
C20.3852 (5)0.76331 (15)0.6431 (2)0.0163 (9)
C60.6772 (5)0.80761 (15)0.5680 (2)0.0163 (8)
H60.8138410.8066180.5399290.020*
C110.7585 (6)0.52794 (15)0.5835 (2)0.0210 (9)
H110.6957660.4976140.5564760.025*
H20.376 (6)0.6927 (18)0.662 (3)0.052 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0158 (11)0.0278 (14)0.0309 (11)0.0017 (11)0.0077 (9)0.0056 (10)
O10.0154 (13)0.0184 (15)0.0198 (12)0.0040 (12)0.0055 (10)0.0029 (12)
O20.0203 (15)0.0140 (15)0.0277 (14)0.0030 (13)0.0073 (12)0.0063 (13)
N10.0168 (17)0.0156 (18)0.0148 (15)0.0018 (15)0.0013 (12)0.0015 (14)
C130.014 (2)0.026 (2)0.0146 (18)0.0023 (19)0.0002 (15)0.0004 (18)
C70.0105 (19)0.021 (2)0.0101 (17)0.0019 (17)0.0029 (14)0.0032 (16)
C10.021 (2)0.020 (2)0.023 (2)0.0035 (19)0.0009 (16)0.0005 (18)
C120.023 (2)0.019 (2)0.0169 (18)0.0021 (19)0.0035 (16)0.0010 (18)
C90.017 (2)0.017 (2)0.0066 (16)0.0001 (17)0.0043 (14)0.0001 (16)
C50.015 (2)0.016 (2)0.0133 (18)0.0014 (17)0.0012 (15)0.0010 (17)
C40.016 (2)0.017 (2)0.0109 (17)0.0028 (17)0.0038 (14)0.0003 (17)
C140.014 (2)0.020 (2)0.0135 (18)0.0048 (18)0.0003 (15)0.0001 (17)
C80.0126 (19)0.027 (2)0.0105 (17)0.0002 (18)0.0011 (14)0.0028 (18)
C30.0115 (19)0.021 (2)0.0139 (18)0.0003 (18)0.0014 (14)0.0015 (17)
C100.0126 (19)0.028 (2)0.0103 (17)0.0013 (18)0.0034 (14)0.0002 (17)
C20.018 (2)0.018 (2)0.0126 (18)0.0029 (17)0.0017 (15)0.0008 (17)
C60.0137 (19)0.021 (2)0.0137 (18)0.0048 (18)0.0020 (14)0.0028 (17)
C110.022 (2)0.015 (2)0.026 (2)0.0018 (18)0.0003 (17)0.0072 (18)
Geometric parameters (Å, º) top
F1—C101.365 (4)C12—H120.9500
O1—C11.430 (4)C12—C111.391 (5)
O1—C41.361 (4)C9—C141.398 (4)
O2—C21.356 (4)C9—C101.391 (5)
O2—H20.91 (4)C5—H50.9500
N1—C91.404 (4)C5—C41.402 (4)
N1—C81.297 (4)C5—C61.368 (5)
C13—H130.9500C4—C31.390 (5)
C13—C121.391 (5)C14—H140.9500
C13—C141.383 (5)C8—H80.9500
C7—C81.449 (5)C3—H30.9500
C7—C21.413 (5)C3—C21.385 (5)
C7—C61.405 (5)C10—C111.368 (5)
C1—H1A0.9800C6—H60.9500
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800
C4—O1—C1118.2 (3)O1—C4—C5114.1 (3)
C2—O2—H2105 (3)O1—C4—C3124.6 (3)
C8—N1—C9119.6 (3)C3—C4—C5121.3 (3)
C12—C13—H13119.8C13—C14—C9121.0 (4)
C14—C13—H13119.8C13—C14—H14119.5
C14—C13—C12120.4 (3)C9—C14—H14119.5
C2—C7—C8121.2 (3)N1—C8—C7121.7 (3)
C6—C7—C8121.2 (3)N1—C8—H8119.2
C6—C7—C2117.5 (3)C7—C8—H8119.2
O1—C1—H1A109.5C4—C3—H3120.4
O1—C1—H1B109.5C2—C3—C4119.1 (3)
O1—C1—H1C109.5C2—C3—H3120.4
H1A—C1—H1B109.5F1—C10—C9117.9 (3)
H1A—C1—H1C109.5F1—C10—C11118.5 (3)
H1B—C1—H1C109.5C11—C10—C9123.6 (3)
C13—C12—H12120.2O2—C2—C7121.2 (3)
C13—C12—C11119.6 (4)O2—C2—C3117.8 (3)
C11—C12—H12120.2C3—C2—C7121.0 (4)
C14—C9—N1124.0 (3)C7—C6—H6118.8
C10—C9—N1119.1 (3)C5—C6—C7122.4 (3)
C10—C9—C14116.7 (3)C5—C6—H6118.8
C4—C5—H5120.7C12—C11—H11120.7
C6—C5—H5120.7C10—C11—C12118.7 (4)
C6—C5—C4118.5 (3)C10—C11—H11120.7
F1—C10—C11—C12179.0 (3)C14—C9—C10—F1179.2 (3)
O1—C4—C3—C2179.4 (3)C14—C9—C10—C110.4 (5)
N1—C9—C14—C13176.4 (3)C8—N1—C9—C1446.5 (5)
N1—C9—C10—F14.4 (4)C8—N1—C9—C10137.3 (3)
N1—C9—C10—C11176.8 (3)C8—C7—C2—O23.7 (5)
C13—C12—C11—C100.1 (5)C8—C7—C2—C3175.8 (3)
C1—O1—C4—C5173.6 (3)C8—C7—C6—C5178.4 (3)
C1—O1—C4—C36.3 (5)C10—C9—C14—C130.2 (5)
C12—C13—C14—C90.1 (5)C2—C7—C8—N18.9 (5)
C9—N1—C8—C7174.4 (3)C2—C7—C6—C50.0 (5)
C9—C10—C11—C120.2 (5)C6—C7—C8—N1172.8 (3)
C5—C4—C3—C20.6 (5)C6—C7—C2—O2177.9 (3)
C4—C5—C6—C72.8 (5)C6—C7—C2—C32.6 (5)
C4—C3—C2—O2178.2 (3)C6—C5—C4—O1176.8 (3)
C4—C3—C2—C72.3 (5)C6—C5—C4—C33.1 (5)
C14—C13—C12—C110.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.91 (4)1.76 (4)2.597 (4)153 (4)
(3F) top
Crystal data top
C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.3838 (10) ÅCell parameters from 5968 reflections
b = 4.6633 (2) Åθ = 3.1–29.9°
c = 12.6117 (6) ŵ = 0.11 mm1
β = 106.747 (1)°T = 120 K
V = 1147.97 (9) Å3Block, orange
Z = 40.44 × 0.3 × 0.16 mm
Data collection top
CCD area detector
diffractometer
2834 independent reflections
Graphite monochromator2310 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.029
phi and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0386 before and 0.0260 after correction. The Ratio of minimum to maximum transmission is 0.8476. The λ/2 correction factor is 0.0015.
h = 2727
Tmin = 0.848, Tmax = 1k = 66
12140 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3391P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2834 reflectionsΔρmax = 0.25 e Å3
168 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11480 (4)0.33170 (18)0.22282 (6)0.0318 (2)
O10.41879 (4)0.7349 (2)0.63784 (7)0.0253 (2)
O20.25436 (5)0.1914 (2)0.26533 (7)0.0256 (2)
H20.2299 (10)0.074 (5)0.2904 (15)0.054 (6)*
N10.20273 (5)0.0921 (2)0.40063 (8)0.0183 (2)
C10.47493 (6)0.9056 (3)0.62867 (11)0.0272 (3)
H1A0.45751.07260.58180.041*
H1B0.50160.97020.70240.041*
H1C0.50420.79130.59540.041*
C20.29498 (6)0.3223 (3)0.35701 (9)0.0192 (2)
C30.34254 (6)0.5239 (3)0.34493 (10)0.0218 (3)
H30.34620.56640.27320.026*
C40.38482 (6)0.6639 (3)0.43644 (10)0.0214 (3)
H40.41740.80000.42700.026*
C50.37963 (6)0.6052 (3)0.54212 (9)0.0194 (2)
C60.33219 (6)0.4066 (3)0.55538 (9)0.0190 (2)
H60.32820.36870.62730.023*
C70.28995 (6)0.2606 (2)0.46407 (9)0.0172 (2)
C80.24168 (6)0.0502 (3)0.48211 (10)0.0189 (2)
H80.23880.01720.55500.023*
C90.15621 (6)0.2995 (2)0.41720 (9)0.0178 (2)
C100.11173 (6)0.4215 (3)0.32346 (9)0.0201 (3)
C110.06389 (6)0.6275 (3)0.32700 (11)0.0241 (3)
H110.03470.70620.26060.029*
C120.05932 (6)0.7173 (3)0.42914 (11)0.0252 (3)
H120.02620.85650.43360.030*
C130.10330 (7)0.6035 (3)0.52514 (11)0.0259 (3)
H130.10050.66690.59530.031*
C140.15132 (6)0.3976 (3)0.51940 (10)0.0230 (3)
H140.18130.32240.58580.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0407 (5)0.0340 (5)0.0182 (4)0.0111 (4)0.0045 (3)0.0035 (3)
O10.0250 (4)0.0279 (5)0.0218 (4)0.0089 (4)0.0050 (3)0.0028 (4)
O20.0300 (5)0.0294 (5)0.0182 (4)0.0092 (4)0.0081 (4)0.0028 (4)
N10.0190 (5)0.0157 (5)0.0212 (5)0.0005 (4)0.0074 (4)0.0002 (4)
C10.0230 (6)0.0255 (7)0.0312 (7)0.0057 (5)0.0047 (5)0.0016 (5)
C20.0204 (5)0.0187 (6)0.0192 (5)0.0005 (4)0.0067 (4)0.0016 (5)
C30.0243 (6)0.0235 (6)0.0199 (5)0.0016 (5)0.0101 (5)0.0016 (5)
C40.0200 (5)0.0195 (6)0.0265 (6)0.0018 (4)0.0096 (5)0.0017 (5)
C50.0179 (5)0.0180 (6)0.0212 (5)0.0012 (4)0.0039 (4)0.0010 (5)
C60.0198 (5)0.0197 (6)0.0180 (5)0.0020 (4)0.0061 (4)0.0020 (4)
C70.0172 (5)0.0156 (5)0.0194 (5)0.0013 (4)0.0061 (4)0.0004 (4)
C80.0200 (5)0.0183 (6)0.0197 (5)0.0023 (4)0.0075 (4)0.0027 (4)
C90.0176 (5)0.0148 (5)0.0223 (5)0.0022 (4)0.0079 (4)0.0004 (4)
C100.0227 (6)0.0189 (6)0.0189 (5)0.0012 (4)0.0061 (4)0.0034 (5)
C110.0212 (6)0.0202 (6)0.0281 (6)0.0018 (5)0.0027 (5)0.0003 (5)
C120.0216 (6)0.0200 (6)0.0364 (7)0.0021 (5)0.0124 (5)0.0014 (5)
C130.0320 (7)0.0232 (6)0.0275 (6)0.0021 (5)0.0162 (5)0.0018 (5)
C140.0264 (6)0.0231 (6)0.0211 (5)0.0023 (5)0.0092 (5)0.0015 (5)
Geometric parameters (Å, º) top
F1—C101.3550 (13)C5—C61.3837 (16)
O1—C11.4257 (15)C6—H60.9500
O1—C51.3801 (14)C6—C71.3997 (15)
O2—H20.86 (2)C7—C81.4534 (16)
O2—C21.3576 (14)C8—H80.9500
N1—C81.2870 (15)C9—C101.3875 (16)
N1—C91.4115 (15)C9—C141.3981 (17)
C1—H1A0.9800C10—C111.3791 (17)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.3828 (18)
C2—C31.3900 (16)C12—H120.9500
C2—C71.4128 (16)C12—C131.3877 (18)
C3—H30.9500C13—H130.9500
C3—C41.3884 (17)C13—C141.3876 (17)
C4—H40.9500C14—H140.9500
C4—C51.3942 (16)
C5—O1—C1116.69 (9)C2—C7—C8121.72 (10)
C2—O2—H2104.4 (13)C6—C7—C2119.38 (10)
C8—N1—C9121.42 (10)C6—C7—C8118.90 (10)
O1—C1—H1A109.5N1—C8—C7120.86 (10)
O1—C1—H1B109.5N1—C8—H8119.6
O1—C1—H1C109.5C7—C8—H8119.6
H1A—C1—H1B109.5C10—C9—N1117.17 (10)
H1A—C1—H1C109.5C10—C9—C14116.66 (11)
H1B—C1—H1C109.5C14—C9—N1126.16 (10)
O2—C2—C3118.96 (10)F1—C10—C9118.44 (10)
O2—C2—C7121.88 (11)F1—C10—C11118.01 (10)
C3—C2—C7119.16 (10)C11—C10—C9123.54 (11)
C2—C3—H3119.6C10—C11—H11120.7
C4—C3—C2120.83 (11)C10—C11—C12118.64 (11)
C4—C3—H3119.6C12—C11—H11120.7
C3—C4—H4119.9C11—C12—H12120.1
C3—C4—C5120.16 (11)C11—C12—C13119.79 (11)
C5—C4—H4119.9C13—C12—H12120.1
O1—C5—C4124.48 (11)C12—C13—H13119.8
O1—C5—C6115.84 (10)C14—C13—C12120.48 (11)
C6—C5—C4119.68 (11)C14—C13—H13119.8
C5—C6—H6119.6C9—C14—H14119.6
C5—C6—C7120.78 (11)C13—C14—C9120.88 (11)
C7—C6—H6119.6C13—C14—H14119.6
F1—C10—C11—C12178.82 (11)C4—C5—C6—C70.89 (17)
O1—C5—C6—C7179.64 (10)C5—C6—C7—C21.39 (17)
O2—C2—C3—C4179.64 (11)C5—C6—C7—C8178.95 (10)
O2—C2—C7—C6178.68 (10)C6—C7—C8—N1178.83 (11)
O2—C2—C7—C80.98 (18)C7—C2—C3—C40.04 (18)
N1—C9—C10—F11.09 (16)C8—N1—C9—C10173.85 (11)
N1—C9—C10—C11179.63 (11)C8—N1—C9—C147.24 (18)
N1—C9—C14—C13179.93 (11)C9—N1—C8—C7179.25 (10)
C1—O1—C5—C410.08 (17)C9—C10—C11—C120.45 (19)
C1—O1—C5—C6170.48 (11)C10—C9—C14—C131.01 (18)
C2—C3—C4—C50.54 (19)C10—C11—C12—C131.14 (19)
C2—C7—C8—N11.51 (17)C11—C12—C13—C140.8 (2)
C3—C2—C7—C60.91 (17)C12—C13—C14—C90.4 (2)
C3—C2—C7—C8179.43 (11)C14—C9—C10—F1179.89 (10)
C3—C4—C5—O1179.34 (11)C14—C9—C10—C110.62 (18)
C3—C4—C5—C60.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.86 (2)1.81 (2)2.6083 (14)153.2 (18)
(4F) top
Crystal data top
C14H12FNO2Dx = 1.382 Mg m3
Mr = 245.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 7507 reflections
a = 19.3411 (12) Åθ = 2.7–30.2°
b = 4.9865 (3) ŵ = 0.10 mm1
c = 12.2219 (8) ÅT = 120 K
V = 1178.73 (13) Å3Plate, orange
Z = 40.46 × 0.26 × 0.14 mm
F(000) = 512
Data collection top
CCD area detector
diffractometer
2930 independent reflections
Radiation source: fine-focus sealed tube2670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.1°
phi and ω scansh = 2525
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0424 before and 0.0263 after correction. The Ratio of minimum to maximum transmission is 0.8117. The λ/2 correction factor is 0.0015.
k = 66
Tmin = 0.812, Tmax = 1l = 1616
12283 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.1603P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2930 reflectionsΔρmax = 0.18 e Å3
168 parametersΔρmin = 0.18 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.53179 (7)1.8147 (3)0.10287 (11)0.0427 (3)
O10.83478 (7)0.4178 (3)0.10555 (12)0.0335 (3)
O20.74106 (7)0.7904 (3)0.12451 (10)0.0289 (3)
H20.7083 (14)0.913 (5)0.143 (2)0.044 (7)*
N10.66621 (8)1.1010 (3)0.24957 (13)0.0252 (3)
C10.88533 (11)0.2108 (4)0.09254 (19)0.0369 (5)
H1A0.87150.05310.13510.055*
H1B0.93030.27530.11860.055*
H1C0.88880.16220.01500.055*
C20.77074 (9)0.7042 (4)0.21832 (15)0.0226 (4)
C30.82147 (9)0.5021 (4)0.21074 (15)0.0239 (4)
C40.85351 (9)0.4063 (4)0.30372 (17)0.0281 (4)
H40.88710.26810.29820.034*
C50.83648 (10)0.5129 (5)0.40640 (16)0.0334 (5)
H50.85890.44760.47020.040*
C60.78739 (11)0.7118 (5)0.41534 (15)0.0313 (4)
H60.77640.78330.48520.038*
C70.75341 (9)0.8098 (4)0.32168 (15)0.0238 (4)
C80.70058 (9)1.0160 (4)0.33297 (15)0.0255 (4)
H80.69131.08930.40320.031*
C90.61128 (9)1.2875 (4)0.26365 (16)0.0240 (4)
C100.59780 (10)1.4615 (4)0.17677 (16)0.0267 (4)
H100.62491.45560.11200.032*
C110.54408 (10)1.6425 (4)0.18723 (16)0.0284 (4)
C120.50238 (10)1.6562 (4)0.27824 (18)0.0304 (4)
H120.46611.78400.28300.037*
C130.51512 (10)1.4772 (4)0.36284 (17)0.0313 (4)
H130.48661.48070.42610.038*
C140.56898 (10)1.2926 (4)0.35647 (16)0.0278 (4)
H140.57701.17080.41490.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0468 (7)0.0378 (7)0.0434 (7)0.0125 (6)0.0024 (6)0.0084 (6)
O10.0355 (7)0.0354 (8)0.0295 (7)0.0129 (6)0.0033 (6)0.0074 (6)
O20.0314 (7)0.0330 (7)0.0224 (6)0.0094 (6)0.0046 (5)0.0009 (6)
N10.0247 (7)0.0226 (8)0.0283 (8)0.0016 (6)0.0017 (6)0.0017 (6)
C10.0341 (11)0.0318 (11)0.0449 (12)0.0074 (9)0.0036 (10)0.0072 (10)
C20.0226 (8)0.0223 (8)0.0230 (8)0.0021 (7)0.0023 (7)0.0011 (7)
C30.0224 (8)0.0231 (8)0.0263 (8)0.0015 (7)0.0006 (7)0.0001 (7)
C40.0215 (8)0.0273 (9)0.0354 (10)0.0018 (7)0.0024 (7)0.0086 (8)
C50.0279 (9)0.0467 (12)0.0254 (9)0.0056 (9)0.0007 (8)0.0130 (10)
C60.0286 (10)0.0427 (12)0.0225 (9)0.0008 (9)0.0016 (7)0.0026 (8)
C70.0219 (8)0.0254 (8)0.0242 (8)0.0025 (7)0.0001 (7)0.0025 (7)
C80.0254 (9)0.0267 (9)0.0245 (8)0.0028 (7)0.0003 (7)0.0029 (7)
C90.0228 (8)0.0207 (9)0.0285 (8)0.0018 (7)0.0015 (7)0.0053 (7)
C100.0263 (9)0.0243 (9)0.0295 (9)0.0001 (7)0.0002 (7)0.0022 (7)
C110.0288 (9)0.0238 (9)0.0326 (10)0.0007 (8)0.0058 (7)0.0008 (8)
C120.0251 (9)0.0266 (9)0.0397 (11)0.0030 (7)0.0028 (8)0.0111 (8)
C130.0253 (9)0.0356 (11)0.0330 (10)0.0007 (8)0.0032 (8)0.0092 (8)
C140.0292 (9)0.0273 (9)0.0269 (9)0.0025 (8)0.0001 (7)0.0019 (8)
Geometric parameters (Å, º) top
F1—C111.363 (2)C5—C61.377 (3)
O1—C11.430 (2)C6—H60.9500
O1—C31.377 (2)C6—C71.408 (3)
O2—H20.91 (3)C7—C81.456 (3)
O2—C21.352 (2)C8—H80.9500
N1—C81.289 (2)C9—C101.396 (3)
N1—C91.423 (2)C9—C141.399 (3)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.382 (3)
C1—H1C0.9800C11—C121.376 (3)
C2—C31.410 (3)C12—H120.9500
C2—C71.409 (2)C12—C131.388 (3)
C3—C41.380 (3)C13—H130.9500
C4—H40.9500C13—C141.392 (3)
C4—C51.402 (3)C14—H140.9500
C5—H50.9500
C3—O1—C1116.86 (16)C2—C7—C8121.04 (16)
C2—O2—H2107.7 (17)C6—C7—C2119.23 (16)
C8—N1—C9120.31 (16)C6—C7—C8119.72 (17)
O1—C1—H1A109.5N1—C8—C7121.28 (17)
O1—C1—H1B109.5N1—C8—H8119.4
O1—C1—H1C109.5C7—C8—H8119.4
H1A—C1—H1B109.5C10—C9—N1116.99 (17)
H1A—C1—H1C109.5C10—C9—C14119.77 (17)
H1B—C1—H1C109.5C14—C9—N1123.15 (17)
O2—C2—C3117.83 (16)C9—C10—H10120.8
O2—C2—C7122.72 (15)C11—C10—C9118.41 (18)
C7—C2—C3119.45 (16)C11—C10—H10120.8
O1—C3—C2114.19 (16)F1—C11—C10118.21 (18)
O1—C3—C4125.42 (17)F1—C11—C12118.56 (17)
C4—C3—C2120.39 (17)C12—C11—C10123.23 (18)
C3—C4—H4120.0C11—C12—H12121.1
C3—C4—C5120.04 (17)C11—C12—C13117.79 (17)
C5—C4—H4120.0C13—C12—H12121.1
C4—C5—H5119.8C12—C13—H13119.5
C6—C5—C4120.39 (17)C12—C13—C14121.09 (18)
C6—C5—H5119.8C14—C13—H13119.5
C5—C6—H6119.8C9—C14—H14120.2
C5—C6—C7120.49 (18)C13—C14—C9119.66 (18)
C7—C6—H6119.8C13—C14—H14120.2
F1—C11—C12—C13179.26 (17)C5—C6—C7—C20.7 (3)
O1—C3—C4—C5178.57 (19)C5—C6—C7—C8178.67 (18)
O2—C2—C3—O10.4 (2)C6—C7—C8—N1176.69 (18)
O2—C2—C3—C4180.00 (16)C7—C2—C3—O1179.03 (16)
O2—C2—C7—C6179.13 (17)C7—C2—C3—C40.6 (3)
O2—C2—C7—C81.5 (3)C8—N1—C9—C10151.12 (18)
N1—C9—C10—C11179.04 (16)C8—N1—C9—C1432.5 (3)
N1—C9—C14—C13178.35 (17)C9—N1—C8—C7175.20 (16)
C1—O1—C3—C2179.40 (17)C9—C10—C11—F1179.00 (16)
C1—O1—C3—C41.0 (3)C9—C10—C11—C121.3 (3)
C2—C3—C4—C51.0 (3)C10—C9—C14—C132.0 (3)
C2—C7—C8—N12.7 (3)C10—C11—C12—C130.5 (3)
C3—C2—C7—C60.3 (3)C11—C12—C13—C141.0 (3)
C3—C2—C7—C8179.10 (16)C12—C13—C14—C90.3 (3)
C3—C4—C5—C60.5 (3)C14—C9—C10—C112.5 (3)
C4—C5—C6—C70.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.91 (3)1.80 (3)2.614 (2)147 (2)
(5F) top
Crystal data top
C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8058 (3) ÅCell parameters from 2036 reflections
b = 10.6818 (8) Åθ = 2.9–29.3°
c = 27.574 (2) ŵ = 0.11 mm1
β = 91.609 (2)°T = 120 K
V = 1120.53 (15) Å3Plate, yellow
Z = 40.2 × 0.16 × 0.06 mm
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2129 independent reflections
Radiation source: fine-focus sealed tube1373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 25.7°, θmin = 1.5°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0550 before and 0.0414 after correction. The Ratio of minimum to maximum transmission is 0.7999. The λ/2 correction factor is 0.0015.
h = 44
Tmin = 0.800, Tmax = 1.000k = 1313
10327 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5623P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2129 reflectionsΔρmax = 0.23 e Å3
168 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1352 (4)0.08685 (13)0.04668 (5)0.0328 (4)
O10.1517 (4)0.04447 (14)0.43818 (6)0.0211 (4)
O20.0229 (5)0.08554 (15)0.27665 (6)0.0231 (4)
H20.073 (10)0.056 (3)0.2454 (13)0.072 (12)*
N10.2447 (5)0.06103 (18)0.20801 (7)0.0177 (5)
C10.2762 (7)0.1310 (2)0.47450 (9)0.0229 (6)
H1A0.5306940.1418070.4719200.034*
H1B0.2241420.0983640.5067360.034*
H1C0.1589060.2118690.4696870.034*
C20.1294 (6)0.0044 (2)0.30833 (9)0.0165 (5)
C30.0880 (6)0.0146 (2)0.35734 (9)0.0178 (5)
H30.0186790.0894850.3682980.021*
C40.2011 (6)0.0748 (2)0.39066 (8)0.0179 (6)
C50.3505 (6)0.1870 (2)0.37537 (9)0.0177 (5)
H50.4251310.2487290.3982210.021*
C60.3869 (6)0.2060 (2)0.32645 (9)0.0187 (6)
H60.4865220.2825280.3158950.022*
C70.2830 (6)0.1172 (2)0.29155 (8)0.0165 (5)
C80.3364 (6)0.1407 (2)0.24100 (9)0.0181 (6)
H80.4423610.2171570.2316630.022*
C90.3020 (6)0.0844 (2)0.15835 (9)0.0166 (5)
C100.1910 (6)0.0100 (2)0.12620 (9)0.0207 (6)
H100.0818140.0836820.1378080.025*
C110.2433 (7)0.0063 (2)0.07752 (9)0.0217 (6)
C120.3968 (6)0.1107 (2)0.05823 (9)0.0222 (6)
H120.4275860.1186880.0243050.027*
C130.5048 (6)0.2039 (2)0.09021 (9)0.0213 (6)
H130.6118470.2774260.0780470.026*
C140.4595 (6)0.1917 (2)0.13954 (9)0.0208 (6)
H140.5357880.2567460.1608670.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0496 (10)0.0237 (8)0.0250 (9)0.0079 (7)0.0020 (7)0.0061 (6)
O10.0290 (10)0.0176 (9)0.0167 (9)0.0048 (8)0.0016 (7)0.0009 (7)
O20.0318 (11)0.0170 (9)0.0205 (10)0.0082 (8)0.0016 (8)0.0029 (8)
N10.0194 (11)0.0171 (11)0.0168 (11)0.0010 (8)0.0015 (9)0.0001 (8)
C10.0258 (14)0.0218 (13)0.0210 (14)0.0003 (11)0.0017 (11)0.0018 (11)
C20.0155 (13)0.0130 (12)0.0209 (13)0.0012 (10)0.0000 (10)0.0020 (10)
C30.0180 (13)0.0108 (12)0.0246 (14)0.0011 (10)0.0001 (10)0.0011 (10)
C40.0165 (13)0.0181 (13)0.0193 (13)0.0047 (10)0.0032 (10)0.0029 (10)
C50.0201 (13)0.0124 (12)0.0209 (14)0.0005 (10)0.0030 (10)0.0026 (10)
C60.0189 (13)0.0125 (12)0.0248 (15)0.0025 (10)0.0038 (11)0.0045 (10)
C70.0133 (12)0.0164 (13)0.0199 (14)0.0024 (10)0.0008 (10)0.0002 (10)
C80.0132 (12)0.0145 (12)0.0266 (15)0.0019 (9)0.0017 (10)0.0014 (10)
C90.0132 (12)0.0151 (12)0.0214 (13)0.0031 (10)0.0006 (10)0.0010 (10)
C100.0155 (13)0.0165 (13)0.0301 (15)0.0001 (10)0.0019 (11)0.0027 (11)
C110.0243 (14)0.0173 (13)0.0233 (14)0.0019 (11)0.0019 (11)0.0044 (10)
C120.0245 (14)0.0242 (14)0.0181 (14)0.0052 (11)0.0011 (11)0.0020 (11)
C130.0235 (14)0.0190 (13)0.0215 (14)0.0013 (11)0.0008 (11)0.0011 (11)
C140.0202 (13)0.0170 (13)0.0252 (15)0.0008 (11)0.0009 (11)0.0010 (11)
Geometric parameters (Å, º) top
F1—C111.365 (3)C5—C61.375 (3)
O1—C11.433 (3)C6—H60.9500
O1—C41.368 (3)C6—C71.401 (3)
O2—H20.94 (4)C7—C81.436 (3)
O2—C21.353 (3)C8—H80.9500
N1—C81.286 (3)C9—C101.400 (3)
N1—C91.415 (3)C9—C141.400 (3)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.374 (3)
C1—H1C0.9800C11—C121.373 (3)
C2—C31.380 (3)C12—H120.9500
C2—C71.422 (3)C12—C131.385 (3)
C3—H30.9500C13—H130.9500
C3—C41.386 (3)C13—C141.382 (3)
C4—C51.396 (3)C14—H140.9500
C5—H50.9500
C4—O1—C1117.70 (19)C2—C7—C8122.3 (2)
C2—O2—H2107 (2)C6—C7—C2117.5 (2)
C8—N1—C9121.4 (2)C6—C7—C8120.2 (2)
O1—C1—H1A109.5N1—C8—C7121.9 (2)
O1—C1—H1B109.5N1—C8—H8119.1
O1—C1—H1C109.5C7—C8—H8119.1
H1A—C1—H1B109.5C10—C9—N1115.7 (2)
H1A—C1—H1C109.5C10—C9—C14118.7 (2)
H1B—C1—H1C109.5C14—C9—N1125.6 (2)
O2—C2—C3119.1 (2)C9—C10—H10120.7
O2—C2—C7120.7 (2)C11—C10—C9118.6 (2)
C3—C2—C7120.2 (2)C11—C10—H10120.7
C2—C3—H3119.8F1—C11—C10117.9 (2)
C2—C3—C4120.4 (2)F1—C11—C12118.4 (2)
C4—C3—H3119.8C12—C11—C10123.8 (2)
O1—C4—C3115.0 (2)C11—C12—H12121.3
O1—C4—C5124.1 (2)C11—C12—C13117.3 (2)
C3—C4—C5120.9 (2)C13—C12—H12121.3
C4—C5—H5120.8C12—C13—H13119.5
C6—C5—C4118.4 (2)C14—C13—C12121.1 (2)
C6—C5—H5120.8C14—C13—H13119.5
C5—C6—H6118.7C9—C14—H14119.7
C5—C6—C7122.7 (2)C13—C14—C9120.5 (2)
C7—C6—H6118.7C13—C14—H14119.7
F1—C11—C12—C13179.9 (2)C4—C5—C6—C70.5 (4)
O1—C4—C5—C6179.8 (2)C5—C6—C7—C21.0 (3)
O2—C2—C3—C4178.7 (2)C5—C6—C7—C8178.3 (2)
O2—C2—C7—C6180.0 (2)C6—C7—C8—N1179.9 (2)
O2—C2—C7—C80.8 (3)C7—C2—C3—C41.1 (3)
N1—C9—C10—C11179.2 (2)C8—N1—C9—C10179.8 (2)
N1—C9—C14—C13179.4 (2)C8—N1—C9—C140.3 (4)
C1—O1—C4—C3177.5 (2)C9—N1—C8—C7179.3 (2)
C1—O1—C4—C53.0 (3)C9—C10—C11—F1179.7 (2)
C2—C3—C4—O1178.9 (2)C9—C10—C11—C120.5 (4)
C2—C3—C4—C51.7 (4)C10—C9—C14—C130.1 (3)
C2—C7—C8—N10.6 (3)C10—C11—C12—C130.3 (4)
C3—C2—C7—C60.2 (3)C11—C12—C13—C140.0 (4)
C3—C2—C7—C8179.1 (2)C12—C13—C14—C90.1 (4)
C3—C4—C5—C60.8 (3)C14—C9—C10—C110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.94 (4)1.76 (4)2.615 (3)150 (3)
(6F) top
Crystal data top
C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.1230 (9) ÅCell parameters from 2222 reflections
b = 13.2386 (9) Åθ = 2.2–29.7°
c = 6.8116 (4) ŵ = 0.11 mm1
β = 103.690 (2)°T = 120 K
V = 1149.76 (13) Å3Block, orange
Z = 40.38 × 0.24 × 0.18 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2183 independent reflections
Radiation source: sealed X-ray tube1600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.9 pixels mm-1θmax = 25.7°, θmin = 1.6°
ω scansh = 1615
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0442 before and 0.0310 after correction. The Ratio of minimum to maximum transmission is 0.7636. The λ/2 correction factor is 0.0015.
k = 1416
Tmin = 0.764, Tmax = 1l = 68
6467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + 0.0946P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2183 reflectionsΔρmax = 0.16 e Å3
174 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 3 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 4.424 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The F atom was found to be disordered, the occupancies of the two positions were refined and then fixed at the refined values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.24765 (10)0.36726 (10)0.32864 (18)0.0335 (4)
O20.13558 (10)0.39421 (10)0.87486 (17)0.0317 (4)
H20.1859260.3875840.8193260.048*
N10.22689 (12)0.36747 (11)0.5796 (2)0.0256 (4)
C10.25704 (15)0.36678 (15)0.1156 (3)0.0312 (5)
H1A0.2261630.3045930.0772000.047*
H1B0.2200950.4253310.0779550.047*
H1C0.3313170.3700810.0452490.047*
C20.04362 (14)0.38638 (13)0.7332 (3)0.0242 (4)
C30.04922 (15)0.39957 (13)0.7930 (3)0.0271 (5)
H30.0474000.4134460.9306260.032*
C40.14436 (15)0.39271 (13)0.6542 (3)0.0268 (4)
H40.2075700.4016210.6972020.032*
C50.14865 (14)0.37273 (13)0.4505 (3)0.0246 (4)
C60.05658 (14)0.35876 (13)0.3902 (2)0.0236 (4)
H60.0591090.3440370.2525800.028*
C70.04084 (14)0.36600 (12)0.5292 (3)0.0228 (4)
C80.13640 (14)0.35726 (13)0.4588 (3)0.0245 (4)
H80.1318620.3436670.3200710.029*
C90.31990 (14)0.36968 (13)0.5074 (3)0.0264 (4)
C100.32184 (15)0.40161 (14)0.3132 (3)0.0292 (5)
H100.2587740.4192430.2185810.035*
C110.41684 (16)0.40709 (15)0.2613 (3)0.0358 (5)
H110.4180570.4296050.1295010.043*0.4073
C120.51046 (16)0.38128 (15)0.3926 (3)0.0368 (5)
H120.5752710.3858170.3539070.044*
C130.50561 (15)0.34861 (15)0.5823 (3)0.0366 (5)
H130.5686210.3287020.6745780.044*0.5927
C140.41314 (14)0.34379 (14)0.6427 (3)0.0303 (5)
H140.4128730.3229230.7760660.036*
F1A0.42231 (15)0.43707 (15)0.0868 (3)0.0412 (5)0.5927
F1B0.5964 (2)0.3291 (2)0.6920 (4)0.0431 (7)0.4073
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (7)0.0535 (9)0.0288 (8)0.0016 (6)0.0039 (5)0.0033 (6)
O20.0235 (8)0.0430 (8)0.0260 (7)0.0005 (6)0.0007 (5)0.0008 (6)
N10.0193 (9)0.0236 (8)0.0322 (9)0.0022 (6)0.0027 (6)0.0009 (6)
C10.0237 (10)0.0407 (11)0.0275 (10)0.0014 (8)0.0028 (8)0.0003 (8)
C20.0242 (10)0.0216 (9)0.0251 (10)0.0012 (7)0.0023 (8)0.0022 (7)
C30.0340 (12)0.0257 (10)0.0225 (9)0.0017 (8)0.0087 (8)0.0005 (7)
C40.0237 (11)0.0285 (10)0.0308 (10)0.0011 (8)0.0117 (8)0.0020 (7)
C50.0195 (10)0.0248 (9)0.0293 (10)0.0001 (7)0.0055 (8)0.0032 (7)
C60.0231 (10)0.0249 (9)0.0220 (9)0.0007 (7)0.0039 (7)0.0015 (7)
C70.0225 (10)0.0175 (9)0.0287 (10)0.0002 (7)0.0064 (7)0.0008 (7)
C80.0234 (11)0.0243 (10)0.0248 (9)0.0022 (7)0.0034 (7)0.0009 (7)
C90.0207 (11)0.0218 (9)0.0358 (11)0.0004 (7)0.0051 (8)0.0070 (7)
C100.0207 (10)0.0295 (11)0.0355 (11)0.0006 (8)0.0031 (8)0.0049 (8)
C110.0289 (12)0.0370 (12)0.0442 (12)0.0035 (9)0.0136 (9)0.0112 (9)
C120.0215 (11)0.0356 (12)0.0557 (14)0.0033 (8)0.0138 (9)0.0179 (9)
C130.0173 (11)0.0356 (12)0.0523 (13)0.0001 (8)0.0010 (9)0.0141 (9)
C140.0226 (11)0.0295 (11)0.0356 (11)0.0013 (8)0.0004 (8)0.0046 (8)
F1A0.0354 (12)0.0600 (14)0.0325 (10)0.0023 (9)0.0165 (8)0.0037 (9)
F1B0.0229 (16)0.0551 (19)0.0458 (17)0.0073 (13)0.0033 (12)0.0003 (13)
Geometric parameters (Å, º) top
O1—C11.427 (2)C6—C71.403 (2)
O1—C51.368 (2)C7—C81.449 (3)
O2—H20.8400C8—H80.9500
O2—C21.359 (2)C9—C101.395 (3)
N1—C81.282 (2)C9—C141.389 (2)
N1—C91.420 (2)C10—H100.9500
C1—H1A0.9800C10—C111.376 (3)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.380 (3)
C2—C31.384 (3)C11—F1A1.271 (3)
C2—C71.408 (2)C12—H120.9500
C3—H30.9500C12—C131.378 (3)
C3—C41.379 (2)C13—H130.9500
C4—H40.9500C13—C141.372 (3)
C4—C51.401 (2)C13—F1B1.274 (3)
C5—C61.378 (3)C14—H140.9500
C6—H60.9500
C5—O1—C1117.28 (14)C6—C7—C8119.52 (16)
C2—O2—H2109.5N1—C8—C7121.46 (17)
C8—N1—C9121.43 (16)N1—C8—H8119.3
O1—C1—H1A109.5C7—C8—H8119.3
O1—C1—H1B109.5C10—C9—N1123.01 (16)
O1—C1—H1C109.5C14—C9—N1117.34 (17)
H1A—C1—H1B109.5C14—C9—C10119.55 (18)
H1A—C1—H1C109.5C9—C10—H10120.6
H1B—C1—H1C109.5C11—C10—C9118.73 (18)
O2—C2—C3118.51 (16)C11—C10—H10120.6
O2—C2—C7121.77 (17)C10—C11—H11118.6
C3—C2—C7119.72 (16)C10—C11—C12122.8 (2)
C2—C3—H3119.8C12—C11—H11118.6
C4—C3—C2120.48 (16)F1A—C11—C10120.8 (2)
C4—C3—H3119.8F1A—C11—C12116.4 (2)
C3—C4—H4119.7C11—C12—H12121.5
C3—C4—C5120.60 (17)C13—C12—C11116.96 (19)
C5—C4—H4119.7C13—C12—H12121.5
O1—C5—C4114.89 (16)C12—C13—H13118.8
O1—C5—C6125.85 (16)C14—C13—C12122.44 (18)
C6—C5—C4119.25 (16)C14—C13—H13118.8
C5—C6—H6119.6F1B—C13—C12111.7 (2)
C5—C6—C7120.84 (17)F1B—C13—C14125.8 (2)
C7—C6—H6119.6C9—C14—H14120.3
C2—C7—C8121.32 (16)C13—C14—C9119.46 (19)
C6—C7—C2119.10 (17)C13—C14—H14120.3
O1—C5—C6—C7179.85 (16)C5—C6—C7—C8176.11 (16)
O2—C2—C3—C4179.73 (15)C6—C7—C8—N1177.16 (15)
O2—C2—C7—C6179.97 (16)C7—C2—C3—C40.1 (3)
O2—C2—C7—C83.1 (2)C8—N1—C9—C1026.7 (3)
N1—C9—C10—C11175.97 (17)C8—N1—C9—C14156.86 (16)
N1—C9—C14—C13177.48 (16)C9—N1—C8—C7173.18 (15)
C1—O1—C5—C4168.13 (15)C9—C10—C11—C120.7 (3)
C1—O1—C5—C613.1 (3)C9—C10—C11—F1A179.07 (19)
C2—C3—C4—C50.3 (3)C10—C9—C14—C131.0 (3)
C2—C7—C8—N10.2 (3)C10—C11—C12—C130.2 (3)
C3—C2—C7—C60.4 (2)C11—C12—C13—C141.6 (3)
C3—C2—C7—C8176.55 (16)C11—C12—C13—F1B178.5 (2)
C3—C4—C5—O1179.65 (16)C12—C13—C14—C92.0 (3)
C3—C4—C5—C60.8 (2)C14—C9—C10—C110.3 (3)
C4—C5—C6—C71.1 (3)F1A—C11—C12—C13179.98 (19)
C5—C6—C7—C20.9 (2)F1B—C13—C14—C9178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.841.862.597 (2)147
(7F) top
Crystal data top
C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3352 (7) ÅCell parameters from 4908 reflections
b = 12.0366 (7) Åθ = 2.6–29.8°
c = 9.3002 (6) ŵ = 0.11 mm1
β = 114.175 (1)°T = 120 K
V = 1157.61 (12) Å3Block, orange
Z = 40.4 × 0.3 × 0.26 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2872 independent reflections
Radiation source: sealed X-ray tube2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = 1515
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.5131 before and 0.0509 after correction. The Ratio of minimum to maximum transmission is 0.4853. The λ/2 correction factor is 0.0015.
k = 1616
Tmin = 0.485, Tmax = 1l = 1212
12782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.3155P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2872 reflectionsΔρmax = 0.40 e Å3
168 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 4.424 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.42604 (9)0.71163 (7)0.54102 (10)0.0334 (2)
O10.30249 (10)0.59517 (8)0.57065 (12)0.0302 (3)
O20.10940 (11)0.61008 (8)0.29359 (13)0.0290 (3)
N10.03692 (11)0.73088 (9)0.05928 (14)0.0219 (3)
C10.41635 (14)0.58461 (13)0.71340 (18)0.0309 (3)
H1A0.39930.61330.80160.046*
H1B0.48690.62710.70460.046*
H1C0.44110.50620.73190.046*
C20.16263 (13)0.70629 (11)0.36578 (16)0.0216 (3)
C30.26560 (14)0.70066 (11)0.51561 (17)0.0228 (3)
C40.32055 (14)0.79715 (12)0.59624 (17)0.0251 (3)
H40.38950.79310.69790.030*
C50.27433 (14)0.90076 (12)0.52764 (18)0.0280 (3)
H50.31180.96690.58350.034*
C60.17522 (14)0.90744 (11)0.38008 (18)0.0257 (3)
H60.14470.97810.33470.031*
C70.11863 (13)0.81036 (11)0.29561 (16)0.0211 (3)
C80.01661 (13)0.81839 (11)0.13817 (16)0.0223 (3)
H80.01110.88950.09260.027*
C90.13585 (13)0.73386 (11)0.09452 (16)0.0209 (3)
C100.20440 (14)0.82890 (12)0.17047 (17)0.0250 (3)
H100.18450.89880.11850.030*
C110.30099 (14)0.82114 (12)0.32084 (18)0.0263 (3)
H110.34760.88540.37300.032*
C120.32890 (14)0.71874 (12)0.39429 (17)0.0239 (3)
C130.26310 (13)0.62339 (11)0.32416 (17)0.0241 (3)
H130.28330.55400.37740.029*
C140.16653 (13)0.63227 (11)0.17342 (17)0.0225 (3)
H140.12010.56760.12260.027*
H20.047 (2)0.634 (2)0.194 (3)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0304 (5)0.0367 (5)0.0224 (5)0.0038 (4)0.0001 (4)0.0013 (4)
O10.0318 (6)0.0214 (5)0.0267 (6)0.0010 (4)0.0012 (5)0.0020 (4)
O20.0330 (6)0.0174 (5)0.0257 (6)0.0005 (4)0.0008 (5)0.0030 (4)
N10.0233 (6)0.0209 (5)0.0201 (6)0.0023 (4)0.0074 (5)0.0010 (4)
C10.0252 (7)0.0312 (8)0.0277 (8)0.0013 (6)0.0023 (6)0.0080 (6)
C20.0235 (7)0.0192 (6)0.0209 (7)0.0011 (5)0.0080 (6)0.0033 (5)
C30.0248 (7)0.0209 (6)0.0222 (7)0.0019 (5)0.0090 (6)0.0003 (5)
C40.0224 (7)0.0281 (7)0.0210 (7)0.0006 (5)0.0050 (6)0.0035 (5)
C50.0287 (7)0.0219 (7)0.0295 (8)0.0025 (6)0.0079 (6)0.0078 (6)
C60.0266 (7)0.0174 (6)0.0307 (8)0.0002 (5)0.0094 (6)0.0018 (5)
C70.0213 (6)0.0205 (6)0.0216 (7)0.0000 (5)0.0088 (6)0.0018 (5)
C80.0243 (7)0.0194 (6)0.0233 (7)0.0014 (5)0.0098 (6)0.0012 (5)
C90.0217 (6)0.0215 (6)0.0196 (7)0.0011 (5)0.0085 (6)0.0012 (5)
C100.0303 (7)0.0196 (6)0.0233 (7)0.0021 (5)0.0092 (6)0.0002 (5)
C110.0295 (7)0.0225 (7)0.0247 (7)0.0065 (6)0.0088 (6)0.0042 (5)
C120.0215 (6)0.0284 (7)0.0189 (7)0.0006 (5)0.0054 (5)0.0013 (5)
C130.0251 (7)0.0204 (6)0.0252 (7)0.0015 (5)0.0086 (6)0.0019 (5)
C140.0239 (7)0.0187 (6)0.0246 (7)0.0021 (5)0.0097 (6)0.0023 (5)
Geometric parameters (Å, º) top
F1—C121.3606 (16)C5—C61.374 (2)
O1—C11.4286 (17)C6—H60.9500
O1—C31.3688 (16)C6—C71.4076 (18)
O2—C21.3506 (15)C7—C81.450 (2)
O2—H20.95 (3)C8—H80.9500
N1—C81.2850 (17)C9—C101.4006 (19)
N1—C91.4111 (18)C9—C141.3948 (19)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.382 (2)
C1—H1C0.9800C11—H110.9500
C2—C31.406 (2)C11—C121.382 (2)
C2—C71.4060 (18)C12—C131.3786 (19)
C3—C41.3845 (19)C13—H130.9500
C4—H40.9500C13—C141.385 (2)
C4—C51.401 (2)C14—H140.9500
C5—H50.9500
C3—O1—C1116.83 (11)C2—C7—C6119.11 (12)
C2—O2—H2103.3 (15)C2—C7—C8120.83 (12)
C8—N1—C9123.46 (12)C6—C7—C8120.05 (12)
O1—C1—H1A109.5N1—C8—C7121.10 (12)
O1—C1—H1B109.5N1—C8—H8119.5
O1—C1—H1C109.5C7—C8—H8119.5
H1A—C1—H1B109.5C10—C9—N1125.34 (12)
H1A—C1—H1C109.5C14—C9—N1115.75 (12)
H1B—C1—H1C109.5C14—C9—C10118.91 (13)
O2—C2—C3118.15 (12)C9—C10—H10120.0
O2—C2—C7122.13 (12)C11—C10—C9120.08 (13)
C3—C2—C7119.72 (12)C11—C10—H10120.0
O1—C3—C2114.70 (11)C10—C11—H11120.4
O1—C3—C4125.09 (13)C12—C11—C10119.13 (13)
C4—C3—C2120.20 (12)C12—C11—H11120.4
C3—C4—H4120.0F1—C12—C11118.64 (12)
C3—C4—C5119.92 (13)F1—C12—C13118.75 (12)
C5—C4—H4120.0C13—C12—C11122.60 (13)
C4—C5—H5119.8C12—C13—H13121.2
C6—C5—C4120.46 (13)C12—C13—C14117.70 (12)
C6—C5—H5119.8C14—C13—H13121.2
C5—C6—H6119.7C9—C14—H14119.2
C5—C6—C7120.53 (13)C13—C14—C9121.58 (12)
C7—C6—H6119.7C13—C14—H14119.2
F1—C12—C13—C14178.61 (12)C5—C6—C7—C21.6 (2)
O1—C3—C4—C5179.92 (13)C5—C6—C7—C8178.25 (13)
O2—C2—C3—O11.34 (19)C6—C7—C8—N1179.60 (13)
O2—C2—C3—C4177.98 (12)C7—C2—C3—O1178.41 (12)
O2—C2—C7—C6177.56 (13)C7—C2—C3—C42.3 (2)
O2—C2—C7—C82.6 (2)C8—N1—C9—C1012.0 (2)
N1—C9—C10—C11178.96 (13)C8—N1—C9—C14168.80 (13)
N1—C9—C14—C13179.04 (13)C9—N1—C8—C7179.56 (12)
C1—O1—C3—C2172.69 (12)C9—C10—C11—C120.2 (2)
C1—O1—C3—C48.0 (2)C10—C9—C14—C130.2 (2)
C2—C3—C4—C50.7 (2)C10—C11—C12—F1178.62 (13)
C2—C7—C8—N10.6 (2)C10—C11—C12—C130.7 (2)
C3—C2—C7—C62.7 (2)C11—C12—C13—C140.7 (2)
C3—C2—C7—C8177.13 (12)C12—C13—C14—C90.2 (2)
C3—C4—C5—C60.5 (2)C14—C9—C10—C110.3 (2)
C4—C5—C6—C70.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.95 (3)1.69 (3)2.5794 (15)154 (2)
(8F) top
Crystal data top
C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8354 (3) ÅCell parameters from 4235 reflections
b = 10.6493 (7) Åθ = 2.4–29.8°
c = 27.9772 (19) ŵ = 0.11 mm1
β = 90.806 (1)°T = 120 K
V = 1142.60 (14) Å3Needle, yellow
Z = 40.46 × 0.14 × 0.12 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2336 independent reflections
Radiation source: sealed X-ray tube1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 1.5°
ω scansh = 44
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0619 before and 0.0357 after correction. The Ratio of minimum to maximum transmission is 0.8729. The λ/2 correction factor is 0.0015.
k = 1313
Tmin = 0.873, Tmax = 1l = 3434
10926 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.044P)2 + 0.8024P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2336 reflectionsΔρmax = 0.19 e Å3
168 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.9965 (4)0.63795 (11)0.48336 (4)0.0378 (4)
O10.4991 (4)0.55462 (12)0.06456 (5)0.0265 (4)
O20.8995 (4)0.42506 (12)0.21535 (5)0.0250 (3)
H20.918 (7)0.457 (3)0.2472 (10)0.057 (8)*
N10.8262 (4)0.57441 (14)0.28818 (5)0.0209 (4)
C10.3320 (6)0.6439 (2)0.03351 (7)0.0295 (5)
H1A0.31070.60850.00130.044*
H1B0.47150.72090.03250.044*
H1C0.09950.66330.04560.044*
C20.7477 (5)0.51604 (17)0.18844 (7)0.0199 (4)
C30.7008 (5)0.49602 (17)0.14010 (7)0.0220 (4)
H30.77920.41990.12620.026*
C40.5395 (5)0.58657 (18)0.11165 (6)0.0205 (4)
C50.4321 (5)0.70110 (17)0.13095 (7)0.0218 (4)
H50.32920.76420.11130.026*
C60.4805 (5)0.71961 (17)0.17951 (7)0.0217 (4)
H60.40490.79660.19300.026*
C70.6354 (5)0.63027 (17)0.20958 (7)0.0197 (4)
C80.6766 (5)0.65436 (18)0.25984 (7)0.0216 (4)
H80.59180.73100.27260.026*
C90.8656 (5)0.59755 (17)0.33796 (7)0.0203 (4)
C100.7580 (5)0.70736 (18)0.36073 (7)0.0240 (4)
H100.65500.77330.34250.029*
C110.8010 (5)0.72054 (18)0.40984 (7)0.0265 (5)
H110.72760.79490.42560.032*
C120.9518 (6)0.62380 (19)0.43524 (7)0.0261 (5)
C131.0659 (5)0.51467 (18)0.41403 (7)0.0257 (5)
H131.17190.44970.43240.031*
C141.0210 (5)0.50285 (18)0.36512 (7)0.0221 (4)
H141.09790.42850.34970.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0613 (9)0.0298 (7)0.0223 (6)0.0047 (6)0.0040 (6)0.0018 (5)
O10.0348 (9)0.0227 (7)0.0221 (7)0.0027 (6)0.0004 (6)0.0016 (6)
O20.0341 (8)0.0161 (7)0.0247 (7)0.0059 (6)0.0009 (6)0.0015 (6)
N10.0223 (9)0.0174 (8)0.0230 (8)0.0012 (7)0.0014 (6)0.0008 (7)
C10.0315 (12)0.0306 (11)0.0263 (11)0.0026 (9)0.0023 (9)0.0043 (9)
C20.0180 (10)0.0157 (9)0.0260 (10)0.0012 (8)0.0020 (7)0.0041 (8)
C30.0231 (11)0.0151 (9)0.0280 (10)0.0000 (8)0.0032 (8)0.0013 (8)
C40.0202 (10)0.0201 (10)0.0213 (10)0.0035 (8)0.0022 (7)0.0001 (8)
C50.0214 (10)0.0171 (9)0.0270 (10)0.0007 (8)0.0015 (8)0.0036 (8)
C60.0197 (10)0.0146 (9)0.0309 (11)0.0018 (8)0.0008 (8)0.0002 (8)
C70.0175 (10)0.0156 (9)0.0261 (10)0.0015 (7)0.0027 (8)0.0004 (8)
C80.0191 (10)0.0159 (9)0.0298 (10)0.0025 (8)0.0023 (8)0.0021 (8)
C90.0194 (10)0.0182 (9)0.0233 (10)0.0037 (8)0.0017 (7)0.0024 (8)
C100.0263 (11)0.0181 (10)0.0278 (10)0.0007 (8)0.0019 (8)0.0006 (8)
C110.0319 (12)0.0184 (10)0.0292 (11)0.0029 (9)0.0046 (9)0.0033 (8)
C120.0324 (12)0.0254 (11)0.0204 (10)0.0086 (9)0.0011 (8)0.0005 (8)
C130.0301 (12)0.0188 (10)0.0282 (11)0.0027 (9)0.0042 (9)0.0030 (8)
C140.0221 (11)0.0164 (9)0.0277 (10)0.0012 (8)0.0001 (8)0.0002 (8)
Geometric parameters (Å, º) top
F1—C121.363 (2)C5—C61.383 (3)
O1—C11.433 (2)C6—H60.9500
O1—C41.367 (2)C6—C71.397 (3)
O2—H20.96 (3)C7—C81.436 (3)
O2—C21.354 (2)C8—H80.9500
N1—C81.292 (2)C9—C101.397 (3)
N1—C91.420 (2)C9—C141.392 (3)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.389 (3)
C1—H1C0.9800C11—H110.9500
C2—C31.378 (3)C11—C121.375 (3)
C2—C71.422 (3)C12—C131.379 (3)
C3—H30.9500C13—H130.9500
C3—C41.390 (3)C13—C141.383 (3)
C4—C51.398 (3)C14—H140.9500
C5—H50.9500
C4—O1—C1117.56 (15)C2—C7—C8122.01 (17)
C2—O2—H2106.8 (16)C6—C7—C2117.46 (17)
C8—N1—C9121.84 (16)C6—C7—C8120.53 (17)
O1—C1—H1A109.5N1—C8—C7121.67 (17)
O1—C1—H1B109.5N1—C8—H8119.2
O1—C1—H1C109.5C7—C8—H8119.2
H1A—C1—H1B109.5C10—C9—N1124.36 (17)
H1A—C1—H1C109.5C14—C9—N1116.64 (17)
H1B—C1—H1C109.5C14—C9—C10118.99 (18)
O2—C2—C3118.95 (17)C9—C10—H10119.9
O2—C2—C7120.77 (16)C11—C10—C9120.28 (18)
C3—C2—C7120.27 (17)C11—C10—H10119.9
C2—C3—H3119.8C10—C11—H11120.7
C2—C3—C4120.36 (17)C12—C11—C10118.62 (18)
C4—C3—H3119.8C12—C11—H11120.7
O1—C4—C3115.00 (16)F1—C12—C11118.29 (18)
O1—C4—C5124.00 (17)F1—C12—C13118.81 (18)
C3—C4—C5121.01 (17)C11—C12—C13122.88 (18)
C4—C5—H5121.1C12—C13—H13121.1
C6—C5—C4117.88 (17)C12—C13—C14117.83 (18)
C6—C5—H5121.1C14—C13—H13121.1
C5—C6—H6118.5C9—C14—H14119.3
C5—C6—C7122.99 (17)C13—C14—C9121.39 (18)
C7—C6—H6118.5C13—C14—H14119.3
F1—C12—C13—C14179.37 (18)C4—C5—C6—C71.0 (3)
O1—C4—C5—C6178.24 (18)C5—C6—C7—C20.3 (3)
O2—C2—C3—C4178.72 (17)C5—C6—C7—C8179.57 (18)
O2—C2—C7—C6179.90 (17)C6—C7—C8—N1178.39 (18)
O2—C2—C7—C80.1 (3)C7—C2—C3—C40.8 (3)
N1—C9—C10—C11178.67 (18)C8—N1—C9—C101.7 (3)
N1—C9—C14—C13178.76 (18)C8—N1—C9—C14178.02 (18)
C1—O1—C4—C3179.53 (17)C9—N1—C8—C7179.60 (17)
C1—O1—C4—C50.9 (3)C9—C10—C11—C120.2 (3)
C2—C3—C4—O1178.25 (17)C10—C9—C14—C131.0 (3)
C2—C3—C4—C52.1 (3)C10—C11—C12—F1179.32 (18)
C2—C7—C8—N11.8 (3)C10—C11—C12—C130.7 (3)
C3—C2—C7—C60.4 (3)C11—C12—C13—C140.8 (3)
C3—C2—C7—C8179.47 (18)C12—C13—C14—C90.1 (3)
C3—C4—C5—C62.2 (3)C14—C9—C10—C111.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.96 (3)1.74 (3)2.603 (2)149 (2)
(9F) top
Crystal data top
C14H12FNO2F(000) = 1024
Mr = 245.25Dx = 1.414 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.1425 (12) ÅCell parameters from 5210 reflections
b = 6.9311 (3) Åθ = 3.0–30.0°
c = 12.8535 (5) ŵ = 0.11 mm1
β = 113.217 (1)°T = 120 K
V = 2304.15 (17) Å3Block, orange
Z = 80.42 × 0.32 × 0.3 mm
Data collection top
CCD area detector
diffractometer
2865 independent reflections
Graphite monochromator2245 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.033
phi and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0354 before and 0.0296 after correction. The Ratio of minimum to maximum transmission is 0.9314. The λ/2 correction factor is 0.0015.
h = 3737
Tmin = 0.931, Tmax = 1k = 98
12612 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0544P)2 + 1.112P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2865 reflectionsΔρmax = 0.26 e Å3
168 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.17709 (3)0.13164 (12)0.04399 (7)0.0352 (2)
O10.24248 (3)0.21336 (13)0.35805 (8)0.0303 (2)
O20.05406 (3)0.59080 (14)0.20324 (9)0.0306 (2)
N10.00893 (4)0.26043 (15)0.13033 (8)0.0218 (2)
C10.24473 (5)0.00815 (19)0.36013 (13)0.0321 (3)
H1A0.22900.04160.28260.048*
H1B0.22580.04180.40420.048*
H1C0.28090.03350.39510.048*
C20.09917 (4)0.49043 (18)0.23824 (10)0.0236 (3)
C30.14554 (5)0.59084 (19)0.29121 (11)0.0276 (3)
H30.14490.72670.30050.033*
C40.19231 (5)0.49438 (19)0.33019 (11)0.0271 (3)
H40.22360.56440.36620.033*
C50.19404 (4)0.29495 (18)0.31708 (10)0.0236 (3)
C60.14850 (4)0.19408 (18)0.26366 (10)0.0227 (3)
H60.14950.05840.25410.027*
C70.10057 (4)0.29058 (18)0.22321 (10)0.0212 (3)
C80.05366 (4)0.17914 (18)0.16778 (10)0.0216 (2)
H80.05600.04380.15900.026*
C90.03705 (4)0.14950 (18)0.08301 (10)0.0215 (3)
C100.03976 (4)0.04729 (18)0.10198 (10)0.0233 (3)
H100.00920.11670.14490.028*
C110.08703 (5)0.14256 (19)0.05842 (11)0.0254 (3)
H110.08920.27670.07100.031*
C120.13064 (4)0.0377 (2)0.00338 (10)0.0262 (3)
C130.12959 (5)0.1558 (2)0.02524 (11)0.0280 (3)
H130.16040.22340.06920.034*
C140.08229 (5)0.24971 (19)0.01873 (10)0.0252 (3)
H140.08060.38370.00500.030*
H20.0290 (7)0.502 (3)0.1696 (16)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0180 (4)0.0429 (5)0.0406 (5)0.0076 (3)0.0072 (3)0.0050 (4)
O10.0163 (4)0.0287 (5)0.0413 (6)0.0001 (3)0.0064 (4)0.0001 (4)
O20.0192 (4)0.0252 (5)0.0430 (6)0.0021 (3)0.0076 (4)0.0039 (4)
N10.0176 (5)0.0260 (5)0.0198 (5)0.0006 (4)0.0052 (4)0.0014 (4)
C10.0210 (6)0.0309 (7)0.0418 (8)0.0042 (5)0.0097 (5)0.0054 (6)
C20.0194 (5)0.0260 (7)0.0251 (6)0.0015 (4)0.0083 (4)0.0010 (5)
C30.0251 (6)0.0223 (7)0.0355 (7)0.0030 (5)0.0121 (5)0.0055 (5)
C40.0193 (5)0.0292 (7)0.0311 (7)0.0055 (5)0.0080 (5)0.0058 (5)
C50.0162 (5)0.0289 (7)0.0243 (6)0.0008 (5)0.0067 (4)0.0006 (5)
C60.0201 (6)0.0229 (6)0.0242 (6)0.0003 (4)0.0078 (5)0.0008 (5)
C70.0182 (5)0.0260 (6)0.0191 (6)0.0019 (4)0.0068 (4)0.0019 (5)
C80.0198 (5)0.0242 (6)0.0198 (6)0.0004 (4)0.0069 (4)0.0024 (5)
C90.0173 (5)0.0273 (7)0.0190 (6)0.0001 (4)0.0064 (4)0.0031 (5)
C100.0187 (5)0.0280 (7)0.0219 (6)0.0026 (5)0.0065 (4)0.0001 (5)
C110.0236 (6)0.0263 (7)0.0263 (6)0.0021 (5)0.0099 (5)0.0019 (5)
C120.0166 (5)0.0357 (7)0.0256 (6)0.0054 (5)0.0076 (5)0.0062 (5)
C130.0177 (5)0.0349 (7)0.0270 (6)0.0045 (5)0.0041 (5)0.0009 (5)
C140.0219 (6)0.0264 (7)0.0244 (6)0.0019 (5)0.0058 (5)0.0007 (5)
Geometric parameters (Å, º) top
F1—C121.3664 (13)C5—C61.3816 (16)
O1—C11.4235 (16)C6—H60.9500
O1—C51.3747 (14)C6—C71.4086 (16)
O2—C21.3594 (14)C7—C81.4511 (15)
O2—H20.907 (19)C8—H80.9500
N1—C81.2868 (15)C9—C101.3929 (17)
N1—C91.4196 (14)C9—C141.3987 (16)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.3898 (16)
C1—H1C0.9800C11—H110.9500
C2—C31.3965 (16)C11—C121.3772 (17)
C2—C71.4012 (17)C12—C131.3735 (19)
C3—H30.9500C13—H130.9500
C3—C41.3823 (17)C13—C141.3861 (17)
C4—H40.9500C14—H140.9500
C4—C51.3956 (18)
C5—O1—C1116.63 (9)C2—C7—C6119.56 (11)
C2—O2—H2105.2 (12)C2—C7—C8121.62 (11)
C8—N1—C9121.01 (11)C6—C7—C8118.82 (11)
O1—C1—H1A109.5N1—C8—C7121.14 (11)
O1—C1—H1B109.5N1—C8—H8119.4
O1—C1—H1C109.5C7—C8—H8119.4
H1A—C1—H1B109.5C10—C9—N1123.98 (10)
H1A—C1—H1C109.5C10—C9—C14119.32 (11)
H1B—C1—H1C109.5C14—C9—N1116.60 (11)
O2—C2—C3118.53 (11)C9—C10—H10119.9
O2—C2—C7122.25 (11)C11—C10—C9120.30 (11)
C3—C2—C7119.22 (11)C11—C10—H10119.9
C2—C3—H3119.7C10—C11—H11120.8
C4—C3—C2120.59 (12)C12—C11—C10118.40 (12)
C4—C3—H3119.7C12—C11—H11120.8
C3—C4—H4119.7F1—C12—C11118.04 (12)
C3—C4—C5120.58 (11)F1—C12—C13118.80 (11)
C5—C4—H4119.7C13—C12—C11123.16 (11)
O1—C5—C4115.95 (11)C12—C13—H13121.0
O1—C5—C6124.59 (11)C12—C13—C14118.03 (11)
C6—C5—C4119.45 (11)C14—C13—H13121.0
C5—C6—H6119.7C9—C14—H14119.6
C5—C6—C7120.58 (11)C13—C14—C9120.79 (12)
C7—C6—H6119.7C13—C14—H14119.6
F1—C12—C13—C14178.59 (11)C4—C5—C6—C70.41 (18)
O1—C5—C6—C7179.25 (11)C5—C6—C7—C20.52 (18)
O2—C2—C3—C4178.73 (11)C5—C6—C7—C8179.89 (11)
O2—C2—C7—C6178.55 (11)C6—C7—C8—N1179.36 (11)
O2—C2—C7—C80.80 (18)C7—C2—C3—C41.08 (19)
N1—C9—C10—C11175.76 (11)C8—N1—C9—C1019.67 (17)
N1—C9—C14—C13176.15 (11)C8—N1—C9—C14163.82 (11)
C1—O1—C5—C4171.31 (12)C9—N1—C8—C7175.72 (10)
C1—O1—C5—C69.80 (18)C9—C10—C11—C120.01 (18)
C2—C3—C4—C50.1 (2)C10—C9—C14—C130.53 (18)
C2—C7—C8—N10.01 (18)C10—C11—C12—F1178.72 (10)
C3—C2—C7—C61.26 (18)C10—C11—C12—C130.86 (19)
C3—C2—C7—C8179.39 (11)C11—C12—C13—C140.98 (19)
C3—C4—C5—O1179.54 (11)C12—C13—C14—C90.26 (18)
C3—C4—C5—C60.60 (19)C14—C9—C10—C110.66 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.907 (19)1.78 (2)2.6070 (14)151.0 (17)
(1Cl) top
Crystal data top
C14H12ClNO2Dx = 1.443 Mg m3
Mr = 261.70Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4552 reflections
a = 6.4050 (2) Åθ = 2.8–27.9°
b = 14.4850 (4) ŵ = 0.31 mm1
c = 12.9801 (3) ÅT = 100 K
V = 1204.25 (6) Å3Block, orange
Z = 40.49 × 0.42 × 0.22 mm
F(000) = 544
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2844 independent reflections
Radiation source: fine-focus sealed tube2714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0560 before and 0.0425 after correction. The Ratio of minimum to maximum transmission is 0.9211. The λ/2 correction factor is 0.00150.
h = 88
Tmin = 0.687, Tmax = 0.746k = 1419
10370 measured reflectionsl = 1715
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.1667P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
2844 reflectionsΔρmin = 0.15 e Å3
168 parametersAbsolute structure: Flack x determined using 1227 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
1 restraintAbsolute structure parameter: 0.01 (2)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03608 (7)0.38086 (3)0.92445 (4)0.02001 (12)
O10.2775 (2)0.63059 (9)0.91428 (13)0.0186 (3)
O20.6191 (2)0.53898 (10)0.87537 (12)0.0184 (3)
H20.721 (4)0.5135 (18)0.850 (2)0.028 (7)*
N10.8954 (3)0.48317 (11)0.74399 (14)0.0150 (3)
C10.0986 (3)0.68569 (14)0.93771 (18)0.0220 (4)
H1A0.02380.66050.90220.033*
H1B0.12280.74920.91470.033*
H1C0.07420.68511.01220.033*
C20.5247 (3)0.57941 (13)0.79428 (15)0.0142 (4)
C30.3401 (3)0.62988 (13)0.81340 (16)0.0152 (4)
C40.2393 (3)0.67430 (13)0.73330 (17)0.0170 (4)
H40.11580.70860.74650.020*
C50.3184 (3)0.66892 (14)0.63240 (17)0.0184 (4)
H50.24930.70020.57790.022*
C60.4962 (3)0.61833 (14)0.61250 (18)0.0181 (4)
H60.54710.61340.54400.022*
C70.6023 (3)0.57390 (13)0.69349 (16)0.0151 (4)
C80.7889 (3)0.52036 (13)0.67103 (15)0.0156 (4)
H80.83250.51280.60160.019*
C91.0799 (3)0.43279 (12)0.72469 (16)0.0136 (4)
C101.1653 (3)0.38229 (14)0.80652 (16)0.0157 (4)
C111.3490 (3)0.33267 (14)0.79609 (16)0.0182 (4)
H111.40460.29940.85290.022*
C121.4509 (3)0.33200 (14)0.70177 (17)0.0188 (4)
H121.57620.29770.69370.023*
C131.3704 (3)0.38131 (13)0.61916 (17)0.0178 (4)
H131.44070.38080.55470.021*
C141.1873 (3)0.43134 (13)0.63061 (16)0.0160 (4)
H141.13380.46520.57380.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0254 (2)0.0210 (2)0.0137 (2)0.00245 (18)0.0012 (2)0.0001 (2)
O10.0175 (6)0.0208 (6)0.0176 (8)0.0043 (5)0.0032 (6)0.0000 (6)
O20.0166 (7)0.0229 (7)0.0157 (7)0.0065 (6)0.0017 (6)0.0002 (6)
N10.0141 (7)0.0145 (7)0.0163 (8)0.0002 (6)0.0008 (7)0.0009 (7)
C10.0175 (9)0.0235 (9)0.0249 (11)0.0033 (7)0.0058 (9)0.0005 (9)
C20.0148 (9)0.0119 (9)0.0158 (9)0.0017 (7)0.0020 (8)0.0006 (7)
C30.0149 (9)0.0136 (9)0.0170 (10)0.0025 (7)0.0002 (8)0.0010 (7)
C40.0137 (9)0.0141 (9)0.0231 (10)0.0008 (7)0.0017 (8)0.0013 (8)
C50.0186 (10)0.0167 (9)0.0198 (10)0.0001 (7)0.0055 (8)0.0017 (8)
C60.0192 (10)0.0185 (10)0.0166 (10)0.0005 (7)0.0026 (8)0.0008 (8)
C70.0140 (9)0.0133 (9)0.0178 (10)0.0017 (7)0.0017 (8)0.0001 (8)
C80.0172 (9)0.0156 (9)0.0141 (9)0.0009 (7)0.0000 (8)0.0003 (8)
C90.0137 (9)0.0107 (8)0.0163 (10)0.0019 (7)0.0018 (8)0.0017 (7)
C100.0172 (10)0.0154 (9)0.0146 (10)0.0020 (7)0.0002 (8)0.0021 (8)
C110.0203 (10)0.0153 (10)0.0190 (10)0.0023 (8)0.0037 (8)0.0000 (8)
C120.0155 (10)0.0160 (9)0.0247 (11)0.0027 (7)0.0003 (9)0.0019 (8)
C130.0156 (10)0.0169 (10)0.0209 (10)0.0009 (7)0.0021 (8)0.0037 (8)
C140.0169 (10)0.0149 (9)0.0161 (9)0.0015 (7)0.0019 (8)0.0005 (8)
Geometric parameters (Å, º) top
Cl1—C101.740 (2)C5—C61.378 (3)
O1—C11.429 (2)C6—H60.9500
O1—C31.370 (3)C6—C71.408 (3)
O2—H20.82 (3)C7—C81.454 (3)
O2—C21.348 (2)C8—H80.9500
N1—C81.286 (2)C9—C101.401 (3)
N1—C91.411 (2)C9—C141.402 (3)
C1—H1A0.9800C10—C111.385 (3)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.387 (3)
C2—C31.412 (3)C12—H120.9500
C2—C71.402 (3)C12—C131.388 (3)
C3—C41.383 (3)C13—H130.9500
C4—H40.9500C13—C141.386 (3)
C4—C51.407 (3)C14—H140.9500
C5—H50.9500
C3—O1—C1116.27 (17)C2—C7—C6119.97 (18)
C2—O2—H2103.9 (19)C2—C7—C8120.60 (18)
C8—N1—C9122.03 (17)C6—C7—C8119.41 (18)
O1—C1—H1A109.5N1—C8—C7120.80 (18)
O1—C1—H1B109.5N1—C8—H8119.6
O1—C1—H1C109.5C7—C8—H8119.6
H1A—C1—H1B109.5C10—C9—N1117.55 (18)
H1A—C1—H1C109.5C10—C9—C14117.44 (17)
H1B—C1—H1C109.5C14—C9—N1124.99 (17)
O2—C2—C3117.60 (18)C9—C10—Cl1119.16 (15)
O2—C2—C7123.02 (17)C11—C10—Cl1118.93 (16)
C7—C2—C3119.37 (18)C11—C10—C9121.91 (19)
O1—C3—C2114.66 (17)C10—C11—H11120.3
O1—C3—C4125.34 (18)C10—C11—C12119.30 (19)
C4—C3—C2120.00 (19)C12—C11—H11120.3
C3—C4—H4119.8C11—C12—H12119.9
C3—C4—C5120.38 (18)C11—C12—C13120.22 (19)
C5—C4—H4119.8C13—C12—H12119.9
C4—C5—H5119.9C12—C13—H13120.0
C6—C5—C4120.1 (2)C14—C13—C12120.0 (2)
C6—C5—H5119.9C14—C13—H13120.0
C5—C6—H6119.9C9—C14—H14119.5
C5—C6—C7120.1 (2)C13—C14—C9121.10 (19)
C7—C6—H6119.9C13—C14—H14119.5
Cl1—C10—C11—C12178.77 (16)C4—C5—C6—C71.7 (3)
O1—C3—C4—C5179.85 (18)C5—C6—C7—C21.4 (3)
O2—C2—C3—O10.7 (3)C5—C6—C7—C8179.63 (18)
O2—C2—C3—C4178.70 (17)C6—C7—C8—N1176.21 (18)
O2—C2—C7—C6179.63 (18)C7—C2—C3—O1179.77 (17)
O2—C2—C7—C82.2 (3)C7—C2—C3—C40.8 (3)
N1—C9—C10—Cl12.4 (2)C8—N1—C9—C10169.61 (18)
N1—C9—C10—C11178.22 (17)C8—N1—C9—C1412.2 (3)
N1—C9—C14—C13178.60 (17)C9—N1—C8—C7178.39 (17)
C1—O1—C3—C2176.25 (16)C9—C10—C11—C120.6 (3)
C1—O1—C3—C43.1 (3)C10—C9—C14—C130.4 (3)
C2—C3—C4—C50.5 (3)C10—C11—C12—C130.6 (3)
C2—C7—C8—N15.6 (3)C11—C12—C13—C140.1 (3)
C3—C2—C7—C60.1 (3)C12—C13—C14—C90.4 (3)
C3—C2—C7—C8178.33 (17)C14—C9—C10—Cl1179.27 (14)
C3—C4—C5—C60.7 (3)C14—C9—C10—C110.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.82 (3)1.83 (3)2.587 (2)154 (3)
(2Cl) top
Crystal data top
C14H12ClNO2F(000) = 1088
Mr = 261.70Dx = 1.440 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.2500 (5) ÅCell parameters from 4876 reflections
b = 7.1907 (1) Åθ = 2.7–27.9°
c = 16.4188 (4) ŵ = 0.31 mm1
β = 113.2443 (12)°T = 100 K
V = 2413.67 (9) Å3Block, yellow
Z = 80.3 × 0.25 × 0.23 mm
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2903 independent reflections
Radiation source: fine-focus sealed tube2519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0418 before and 0.0341 after correction. The Ratio of minimum to maximum transmission is 0.8924. The λ/2 correction factor is 0.00150.
h = 2917
Tmin = 0.665, Tmax = 0.746k = 99
10656 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0441P)2 + 1.4895P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2903 reflectionsΔρmax = 0.34 e Å3
168 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67153 (2)0.46394 (4)0.44224 (2)0.02365 (10)
O10.30314 (4)0.03181 (12)0.35753 (6)0.01995 (19)
O20.52077 (4)0.27046 (13)0.45738 (6)0.01939 (19)
H20.5384 (10)0.372 (3)0.4487 (13)0.047 (5)*
N10.53615 (5)0.58761 (14)0.39200 (7)0.0175 (2)
C10.32637 (6)0.12719 (17)0.41377 (8)0.0212 (3)
H1A0.35840.19410.39760.032*
H1B0.28950.20970.40650.032*
H1C0.34700.08660.47570.032*
C20.45631 (5)0.28943 (16)0.40743 (7)0.0152 (2)
C30.41463 (5)0.14685 (16)0.41047 (7)0.0161 (2)
H30.43160.04060.44670.019*
C40.34798 (5)0.16271 (16)0.35973 (7)0.0160 (2)
C50.32196 (6)0.31845 (17)0.30574 (8)0.0180 (2)
H50.27620.32820.27200.022*
C60.36357 (6)0.45634 (17)0.30242 (8)0.0177 (2)
H60.34610.56100.26520.021*
C70.43134 (6)0.44672 (16)0.35270 (7)0.0161 (2)
C80.47392 (6)0.59220 (17)0.34636 (8)0.0178 (2)
H80.45560.69400.30760.021*
C90.57700 (6)0.72782 (16)0.38185 (7)0.0168 (2)
C100.64259 (6)0.68389 (16)0.40180 (8)0.0177 (2)
C110.68513 (6)0.80961 (17)0.38838 (8)0.0204 (2)
H110.72930.77620.40190.024*
C120.66223 (7)0.98485 (18)0.35499 (8)0.0231 (3)
H120.69051.07060.34360.028*
C130.59825 (7)1.03496 (17)0.33827 (8)0.0234 (3)
H130.58321.15620.31690.028*
C140.55602 (6)0.90860 (17)0.35258 (8)0.0201 (2)
H140.51260.94530.34240.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02023 (15)0.01731 (16)0.03257 (18)0.00063 (11)0.00953 (13)0.00389 (12)
O10.0148 (4)0.0198 (4)0.0216 (4)0.0036 (3)0.0032 (3)0.0040 (3)
O20.0124 (4)0.0201 (5)0.0231 (4)0.0005 (3)0.0043 (3)0.0035 (3)
N10.0197 (5)0.0162 (5)0.0179 (5)0.0028 (4)0.0089 (4)0.0009 (4)
C10.0193 (6)0.0189 (6)0.0231 (6)0.0027 (5)0.0058 (5)0.0040 (5)
C20.0134 (5)0.0182 (6)0.0137 (5)0.0006 (4)0.0049 (4)0.0009 (4)
C30.0169 (5)0.0157 (5)0.0148 (5)0.0002 (4)0.0055 (4)0.0013 (4)
C40.0157 (5)0.0176 (5)0.0151 (5)0.0026 (4)0.0065 (4)0.0013 (4)
C50.0142 (5)0.0226 (6)0.0148 (5)0.0009 (4)0.0033 (4)0.0004 (4)
C60.0196 (6)0.0171 (6)0.0153 (5)0.0022 (4)0.0056 (5)0.0028 (4)
C70.0165 (5)0.0180 (6)0.0144 (5)0.0012 (4)0.0068 (4)0.0001 (4)
C80.0211 (6)0.0173 (6)0.0152 (5)0.0009 (4)0.0075 (5)0.0009 (4)
C90.0208 (6)0.0166 (5)0.0132 (5)0.0042 (4)0.0068 (4)0.0023 (4)
C100.0226 (6)0.0140 (5)0.0170 (6)0.0026 (4)0.0083 (5)0.0015 (4)
C110.0214 (6)0.0210 (6)0.0203 (6)0.0057 (5)0.0099 (5)0.0035 (5)
C120.0293 (7)0.0196 (6)0.0208 (6)0.0102 (5)0.0101 (5)0.0017 (5)
C130.0302 (7)0.0158 (6)0.0200 (6)0.0052 (5)0.0054 (5)0.0002 (5)
C140.0222 (6)0.0175 (6)0.0176 (6)0.0022 (5)0.0048 (5)0.0024 (4)
Geometric parameters (Å, º) top
Cl1—C101.7377 (12)C5—C61.3722 (16)
O1—C11.4319 (14)C6—H60.9500
O1—C41.3617 (13)C6—C71.4064 (16)
O2—H20.87 (2)C7—C81.4424 (16)
O2—C21.3491 (13)C8—H80.9500
N1—C81.2887 (16)C9—C101.3998 (16)
N1—C91.4106 (14)C9—C141.4006 (17)
C1—H1A0.9800C10—C111.3879 (16)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.3883 (18)
C2—C31.3965 (15)C12—H120.9500
C2—C71.4147 (16)C12—C131.3869 (19)
C3—H30.9500C13—H130.9500
C3—C41.3896 (15)C13—C141.3921 (17)
C4—C51.4036 (17)C14—H140.9500
C5—H50.9500
C4—O1—C1117.42 (9)C2—C7—C8121.42 (11)
C2—O2—H2104.8 (13)C6—C7—C2118.25 (10)
C8—N1—C9120.50 (10)C6—C7—C8120.31 (11)
O1—C1—H1A109.5N1—C8—C7121.67 (11)
O1—C1—H1B109.5N1—C8—H8119.2
O1—C1—H1C109.5C7—C8—H8119.2
H1A—C1—H1B109.5C10—C9—N1118.16 (11)
H1A—C1—H1C109.5C10—C9—C14117.73 (11)
H1B—C1—H1C109.5C14—C9—N1124.11 (11)
O2—C2—C3117.76 (10)C9—C10—Cl1119.33 (9)
O2—C2—C7121.58 (10)C11—C10—Cl1118.71 (9)
C3—C2—C7120.66 (10)C11—C10—C9121.95 (11)
C2—C3—H3120.5C10—C11—H11120.4
C4—C3—C2119.01 (11)C10—C11—C12119.14 (12)
C4—C3—H3120.5C12—C11—H11120.4
O1—C4—C3123.82 (11)C11—C12—H12119.9
O1—C4—C5114.80 (10)C13—C12—C11120.13 (11)
C3—C4—C5121.38 (10)C13—C12—H12119.9
C4—C5—H5120.5C12—C13—H13119.8
C6—C5—C4119.01 (11)C12—C13—C14120.37 (12)
C6—C5—H5120.5C14—C13—H13119.8
C5—C6—H6119.2C9—C14—H14119.7
C5—C6—C7121.68 (11)C13—C14—C9120.52 (12)
C7—C6—H6119.2C13—C14—H14119.7
Cl1—C10—C11—C12179.16 (9)C4—C5—C6—C70.96 (17)
O1—C4—C5—C6178.88 (10)C5—C6—C7—C20.21 (17)
O2—C2—C3—C4179.96 (10)C5—C6—C7—C8178.75 (11)
O2—C2—C7—C6179.88 (10)C6—C7—C8—N1179.60 (11)
O2—C2—C7—C81.36 (17)C7—C2—C3—C40.83 (16)
N1—C9—C10—Cl12.67 (15)C8—N1—C9—C10154.22 (11)
N1—C9—C10—C11175.85 (11)C8—N1—C9—C1425.46 (17)
N1—C9—C14—C13175.36 (11)C9—N1—C8—C7177.40 (10)
C1—O1—C4—C32.57 (16)C9—C10—C11—C120.63 (18)
C1—O1—C4—C5177.73 (10)C10—C9—C14—C134.31 (17)
C2—C3—C4—O1179.74 (10)C10—C11—C12—C132.19 (18)
C2—C3—C4—C50.06 (17)C11—C12—C13—C141.70 (19)
C2—C7—C8—N11.91 (17)C12—C13—C14—C91.64 (19)
C3—C2—C7—C60.70 (16)C14—C9—C10—Cl1177.64 (9)
C3—C2—C7—C8177.82 (10)C14—C9—C10—C113.84 (17)
C3—C4—C5—C60.83 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.87 (2)1.80 (2)2.6001 (13)152.8 (19)
(3Cl) top
Crystal data top
C14H12ClNO2F(000) = 544
Mr = 261.70Dx = 1.451 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.1744 (5) ÅCell parameters from 2409 reflections
b = 8.2774 (3) Åθ = 3.0–27.8°
c = 11.8933 (5) ŵ = 0.31 mm1
β = 112.517 (2)°T = 100 K
V = 1198.09 (8) Å3Block, orange
Z = 40.30 × 0.27 × 0.17 mm
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2892 independent reflections
Radiation source: fine-focus sealed tube2264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0805 before and 0.0484 after correction. The Ratio of minimum to maximum transmission is 0.8450. The λ/2 correction factor is 0.00150.
h = 1716
Tmin = 0.630, Tmax = 0.746k = 1010
10694 measured reflectionsl = 1510
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.4049P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2892 reflectionsΔρmax = 0.33 e Å3
168 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11665 (3)0.72892 (5)0.55162 (4)0.01804 (12)
O10.78182 (9)0.59414 (15)0.60709 (11)0.0207 (3)
O20.39904 (10)0.62399 (15)0.69250 (11)0.0177 (3)
H20.353 (2)0.677 (3)0.640 (2)0.049 (7)*
N10.31135 (10)0.79211 (16)0.49660 (11)0.0129 (3)
C10.79163 (14)0.6684 (2)0.50370 (16)0.0204 (4)
H1A0.73850.61990.42930.031*
H1B0.86620.65200.50640.031*
H1C0.77700.78440.50430.031*
C20.49099 (13)0.62389 (19)0.66681 (14)0.0142 (3)
C30.58365 (13)0.5436 (2)0.74661 (14)0.0173 (4)
H30.58140.49290.81730.021*
C40.67843 (13)0.5373 (2)0.72372 (15)0.0183 (4)
H40.74110.48270.77900.022*
C50.68340 (13)0.6104 (2)0.62008 (15)0.0160 (3)
C60.59218 (13)0.6892 (2)0.53961 (14)0.0149 (3)
H60.59510.73820.46870.018*
C70.49473 (13)0.69736 (19)0.56199 (14)0.0132 (3)
C80.39923 (12)0.7776 (2)0.47457 (14)0.0135 (3)
H80.40150.81930.40120.016*
C90.21720 (12)0.87403 (19)0.41638 (14)0.0128 (3)
C100.11969 (13)0.85598 (19)0.43639 (14)0.0141 (3)
C110.02388 (13)0.9356 (2)0.36502 (15)0.0172 (4)
H110.04160.92060.37940.021*
C120.02447 (13)1.0366 (2)0.27300 (15)0.0180 (4)
H120.04061.09190.22390.022*
C130.12024 (13)1.0572 (2)0.25233 (15)0.0177 (4)
H130.12051.12720.18910.021*
C140.21566 (13)0.9768 (2)0.32304 (14)0.0158 (3)
H140.28070.99190.30770.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01665 (19)0.0195 (2)0.0195 (2)0.00192 (16)0.00867 (15)0.00466 (16)
O10.0121 (6)0.0275 (7)0.0225 (7)0.0032 (5)0.0067 (5)0.0030 (5)
O20.0153 (6)0.0248 (7)0.0140 (6)0.0032 (5)0.0066 (5)0.0046 (5)
N10.0120 (6)0.0145 (7)0.0106 (7)0.0004 (5)0.0025 (5)0.0015 (5)
C10.0170 (8)0.0247 (9)0.0222 (9)0.0012 (7)0.0106 (7)0.0037 (7)
C20.0140 (8)0.0153 (8)0.0125 (8)0.0010 (6)0.0043 (6)0.0016 (6)
C30.0199 (8)0.0195 (9)0.0103 (8)0.0013 (7)0.0032 (7)0.0023 (6)
C40.0157 (8)0.0186 (9)0.0154 (8)0.0039 (7)0.0000 (7)0.0022 (7)
C50.0108 (7)0.0172 (8)0.0178 (8)0.0013 (6)0.0032 (6)0.0030 (6)
C60.0152 (8)0.0169 (9)0.0110 (8)0.0008 (6)0.0035 (6)0.0000 (6)
C70.0117 (7)0.0153 (8)0.0108 (8)0.0002 (6)0.0024 (6)0.0010 (6)
C80.0137 (7)0.0157 (8)0.0098 (8)0.0003 (6)0.0032 (6)0.0009 (6)
C90.0131 (7)0.0135 (8)0.0098 (8)0.0012 (6)0.0021 (6)0.0037 (6)
C100.0161 (8)0.0133 (8)0.0116 (8)0.0015 (6)0.0039 (6)0.0007 (6)
C110.0121 (8)0.0175 (8)0.0202 (9)0.0005 (6)0.0043 (6)0.0021 (7)
C120.0144 (8)0.0194 (9)0.0153 (9)0.0039 (7)0.0001 (6)0.0005 (7)
C130.0215 (8)0.0190 (9)0.0109 (8)0.0040 (7)0.0042 (7)0.0020 (6)
C140.0164 (8)0.0188 (9)0.0131 (8)0.0007 (7)0.0064 (6)0.0017 (6)
Geometric parameters (Å, º) top
Cl1—C101.7401 (17)C5—C61.380 (2)
O1—C11.424 (2)C6—H60.9500
O1—C51.3698 (19)C6—C71.409 (2)
O2—H20.81 (2)C7—C81.450 (2)
O2—C21.3581 (19)C8—H80.9500
N1—C81.287 (2)C9—C101.401 (2)
N1—C91.4150 (19)C9—C141.392 (2)
C1—H1A0.9800C10—C111.388 (2)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.380 (2)
C2—C31.395 (2)C12—H120.9500
C2—C71.405 (2)C12—C131.385 (2)
C3—H30.9500C13—H130.9500
C3—C41.377 (2)C13—C141.386 (2)
C4—H40.9500C14—H140.9500
C4—C51.397 (2)
C5—O1—C1117.26 (13)C2—C7—C6119.40 (14)
C2—O2—H2107.4 (17)C2—C7—C8121.25 (15)
C8—N1—C9122.15 (14)C6—C7—C8119.32 (15)
O1—C1—H1A109.5N1—C8—C7119.87 (15)
O1—C1—H1B109.5N1—C8—H8120.1
O1—C1—H1C109.5C7—C8—H8120.1
H1A—C1—H1B109.5C10—C9—N1117.28 (14)
H1A—C1—H1C109.5C14—C9—N1124.87 (14)
H1B—C1—H1C109.5C14—C9—C10117.78 (14)
O2—C2—C3118.09 (15)C9—C10—Cl1119.82 (12)
O2—C2—C7122.47 (14)C11—C10—Cl1118.60 (12)
C3—C2—C7119.42 (15)C11—C10—C9121.57 (15)
C2—C3—H3119.8C10—C11—H11120.2
C4—C3—C2120.47 (15)C12—C11—C10119.52 (15)
C4—C3—H3119.8C12—C11—H11120.2
C3—C4—H4119.6C11—C12—H12120.1
C3—C4—C5120.71 (15)C11—C12—C13119.85 (15)
C5—C4—H4119.6C13—C12—H12120.1
O1—C5—C4115.05 (14)C12—C13—H13119.7
O1—C5—C6125.35 (15)C12—C13—C14120.60 (16)
C6—C5—C4119.59 (15)C14—C13—H13119.7
C5—C6—H6119.8C9—C14—H14119.7
C5—C6—C7120.41 (15)C13—C14—C9120.67 (15)
C7—C6—H6119.8C13—C14—H14119.7
Cl1—C10—C11—C12179.86 (13)C4—C5—C6—C70.5 (2)
O1—C5—C6—C7179.56 (15)C5—C6—C7—C20.3 (2)
O2—C2—C3—C4178.83 (15)C5—C6—C7—C8178.55 (15)
O2—C2—C7—C6178.46 (14)C6—C7—C8—N1176.91 (15)
O2—C2—C7—C80.2 (2)C7—C2—C3—C40.5 (3)
N1—C9—C10—Cl13.0 (2)C8—N1—C9—C10167.83 (15)
N1—C9—C10—C11177.93 (14)C8—N1—C9—C1415.3 (2)
N1—C9—C14—C13177.19 (14)C9—N1—C8—C7177.82 (14)
C1—O1—C5—C4179.16 (14)C9—C10—C11—C120.8 (2)
C1—O1—C5—C61.7 (2)C10—C9—C14—C130.4 (2)
C2—C3—C4—C50.3 (3)C10—C11—C12—C130.3 (2)
C2—C7—C8—N14.8 (2)C11—C12—C13—C140.2 (3)
C3—C2—C7—C60.3 (2)C12—C13—C14—C90.2 (3)
C3—C2—C7—C8177.99 (15)C14—C9—C10—Cl1179.90 (12)
C3—C4—C5—O1179.36 (15)C14—C9—C10—C110.9 (2)
C3—C4—C5—C60.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.81 (2)1.84 (3)2.5764 (18)149 (2)
(4Cl) top
Crystal data top
C14H12ClNO2Dx = 1.460 Mg m3
Mr = 261.70Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4140 reflections
a = 4.9119 (2) Åθ = 2.7–28.1°
b = 12.4251 (5) ŵ = 0.31 mm1
c = 19.5142 (7) ÅT = 100 K
V = 1190.97 (8) Å3Block, orange
Z = 40.25 × 0.2 × 0.15 mm
F(000) = 544
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2927 independent reflections
Radiation source: fine-focus sealed tube2675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.1108 before and 0.0453 after correction. The Ratio of minimum to maximum transmission is 0.7622. The λ/2 correction factor is 0.00150.
h = 66
Tmin = 0.568, Tmax = 0.746k = 1516
10919 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.2191P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
2927 reflectionsΔρmin = 0.22 e Å3
169 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.26 (7)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.34406 (11)0.56174 (4)0.13483 (3)0.02606 (14)
O10.0254 (3)0.60093 (12)0.46369 (8)0.0195 (3)
O20.3472 (3)0.56109 (12)0.36946 (7)0.0184 (3)
H20.453 (6)0.534 (3)0.3403 (16)0.049 (10)*
N10.6023 (3)0.42042 (14)0.29210 (8)0.0149 (4)
C10.2497 (4)0.62605 (19)0.50785 (11)0.0211 (5)
H1A0.41730.60780.48540.032*
H1B0.24810.70160.51820.032*
H1C0.23380.58560.54960.032*
C20.2024 (4)0.47651 (16)0.39345 (10)0.0139 (4)
C30.0012 (4)0.49640 (17)0.44323 (10)0.0154 (4)
C40.1561 (4)0.41122 (16)0.46744 (10)0.0157 (4)
H40.29100.42400.49990.019*
C50.1124 (4)0.30671 (17)0.44385 (10)0.0166 (4)
H50.21830.25040.46050.020*
C60.0869 (4)0.28669 (17)0.39599 (10)0.0155 (4)
H60.11600.21680.38060.019*
C70.2465 (4)0.37136 (16)0.37035 (10)0.0142 (4)
C80.4522 (4)0.34739 (17)0.31942 (10)0.0149 (4)
H80.47670.27630.30590.018*
C90.7999 (4)0.39211 (16)0.24209 (10)0.0148 (4)
C100.9563 (4)0.47621 (17)0.21659 (10)0.0154 (4)
H100.92930.54600.23230.018*
C111.1530 (4)0.45508 (16)0.16749 (10)0.0164 (4)
C121.2008 (4)0.35260 (17)0.14319 (10)0.0183 (4)
H121.33470.34000.11050.022*
C131.0443 (4)0.26889 (19)0.16878 (11)0.0221 (5)
H131.07350.19920.15310.027*
C140.8448 (4)0.28817 (17)0.21753 (11)0.0200 (4)
H140.74020.23140.23400.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0235 (2)0.0209 (3)0.0339 (3)0.0025 (2)0.0124 (2)0.0087 (2)
O10.0211 (7)0.0182 (8)0.0192 (7)0.0013 (6)0.0063 (6)0.0022 (6)
O20.0202 (6)0.0164 (7)0.0188 (7)0.0006 (7)0.0069 (6)0.0015 (6)
N10.0131 (7)0.0187 (9)0.0131 (8)0.0007 (6)0.0001 (6)0.0001 (6)
C10.0171 (9)0.0273 (13)0.0190 (11)0.0050 (9)0.0014 (8)0.0058 (9)
C20.0124 (9)0.0183 (10)0.0108 (9)0.0003 (7)0.0022 (7)0.0028 (7)
C30.0154 (9)0.0185 (10)0.0123 (9)0.0015 (8)0.0018 (7)0.0005 (8)
C40.0135 (8)0.0228 (11)0.0109 (9)0.0013 (8)0.0001 (8)0.0005 (7)
C50.0146 (9)0.0214 (11)0.0138 (9)0.0025 (8)0.0003 (7)0.0037 (8)
C60.0149 (9)0.0153 (10)0.0163 (10)0.0005 (7)0.0028 (8)0.0018 (8)
C70.0116 (8)0.0190 (10)0.0120 (9)0.0010 (7)0.0020 (7)0.0012 (8)
C80.0148 (8)0.0168 (10)0.0130 (9)0.0027 (8)0.0028 (8)0.0003 (7)
C90.0132 (9)0.0205 (10)0.0106 (9)0.0018 (7)0.0017 (7)0.0003 (7)
C100.0142 (9)0.0170 (10)0.0150 (9)0.0035 (8)0.0018 (8)0.0010 (7)
C110.0143 (8)0.0201 (10)0.0149 (9)0.0009 (8)0.0018 (8)0.0051 (7)
C120.0146 (9)0.0262 (11)0.0141 (10)0.0013 (8)0.0032 (8)0.0020 (8)
C130.0242 (10)0.0208 (12)0.0214 (11)0.0009 (9)0.0041 (9)0.0078 (9)
C140.0204 (9)0.0198 (11)0.0199 (10)0.0046 (9)0.0046 (9)0.0020 (8)
Geometric parameters (Å, º) top
Cl1—C111.744 (2)C5—C61.376 (3)
O1—C11.433 (2)C6—H60.9300
O1—C31.364 (3)C6—C71.404 (3)
O2—H20.84 (3)C7—C81.448 (3)
O2—C21.353 (2)C8—H80.9300
N1—C81.285 (3)C9—C101.389 (3)
N1—C91.421 (2)C9—C141.395 (3)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C10—C111.386 (3)
C1—H1C0.9600C11—C121.379 (3)
C2—C31.416 (3)C12—H120.9300
C2—C71.399 (3)C12—C131.386 (3)
C3—C41.386 (3)C13—H130.9300
C4—H40.9300C13—C141.387 (3)
C4—C51.394 (3)C14—H140.9300
C5—H50.9300
C3—O1—C1116.78 (17)C2—C7—C6119.90 (18)
C2—O2—H2104 (2)C2—C7—C8121.40 (18)
C8—N1—C9120.14 (18)C6—C7—C8118.69 (18)
O1—C1—H1A109.5N1—C8—C7122.67 (19)
O1—C1—H1B109.5N1—C8—H8118.7
O1—C1—H1C109.5C7—C8—H8118.7
H1A—C1—H1B109.5C10—C9—N1115.96 (18)
H1A—C1—H1C109.5C10—C9—C14119.06 (18)
H1B—C1—H1C109.5C14—C9—N1124.97 (18)
O2—C2—C3118.24 (18)C9—C10—H10120.3
O2—C2—C7122.20 (17)C11—C10—C9119.40 (19)
C7—C2—C3119.56 (18)C11—C10—H10120.3
O1—C3—C2115.38 (18)C10—C11—Cl1118.93 (16)
O1—C3—C4125.40 (18)C12—C11—Cl1118.96 (15)
C4—C3—C2119.22 (19)C12—C11—C10122.10 (19)
C3—C4—H4119.5C11—C12—H12120.8
C3—C4—C5120.93 (18)C11—C12—C13118.33 (18)
C5—C4—H4119.5C13—C12—H12120.8
C4—C5—H5119.9C12—C13—H13119.7
C6—C5—C4120.13 (18)C12—C13—C14120.6 (2)
C6—C5—H5119.9C14—C13—H13119.7
C5—C6—H6119.9C9—C14—H14119.8
C5—C6—C7120.25 (19)C13—C14—C9120.5 (2)
C7—C6—H6119.9C13—C14—H14119.8
Cl1—C11—C12—C13178.94 (16)C5—C6—C7—C20.1 (3)
O1—C3—C4—C5179.04 (19)C5—C6—C7—C8179.28 (17)
O2—C2—C3—O11.8 (3)C6—C7—C8—N1178.25 (18)
O2—C2—C3—C4178.61 (17)C7—C2—C3—O1178.64 (18)
O2—C2—C7—C6178.77 (17)C7—C2—C3—C40.9 (3)
O2—C2—C7—C80.4 (3)C8—N1—C9—C10178.67 (17)
N1—C9—C10—C11179.82 (17)C8—N1—C9—C141.6 (3)
N1—C9—C14—C13179.68 (19)C9—N1—C8—C7179.67 (17)
C1—O1—C3—C2172.90 (17)C9—C10—C11—Cl1178.93 (15)
C1—O1—C3—C47.6 (3)C9—C10—C11—C120.5 (3)
C2—C3—C4—C50.5 (3)C10—C9—C14—C130.6 (3)
C2—C7—C8—N10.9 (3)C10—C11—C12—C130.5 (3)
C3—C2—C7—C60.8 (3)C11—C12—C13—C140.1 (3)
C3—C2—C7—C8179.89 (17)C12—C13—C14—C90.6 (3)
C3—C4—C5—C60.2 (3)C14—C9—C10—C110.0 (3)
C4—C5—C6—C70.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.84 (3)1.85 (3)2.628 (2)153 (3)
(5Cl) top
Crystal data top
C14H12ClNO2F(000) = 1088
Mr = 261.70Dx = 1.451 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.1997 (4) ÅCell parameters from 3315 reflections
b = 6.5840 (2) Åθ = 2.9–27.8°
c = 26.2190 (7) ŵ = 0.31 mm1
β = 102.2648 (19)°T = 150 K
V = 2395.29 (12) Å3Block, yellow
Z = 80.67 × 0.49 × 0.20 mm
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2895 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0719 before and 0.0373 after correction. The Ratio of minimum to maximum transmission is 0.9026. The λ/2 correction factor is 0.00150.
h = 1618
Tmin = 0.673, Tmax = 0.746k = 88
10346 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0436P)2 + 1.4807P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2895 reflectionsΔρmax = 0.32 e Å3
168 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42516 (3)0.66850 (7)0.04071 (2)0.03542 (13)
O10.29949 (8)0.73240 (16)0.44883 (4)0.0279 (2)
O20.39262 (8)0.84057 (16)0.28650 (4)0.0286 (2)
H20.3957 (13)0.764 (3)0.2584 (8)0.047 (6)*
N10.38446 (8)0.53076 (19)0.22499 (4)0.0222 (3)
C10.32381 (11)0.9371 (2)0.46408 (6)0.0299 (3)
H1A0.28501.03010.43890.045*
H1B0.39230.96020.46500.045*
H1C0.31080.96160.49880.045*
C20.35816 (9)0.7160 (2)0.31913 (5)0.0207 (3)
C30.34583 (9)0.7954 (2)0.36645 (5)0.0216 (3)
H30.36040.93390.37480.026*
C40.31212 (9)0.6710 (2)0.40139 (5)0.0221 (3)
C50.28838 (10)0.4678 (2)0.38908 (6)0.0256 (3)
H50.26450.38400.41300.031*
C60.29994 (10)0.3913 (2)0.34223 (6)0.0244 (3)
H60.28340.25360.33390.029*
C70.33560 (9)0.5110 (2)0.30608 (5)0.0207 (3)
C80.35126 (9)0.4231 (2)0.25813 (5)0.0220 (3)
H80.33680.28380.25100.026*
C90.40586 (9)0.4430 (2)0.17956 (5)0.0210 (3)
C100.40592 (9)0.5752 (2)0.13809 (5)0.0226 (3)
H100.39080.71470.14100.027*
C110.42813 (10)0.5019 (2)0.09266 (5)0.0243 (3)
C120.45200 (10)0.3006 (2)0.08749 (6)0.0282 (3)
H120.46720.25220.05610.034*
C130.45326 (10)0.1710 (2)0.12934 (6)0.0287 (3)
H130.46980.03230.12650.034*
C140.43083 (10)0.2400 (2)0.17521 (6)0.0250 (3)
H140.43240.14940.20360.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (2)0.0418 (3)0.02548 (19)0.00193 (17)0.00965 (15)0.00629 (16)
O10.0348 (6)0.0254 (6)0.0263 (5)0.0021 (4)0.0124 (4)0.0004 (4)
O20.0427 (6)0.0211 (5)0.0239 (5)0.0084 (5)0.0115 (5)0.0004 (4)
N10.0219 (6)0.0222 (6)0.0211 (6)0.0001 (5)0.0017 (4)0.0000 (5)
C10.0347 (8)0.0277 (8)0.0283 (8)0.0029 (7)0.0090 (6)0.0045 (6)
C20.0191 (6)0.0201 (7)0.0218 (6)0.0019 (5)0.0021 (5)0.0041 (5)
C30.0220 (6)0.0176 (7)0.0246 (7)0.0021 (5)0.0039 (5)0.0007 (5)
C40.0192 (6)0.0238 (7)0.0229 (7)0.0021 (5)0.0038 (5)0.0016 (6)
C50.0267 (7)0.0224 (7)0.0292 (7)0.0022 (6)0.0093 (6)0.0055 (6)
C60.0235 (7)0.0178 (7)0.0314 (8)0.0023 (5)0.0051 (6)0.0015 (6)
C70.0180 (6)0.0200 (7)0.0228 (7)0.0001 (5)0.0014 (5)0.0011 (5)
C80.0198 (6)0.0186 (7)0.0259 (7)0.0007 (5)0.0006 (5)0.0006 (5)
C90.0164 (6)0.0226 (7)0.0223 (7)0.0020 (5)0.0005 (5)0.0023 (5)
C100.0201 (6)0.0214 (7)0.0254 (7)0.0011 (5)0.0028 (5)0.0010 (6)
C110.0206 (6)0.0290 (8)0.0227 (7)0.0022 (6)0.0029 (5)0.0009 (6)
C120.0243 (7)0.0325 (9)0.0286 (7)0.0014 (6)0.0073 (6)0.0087 (6)
C130.0259 (7)0.0202 (7)0.0404 (9)0.0004 (6)0.0081 (6)0.0064 (6)
C140.0214 (7)0.0229 (7)0.0299 (7)0.0009 (6)0.0035 (6)0.0011 (6)
Geometric parameters (Å, º) top
Cl1—C111.7425 (15)C5—C61.370 (2)
O1—C11.4274 (18)C6—H60.9500
O1—C41.3557 (17)C6—C71.4072 (19)
O2—H20.90 (2)C7—C81.4435 (19)
O2—C21.3496 (16)C8—H80.9500
N1—C81.2859 (18)C9—C101.393 (2)
N1—C91.4137 (17)C9—C141.394 (2)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.383 (2)
C1—H1C0.9800C11—C121.382 (2)
C2—C31.3914 (19)C12—H120.9500
C2—C71.4123 (19)C12—C131.387 (2)
C3—H30.9500C13—H130.9500
C3—C41.3877 (19)C13—C141.385 (2)
C4—C51.400 (2)C14—H140.9500
C5—H50.9500
C4—O1—C1117.86 (11)C2—C7—C8121.68 (12)
C2—O2—H2105.4 (13)C6—C7—C2117.89 (12)
C8—N1—C9121.29 (13)C6—C7—C8120.39 (13)
O1—C1—H1A109.5N1—C8—C7120.92 (13)
O1—C1—H1B109.5N1—C8—H8119.5
O1—C1—H1C109.5C7—C8—H8119.5
H1A—C1—H1B109.5C10—C9—N1116.00 (13)
H1A—C1—H1C109.5C10—C9—C14119.54 (13)
H1B—C1—H1C109.5C14—C9—N1124.38 (13)
O2—C2—C3117.92 (13)C9—C10—H10120.3
O2—C2—C7121.42 (12)C11—C10—C9119.50 (14)
C3—C2—C7120.67 (12)C11—C10—H10120.3
C2—C3—H3120.2C10—C11—Cl1118.78 (12)
C4—C3—C2119.55 (13)C12—C11—Cl1119.54 (11)
C4—C3—H3120.2C12—C11—C10121.69 (14)
O1—C4—C3124.13 (13)C11—C12—H12120.8
O1—C4—C5115.10 (13)C11—C12—C13118.33 (14)
C3—C4—C5120.78 (13)C13—C12—H12120.8
C4—C5—H5120.4C12—C13—H13119.4
C6—C5—C4119.30 (13)C14—C13—C12121.25 (14)
C6—C5—H5120.4C14—C13—H13119.4
C5—C6—H6119.1C9—C14—H14120.2
C5—C6—C7121.79 (13)C13—C14—C9119.68 (14)
C7—C6—H6119.1C13—C14—H14120.2
Cl1—C11—C12—C13179.62 (11)C4—C5—C6—C70.4 (2)
O1—C4—C5—C6179.18 (12)C5—C6—C7—C21.0 (2)
O2—C2—C3—C4178.90 (12)C5—C6—C7—C8177.03 (12)
O2—C2—C7—C6179.95 (12)C6—C7—C8—N1179.51 (12)
O2—C2—C7—C82.1 (2)C7—C2—C3—C40.8 (2)
N1—C9—C10—C11178.67 (12)C8—N1—C9—C10156.67 (12)
N1—C9—C14—C13178.06 (13)C8—N1—C9—C1426.61 (19)
C1—O1—C4—C31.0 (2)C9—N1—C8—C7175.87 (11)
C1—O1—C4—C5179.05 (12)C9—C10—C11—Cl1178.58 (10)
C2—C3—C4—O1178.62 (12)C9—C10—C11—C121.1 (2)
C2—C3—C4—C51.4 (2)C10—C9—C14—C131.5 (2)
C2—C7—C8—N11.6 (2)C10—C11—C12—C130.1 (2)
C3—C2—C7—C60.37 (19)C11—C12—C13—C140.3 (2)
C3—C2—C7—C8177.58 (12)C12—C13—C14—C90.4 (2)
C3—C4—C5—C60.9 (2)C14—C9—C10—C111.79 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.90 (2)1.76 (2)2.5876 (16)151.6 (19)
(6Cl) top
Crystal data top
C14H12ClNO2F(000) = 272
Mr = 261.70Dx = 1.433 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 12.5233 (5) ÅCell parameters from 2079 reflections
b = 4.4479 (2) Åθ = 3.4–27.7°
c = 11.8828 (6) ŵ = 0.31 mm1
β = 113.577 (3)°T = 100 K
V = 606.65 (5) Å3Block, orange
Z = 20.25 × 0.18 × 0.12 mm
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2268 independent reflections
Radiation source: fine-focus sealed tube2110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
SADABS-2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.0561 before and 0.0394 after correction. The Ratio of minimum to maximum transmission is 0.8083. The λ/2 correction factor is 0.00150.
h = 1516
Tmin = 0.603, Tmax = 0.746k = 55
5290 measured reflectionsl = 1511
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.23 e Å3
2268 reflectionsΔρmin = 0.19 e Å3
168 parametersAbsolute structure: Flack x determined using 684 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
2 restraintsAbsolute structure parameter: 0.13 (4)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45101 (6)1.41708 (13)0.01825 (6)0.02502 (16)
O10.32469 (15)0.0774 (4)0.11981 (16)0.0240 (4)
O20.00354 (16)0.4680 (4)0.28941 (16)0.0207 (4)
H20.046 (3)0.593 (7)0.238 (3)0.031 (9)*
N10.08668 (16)0.8021 (4)0.09054 (17)0.0132 (4)
C10.4203 (2)0.1049 (6)0.1955 (3)0.0240 (5)
H1A0.47410.13370.15510.036*
H1B0.39130.30070.20860.036*
H1C0.46120.00530.27480.036*
C20.0778 (2)0.3711 (5)0.2484 (2)0.0152 (5)
C30.1642 (2)0.1719 (5)0.3201 (2)0.0175 (5)
H30.16550.10540.39660.021*
C40.2482 (2)0.0700 (5)0.2808 (2)0.0181 (5)
H40.30700.06440.33070.022*
C50.2465 (2)0.1643 (6)0.1682 (2)0.0167 (5)
C60.16035 (19)0.3612 (5)0.0960 (2)0.0156 (5)
H60.15850.42330.01870.019*
C70.07613 (19)0.4693 (5)0.1356 (2)0.0134 (5)
C80.00923 (18)0.6838 (5)0.0578 (2)0.0141 (4)
H80.00800.73820.01900.017*
C90.1673 (2)1.0140 (5)0.0124 (2)0.0131 (5)
C100.25587 (19)1.1067 (5)0.0474 (2)0.0147 (5)
H100.25991.02950.12010.018*
C110.33815 (19)1.3119 (6)0.0245 (2)0.0166 (5)
C120.3342 (2)1.4328 (5)0.1302 (2)0.0159 (5)
H120.39081.57440.17820.019*
C130.2453 (2)1.3416 (5)0.1641 (2)0.0169 (5)
H130.24091.42300.23600.020*
C140.1627 (2)1.1334 (5)0.0946 (2)0.0156 (5)
H140.10301.07170.11970.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0192 (3)0.0323 (3)0.0252 (3)0.0075 (3)0.0106 (2)0.0028 (3)
O10.0223 (10)0.0286 (9)0.0238 (10)0.0134 (8)0.0120 (8)0.0056 (8)
O20.0236 (10)0.0260 (10)0.0160 (9)0.0080 (8)0.0116 (8)0.0056 (8)
N10.0157 (9)0.0110 (8)0.0125 (10)0.0014 (7)0.0053 (7)0.0010 (7)
C10.0174 (12)0.0225 (13)0.0307 (15)0.0069 (10)0.0080 (10)0.0027 (10)
C20.0156 (11)0.0164 (12)0.0150 (12)0.0027 (9)0.0076 (9)0.0033 (9)
C30.0217 (12)0.0172 (12)0.0133 (11)0.0004 (9)0.0069 (10)0.0024 (9)
C40.0170 (12)0.0183 (12)0.0155 (12)0.0020 (10)0.0028 (9)0.0012 (10)
C50.0156 (11)0.0157 (11)0.0173 (13)0.0010 (9)0.0051 (9)0.0025 (9)
C60.0176 (11)0.0157 (11)0.0130 (11)0.0002 (9)0.0056 (9)0.0003 (8)
C70.0141 (10)0.0119 (11)0.0123 (11)0.0010 (8)0.0034 (8)0.0007 (8)
C80.0157 (11)0.0144 (10)0.0117 (10)0.0013 (9)0.0049 (8)0.0008 (9)
C90.0129 (10)0.0107 (10)0.0142 (12)0.0028 (8)0.0039 (9)0.0027 (9)
C100.0159 (11)0.0137 (11)0.0153 (12)0.0014 (9)0.0071 (9)0.0014 (9)
C110.0133 (11)0.0167 (11)0.0201 (12)0.0004 (9)0.0070 (9)0.0060 (9)
C120.0144 (11)0.0129 (11)0.0160 (12)0.0000 (9)0.0013 (9)0.0020 (9)
C130.0178 (11)0.0155 (12)0.0155 (12)0.0012 (9)0.0046 (9)0.0010 (9)
C140.0149 (11)0.0154 (12)0.0165 (12)0.0013 (9)0.0062 (10)0.0006 (9)
Geometric parameters (Å, º) top
Cl1—C111.746 (2)C5—C61.388 (3)
O1—C11.428 (3)C6—H60.9500
O1—C51.375 (3)C6—C71.401 (3)
O2—H20.84 (3)C7—C81.455 (3)
O2—C21.363 (3)C8—H80.9500
N1—C81.292 (3)C9—C101.393 (3)
N1—C91.421 (3)C9—C141.400 (3)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.386 (3)
C1—H1C0.9800C11—C121.385 (3)
C2—C31.394 (3)C12—H120.9500
C2—C71.402 (3)C12—C131.387 (3)
C3—H30.9500C13—H130.9500
C3—C41.386 (3)C13—C141.388 (3)
C4—H40.9500C14—H140.9500
C4—C51.394 (4)
C5—O1—C1117.0 (2)C2—C7—C8122.6 (2)
C2—O2—H2107 (2)C6—C7—C2119.3 (2)
C8—N1—C9119.76 (18)C6—C7—C8118.2 (2)
O1—C1—H1A109.5N1—C8—C7121.7 (2)
O1—C1—H1B109.5N1—C8—H8119.2
O1—C1—H1C109.5C7—C8—H8119.2
H1A—C1—H1B109.5C10—C9—N1116.4 (2)
H1A—C1—H1C109.5C10—C9—C14119.0 (2)
H1B—C1—H1C109.5C14—C9—N1124.6 (2)
O2—C2—C3119.4 (2)C9—C10—H10120.1
O2—C2—C7121.0 (2)C11—C10—C9119.7 (2)
C3—C2—C7119.6 (2)C11—C10—H10120.1
C2—C3—H3119.7C10—C11—Cl1119.08 (19)
C4—C3—C2120.7 (2)C12—C11—Cl1119.13 (18)
C4—C3—H3119.7C12—C11—C10121.8 (2)
C3—C4—H4119.9C11—C12—H12120.9
C3—C4—C5120.1 (2)C11—C12—C13118.3 (2)
C5—C4—H4119.9C13—C12—H12120.9
O1—C5—C4125.2 (2)C12—C13—H13119.5
O1—C5—C6115.2 (2)C12—C13—C14121.0 (2)
C6—C5—C4119.6 (2)C14—C13—H13119.5
C5—C6—H6119.6C9—C14—H14119.9
C5—C6—C7120.8 (2)C13—C14—C9120.2 (2)
C7—C6—H6119.6C13—C14—H14119.9
Cl1—C11—C12—C13178.63 (17)C4—C5—C6—C70.9 (3)
O1—C5—C6—C7179.3 (2)C5—C6—C7—C21.5 (3)
O2—C2—C3—C4179.9 (2)C5—C6—C7—C8177.7 (2)
O2—C2—C7—C6179.1 (2)C6—C7—C8—N1177.27 (19)
O2—C2—C7—C81.7 (4)C7—C2—C3—C40.1 (3)
N1—C9—C10—C11179.68 (19)C8—N1—C9—C10173.2 (2)
N1—C9—C14—C13179.5 (2)C8—N1—C9—C147.1 (3)
C1—O1—C5—C45.3 (4)C9—N1—C8—C7179.1 (2)
C1—O1—C5—C6174.9 (2)C9—C10—C11—Cl1178.15 (18)
C2—C3—C4—C50.5 (4)C9—C10—C11—C121.0 (3)
C2—C7—C8—N11.9 (3)C10—C9—C14—C130.3 (3)
C3—C2—C7—C61.1 (3)C10—C11—C12—C130.5 (3)
C3—C2—C7—C8178.1 (2)C11—C12—C13—C140.4 (3)
C3—C4—C5—O1179.7 (2)C12—C13—C14—C90.7 (4)
C3—C4—C5—C60.1 (3)C14—C9—C10—C110.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.84 (3)1.87 (4)2.629 (3)150 (3)
(7Cl) top
Crystal data top
C14H12ClNO2F(000) = 1088
Mr = 261.70Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.8166 (4) ÅCell parameters from 927 reflections
b = 21.3693 (16) Åθ = 3.0–29.2°
c = 23.8639 (16) ŵ = 0.30 mm1
β = 92.844 (3)°T = 120 K
V = 2453.2 (3) Å3Plate, orange
Z = 80.48 × 0.28 × 0.08 mm
Data collection top
CCD area detector
diffractometer
4976 independent reflections
Radiation source: fine-focus sealed tube3948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 1.3°
phi and ω scansh = 56
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0599 before and 0.0410 after correction. The Ratio of minimum to maximum transmission is 0.8887. The λ/2 correction factor is 0.0015.
k = 2626
Tmin = 0.889, Tmax = 1l = 2929
24571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0221P)2 + 2.1965P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4976 reflectionsΔρmax = 0.25 e Å3
335 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46116 (11)0.87056 (2)0.60382 (2)0.02152 (13)
O10.9976 (3)0.50897 (7)0.73727 (6)0.0283 (4)
O20.6399 (4)0.59920 (8)0.71341 (6)0.0272 (4)
H20.532 (6)0.6265 (14)0.7000 (12)0.052 (9)*
N10.3915 (4)0.67146 (8)0.63965 (7)0.0183 (4)
C11.1964 (5)0.46077 (11)0.75148 (10)0.0297 (6)
H1A1.14760.42270.73030.045*
H1B1.19510.45190.79180.045*
H1C1.38220.47480.74210.045*
C20.7811 (4)0.57585 (10)0.67036 (8)0.0193 (5)
C30.9764 (4)0.52748 (10)0.68227 (9)0.0196 (5)
C41.1263 (4)0.50250 (10)0.63944 (9)0.0207 (5)
H41.25620.46980.64730.025*
C51.0865 (4)0.52538 (10)0.58439 (9)0.0197 (5)
H51.19110.50830.55530.024*
C60.8975 (4)0.57223 (9)0.57235 (9)0.0180 (4)
H60.87210.58740.53500.022*
C70.7407 (4)0.59803 (9)0.61519 (8)0.0158 (4)
C80.5395 (4)0.64737 (9)0.60141 (9)0.0171 (4)
H80.51700.66200.56390.021*
C90.1908 (4)0.71882 (9)0.62718 (8)0.0165 (4)
C100.0920 (4)0.73637 (10)0.57317 (9)0.0199 (5)
H100.16150.71610.54130.024*
C110.1059 (4)0.78300 (10)0.56585 (9)0.0201 (5)
H110.17180.79470.52920.024*
C120.2075 (4)0.81254 (9)0.61248 (9)0.0182 (4)
C130.1167 (4)0.79542 (10)0.66624 (9)0.0201 (5)
H130.18800.81570.69790.024*
C140.0795 (5)0.74830 (10)0.67328 (9)0.0201 (5)
H140.13950.73580.71010.024*
Cl20.03223 (11)0.01994 (2)0.59036 (2)0.02509 (14)
O31.4359 (3)0.36773 (7)0.55469 (6)0.0245 (4)
O41.0751 (3)0.27624 (7)0.55774 (6)0.0223 (3)
H4A0.975 (6)0.2429 (14)0.5670 (12)0.047 (9)*
N20.8667 (4)0.18416 (8)0.60961 (7)0.0180 (4)
C151.6499 (5)0.41380 (10)0.55129 (9)0.0237 (5)
H15A1.62820.44550.58040.036*
H15B1.63600.43380.51430.036*
H15C1.83210.39370.55690.036*
C161.2361 (4)0.28650 (9)0.60491 (8)0.0164 (4)
C171.4310 (4)0.33572 (10)0.60465 (8)0.0183 (4)
C181.5954 (4)0.34885 (10)0.65237 (9)0.0197 (5)
H181.72370.38260.65230.024*
C191.5733 (5)0.31247 (10)0.70076 (9)0.0210 (5)
H191.68550.32190.73350.025*
C201.3899 (4)0.26308 (10)0.70109 (8)0.0190 (5)
H201.37890.23820.73390.023*
C211.2181 (4)0.24913 (9)0.65314 (8)0.0159 (4)
C221.0259 (4)0.19680 (9)0.65334 (8)0.0174 (4)
H221.01700.17160.68600.021*
C230.6732 (4)0.13411 (9)0.60812 (9)0.0178 (4)
C240.5767 (5)0.10460 (10)0.65574 (9)0.0208 (5)
H240.64650.11680.69200.025*
C250.3788 (4)0.05742 (10)0.65000 (9)0.0214 (5)
H250.31120.03760.68230.026*
C260.2807 (4)0.03943 (9)0.59681 (9)0.0205 (5)
C270.3741 (5)0.06806 (10)0.54893 (9)0.0235 (5)
H270.30560.05520.51270.028*
C280.5690 (5)0.11567 (10)0.55499 (9)0.0222 (5)
H280.63240.13600.52260.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0192 (3)0.0183 (2)0.0270 (3)0.0025 (2)0.0003 (2)0.0011 (2)
O10.0336 (10)0.0328 (9)0.0187 (8)0.0143 (7)0.0015 (7)0.0065 (7)
O20.0327 (10)0.0320 (9)0.0173 (8)0.0132 (8)0.0045 (7)0.0014 (7)
N10.0191 (10)0.0162 (9)0.0194 (9)0.0000 (7)0.0003 (8)0.0001 (7)
C10.0361 (15)0.0304 (13)0.0222 (12)0.0134 (11)0.0021 (11)0.0040 (10)
C20.0192 (12)0.0205 (11)0.0181 (11)0.0006 (9)0.0006 (9)0.0018 (8)
C30.0196 (12)0.0207 (11)0.0184 (11)0.0010 (9)0.0005 (9)0.0023 (8)
C40.0161 (11)0.0202 (11)0.0257 (12)0.0019 (9)0.0006 (9)0.0004 (9)
C50.0198 (12)0.0181 (10)0.0217 (11)0.0010 (9)0.0048 (9)0.0023 (9)
C60.0175 (11)0.0204 (11)0.0160 (10)0.0032 (9)0.0003 (9)0.0015 (8)
C70.0142 (11)0.0141 (10)0.0191 (10)0.0031 (8)0.0000 (8)0.0006 (8)
C80.0174 (11)0.0148 (10)0.0188 (11)0.0028 (8)0.0018 (9)0.0010 (8)
C90.0161 (11)0.0159 (10)0.0174 (10)0.0021 (8)0.0015 (9)0.0001 (8)
C100.0212 (12)0.0212 (11)0.0173 (11)0.0009 (9)0.0023 (9)0.0033 (8)
C110.0214 (12)0.0225 (11)0.0164 (11)0.0003 (9)0.0007 (9)0.0001 (8)
C120.0148 (11)0.0141 (10)0.0255 (11)0.0013 (8)0.0004 (9)0.0002 (8)
C130.0198 (12)0.0217 (11)0.0190 (11)0.0001 (9)0.0030 (9)0.0034 (8)
C140.0225 (12)0.0210 (11)0.0164 (10)0.0007 (9)0.0022 (9)0.0000 (8)
Cl20.0207 (3)0.0204 (3)0.0338 (3)0.0049 (2)0.0026 (2)0.0006 (2)
O30.0259 (9)0.0273 (8)0.0199 (8)0.0098 (7)0.0015 (7)0.0074 (6)
O40.0249 (9)0.0267 (9)0.0149 (8)0.0074 (7)0.0029 (7)0.0023 (6)
N20.0175 (10)0.0176 (9)0.0188 (9)0.0005 (7)0.0016 (8)0.0002 (7)
C150.0233 (13)0.0228 (12)0.0251 (12)0.0045 (9)0.0033 (10)0.0060 (9)
C160.0149 (11)0.0199 (11)0.0144 (10)0.0010 (8)0.0000 (8)0.0002 (8)
C170.0174 (11)0.0205 (11)0.0170 (10)0.0022 (9)0.0019 (9)0.0018 (8)
C180.0174 (11)0.0176 (10)0.0240 (12)0.0015 (8)0.0006 (9)0.0003 (8)
C190.0206 (12)0.0232 (11)0.0187 (11)0.0005 (9)0.0031 (9)0.0030 (9)
C200.0199 (11)0.0227 (11)0.0145 (10)0.0014 (9)0.0009 (9)0.0013 (8)
C210.0153 (11)0.0170 (10)0.0157 (10)0.0015 (8)0.0032 (8)0.0000 (8)
C220.0171 (11)0.0188 (10)0.0167 (10)0.0009 (8)0.0046 (9)0.0011 (8)
C230.0167 (11)0.0173 (10)0.0194 (11)0.0005 (8)0.0003 (9)0.0002 (8)
C240.0214 (12)0.0221 (11)0.0187 (11)0.0013 (9)0.0000 (9)0.0010 (9)
C250.0200 (12)0.0205 (11)0.0241 (12)0.0011 (9)0.0036 (9)0.0022 (9)
C260.0145 (11)0.0171 (11)0.0295 (12)0.0003 (8)0.0025 (9)0.0006 (9)
C270.0239 (13)0.0252 (12)0.0208 (11)0.0030 (9)0.0033 (10)0.0017 (9)
C280.0217 (12)0.0252 (12)0.0197 (11)0.0019 (9)0.0012 (9)0.0038 (9)
Geometric parameters (Å, º) top
Cl1—C121.746 (2)Cl2—C261.746 (2)
O1—C11.436 (3)O3—C151.431 (3)
O1—C31.370 (2)O3—C171.376 (2)
O2—H20.83 (3)O4—H4A0.89 (3)
O2—C21.355 (3)O4—C161.353 (2)
N1—C81.292 (3)N2—C221.293 (3)
N1—C91.421 (3)N2—C231.418 (3)
C1—H1A0.9800C15—H15A0.9800
C1—H1B0.9800C15—H15B0.9800
C1—H1C0.9800C15—H15C0.9800
C2—C31.417 (3)C16—C171.410 (3)
C2—C71.404 (3)C16—C211.407 (3)
C3—C41.387 (3)C17—C181.383 (3)
C4—H40.9500C18—H180.9500
C4—C51.406 (3)C18—C191.400 (3)
C5—H50.9500C19—H190.9500
C5—C61.374 (3)C19—C201.377 (3)
C6—H60.9500C20—H200.9500
C6—C71.413 (3)C20—C211.410 (3)
C7—C81.458 (3)C21—C221.452 (3)
C8—H80.9500C22—H220.9500
C9—C101.403 (3)C23—C241.399 (3)
C9—C141.398 (3)C23—C281.397 (3)
C10—H100.9500C24—H240.9500
C10—C111.384 (3)C24—C251.390 (3)
C11—H110.9500C25—H250.9500
C11—C121.389 (3)C25—C261.387 (3)
C12—C131.384 (3)C26—C271.390 (3)
C13—H130.9500C27—H270.9500
C13—C141.386 (3)C27—C281.387 (3)
C14—H140.9500C28—H280.9500
C3—O1—C1116.78 (17)C17—O3—C15115.77 (16)
C2—O2—H2107 (2)C16—O4—H4A102.5 (18)
C8—N1—C9121.96 (18)C22—N2—C23122.74 (18)
O1—C1—H1A109.5O3—C15—H15A109.5
O1—C1—H1B109.5O3—C15—H15B109.5
O1—C1—H1C109.5O3—C15—H15C109.5
H1A—C1—H1B109.5H15A—C15—H15B109.5
H1A—C1—H1C109.5H15A—C15—H15C109.5
H1B—C1—H1C109.5H15B—C15—H15C109.5
O2—C2—C3118.02 (19)O4—C16—C17118.12 (18)
O2—C2—C7122.36 (19)O4—C16—C21122.19 (19)
C7—C2—C3119.62 (19)C21—C16—C17119.68 (19)
O1—C3—C2114.83 (18)O3—C17—C16114.52 (18)
O1—C3—C4125.33 (19)O3—C17—C18125.36 (19)
C4—C3—C2119.84 (19)C18—C17—C16120.11 (19)
C3—C4—H4119.9C17—C18—H18119.9
C3—C4—C5120.2 (2)C17—C18—C19120.2 (2)
C5—C4—H4119.9C19—C18—H18119.9
C4—C5—H5119.8C18—C19—H19119.8
C6—C5—C4120.5 (2)C20—C19—C18120.4 (2)
C6—C5—H5119.8C20—C19—H19119.8
C5—C6—H6119.8C19—C20—H20119.7
C5—C6—C7120.36 (19)C19—C20—C21120.55 (19)
C7—C6—H6119.8C21—C20—H20119.7
C2—C7—C6119.52 (19)C16—C21—C20119.10 (19)
C2—C7—C8121.01 (19)C16—C21—C22120.33 (19)
C6—C7—C8119.48 (18)C20—C21—C22120.57 (18)
N1—C8—C7120.83 (19)N2—C22—C21120.74 (19)
N1—C8—H8119.6N2—C22—H22119.6
C7—C8—H8119.6C21—C22—H22119.6
C10—C9—N1125.40 (18)C24—C23—N2124.34 (19)
C14—C9—N1116.09 (18)C28—C23—N2116.21 (18)
C14—C9—C10118.48 (19)C28—C23—C24119.42 (19)
C9—C10—H10119.7C23—C24—H24120.0
C11—C10—C9120.58 (19)C25—C24—C23120.1 (2)
C11—C10—H10119.7C25—C24—H24120.0
C10—C11—H11120.2C24—C25—H25120.3
C10—C11—C12119.6 (2)C26—C25—C24119.5 (2)
C12—C11—H11120.2C26—C25—H25120.3
C11—C12—Cl1120.01 (16)C25—C26—Cl2118.89 (17)
C13—C12—Cl1118.99 (16)C25—C26—C27121.4 (2)
C13—C12—C11120.98 (19)C27—C26—Cl2119.71 (17)
C12—C13—H13120.4C26—C27—H27120.6
C12—C13—C14119.1 (2)C28—C27—C26118.8 (2)
C14—C13—H13120.4C28—C27—H27120.6
C9—C14—H14119.4C23—C28—H28119.6
C13—C14—C9121.2 (2)C27—C28—C23120.8 (2)
C13—C14—H14119.4C27—C28—H28119.6
Cl1—C12—C13—C14178.40 (16)Cl2—C26—C27—C28179.20 (17)
O1—C3—C4—C5180.0 (2)O3—C17—C18—C19179.4 (2)
O2—C2—C3—O10.8 (3)O4—C16—C17—O30.8 (3)
O2—C2—C3—C4179.7 (2)O4—C16—C17—C18178.49 (19)
O2—C2—C7—C6179.13 (19)O4—C16—C21—C20179.16 (19)
O2—C2—C7—C80.8 (3)O4—C16—C21—C221.1 (3)
N1—C9—C10—C11179.6 (2)N2—C23—C24—C25177.60 (19)
N1—C9—C14—C13179.63 (19)N2—C23—C28—C27178.62 (19)
C1—O1—C3—C2178.99 (19)C15—O3—C17—C16174.04 (18)
C1—O1—C3—C41.5 (3)C15—O3—C17—C186.7 (3)
C2—C3—C4—C50.5 (3)C16—C17—C18—C191.4 (3)
C2—C7—C8—N10.7 (3)C16—C21—C22—N20.8 (3)
C3—C2—C7—C60.6 (3)C17—C16—C21—C202.1 (3)
C3—C2—C7—C8179.45 (19)C17—C16—C21—C22177.66 (19)
C3—C4—C5—C60.6 (3)C17—C18—C19—C200.6 (3)
C4—C5—C6—C70.0 (3)C18—C19—C20—C211.2 (3)
C5—C6—C7—C20.6 (3)C19—C20—C21—C160.2 (3)
C5—C6—C7—C8179.50 (19)C19—C20—C21—C22179.59 (19)
C6—C7—C8—N1179.42 (19)C20—C21—C22—N2179.49 (19)
C7—C2—C3—O1179.41 (19)C21—C16—C17—O3178.00 (18)
C7—C2—C3—C40.1 (3)C21—C16—C17—C182.7 (3)
C8—N1—C9—C1012.6 (3)C22—N2—C23—C2418.4 (3)
C8—N1—C9—C14169.46 (19)C22—N2—C23—C28163.9 (2)
C9—N1—C8—C7178.91 (18)C23—N2—C22—C21179.10 (18)
C9—C10—C11—C120.1 (3)C23—C24—C25—C260.8 (3)
C10—C9—C14—C132.3 (3)C24—C23—C28—C270.8 (3)
C10—C11—C12—Cl1178.98 (16)C24—C25—C26—Cl2179.98 (16)
C10—C11—C12—C130.9 (3)C24—C25—C26—C270.7 (3)
C11—C12—C13—C140.3 (3)C25—C26—C27—C280.1 (3)
C12—C13—C14—C91.3 (3)C26—C27—C28—C230.9 (3)
C14—C9—C10—C111.7 (3)C28—C23—C24—C250.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.83 (3)1.83 (3)2.589 (2)150 (3)
O4—H4A···N20.89 (3)1.71 (3)2.556 (2)156 (3)
(8Cl) top
Crystal data top
C14H12ClNO2F(000) = 544
Mr = 261.70Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5216 (11) ÅCell parameters from 1980 reflections
b = 8.8865 (18) Åθ = 2.4–24.4°
c = 25.127 (5) ŵ = 0.30 mm1
β = 95.001 (5)°T = 120 K
V = 1228.2 (4) Å3Plate, yellow
Z = 40.28 × 0.08 × 0.03 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2175 independent reflections
Radiation source: sealed X-ray tube1645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 7.9 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 66
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0702 before and 0.0481 after correction. The Ratio of minimum to maximum transmission is 0.7048. The λ/2 correction factor is 0.0015.
k = 1010
Tmin = 0.705, Tmax = 1l = 2929
11727 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0762P)2 + 2.416P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2175 reflectionsΔρmax = 0.56 e Å3
168 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30424 (19)0.49200 (12)0.95404 (4)0.0393 (3)
O10.7802 (5)0.5463 (3)0.54730 (11)0.0368 (7)
O20.5962 (5)0.7046 (3)0.72066 (11)0.0335 (7)
H20.512 (10)0.692 (6)0.745 (2)0.058 (16)*
N10.2417 (6)0.5691 (4)0.76247 (12)0.0293 (7)
C10.9492 (8)0.6675 (5)0.54458 (16)0.0375 (10)
H1A1.0769810.6586360.5740270.056*
H1B0.8641530.7635570.5473930.056*
H1C1.0223570.6632430.5104450.056*
C20.5523 (7)0.6134 (4)0.67835 (14)0.0277 (8)
C30.6940 (7)0.6297 (4)0.63541 (15)0.0301 (9)
H30.8190310.7033640.6367030.036*
C40.6526 (7)0.5388 (4)0.59113 (15)0.0294 (9)
C50.4696 (7)0.4289 (5)0.58896 (16)0.0335 (9)
H50.4427430.3658120.5584930.040*
C60.3293 (7)0.4131 (4)0.63119 (15)0.0322 (9)
H60.2049350.3389430.6292700.039*
C70.3646 (7)0.5033 (4)0.67710 (15)0.0289 (8)
C80.2163 (7)0.4847 (4)0.72091 (15)0.0306 (9)
H80.0961890.4078950.7190380.037*
C90.0997 (7)0.5469 (4)0.80641 (15)0.0297 (9)
C100.1166 (7)0.4654 (4)0.80421 (16)0.0318 (9)
H100.1793660.4204910.7715740.038*
C110.2402 (7)0.4499 (4)0.84966 (15)0.0317 (9)
H110.3891060.3957920.8480270.038*
C120.1466 (7)0.5131 (4)0.89720 (16)0.0316 (9)
C130.0701 (7)0.5932 (5)0.90039 (15)0.0319 (9)
H130.1353650.6349110.9333740.038*
C140.1889 (7)0.6109 (4)0.85463 (15)0.0331 (9)
H140.3347650.6680400.8561730.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0338 (6)0.0486 (7)0.0366 (6)0.0081 (5)0.0091 (4)0.0025 (4)
O10.0412 (17)0.0309 (15)0.0396 (16)0.0045 (13)0.0111 (13)0.0033 (12)
O20.0359 (16)0.0336 (16)0.0314 (15)0.0064 (13)0.0056 (12)0.0035 (12)
N10.0257 (17)0.0285 (17)0.0338 (17)0.0018 (14)0.0028 (13)0.0033 (14)
C10.041 (2)0.030 (2)0.044 (2)0.0036 (18)0.0159 (19)0.0011 (18)
C20.027 (2)0.0251 (19)0.0307 (19)0.0041 (16)0.0001 (15)0.0010 (15)
C30.028 (2)0.0244 (19)0.038 (2)0.0005 (16)0.0028 (16)0.0015 (16)
C40.030 (2)0.025 (2)0.034 (2)0.0035 (16)0.0060 (16)0.0006 (15)
C50.032 (2)0.029 (2)0.040 (2)0.0013 (17)0.0029 (17)0.0051 (17)
C60.032 (2)0.025 (2)0.040 (2)0.0041 (17)0.0049 (17)0.0007 (16)
C70.0274 (19)0.0254 (19)0.033 (2)0.0055 (17)0.0004 (15)0.0013 (16)
C80.029 (2)0.026 (2)0.036 (2)0.0016 (17)0.0020 (16)0.0033 (16)
C90.028 (2)0.0253 (19)0.036 (2)0.0031 (16)0.0048 (16)0.0047 (16)
C100.033 (2)0.029 (2)0.033 (2)0.0009 (17)0.0027 (16)0.0005 (16)
C110.029 (2)0.028 (2)0.039 (2)0.0008 (16)0.0048 (17)0.0017 (16)
C120.029 (2)0.031 (2)0.035 (2)0.0112 (17)0.0048 (16)0.0051 (17)
C130.025 (2)0.036 (2)0.035 (2)0.0063 (17)0.0001 (16)0.0016 (17)
C140.029 (2)0.029 (2)0.041 (2)0.0021 (17)0.0027 (17)0.0008 (17)
Geometric parameters (Å, º) top
Cl1—C121.746 (4)C5—C61.374 (6)
O1—C11.430 (5)C6—H60.9500
O1—C41.360 (5)C6—C71.404 (5)
O2—H20.81 (5)C7—C81.438 (5)
O2—C21.342 (4)C8—H80.9500
N1—C81.283 (5)C9—C101.394 (6)
N1—C91.423 (5)C9—C141.389 (5)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.388 (5)
C1—H1C0.9800C11—H110.9500
C2—C31.394 (5)C11—C121.379 (6)
C2—C71.424 (5)C12—C131.389 (6)
C3—H30.9500C13—H130.9500
C3—C41.378 (5)C13—C141.382 (5)
C4—C51.403 (6)C14—H140.9500
C5—H50.9500
C4—O1—C1117.5 (3)C2—C7—C8121.6 (3)
C2—O2—H2116 (4)C6—C7—C2117.3 (3)
C8—N1—C9121.5 (4)C6—C7—C8121.1 (4)
O1—C1—H1A109.5N1—C8—C7121.8 (4)
O1—C1—H1B109.5N1—C8—H8119.1
O1—C1—H1C109.5C7—C8—H8119.1
H1A—C1—H1B109.5C10—C9—N1124.7 (3)
H1A—C1—H1C109.5C14—C9—N1116.3 (4)
H1B—C1—H1C109.5C14—C9—C10119.0 (4)
O2—C2—C3118.4 (3)C9—C10—H10120.0
O2—C2—C7120.9 (3)C11—C10—C9120.0 (4)
C3—C2—C7120.7 (3)C11—C10—H10120.0
C2—C3—H3120.0C10—C11—H11120.1
C4—C3—C2120.0 (4)C12—C11—C10119.9 (4)
C4—C3—H3120.0C12—C11—H11120.1
O1—C4—C3124.4 (4)C11—C12—Cl1119.3 (3)
O1—C4—C5115.1 (3)C11—C12—C13121.0 (4)
C3—C4—C5120.5 (4)C13—C12—Cl1119.8 (3)
C4—C5—H5120.2C12—C13—H13120.7
C6—C5—C4119.6 (4)C14—C13—C12118.7 (4)
C6—C5—H5120.2C14—C13—H13120.7
C5—C6—H6119.0C9—C14—H14119.3
C5—C6—C7121.9 (4)C13—C14—C9121.4 (4)
C7—C6—H6119.0C13—C14—H14119.3
Cl1—C12—C13—C14178.7 (3)C4—C5—C6—C70.5 (6)
O1—C4—C5—C6179.6 (3)C5—C6—C7—C20.2 (6)
O2—C2—C3—C4179.4 (3)C5—C6—C7—C8179.8 (4)
O2—C2—C7—C6179.6 (3)C6—C7—C8—N1178.0 (4)
O2—C2—C7—C80.4 (5)C7—C2—C3—C40.1 (6)
N1—C9—C10—C11179.6 (4)C8—N1—C9—C1018.2 (6)
N1—C9—C14—C13178.1 (3)C8—N1—C9—C14161.0 (4)
C1—O1—C4—C37.4 (6)C9—N1—C8—C7177.9 (3)
C1—O1—C4—C5172.8 (3)C9—C10—C11—C121.1 (6)
C2—C3—C4—O1179.8 (3)C10—C9—C14—C131.1 (6)
C2—C3—C4—C50.5 (6)C10—C11—C12—Cl1179.8 (3)
C2—C7—C8—N11.9 (6)C10—C11—C12—C130.3 (6)
C3—C2—C7—C60.0 (5)C11—C12—C13—C141.2 (6)
C3—C2—C7—C8180.0 (3)C12—C13—C14—C91.9 (6)
C3—C4—C5—C60.6 (6)C14—C9—C10—C110.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.81 (5)1.93 (6)2.597 (4)139 (5)
(9Cl) top
Crystal data top
C14H12ClNO2F(000) = 544
Mr = 261.70Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.2023 (12) ÅCell parameters from 936 reflections
b = 4.6591 (3) Åθ = 3.4–30.4°
c = 12.1240 (7) ŵ = 0.31 mm1
β = 93.615 (2)°T = 120 K
V = 1195.27 (12) Å3Needle, orange
Z = 40.33 × 0.11 × 0.08 mm
Data collection top
CCD area detector
diffractometer
2429 independent reflections
Graphite monochromator2013 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.028
phi and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0361 before and 0.0271 after correction. The Ratio of minimum to maximum transmission is 0.8575. The λ/2 correction factor is 0.0015.
h = 2623
Tmin = 0.858, Tmax = 1.000k = 55
7498 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2429 reflectionsΔρmax = 0.33 e Å3
168 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46868 (2)1.41649 (9)0.33768 (3)0.02719 (16)
O10.07654 (6)0.2373 (3)0.32941 (9)0.0266 (3)
O20.23820 (6)0.2755 (3)0.64629 (10)0.0281 (3)
H20.2602 (12)0.406 (5)0.610 (2)0.050 (7)*
N10.28423 (6)0.5608 (3)0.48379 (11)0.0196 (3)
C10.02532 (9)0.4082 (4)0.36221 (16)0.0297 (4)
H1A0.04190.57730.40250.045*
H1B0.00050.46990.29650.045*
H1C0.00070.29520.41020.045*
C20.19834 (8)0.1498 (4)0.56859 (13)0.0215 (4)
C30.15380 (8)0.0455 (4)0.60175 (14)0.0245 (4)
H30.15170.08860.67800.029*
C40.11240 (8)0.1781 (4)0.52469 (14)0.0232 (4)
H40.08210.31100.54830.028*
C50.11526 (8)0.1165 (4)0.41254 (13)0.0213 (4)
C60.15970 (8)0.0775 (3)0.37875 (13)0.0202 (3)
H60.16200.11730.30230.024*
C70.20110 (8)0.2152 (3)0.45562 (13)0.0195 (3)
C80.24637 (8)0.4202 (3)0.41679 (13)0.0198 (3)
H80.24800.45130.33960.024*
C90.32703 (7)0.7650 (3)0.44403 (13)0.0198 (3)
C100.32558 (8)0.8618 (4)0.33457 (13)0.0227 (4)
H100.29460.78960.28170.027*
C110.36921 (8)1.0628 (4)0.30302 (14)0.0237 (4)
H110.36821.12840.22870.028*
C120.41427 (8)1.1671 (4)0.38039 (14)0.0214 (4)
C130.41629 (8)1.0772 (4)0.48936 (14)0.0232 (4)
H130.44731.15090.54190.028*
C140.37233 (8)0.8776 (4)0.52035 (13)0.0226 (4)
H140.37310.81630.59510.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0269 (3)0.0214 (2)0.0342 (3)0.00547 (16)0.00897 (18)0.00163 (17)
O10.0260 (6)0.0307 (7)0.0229 (6)0.0095 (5)0.0000 (5)0.0001 (5)
O20.0321 (7)0.0338 (7)0.0181 (6)0.0110 (6)0.0001 (5)0.0001 (5)
N10.0215 (7)0.0176 (7)0.0198 (7)0.0000 (5)0.0031 (5)0.0004 (5)
C10.0266 (9)0.0296 (10)0.0326 (9)0.0086 (8)0.0005 (7)0.0008 (8)
C20.0239 (8)0.0227 (8)0.0180 (8)0.0007 (7)0.0020 (6)0.0023 (6)
C30.0286 (9)0.0271 (9)0.0181 (8)0.0024 (7)0.0043 (7)0.0013 (7)
C40.0221 (8)0.0227 (8)0.0254 (8)0.0028 (7)0.0049 (7)0.0021 (7)
C50.0204 (8)0.0220 (8)0.0214 (8)0.0010 (7)0.0013 (6)0.0025 (7)
C60.0230 (8)0.0205 (8)0.0172 (7)0.0012 (7)0.0019 (6)0.0013 (6)
C70.0208 (8)0.0183 (8)0.0195 (8)0.0020 (6)0.0031 (6)0.0008 (6)
C80.0228 (8)0.0184 (8)0.0183 (7)0.0016 (6)0.0022 (6)0.0002 (6)
C90.0213 (8)0.0166 (8)0.0218 (8)0.0012 (6)0.0038 (6)0.0002 (6)
C100.0233 (8)0.0240 (8)0.0208 (8)0.0014 (7)0.0000 (7)0.0002 (7)
C110.0276 (9)0.0222 (8)0.0214 (8)0.0002 (7)0.0028 (7)0.0020 (7)
C120.0200 (8)0.0170 (8)0.0278 (9)0.0007 (6)0.0058 (7)0.0017 (6)
C130.0214 (8)0.0232 (9)0.0249 (8)0.0016 (7)0.0000 (7)0.0042 (7)
C140.0264 (9)0.0224 (8)0.0190 (8)0.0011 (7)0.0014 (7)0.0004 (6)
Geometric parameters (Å, º) top
Cl1—C121.7389 (17)C5—C61.386 (2)
O1—C11.424 (2)C6—H60.9500
O1—C51.3792 (19)C6—C71.395 (2)
O2—H20.90 (3)C7—C81.454 (2)
O2—C21.358 (2)C8—H80.9500
N1—C81.285 (2)C9—C101.400 (2)
N1—C91.420 (2)C9—C141.394 (2)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.387 (2)
C1—H1C0.9800C11—H110.9500
C2—C31.389 (2)C11—C121.384 (2)
C2—C71.408 (2)C12—C131.384 (2)
C3—H30.9500C13—H130.9500
C3—C41.386 (2)C13—C141.385 (2)
C4—H40.9500C14—H140.9500
C4—C51.395 (2)
C5—O1—C1116.97 (13)C2—C7—C8121.73 (15)
C2—O2—H2105.9 (15)C6—C7—C2119.18 (15)
C8—N1—C9120.93 (14)C6—C7—C8119.09 (14)
O1—C1—H1A109.5N1—C8—C7121.96 (15)
O1—C1—H1B109.5N1—C8—H8119.0
O1—C1—H1C109.5C7—C8—H8119.0
H1A—C1—H1B109.5C10—C9—N1124.16 (15)
H1A—C1—H1C109.5C14—C9—N1117.09 (14)
H1B—C1—H1C109.5C14—C9—C10118.74 (15)
O2—C2—C3119.09 (14)C9—C10—H10119.9
O2—C2—C7121.30 (15)C11—C10—C9120.26 (15)
C3—C2—C7119.60 (15)C11—C10—H10119.9
C2—C3—H3119.7C10—C11—H11120.2
C4—C3—C2120.67 (15)C12—C11—C10119.61 (15)
C4—C3—H3119.7C12—C11—H11120.2
C3—C4—H4120.0C11—C12—Cl1118.39 (13)
C3—C4—C5120.05 (16)C11—C12—C13121.26 (15)
C5—C4—H4120.0C13—C12—Cl1120.35 (13)
O1—C5—C4124.62 (15)C12—C13—H13120.6
O1—C5—C6115.75 (14)C12—C13—C14118.77 (15)
C6—C5—C4119.63 (15)C14—C13—H13120.6
C5—C6—H6119.6C9—C14—H14119.3
C5—C6—C7120.86 (15)C13—C14—C9121.34 (15)
C7—C6—H6119.6C13—C14—H14119.3
Cl1—C12—C13—C14179.80 (13)C4—C5—C6—C70.9 (2)
O1—C5—C6—C7179.43 (14)C5—C6—C7—C21.5 (2)
O2—C2—C3—C4179.92 (16)C5—C6—C7—C8179.11 (15)
O2—C2—C7—C6179.13 (15)C6—C7—C8—N1177.63 (15)
O2—C2—C7—C80.3 (3)C7—C2—C3—C40.5 (3)
N1—C9—C10—C11179.81 (15)C8—N1—C9—C1010.0 (2)
N1—C9—C14—C13179.74 (14)C8—N1—C9—C14171.17 (15)
C1—O1—C5—C48.2 (2)C9—N1—C8—C7178.50 (14)
C1—O1—C5—C6172.13 (15)C9—C10—C11—C120.0 (2)
C2—C3—C4—C50.1 (3)C10—C9—C14—C131.4 (2)
C2—C7—C8—N13.0 (3)C10—C11—C12—Cl1179.44 (13)
C3—C2—C7—C61.3 (2)C10—C11—C12—C130.7 (3)
C3—C2—C7—C8179.34 (15)C11—C12—C13—C140.4 (2)
C3—C4—C5—O1179.72 (16)C12—C13—C14—C90.7 (3)
C3—C4—C5—C60.0 (3)C14—C9—C10—C111.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.90 (3)1.80 (3)2.6160 (18)151 (2)
(1Br) top
Crystal data top
C14H12BrNO2Dx = 1.641 Mg m3
Mr = 306.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 846 reflections
a = 6.2974 (11) Åθ = 3.1–28.0°
b = 14.718 (2) ŵ = 3.31 mm1
c = 13.367 (2) ÅT = 120 K
V = 1239.0 (4) Å3Plate, orange
Z = 40.26 × 0.18 × 0.07 mm
F(000) = 616
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0818 before and 0.0434 after correction. The Ratio of minimum to maximum transmission is 0.4936. The λ/2 correction factor is 0.0015.
h = 88
Tmin = 0.494, Tmax = 1.0k = 1915
7921 measured reflectionsl = 1217
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0196P)2 + 0.0463P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.35 e Å3
2339 reflectionsΔρmin = 0.33 e Å3
169 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.042 (16)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.53557 (6)0.37927 (2)0.48248 (5)0.02529 (11)
O10.2247 (4)0.63149 (15)0.4935 (3)0.0225 (6)
O20.1182 (5)0.53949 (19)0.5344 (2)0.0226 (6)
H20.224 (7)0.517 (3)0.558 (3)0.037 (15)*
N10.3939 (5)0.4834 (2)0.6655 (3)0.0167 (7)
C10.4060 (6)0.6853 (3)0.4679 (4)0.0264 (11)
H1A0.5325030.6601260.5003000.040*
H1B0.4255690.6848260.3951530.040*
H1C0.3839310.7479040.4906770.040*
C20.0195 (6)0.5800 (3)0.6124 (3)0.0178 (8)
C30.1658 (6)0.6303 (3)0.5916 (3)0.0187 (8)
C40.2702 (6)0.6747 (2)0.6680 (3)0.0207 (9)
H40.3947900.7087840.6540710.025*
C50.1928 (6)0.6696 (2)0.7661 (3)0.0214 (9)
H50.2637000.7013710.8181960.026*
C60.0157 (6)0.6192 (3)0.7875 (3)0.0223 (9)
H60.0326500.6143960.8546590.027*
C70.0950 (6)0.5743 (3)0.7104 (3)0.0165 (8)
C80.2821 (6)0.5211 (2)0.7347 (3)0.0181 (9)
H80.3227290.5140380.8026760.022*
C90.5791 (6)0.4331 (2)0.6866 (3)0.0163 (8)
C100.6711 (6)0.3828 (3)0.6093 (3)0.0191 (8)
C110.8567 (6)0.3337 (3)0.6227 (3)0.0224 (9)
H110.9165400.3005250.5686020.027*
C120.9541 (7)0.3335 (3)0.7154 (3)0.0229 (9)
H121.0804900.2994170.7254880.027*
C130.8673 (7)0.3830 (3)0.7938 (3)0.0215 (9)
H130.9345560.3830250.8574130.026*
C140.6828 (6)0.4322 (3)0.7791 (3)0.0197 (8)
H140.6251700.4661000.8331380.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03417 (19)0.02547 (18)0.01622 (16)0.00390 (15)0.0002 (3)0.0000 (3)
O10.0215 (12)0.0253 (12)0.0208 (17)0.0052 (9)0.0012 (17)0.0016 (16)
O20.0204 (15)0.0298 (15)0.0175 (15)0.0069 (13)0.0027 (12)0.0009 (13)
N10.0163 (16)0.0153 (15)0.0186 (17)0.0011 (12)0.0006 (13)0.0017 (14)
C10.0207 (19)0.0297 (19)0.029 (3)0.0018 (14)0.0073 (18)0.002 (2)
C20.018 (2)0.0141 (18)0.022 (2)0.0030 (15)0.0020 (16)0.0027 (16)
C30.018 (2)0.0153 (18)0.023 (2)0.0033 (15)0.0019 (16)0.0048 (16)
C40.018 (2)0.0160 (19)0.028 (2)0.0019 (15)0.0013 (17)0.0059 (18)
C50.023 (2)0.016 (2)0.024 (2)0.0021 (16)0.0063 (17)0.0008 (17)
C60.025 (2)0.021 (2)0.021 (2)0.0010 (18)0.0013 (17)0.0011 (18)
C70.017 (2)0.0148 (19)0.017 (2)0.0003 (15)0.0028 (15)0.0019 (16)
C80.018 (2)0.020 (2)0.016 (2)0.0009 (16)0.0013 (16)0.0000 (17)
C90.016 (2)0.0134 (18)0.020 (2)0.0024 (14)0.0032 (15)0.0022 (16)
C100.021 (2)0.0189 (19)0.0174 (19)0.0027 (16)0.0013 (16)0.0041 (17)
C110.026 (2)0.019 (2)0.023 (2)0.0036 (16)0.0046 (18)0.0004 (17)
C120.023 (2)0.018 (2)0.028 (2)0.0033 (17)0.0004 (19)0.0008 (18)
C130.022 (2)0.021 (2)0.021 (2)0.0008 (18)0.0032 (17)0.0030 (18)
C140.024 (2)0.018 (2)0.017 (2)0.0034 (16)0.0015 (17)0.0002 (17)
Geometric parameters (Å, º) top
Br1—C101.899 (4)C5—C61.370 (5)
O1—C11.431 (4)C6—H60.9500
O1—C31.363 (5)C6—C71.408 (6)
O2—H20.81 (4)C7—C81.451 (5)
O2—C21.353 (5)C8—H80.9500
N1—C81.289 (4)C9—C101.396 (5)
N1—C91.409 (5)C9—C141.399 (6)
C1—H1A0.9800C10—C111.386 (6)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.383 (6)
C2—C31.410 (6)C12—H120.9500
C2—C71.396 (6)C12—C131.388 (6)
C3—C41.379 (6)C13—H130.9500
C4—H40.9500C13—C141.383 (6)
C4—C51.401 (6)C14—H140.9500
C5—H50.9500
C3—O1—C1117.0 (4)C2—C7—C6119.4 (4)
C2—O2—H2105 (3)C2—C7—C8121.2 (4)
C8—N1—C9122.3 (3)C6—C7—C8119.4 (4)
O1—C1—H1A109.5N1—C8—C7121.1 (4)
O1—C1—H1B109.5N1—C8—H8119.5
O1—C1—H1C109.5C7—C8—H8119.5
H1A—C1—H1B109.5C10—C9—N1118.3 (4)
H1A—C1—H1C109.5C10—C9—C14117.0 (3)
H1B—C1—H1C109.5C14—C9—N1124.6 (3)
O2—C2—C3117.3 (4)C9—C10—Br1119.2 (3)
O2—C2—C7122.8 (3)C11—C10—Br1118.7 (3)
C7—C2—C3119.9 (4)C11—C10—C9122.1 (4)
O1—C3—C2115.0 (3)C10—C11—H11120.3
O1—C3—C4125.2 (4)C12—C11—C10119.4 (4)
C4—C3—C2119.8 (4)C12—C11—H11120.3
C3—C4—H4119.9C11—C12—H12120.0
C3—C4—C5120.2 (4)C11—C12—C13120.0 (4)
C5—C4—H4119.9C13—C12—H12120.0
C4—C5—H5119.7C12—C13—H13120.0
C6—C5—C4120.5 (4)C14—C13—C12119.9 (4)
C6—C5—H5119.7C14—C13—H13120.0
C5—C6—H6119.9C9—C14—H14119.2
C5—C6—C7120.2 (4)C13—C14—C9121.5 (4)
C7—C6—H6119.9C13—C14—H14119.2
Br1—C10—C11—C12178.2 (3)C4—C5—C6—C72.2 (6)
O1—C3—C4—C5179.1 (3)C5—C6—C7—C21.6 (6)
O2—C2—C3—O10.5 (5)C5—C6—C7—C8179.9 (4)
O2—C2—C3—C4178.5 (3)C6—C7—C8—N1176.1 (4)
O2—C2—C7—C6179.4 (3)C7—C2—C3—O1179.8 (3)
O2—C2—C7—C82.3 (6)C7—C2—C3—C40.8 (6)
N1—C9—C10—Br13.2 (5)C8—N1—C9—C10170.0 (3)
N1—C9—C10—C11178.0 (4)C8—N1—C9—C1412.2 (6)
N1—C9—C14—C13178.4 (4)C9—N1—C8—C7178.4 (3)
C1—O1—C3—C2177.1 (3)C9—C10—C11—C120.6 (6)
C1—O1—C3—C41.9 (5)C10—C9—C14—C130.5 (6)
C2—C3—C4—C50.2 (6)C10—C11—C12—C130.8 (6)
C2—C7—C8—N15.6 (6)C11—C12—C13—C140.3 (7)
C3—C2—C7—C60.1 (6)C12—C13—C14—C90.4 (6)
C3—C2—C7—C8178.4 (4)C14—C9—C10—Br1178.8 (3)
C3—C4—C5—C61.3 (6)C14—C9—C10—C110.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.81 (4)1.86 (4)2.602 (4)152 (5)
(2Br) top
Crystal data top
C14H12BrNO2F(000) = 1232
Mr = 306.16Dx = 1.643 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.351 (3) ÅCell parameters from 1000 reflections
b = 7.3950 (11) Åθ = 3.7–28.3°
c = 16.267 (3) ŵ = 3.31 mm1
β = 112.973 (2)°T = 120 K
V = 2475.4 (6) Å3Block, orange
Z = 80.35 × 0.24 × 0.14 mm
Data collection top
Bruker SMART 1K CCD Detector
diffractometer
2729 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8 pixels mm-1θmax = 27.1°, θmin = 2.0°
ω scansh = 2828
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0722 before and 0.0304 after correction. The Ratio of minimum to maximum transmission is 0.8033. The λ/2 correction factor is 0.0015.
k = 99
Tmin = 0.803, Tmax = 1.0l = 2019
12177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0247P)2 + 2.2885P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2729 reflectionsΔρmax = 0.36 e Å3
168 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32641 (2)0.54910 (3)0.05507 (2)0.02748 (8)
O10.69478 (6)0.9596 (2)0.14485 (9)0.0248 (3)
O20.47875 (6)0.7275 (2)0.04451 (10)0.0238 (3)
H20.4626 (12)0.635 (4)0.0543 (16)0.033 (7)*
N10.46400 (8)0.4127 (2)0.10753 (11)0.0208 (4)
C10.67111 (10)1.1178 (3)0.09193 (14)0.0271 (5)
H1A0.65071.08380.02880.041*
H1B0.70731.20050.10070.041*
H1C0.63901.17770.10990.041*
C20.54296 (9)0.7066 (3)0.09371 (13)0.0193 (4)
C30.58416 (9)0.8466 (3)0.09173 (13)0.0194 (4)
H30.56720.95160.05670.023*
C40.65057 (9)0.8302 (3)0.14176 (13)0.0200 (4)
C50.67638 (9)0.6771 (3)0.19351 (13)0.0224 (4)
H50.72190.66710.22680.027*
C60.63532 (9)0.5407 (3)0.19581 (13)0.0230 (4)
H60.65290.43690.23150.028*
C70.56769 (9)0.5513 (3)0.14634 (13)0.0198 (4)
C80.52592 (10)0.4088 (3)0.15268 (13)0.0215 (4)
H80.54440.30920.19110.026*
C90.42371 (9)0.2749 (3)0.11778 (13)0.0205 (4)
C100.35855 (9)0.3163 (3)0.09900 (13)0.0210 (4)
C110.31680 (10)0.1932 (3)0.11318 (14)0.0247 (4)
H110.27290.22510.10060.030*
C120.33982 (11)0.0229 (3)0.14586 (14)0.0274 (5)
H120.31210.06150.15760.033*
C130.40335 (11)0.0242 (3)0.16148 (14)0.0280 (5)
H130.41880.14190.18280.034*
C140.44458 (10)0.0993 (3)0.14621 (14)0.0253 (5)
H140.48760.06400.15520.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02312 (11)0.02175 (12)0.03660 (13)0.00176 (9)0.01060 (8)0.00412 (10)
O10.0181 (7)0.0251 (8)0.0270 (8)0.0041 (6)0.0044 (6)0.0057 (6)
O20.0149 (7)0.0249 (8)0.0285 (8)0.0011 (6)0.0052 (6)0.0036 (7)
N10.0213 (8)0.0194 (9)0.0224 (9)0.0037 (6)0.0094 (7)0.0010 (7)
C10.0233 (10)0.0245 (11)0.0297 (12)0.0024 (8)0.0063 (9)0.0036 (9)
C20.0160 (9)0.0240 (11)0.0176 (10)0.0012 (7)0.0064 (8)0.0023 (8)
C30.0178 (9)0.0211 (10)0.0186 (10)0.0015 (8)0.0062 (8)0.0018 (8)
C40.0194 (9)0.0243 (11)0.0175 (10)0.0039 (8)0.0086 (8)0.0019 (8)
C50.0160 (9)0.0276 (11)0.0206 (10)0.0002 (8)0.0038 (8)0.0018 (9)
C60.0230 (10)0.0247 (11)0.0187 (10)0.0021 (8)0.0053 (8)0.0031 (9)
C70.0200 (9)0.0212 (10)0.0183 (9)0.0022 (8)0.0074 (7)0.0018 (8)
C80.0247 (10)0.0217 (11)0.0188 (10)0.0009 (8)0.0091 (8)0.0004 (8)
C90.0232 (10)0.0207 (10)0.0171 (10)0.0048 (8)0.0074 (8)0.0023 (8)
C100.0250 (10)0.0190 (10)0.0182 (10)0.0039 (8)0.0074 (8)0.0015 (8)
C110.0255 (10)0.0259 (11)0.0249 (11)0.0062 (9)0.0122 (9)0.0029 (9)
C120.0330 (11)0.0245 (12)0.0244 (11)0.0123 (9)0.0108 (9)0.0023 (9)
C130.0348 (12)0.0197 (11)0.0238 (11)0.0040 (9)0.0052 (9)0.0015 (9)
C140.0267 (11)0.0226 (11)0.0233 (11)0.0019 (8)0.0064 (9)0.0034 (8)
Geometric parameters (Å, º) top
Br1—C101.895 (2)C5—C61.374 (3)
O1—C11.426 (3)C6—H60.9500
O1—C41.362 (2)C6—C71.410 (3)
O2—H20.82 (3)C7—C81.438 (3)
O2—C21.352 (2)C8—H80.9500
N1—C81.289 (3)C9—C101.400 (3)
N1—C91.412 (2)C9—C141.396 (3)
C1—H1A0.9800C10—C111.386 (3)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.385 (3)
C2—C31.394 (3)C12—H120.9500
C2—C71.410 (3)C12—C131.386 (3)
C3—H30.9500C13—H130.9500
C3—C41.392 (3)C13—C141.387 (3)
C4—C51.395 (3)C14—H140.9500
C5—H50.9500
C4—O1—C1117.45 (15)C2—C7—C6118.09 (18)
C2—O2—H2103.6 (17)C2—C7—C8121.93 (17)
C8—N1—C9120.58 (17)C6—C7—C8119.96 (18)
O1—C1—H1A109.5N1—C8—C7121.68 (18)
O1—C1—H1B109.5N1—C8—H8119.2
O1—C1—H1C109.5C7—C8—H8119.2
H1A—C1—H1B109.5C10—C9—N1118.27 (18)
H1A—C1—H1C109.5C14—C9—N1124.34 (18)
H1B—C1—H1C109.5C14—C9—C10117.39 (18)
O2—C2—C3117.37 (18)C9—C10—Br1119.31 (14)
O2—C2—C7121.78 (17)C11—C10—Br1118.62 (15)
C3—C2—C7120.85 (17)C11—C10—C9122.06 (19)
C2—C3—H3120.5C10—C11—H11120.4
C4—C3—C2119.04 (18)C12—C11—C10119.2 (2)
C4—C3—H3120.5C12—C11—H11120.4
O1—C4—C3123.60 (18)C11—C12—H12120.0
O1—C4—C5115.14 (17)C11—C12—C13120.0 (2)
C3—C4—C5121.26 (18)C13—C12—H12120.0
C4—C5—H5120.4C12—C13—H13119.8
C6—C5—C4119.28 (18)C12—C13—C14120.4 (2)
C6—C5—H5120.4C14—C13—H13119.8
C5—C6—H6119.3C9—C14—H14119.6
C5—C6—C7121.48 (19)C13—C14—C9120.8 (2)
C7—C6—H6119.3C13—C14—H14119.6
Br1—C10—C11—C12179.56 (15)C4—C5—C6—C70.6 (3)
O1—C4—C5—C6178.87 (18)C5—C6—C7—C20.2 (3)
O2—C2—C3—C4179.79 (17)C5—C6—C7—C8177.92 (19)
O2—C2—C7—C6179.83 (18)C6—C7—C8—N1179.04 (19)
O2—C2—C7—C81.8 (3)C7—C2—C3—C40.8 (3)
N1—C9—C10—Br13.3 (2)C8—N1—C9—C10154.11 (19)
N1—C9—C10—C11175.43 (18)C8—N1—C9—C1425.4 (3)
N1—C9—C14—C13174.78 (19)C9—N1—C8—C7177.29 (18)
C1—O1—C4—C31.5 (3)C9—C10—C11—C120.9 (3)
C1—O1—C4—C5178.95 (18)C10—C9—C14—C134.7 (3)
C2—C3—C4—O1179.54 (18)C10—C11—C12—C131.9 (3)
C2—C3—C4—C50.0 (3)C11—C12—C13—C141.2 (3)
C2—C7—C8—N12.9 (3)C12—C13—C14—C92.2 (3)
C3—C2—C7—C60.9 (3)C14—C9—C10—Br1177.20 (15)
C3—C2—C7—C8177.16 (18)C14—C9—C10—C114.1 (3)
C3—C4—C5—C60.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.82 (3)1.85 (3)2.616 (2)155 (2)
(3Br) top
Crystal data top
C14H12BrNO2F(000) = 616
Mr = 306.16Dx = 1.646 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.290 (2) ÅCell parameters from 936 reflections
b = 8.5162 (13) Åθ = 2.9–28.2°
c = 11.9068 (18) ŵ = 3.32 mm1
β = 113.514 (3)°T = 120 K
V = 1235.7 (3) Å3Plate, orange
Z = 40.3 × 0.2 × 0.06 mm
Data collection top
Bruker SMART 1K CCD Detector
diffractometer
2717 independent reflections
Radiation source: fine-focus sealed tube2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8 pixels mm-1θmax = 27.1°, θmin = 1.7°
ω scansh = 1715
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0832 before and 0.0319 after correction. The Ratio of minimum to maximum transmission is 0.6016. The λ/2 correction factor is 0.0015.
k = 107
Tmin = 0.602, Tmax = 1.0l = 1415
7467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.6418P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2717 reflectionsΔρmax = 0.36 e Å3
168 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61440 (2)0.22018 (3)0.55674 (2)0.01922 (9)
O11.27757 (14)0.0949 (2)0.60222 (17)0.0244 (4)
O20.90294 (16)0.1271 (2)0.69541 (18)0.0216 (4)
H20.862 (3)0.182 (4)0.654 (3)0.042 (11)*
N10.81174 (17)0.2961 (2)0.49836 (18)0.0156 (4)
C11.2843 (2)0.1678 (3)0.4977 (3)0.0245 (6)
H1A1.27020.28060.49910.037*
H1B1.22940.12130.42310.037*
H1C1.35770.15150.49900.037*
C20.9927 (2)0.1254 (3)0.6678 (2)0.0171 (5)
C31.0861 (2)0.0458 (3)0.7466 (2)0.0213 (6)
H31.08590.00360.81800.026*
C41.1784 (2)0.0383 (3)0.7214 (2)0.0217 (6)
H41.24140.01620.77560.026*
C51.1805 (2)0.1105 (3)0.6163 (2)0.0198 (5)
C61.08868 (19)0.1881 (3)0.5368 (2)0.0169 (5)
H61.08950.23590.46510.020*
C70.9936 (2)0.1966 (3)0.5617 (2)0.0160 (5)
C80.8977 (2)0.2775 (3)0.4752 (2)0.0164 (5)
H80.89840.31700.40090.020*
C90.7183 (2)0.3781 (3)0.4188 (2)0.0149 (5)
C100.6197 (2)0.3595 (3)0.4341 (2)0.0160 (5)
C110.5250 (2)0.4382 (3)0.3614 (2)0.0189 (5)
H110.45900.42200.37300.023*
C120.5266 (2)0.5402 (3)0.2723 (2)0.0213 (6)
H120.46170.59430.22180.026*
C130.6239 (2)0.5632 (3)0.2568 (2)0.0201 (5)
H130.62560.63470.19630.024*
C140.7178 (2)0.4833 (3)0.3281 (2)0.0176 (5)
H140.78330.49990.31570.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01902 (14)0.01926 (14)0.02218 (14)0.00131 (11)0.01116 (10)0.00333 (11)
O10.0154 (9)0.0276 (10)0.0319 (11)0.0037 (8)0.0113 (8)0.0038 (8)
O20.0210 (10)0.0273 (11)0.0197 (10)0.0046 (9)0.0115 (9)0.0056 (8)
N10.0160 (10)0.0152 (11)0.0141 (10)0.0000 (8)0.0046 (8)0.0013 (8)
C10.0189 (14)0.0284 (15)0.0294 (15)0.0009 (11)0.0131 (12)0.0056 (12)
C20.0182 (13)0.0170 (13)0.0154 (12)0.0004 (10)0.0060 (10)0.0009 (9)
C30.0274 (15)0.0214 (14)0.0151 (13)0.0009 (11)0.0086 (11)0.0023 (10)
C40.0176 (13)0.0204 (14)0.0211 (14)0.0039 (11)0.0013 (11)0.0004 (11)
C50.0161 (13)0.0187 (13)0.0233 (14)0.0003 (10)0.0066 (11)0.0047 (10)
C60.0152 (13)0.0179 (14)0.0162 (13)0.0010 (9)0.0048 (11)0.0010 (9)
C70.0178 (12)0.0142 (13)0.0164 (12)0.0000 (10)0.0072 (10)0.0021 (9)
C80.0205 (13)0.0151 (12)0.0138 (12)0.0009 (10)0.0072 (10)0.0016 (9)
C90.0182 (12)0.0133 (12)0.0121 (12)0.0005 (10)0.0049 (10)0.0023 (9)
C100.0200 (13)0.0151 (13)0.0144 (12)0.0024 (10)0.0083 (10)0.0017 (9)
C110.0171 (13)0.0176 (13)0.0227 (13)0.0014 (10)0.0087 (11)0.0036 (10)
C120.0198 (14)0.0219 (14)0.0185 (14)0.0058 (11)0.0038 (11)0.0008 (11)
C130.0273 (15)0.0195 (13)0.0141 (12)0.0042 (11)0.0089 (11)0.0028 (10)
C140.0186 (13)0.0209 (13)0.0154 (12)0.0002 (10)0.0092 (11)0.0011 (10)
Geometric parameters (Å, º) top
Br1—C101.904 (2)C5—C61.378 (3)
O1—C11.425 (3)C6—H60.9500
O1—C51.372 (3)C6—C71.411 (3)
O2—H20.74 (4)C7—C81.454 (3)
O2—C21.358 (3)C8—H80.9500
N1—C81.287 (3)C9—C101.402 (3)
N1—C91.410 (3)C9—C141.401 (3)
C1—H1A0.9800C10—C111.383 (3)
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C11—C121.378 (4)
C2—C31.397 (3)C12—H120.9500
C2—C71.406 (3)C12—C131.392 (3)
C3—H30.9500C13—H130.9500
C3—C41.376 (3)C13—C141.377 (3)
C4—H40.9500C14—H140.9500
C4—C51.404 (4)
C5—O1—C1117.0 (2)C2—C7—C6119.8 (2)
C2—O2—H2109 (3)C2—C7—C8121.4 (2)
C8—N1—C9122.4 (2)C6—C7—C8118.8 (2)
O1—C1—H1A109.5N1—C8—C7120.6 (2)
O1—C1—H1B109.5N1—C8—H8119.7
O1—C1—H1C109.5C7—C8—H8119.7
H1A—C1—H1B109.5C10—C9—N1118.4 (2)
H1A—C1—H1C109.5C14—C9—N1124.5 (2)
H1B—C1—H1C109.5C14—C9—C10117.1 (2)
O2—C2—C3118.3 (2)C9—C10—Br1119.50 (18)
O2—C2—C7122.4 (2)C11—C10—Br1118.59 (18)
C3—C2—C7119.3 (2)C11—C10—C9121.9 (2)
C2—C3—H3119.8C10—C11—H11120.1
C4—C3—C2120.5 (2)C12—C11—C10119.8 (2)
C4—C3—H3119.8C12—C11—H11120.1
C3—C4—H4119.7C11—C12—H12120.3
C3—C4—C5120.7 (2)C11—C12—C13119.4 (2)
C5—C4—H4119.7C13—C12—H12120.3
O1—C5—C4114.8 (2)C12—C13—H13119.7
O1—C5—C6125.5 (2)C14—C13—C12120.7 (2)
C6—C5—C4119.7 (2)C14—C13—H13119.7
C5—C6—H6119.9C9—C14—H14119.5
C5—C6—C7120.2 (2)C13—C14—C9121.1 (2)
C7—C6—H6119.9C13—C14—H14119.5
Br1—C10—C11—C12179.75 (19)C4—C5—C6—C70.8 (4)
O1—C5—C6—C7179.8 (2)C5—C6—C7—C20.1 (4)
O2—C2—C3—C4178.8 (2)C5—C6—C7—C8179.2 (2)
O2—C2—C7—C6178.7 (2)C6—C7—C8—N1175.7 (2)
O2—C2—C7—C80.4 (4)C7—C2—C3—C40.7 (4)
N1—C9—C10—Br12.1 (3)C8—N1—C9—C10164.1 (2)
N1—C9—C10—C11178.7 (2)C8—N1—C9—C1419.0 (4)
N1—C9—C14—C13177.7 (2)C9—N1—C8—C7178.0 (2)
C1—O1—C5—C4179.3 (2)C9—C10—C11—C121.1 (4)
C1—O1—C5—C61.3 (4)C10—C9—C14—C130.7 (3)
C2—C3—C4—C50.0 (4)C10—C11—C12—C130.2 (4)
C2—C7—C8—N15.2 (4)C11—C12—C13—C141.0 (4)
C3—C2—C7—C60.6 (4)C12—C13—C14—C90.6 (4)
C3—C2—C7—C8178.4 (2)C14—C9—C10—Br1179.30 (17)
C3—C4—C5—O1179.7 (2)C14—C9—C10—C111.5 (3)
C3—C4—C5—C60.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.74 (4)1.96 (4)2.603 (3)147 (4)
(4Br) top
Crystal data top
C14H12BrNO2F(000) = 616
Mr = 306.16Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.538 (2) ÅCell parameters from 969 reflections
b = 4.8315 (9) Åθ = 3.5–28.0°
c = 21.010 (4) ŵ = 3.31 mm1
β = 103.043 (3)°T = 120 K
V = 1239.9 (4) Å3Plate, orange
Z = 40.45 × 0.13 × 0.1 mm
Data collection top
Bruker SMART 1K CCD Detector
diffractometer
2732 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8 pixels mm-1θmax = 27.1°, θmin = 1.7°
ω scansh = 1616
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0680 before and 0.0356 after correction. The Ratio of minimum to maximum transmission is 0.7636. The λ/2 correction factor is 0.0015.
k = 66
Tmin = 0.764, Tmax = 1.00l = 2626
11740 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0264P)2 + 0.6873P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2732 reflectionsΔρmax = 0.45 e Å3
168 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89094 (2)0.30854 (6)0.09060 (2)0.03243 (10)
O10.63824 (14)1.0113 (4)0.22872 (8)0.0258 (4)
O20.62429 (14)0.6349 (4)0.13795 (9)0.0233 (4)
H20.630 (2)0.516 (7)0.1095 (15)0.041 (9)*
N10.71058 (16)0.3829 (4)0.05256 (9)0.0182 (4)
C10.6377 (2)1.2405 (5)0.27227 (13)0.0289 (6)
H1A0.64811.41340.25000.043*
H1B0.69731.21820.31110.043*
H1C0.56751.24630.28530.043*
C20.72081 (19)0.7713 (5)0.15602 (11)0.0190 (5)
C30.7298 (2)0.9758 (5)0.20466 (11)0.0211 (5)
C40.8270 (2)1.1205 (5)0.22414 (11)0.0217 (5)
H40.83351.25870.25700.026*
C50.9153 (2)1.0655 (5)0.19609 (11)0.0221 (5)
H50.98161.16610.20990.027*
C60.9070 (2)0.8664 (5)0.14855 (12)0.0207 (5)
H60.96760.83010.12970.025*
C70.80934 (19)0.7161 (5)0.12759 (11)0.0182 (5)
C80.79992 (19)0.5168 (5)0.07506 (11)0.0184 (5)
H80.86140.48400.05670.022*
C90.70198 (19)0.1934 (5)0.00013 (11)0.0183 (5)
C100.7902 (2)0.0608 (5)0.01632 (11)0.0193 (5)
H100.86290.09670.00730.023*
C110.7703 (2)0.1248 (5)0.06786 (12)0.0203 (5)
C120.6660 (2)0.1821 (5)0.10373 (12)0.0237 (5)
H120.65450.31120.13870.028*
C130.5790 (2)0.0469 (5)0.08745 (12)0.0251 (6)
H130.50670.08140.11180.030*
C140.5960 (2)0.1387 (5)0.03580 (12)0.0220 (5)
H140.53540.22920.02480.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02925 (15)0.03168 (16)0.04076 (17)0.00255 (13)0.01717 (12)0.01271 (13)
O10.0310 (10)0.0232 (10)0.0247 (9)0.0006 (8)0.0095 (8)0.0072 (8)
O20.0231 (9)0.0229 (11)0.0237 (9)0.0023 (8)0.0049 (8)0.0063 (8)
N10.0213 (10)0.0156 (11)0.0164 (10)0.0009 (8)0.0013 (8)0.0008 (8)
C10.0423 (16)0.0238 (15)0.0230 (13)0.0035 (12)0.0125 (12)0.0033 (10)
C20.0217 (12)0.0176 (13)0.0157 (11)0.0020 (10)0.0000 (10)0.0026 (9)
C30.0274 (13)0.0208 (13)0.0155 (12)0.0033 (11)0.0055 (10)0.0024 (10)
C40.0324 (14)0.0137 (13)0.0170 (12)0.0017 (10)0.0011 (10)0.0001 (9)
C50.0246 (13)0.0172 (13)0.0212 (13)0.0013 (11)0.0021 (10)0.0004 (10)
C60.0197 (12)0.0201 (14)0.0215 (12)0.0032 (10)0.0030 (10)0.0019 (10)
C70.0217 (12)0.0137 (12)0.0172 (11)0.0032 (10)0.0002 (10)0.0020 (9)
C80.0220 (12)0.0158 (12)0.0170 (11)0.0032 (10)0.0039 (10)0.0031 (9)
C90.0243 (12)0.0142 (11)0.0160 (11)0.0004 (11)0.0038 (10)0.0035 (10)
C100.0217 (12)0.0186 (13)0.0169 (12)0.0015 (10)0.0030 (10)0.0015 (10)
C110.0236 (12)0.0163 (13)0.0226 (12)0.0003 (10)0.0087 (10)0.0011 (10)
C120.0317 (13)0.0181 (13)0.0205 (12)0.0021 (11)0.0040 (11)0.0022 (11)
C130.0234 (13)0.0234 (14)0.0254 (13)0.0026 (11)0.0013 (11)0.0019 (11)
C140.0226 (13)0.0183 (14)0.0246 (13)0.0003 (10)0.0041 (11)0.0014 (10)
Geometric parameters (Å, º) top
Br1—C111.905 (2)C5—C61.373 (3)
O1—C11.438 (3)C6—H60.9500
O1—C31.366 (3)C6—C71.406 (3)
O2—H20.85 (3)C7—C81.449 (3)
O2—C21.355 (3)C8—H80.9500
N1—C81.287 (3)C9—C101.388 (3)
N1—C91.418 (3)C9—C141.397 (3)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.385 (3)
C1—H1C0.9800C11—C121.382 (3)
C2—C31.407 (3)C12—H120.9500
C2—C71.400 (3)C12—C131.379 (3)
C3—C41.384 (3)C13—H130.9500
C4—H40.9500C13—C141.387 (3)
C4—C51.392 (3)C14—H140.9500
C5—H50.9500
C3—O1—C1117.20 (19)C2—C7—C6119.1 (2)
C2—O2—H2108 (2)C2—C7—C8121.0 (2)
C8—N1—C9121.1 (2)C6—C7—C8119.8 (2)
O1—C1—H1A109.5N1—C8—C7121.9 (2)
O1—C1—H1B109.5N1—C8—H8119.1
O1—C1—H1C109.5C7—C8—H8119.1
H1A—C1—H1B109.5C10—C9—N1124.5 (2)
H1A—C1—H1C109.5C10—C9—C14119.5 (2)
H1B—C1—H1C109.5C14—C9—N1116.0 (2)
O2—C2—C3117.7 (2)C9—C10—H10120.6
O2—C2—C7122.1 (2)C11—C10—C9118.7 (2)
C7—C2—C3120.1 (2)C11—C10—H10120.6
O1—C3—C2114.9 (2)C10—C11—Br1119.00 (18)
O1—C3—C4125.8 (2)C12—C11—Br1118.50 (18)
C4—C3—C2119.4 (2)C12—C11—C10122.5 (2)
C3—C4—H4119.7C11—C12—H12120.9
C3—C4—C5120.6 (2)C13—C12—C11118.3 (2)
C5—C4—H4119.7C13—C12—H12120.8
C4—C5—H5119.9C12—C13—H13119.7
C6—C5—C4120.3 (2)C12—C13—C14120.6 (2)
C6—C5—H5119.9C14—C13—H13119.7
C5—C6—H6119.7C9—C14—H14119.8
C5—C6—C7120.5 (2)C13—C14—C9120.3 (2)
C7—C6—H6119.7C13—C14—H14119.8
Br1—C11—C12—C13179.49 (19)C5—C6—C7—C20.2 (3)
O1—C3—C4—C5179.8 (2)C5—C6—C7—C8176.8 (2)
O2—C2—C3—O10.5 (3)C6—C7—C8—N1177.1 (2)
O2—C2—C3—C4179.7 (2)C7—C2—C3—O1180.0 (2)
O2—C2—C7—C6179.7 (2)C7—C2—C3—C40.2 (3)
O2—C2—C7—C82.7 (3)C8—N1—C9—C1023.7 (3)
N1—C9—C10—C11178.5 (2)C8—N1—C9—C14157.2 (2)
N1—C9—C14—C13179.0 (2)C9—N1—C8—C7178.5 (2)
C1—O1—C3—C2172.2 (2)C9—C10—C11—Br1179.80 (17)
C1—O1—C3—C48.0 (3)C9—C10—C11—C120.3 (4)
C2—C3—C4—C50.0 (4)C10—C9—C14—C130.1 (4)
C2—C7—C8—N10.1 (4)C10—C11—C12—C130.4 (4)
C3—C2—C7—C60.3 (3)C11—C12—C13—C140.8 (4)
C3—C2—C7—C8176.7 (2)C12—C13—C14—C90.6 (4)
C3—C4—C5—C60.1 (4)C14—C9—C10—C110.6 (3)
C4—C5—C6—C70.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.85 (3)1.84 (3)2.598 (3)148 (3)
(5Br) top
Crystal data top
C14H12BrNO2Dx = 1.648 Mg m3
Mr = 306.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 697 reflections
a = 13.823 (4) Åθ = 2.9–26.1°
b = 14.140 (4) ŵ = 3.32 mm1
c = 6.3118 (18) ÅT = 120 K
V = 1233.7 (6) Å3Needle, yellow
Z = 40.3 × 0.08 × 0.03 mm
F(000) = 616
Data collection top
Bruker Apex II kappa CCD area detector
diffractometer
2474 independent reflections
Radiation source: fine-focus sealed tube1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0652 before and 0.0512 after correction. The Ratio of minimum to maximum transmission is 0.8838. The λ/2 correction factor is 0.0015.
h = 1716
Tmin = 0.884, Tmax = 1.000k = 1118
7073 measured reflectionsl = 87
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0289P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.52 e Å3
2474 reflectionsΔρmin = 0.43 e Å3
166 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.04 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. OH hydrogen atom could not be located in difference map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41641 (4)0.96474 (4)1.01114 (19)0.02811 (18)
O10.3760 (3)0.1615 (3)0.7937 (7)0.0196 (10)
O20.3339 (3)0.4957 (2)0.7353 (7)0.0219 (10)
H20.3482200.5454070.8009890.033*
N10.3823 (3)0.5966 (4)1.0629 (7)0.0163 (13)
C10.3291 (5)0.1459 (5)0.5960 (11)0.0293 (17)
H1A0.2638400.1729650.6005160.044*
H1B0.3247940.0777960.5687660.044*
H1C0.3662890.1762110.4826470.044*
C20.3615 (5)0.4190 (5)0.8517 (10)0.0167 (14)
C30.3514 (4)0.3307 (4)0.7575 (10)0.0179 (14)
H30.3240920.3248460.6199400.022*
C40.3817 (5)0.2517 (5)0.8677 (11)0.0171 (15)
C50.4206 (4)0.2595 (5)1.0713 (9)0.0172 (15)
H50.4421700.2046781.1445040.021*
C60.4274 (4)0.3466 (4)1.1646 (10)0.0185 (14)
H60.4523580.3515481.3043560.022*
C70.3981 (4)0.4292 (4)1.0572 (9)0.0149 (16)
C80.4036 (4)0.5195 (4)1.1596 (10)0.0168 (13)
H80.4235820.5223221.3034020.020*
C90.3783 (4)0.6835 (4)1.1760 (10)0.0166 (14)
C100.4008 (4)0.7656 (4)1.0662 (9)0.0167 (15)
H100.4223360.7623910.9234880.020*
C110.3915 (4)0.8523 (5)1.1663 (10)0.0198 (15)
C120.3598 (4)0.8584 (5)1.3758 (10)0.0176 (14)
H120.3543520.9179331.4444430.021*
C130.3365 (4)0.7765 (4)1.4801 (12)0.0192 (15)
H130.3140480.7800541.6221510.023*
C140.3448 (4)0.6893 (5)1.3849 (10)0.0186 (14)
H140.3279960.6335151.4602570.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0391 (3)0.0181 (3)0.0271 (3)0.0049 (3)0.0023 (5)0.0050 (5)
O10.024 (2)0.016 (2)0.019 (2)0.0001 (19)0.002 (2)0.0044 (19)
O20.041 (3)0.009 (2)0.017 (2)0.001 (2)0.005 (2)0.001 (2)
N10.016 (2)0.013 (2)0.020 (4)0.001 (2)0.002 (2)0.001 (2)
C10.042 (4)0.025 (4)0.021 (3)0.001 (4)0.008 (3)0.007 (3)
C20.014 (3)0.018 (4)0.019 (4)0.000 (3)0.004 (3)0.002 (3)
C30.021 (3)0.020 (3)0.012 (3)0.000 (3)0.002 (3)0.000 (3)
C40.017 (3)0.020 (4)0.014 (3)0.001 (3)0.005 (3)0.001 (3)
C50.025 (4)0.013 (3)0.013 (4)0.002 (3)0.000 (3)0.006 (2)
C60.016 (3)0.020 (3)0.019 (3)0.001 (3)0.004 (3)0.003 (3)
C70.019 (3)0.011 (3)0.016 (5)0.001 (2)0.001 (2)0.002 (2)
C80.012 (3)0.021 (4)0.016 (3)0.005 (3)0.002 (3)0.000 (3)
C90.015 (3)0.015 (4)0.019 (3)0.000 (3)0.003 (3)0.000 (3)
C100.016 (3)0.021 (3)0.013 (4)0.002 (3)0.000 (2)0.001 (2)
C110.021 (3)0.016 (3)0.023 (4)0.003 (3)0.003 (3)0.003 (3)
C120.017 (3)0.017 (4)0.018 (3)0.003 (3)0.000 (3)0.005 (3)
C130.019 (3)0.029 (3)0.010 (4)0.001 (3)0.002 (3)0.004 (3)
C140.019 (3)0.019 (4)0.018 (3)0.001 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C111.898 (6)C5—C61.369 (9)
O1—C11.423 (7)C6—H60.9500
O1—C41.362 (8)C6—C71.409 (8)
O2—H20.8400C7—C81.432 (8)
O2—C21.364 (7)C8—H80.9500
N1—C81.284 (8)C9—C101.387 (8)
N1—C91.422 (8)C9—C141.399 (9)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.386 (9)
C1—H1C0.9800C11—C121.396 (9)
C2—C31.390 (9)C12—H120.9500
C2—C71.400 (9)C12—C131.370 (9)
C3—H30.9500C13—H130.9500
C3—C41.382 (9)C13—C141.377 (9)
C4—C51.397 (9)C14—H140.9500
C5—H50.9500
C4—O1—C1118.2 (5)C2—C7—C6117.7 (6)
C2—O2—H2109.5C2—C7—C8121.9 (6)
C8—N1—C9120.3 (5)C6—C7—C8120.4 (5)
O1—C1—H1A109.5N1—C8—C7122.1 (6)
O1—C1—H1B109.5N1—C8—H8119.0
O1—C1—H1C109.5C7—C8—H8119.0
H1A—C1—H1B109.5C10—C9—N1117.6 (6)
H1A—C1—H1C109.5C10—C9—C14119.7 (6)
H1B—C1—H1C109.5C14—C9—N1122.4 (6)
O2—C2—C3117.1 (6)C9—C10—H10120.3
O2—C2—C7121.3 (6)C11—C10—C9119.5 (6)
C3—C2—C7121.7 (6)C11—C10—H10120.3
C2—C3—H3120.7C10—C11—Br1119.3 (5)
C4—C3—C2118.7 (6)C10—C11—C12121.0 (6)
C4—C3—H3120.7C12—C11—Br1119.6 (5)
O1—C4—C3124.6 (6)C11—C12—H12120.7
O1—C4—C5114.3 (6)C13—C12—C11118.5 (6)
C3—C4—C5121.1 (6)C13—C12—H12120.7
C4—C5—H5120.3C12—C13—H13119.1
C6—C5—C4119.5 (6)C12—C13—C14121.8 (6)
C6—C5—H5120.3C14—C13—H13119.1
C5—C6—H6119.4C9—C14—H14120.3
C5—C6—C7121.3 (6)C13—C14—C9119.4 (6)
C7—C6—H6119.4C13—C14—H14120.3
Br1—C11—C12—C13176.0 (4)C4—C5—C6—C71.5 (9)
O1—C4—C5—C6178.2 (6)C5—C6—C7—C20.2 (9)
O2—C2—C3—C4177.7 (6)C5—C6—C7—C8178.5 (6)
O2—C2—C7—C6178.2 (6)C6—C7—C8—N1176.3 (5)
O2—C2—C7—C83.5 (9)C7—C2—C3—C42.4 (9)
N1—C9—C10—C11175.7 (5)C8—N1—C9—C10150.1 (5)
N1—C9—C14—C13175.5 (5)C8—N1—C9—C1435.6 (9)
C1—O1—C4—C34.9 (9)C9—N1—C8—C7173.0 (6)
C1—O1—C4—C5174.2 (5)C9—C10—C11—Br1177.0 (4)
C2—C3—C4—O1180.0 (6)C9—C10—C11—C120.1 (9)
C2—C3—C4—C51.0 (9)C10—C9—C14—C131.3 (9)
C2—C7—C8—N15.5 (10)C10—C11—C12—C130.8 (9)
C3—C2—C7—C61.9 (9)C11—C12—C13—C140.8 (9)
C3—C2—C7—C8176.4 (6)C12—C13—C14—C90.3 (9)
C3—C4—C5—C61.0 (9)C14—C9—C10—C111.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.841.872.600 (6)145
(6Br) top
Crystal data top
C14H12BrNO2F(000) = 308
Mr = 306.16Dx = 1.687 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 12.547 (4) ÅCell parameters from 794 reflections
b = 4.4109 (16) Åθ = 3.6–25.9°
c = 11.895 (4) ŵ = 3.40 mm1
β = 113.687 (5)°T = 120 K
V = 602.9 (4) Å3Plate, orange
Z = 20.22 × 0.09 × 0.04 mm
Data collection top
Bruker SMART 1K CCD Detector
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 25.7°, θmin = 1.8°
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0972 before and 0.0677 after correction. The Ratio of minimum to maximum transmission is 0.7035. The λ/2 correction factor is 0.0015.
h = 1515
Tmin = 0.704, Tmax = 1.000k = 55
4965 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.85 e Å3
2292 reflectionsΔρmin = 1.58 e Å3
166 parametersAbsolute structure: Refined as an inversion twin.
2 restraintsAbsolute structure parameter: 0.05 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. OH hydrogen atom could not be located in the difference map.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.85856 (8)0.9253 (2)0.45798 (8)0.0279 (3)
O10.0764 (8)0.418 (2)0.3517 (7)0.034 (2)
O20.4019 (8)0.028 (2)0.1860 (7)0.026 (2)
H20.4559310.0572330.2444790.038*
N10.4853 (7)0.302 (2)0.3852 (7)0.0189 (18)
C10.0181 (10)0.599 (3)0.2754 (11)0.030 (3)
H1A0.0603970.4937380.1975560.045*
H1B0.0706100.6367490.3164770.045*
H1C0.0115020.7928120.2592930.045*
C20.3206 (12)0.129 (3)0.2247 (12)0.021 (3)
C30.2377 (9)0.323 (3)0.1557 (9)0.022 (2)
H30.2374370.3920770.0799220.026*
C40.1534 (10)0.424 (3)0.1926 (10)0.025 (2)
H40.0944340.5567600.1412870.030*
C50.1536 (11)0.333 (3)0.3042 (11)0.019 (3)
C60.2410 (9)0.136 (2)0.3767 (9)0.020 (2)
H60.2435090.0761080.4544750.024*
C70.3235 (10)0.027 (2)0.3390 (9)0.019 (2)
C80.4094 (8)0.185 (2)0.4158 (9)0.018 (2)
H80.4086350.2390250.4927720.021*
C90.5668 (9)0.514 (2)0.4648 (9)0.018 (2)
C100.6536 (9)0.608 (2)0.4293 (9)0.018 (2)
H100.6567590.5323900.3559040.021*
C110.7355 (9)0.811 (3)0.5013 (9)0.022 (2)
C120.7317 (9)0.926 (3)0.6061 (9)0.021 (2)
H120.7895081.0641740.6556680.025*
C130.6434 (9)0.839 (2)0.6391 (9)0.020 (2)
H130.6392850.9224330.7108920.024*
C140.5602 (11)0.632 (3)0.5698 (12)0.022 (3)
H140.4996320.5713510.5937060.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0305 (5)0.0264 (5)0.0289 (5)0.0078 (8)0.0140 (4)0.0051 (8)
O10.044 (5)0.029 (5)0.037 (5)0.019 (4)0.026 (4)0.014 (4)
O20.029 (5)0.029 (5)0.022 (4)0.015 (4)0.013 (4)0.009 (4)
N10.020 (4)0.016 (4)0.022 (4)0.002 (4)0.010 (4)0.003 (4)
C10.036 (6)0.024 (7)0.035 (6)0.010 (5)0.021 (5)0.003 (5)
C20.026 (6)0.016 (6)0.023 (6)0.001 (5)0.011 (5)0.001 (5)
C30.028 (5)0.015 (5)0.021 (5)0.001 (5)0.009 (5)0.002 (4)
C40.029 (6)0.014 (5)0.027 (5)0.003 (5)0.006 (5)0.003 (5)
C50.027 (6)0.011 (5)0.018 (6)0.001 (5)0.009 (5)0.003 (5)
C60.027 (5)0.016 (6)0.017 (5)0.001 (4)0.008 (4)0.000 (4)
C70.028 (5)0.007 (5)0.023 (5)0.002 (4)0.012 (4)0.001 (4)
C80.023 (5)0.012 (5)0.019 (4)0.001 (4)0.009 (4)0.001 (4)
C90.022 (5)0.012 (5)0.015 (5)0.003 (4)0.003 (4)0.001 (4)
C100.023 (5)0.008 (5)0.023 (5)0.001 (4)0.010 (4)0.005 (4)
C110.026 (5)0.018 (5)0.022 (5)0.000 (5)0.010 (4)0.008 (4)
C120.022 (5)0.013 (5)0.021 (5)0.006 (5)0.003 (4)0.001 (5)
C130.026 (5)0.010 (5)0.020 (5)0.003 (4)0.005 (4)0.000 (4)
C140.024 (6)0.021 (7)0.017 (6)0.000 (5)0.004 (5)0.000 (5)
Geometric parameters (Å, º) top
Br1—C111.882 (10)C5—C61.392 (17)
O1—C11.416 (14)C6—H60.9500
O1—C51.356 (15)C6—C71.371 (15)
O2—H20.8400C7—C81.442 (15)
O2—C21.351 (14)C8—H80.9500
N1—C81.258 (13)C9—C101.380 (15)
N1—C91.428 (13)C9—C141.385 (17)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.374 (15)
C1—H1C0.9800C11—C121.364 (15)
C2—C31.344 (18)C12—H120.9500
C2—C71.419 (17)C12—C131.370 (16)
C3—H30.9500C13—H130.9500
C3—C41.372 (16)C13—C141.383 (17)
C4—H40.9500C14—H140.9500
C4—C51.386 (17)
C5—O1—C1116.3 (9)C2—C7—C8122.5 (10)
C2—O2—H2109.5C6—C7—C2118.1 (10)
C8—N1—C9120.0 (8)C6—C7—C8119.4 (9)
O1—C1—H1A109.5N1—C8—C7122.8 (9)
O1—C1—H1B109.5N1—C8—H8118.6
O1—C1—H1C109.5C7—C8—H8118.6
H1A—C1—H1B109.5C10—C9—N1115.9 (9)
H1A—C1—H1C109.5C10—C9—C14120.3 (10)
H1B—C1—H1C109.5C14—C9—N1123.8 (10)
O2—C2—C7119.4 (11)C9—C10—H10120.3
C3—C2—O2120.4 (11)C11—C10—C9119.3 (9)
C3—C2—C7120.2 (12)C11—C10—H10120.3
C2—C3—H3119.4C10—C11—Br1119.6 (8)
C2—C3—C4121.2 (11)C12—C11—Br1119.0 (8)
C4—C3—H3119.4C12—C11—C10121.3 (10)
C3—C4—H4119.7C11—C12—H12120.4
C3—C4—C5120.6 (11)C11—C12—C13119.2 (10)
C5—C4—H4119.7C13—C12—H12120.4
O1—C5—C4126.3 (11)C12—C13—H13119.4
O1—C5—C6115.5 (10)C12—C13—C14121.2 (10)
C4—C5—C6118.1 (11)C14—C13—H13119.4
C5—C6—H6119.1C9—C14—H14120.6
C7—C6—C5121.8 (10)C13—C14—C9118.7 (12)
C7—C6—H6119.1C13—C14—H14120.6
Br1—C11—C12—C13178.8 (8)C4—C5—C6—C71.7 (17)
O1—C5—C6—C7178.6 (11)C5—C6—C7—C22.4 (16)
O2—C2—C3—C4179.0 (11)C5—C6—C7—C8177.7 (11)
O2—C2—C7—C6179.0 (11)C6—C7—C8—N1177.7 (10)
O2—C2—C7—C80.9 (17)C7—C2—C3—C41.0 (18)
N1—C9—C10—C11179.9 (9)C8—N1—C9—C10173.9 (9)
N1—C9—C14—C13179.2 (10)C8—N1—C9—C148.1 (16)
C1—O1—C5—C44.8 (18)C9—N1—C8—C7179.1 (9)
C1—O1—C5—C6175.4 (11)C9—C10—C11—Br1176.9 (8)
C2—C3—C4—C51.7 (18)C9—C10—C11—C121.0 (15)
C2—C7—C8—N12.4 (17)C10—C9—C14—C131.3 (17)
C3—C2—C7—C61.0 (17)C10—C11—C12—C130.9 (16)
C3—C2—C7—C8179.0 (11)C11—C12—C13—C141.7 (17)
C3—C4—C5—O1179.3 (12)C12—C13—C14—C90.6 (18)
C3—C4—C5—C60.4 (18)C14—C9—C10—C112.1 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.841.902.614 (12)142
(7Br) top
Crystal data top
C14H12BrNO2Dx = 1.649 Mg m3
Mr = 306.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 849 reflections
a = 4.8326 (10) Åθ = 3.4–25.5°
b = 12.544 (3) ŵ = 3.33 mm1
c = 20.346 (4) ÅT = 120 K
V = 1233.4 (4) Å3Needle, orange
Z = 40.32 × 0.06 × 0.02 mm
F(000) = 616
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2345 independent reflections
Radiation source: sealed X-ray tube1899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 7.9 pixels mm-1θmax = 25.7°, θmin = 1.9°
ω scansh = 55
Absorption correction: multi-scan
SADABS (G. Sheldrick, 1998)
k = 1515
Tmin = 0.750, Tmax = 0.936l = 2424
11274 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0147P)2 + 1.4199P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.48 e Å3
2345 reflectionsΔρmin = 0.85 e Å3
169 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.05 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.31148 (14)0.56544 (6)0.49541 (3)0.02309 (18)
O10.2247 (10)0.7401 (4)0.1092 (2)0.0219 (12)
O20.1594 (12)0.7195 (4)0.2017 (2)0.0233 (12)
H20.30 (2)0.700 (7)0.231 (4)0.07 (3)*
N10.4378 (12)0.5962 (5)0.2800 (3)0.0173 (14)
C10.4444 (17)0.7521 (6)0.0628 (3)0.0239 (17)
H1A0.61810.72740.08250.036*
H1B0.40390.70980.02350.036*
H1C0.46210.82740.05060.036*
C20.0279 (14)0.6298 (6)0.1815 (3)0.0154 (16)
C30.1739 (18)0.6381 (5)0.1328 (3)0.0205 (16)
C40.3098 (18)0.5489 (6)0.1098 (3)0.0216 (16)
H40.44420.55540.07600.026*
C50.2491 (13)0.4493 (6)0.1365 (3)0.0199 (18)
H50.34460.38810.12090.024*
C60.0528 (14)0.4380 (7)0.1851 (3)0.0211 (17)
H60.01500.36990.20330.025*
C70.0913 (14)0.5287 (5)0.2074 (3)0.0157 (16)
C80.3004 (17)0.5167 (6)0.2582 (3)0.0206 (17)
H80.33600.44780.27560.025*
C90.6429 (15)0.5828 (6)0.3299 (3)0.0191 (18)
C100.7472 (14)0.4840 (6)0.3502 (3)0.0187 (19)
H100.68200.42020.33030.022*
C110.9450 (16)0.4794 (6)0.3991 (3)0.0202 (18)
H111.01580.41240.41300.024*
C121.0401 (13)0.5726 (7)0.4280 (3)0.0194 (15)
C130.9411 (16)0.6712 (6)0.4078 (4)0.0244 (18)
H131.00800.73490.42760.029*
C140.7447 (15)0.6755 (6)0.3589 (3)0.024 (2)
H140.67740.74280.34470.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0195 (3)0.0273 (3)0.0225 (3)0.0050 (4)0.0001 (4)0.0013 (4)
O10.016 (3)0.017 (3)0.033 (3)0.004 (2)0.006 (2)0.004 (2)
O20.023 (3)0.016 (3)0.031 (3)0.002 (3)0.006 (3)0.001 (2)
N10.017 (3)0.015 (4)0.020 (3)0.004 (3)0.002 (2)0.001 (2)
C10.022 (4)0.025 (4)0.025 (4)0.002 (3)0.002 (4)0.004 (4)
C20.012 (4)0.021 (4)0.013 (4)0.003 (3)0.001 (3)0.001 (3)
C30.026 (4)0.016 (4)0.020 (3)0.002 (4)0.005 (4)0.002 (3)
C40.015 (3)0.026 (5)0.023 (3)0.002 (4)0.000 (3)0.001 (3)
C50.011 (5)0.013 (4)0.035 (4)0.006 (3)0.006 (3)0.005 (3)
C60.018 (4)0.018 (4)0.027 (4)0.001 (4)0.008 (3)0.005 (4)
C70.016 (4)0.013 (4)0.018 (4)0.000 (3)0.004 (3)0.000 (3)
C80.012 (4)0.024 (5)0.026 (4)0.002 (4)0.006 (4)0.002 (3)
C90.016 (4)0.019 (5)0.022 (3)0.004 (4)0.001 (3)0.002 (3)
C100.017 (5)0.010 (4)0.029 (4)0.002 (3)0.002 (3)0.001 (3)
C110.018 (4)0.015 (4)0.027 (4)0.001 (4)0.007 (3)0.005 (3)
C120.014 (4)0.026 (4)0.019 (3)0.000 (4)0.000 (3)0.002 (4)
C130.021 (4)0.020 (4)0.032 (4)0.003 (4)0.001 (4)0.002 (3)
C140.023 (6)0.018 (4)0.030 (4)0.001 (3)0.000 (3)0.004 (3)
Geometric parameters (Å, º) top
Br1—C121.900 (6)C5—C61.377 (9)
O1—C11.428 (8)C6—H60.9500
O1—C31.389 (8)C6—C71.409 (10)
O2—H20.93 (9)C7—C81.452 (10)
O2—C21.357 (8)C8—H80.9500
N1—C81.277 (8)C9—C101.400 (10)
N1—C91.429 (9)C9—C141.394 (10)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.381 (10)
C1—H1C0.9800C11—H110.9500
C2—C31.395 (10)C11—C121.387 (11)
C2—C71.407 (9)C12—C131.388 (10)
C3—C41.378 (10)C13—H130.9500
C4—H40.9500C13—C141.376 (10)
C4—C51.394 (10)C14—H140.9500
C5—H50.9500
C3—O1—C1117.2 (6)C2—C7—C6119.9 (7)
C2—O2—H2108 (6)C2—C7—C8120.7 (6)
C8—N1—C9121.1 (6)C6—C7—C8119.3 (7)
O1—C1—H1A109.5N1—C8—C7121.9 (7)
O1—C1—H1B109.5N1—C8—H8119.1
O1—C1—H1C109.5C7—C8—H8119.1
H1A—C1—H1B109.5C10—C9—N1124.2 (6)
H1A—C1—H1C109.5C14—C9—N1116.6 (6)
H1B—C1—H1C109.5C14—C9—C10119.2 (6)
O2—C2—C3118.7 (6)C9—C10—H10120.1
O2—C2—C7122.2 (6)C11—C10—C9119.9 (7)
C3—C2—C7119.1 (6)C11—C10—H10120.1
O1—C3—C2116.0 (6)C10—C11—H11120.0
C4—C3—O1123.1 (7)C10—C11—C12119.9 (7)
C4—C3—C2120.9 (7)C12—C11—H11120.0
C3—C4—H4120.2C11—C12—Br1119.6 (6)
C3—C4—C5119.7 (7)C11—C12—C13120.8 (6)
C5—C4—H4120.2C13—C12—Br1119.5 (6)
C4—C5—H5119.5C12—C13—H13120.5
C6—C5—C4121.1 (7)C14—C13—C12119.1 (7)
C6—C5—H5119.5C14—C13—H13120.5
C5—C6—H6120.4C9—C14—H14119.4
C5—C6—C7119.3 (8)C13—C14—C9121.1 (7)
C7—C6—H6120.4C13—C14—H14119.4
Br1—C12—C13—C14180.0 (5)C5—C6—C7—C21.9 (9)
O1—C3—C4—C5179.4 (6)C5—C6—C7—C8179.3 (6)
O2—C2—C3—O10.6 (9)C6—C7—C8—N1179.7 (7)
O2—C2—C3—C4178.8 (6)C7—C2—C3—O1179.6 (6)
O2—C2—C7—C6179.6 (6)C7—C2—C3—C40.2 (10)
O2—C2—C7—C80.9 (10)C8—N1—C9—C1012.2 (11)
N1—C9—C10—C11179.8 (6)C8—N1—C9—C14168.6 (7)
N1—C9—C14—C13179.5 (6)C9—N1—C8—C7179.9 (6)
C1—O1—C3—C2175.4 (6)C9—C10—C11—C120.1 (10)
C1—O1—C3—C45.2 (10)C10—C9—C14—C131.3 (10)
C2—C3—C4—C51.3 (11)C10—C11—C12—Br1179.8 (5)
C2—C7—C8—N11.5 (11)C10—C11—C12—C130.7 (10)
C3—C2—C7—C61.4 (10)C11—C12—C13—C140.5 (10)
C3—C2—C7—C8179.9 (6)C12—C13—C14—C90.6 (11)
C3—C4—C5—C60.7 (11)C14—C9—C10—C111.1 (10)
C4—C5—C6—C70.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.93 (9)1.78 (9)2.597 (8)146 (9)
(8Br) top
Crystal data top
C14H12BrNO2Dx = 1.640 Mg m3
Mr = 306.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 961 reflections
a = 6.1895 (12) Åθ = 3.6–27.0°
b = 7.0146 (13) ŵ = 3.31 mm1
c = 28.557 (5) ÅT = 120 K
V = 1239.9 (4) Å3Block, yellow
Z = 40.4 × 0.31 × 0.18 mm
F(000) = 616
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
2444 independent reflections
Radiation source: sealed X-ray tube2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
SADABS (G. Sheldrick, 1998)
k = 88
Tmin = 0.346, Tmax = 0.551l = 3434
10666 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0008P)2 + 0.0496P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.31 e Å3
2444 reflectionsΔρmin = 0.31 e Å3
169 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.037 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29075 (4)0.46552 (4)0.75280 (2)0.02590 (10)
O10.9706 (3)0.4998 (3)0.34416 (8)0.0204 (5)
O21.0479 (4)0.4057 (3)0.50939 (8)0.0217 (5)
H20.981 (7)0.429 (5)0.5345 (15)0.032 (11)*
N10.7238 (4)0.5111 (3)0.56182 (10)0.0176 (6)
C11.1782 (5)0.4235 (5)0.33489 (12)0.0294 (8)
H1A1.1790660.2870920.3422780.044*
H1B1.2857980.4890960.3542470.044*
H1C1.2134640.4415980.3017260.044*
C20.9270 (5)0.4573 (4)0.47228 (11)0.0157 (6)
C31.0146 (5)0.4362 (4)0.42765 (11)0.0162 (6)
H31.1518630.3780530.4235710.019*
C40.8983 (5)0.5016 (4)0.38905 (11)0.0160 (6)
C50.6910 (6)0.5792 (4)0.39466 (12)0.0179 (7)
H50.6127650.6235230.3681900.021*
C60.6019 (5)0.5906 (4)0.43849 (10)0.0157 (6)
H60.4592950.6387440.4418640.019*
C70.7162 (5)0.5331 (4)0.47856 (11)0.0161 (6)
C80.6178 (5)0.5479 (4)0.52389 (11)0.0157 (6)
H80.4707680.5857910.5260940.019*
C90.6140 (5)0.5078 (4)0.60540 (10)0.0156 (6)
C100.4083 (6)0.4321 (4)0.61021 (12)0.0175 (7)
H100.3322960.3890390.5833160.021*
C110.3124 (5)0.4189 (4)0.65414 (11)0.0182 (6)
H110.1719240.3659470.6574500.022*
C120.4242 (5)0.4840 (4)0.69302 (10)0.0174 (7)
C130.6285 (5)0.5617 (4)0.68870 (11)0.0196 (6)
H130.7022590.6072320.7156440.023*
C140.7255 (5)0.5732 (4)0.64513 (12)0.0184 (7)
H140.8665740.6250490.6420970.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03076 (17)0.03114 (15)0.01579 (15)0.00006 (11)0.0070 (2)0.0003 (3)
O10.0212 (12)0.0259 (11)0.0142 (11)0.0004 (9)0.0025 (9)0.0000 (9)
O20.0207 (12)0.0310 (13)0.0134 (11)0.0079 (9)0.0015 (9)0.0032 (10)
N10.0193 (14)0.0177 (13)0.0159 (15)0.0002 (10)0.0007 (10)0.0006 (10)
C10.023 (2)0.048 (2)0.0174 (19)0.0064 (14)0.0044 (15)0.0021 (16)
C20.0154 (17)0.0142 (14)0.0175 (15)0.0004 (11)0.0012 (11)0.0003 (12)
C30.0151 (15)0.0153 (15)0.0181 (15)0.0022 (11)0.0000 (12)0.0013 (11)
C40.0177 (18)0.0163 (14)0.0140 (15)0.0036 (11)0.0005 (12)0.0023 (11)
C50.0205 (18)0.0177 (15)0.0155 (17)0.0004 (14)0.0058 (14)0.0021 (12)
C60.0153 (15)0.0159 (14)0.0161 (16)0.0003 (11)0.0020 (12)0.0001 (11)
C70.0173 (15)0.0157 (14)0.0153 (17)0.0009 (12)0.0004 (12)0.0005 (12)
C80.0158 (15)0.0154 (14)0.0158 (15)0.0007 (11)0.0000 (12)0.0003 (12)
C90.0208 (17)0.0145 (14)0.0113 (14)0.0039 (11)0.0005 (12)0.0002 (11)
C100.0193 (18)0.0172 (15)0.0159 (16)0.0007 (14)0.0004 (14)0.0027 (12)
C110.0170 (16)0.0209 (17)0.0167 (16)0.0016 (12)0.0017 (13)0.0002 (12)
C120.0231 (18)0.0197 (16)0.0096 (15)0.0028 (11)0.0048 (13)0.0012 (11)
C130.0227 (17)0.0232 (16)0.0128 (15)0.0001 (12)0.0036 (13)0.0015 (12)
C140.0183 (16)0.0185 (18)0.0185 (17)0.0019 (12)0.0009 (13)0.0006 (12)
Geometric parameters (Å, º) top
Br1—C121.901 (3)C5—C61.370 (4)
O1—C11.417 (4)C6—H60.9500
O1—C41.358 (4)C6—C71.405 (4)
O2—H20.84 (4)C7—C81.435 (4)
O2—C21.347 (4)C8—H80.9500
N1—C81.293 (4)C9—C101.386 (5)
N1—C91.419 (4)C9—C141.405 (4)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.391 (4)
C1—H1C0.9800C11—H110.9500
C2—C31.393 (4)C11—C121.386 (4)
C2—C71.420 (4)C12—C131.382 (5)
C3—H30.9500C13—H130.9500
C3—C41.394 (4)C13—C141.384 (4)
C4—C51.403 (5)C14—H140.9500
C5—H50.9500
C4—O1—C1118.6 (2)C2—C7—C8122.1 (3)
C2—O2—H2110 (3)C6—C7—C2117.9 (3)
C8—N1—C9119.7 (3)C6—C7—C8120.0 (3)
O1—C1—H1A109.5N1—C8—C7121.7 (3)
O1—C1—H1B109.5N1—C8—H8119.1
O1—C1—H1C109.5C7—C8—H8119.1
H1A—C1—H1B109.5C10—C9—N1122.2 (3)
H1A—C1—H1C109.5C10—C9—C14119.8 (3)
H1B—C1—H1C109.5C14—C9—N1117.9 (3)
O2—C2—C3118.4 (3)C9—C10—H10119.8
O2—C2—C7120.8 (3)C9—C10—C11120.5 (3)
C3—C2—C7120.8 (3)C11—C10—H10119.8
C2—C3—H3120.4C10—C11—H11120.4
C2—C3—C4119.2 (3)C12—C11—C10119.2 (3)
C4—C3—H3120.4C12—C11—H11120.4
O1—C4—C3125.0 (3)C11—C12—Br1118.7 (2)
O1—C4—C5114.4 (3)C13—C12—Br1120.3 (2)
C3—C4—C5120.6 (3)C13—C12—C11121.0 (3)
C4—C5—H5120.2C12—C13—H13120.0
C6—C5—C4119.7 (3)C12—C13—C14120.0 (3)
C6—C5—H5120.2C14—C13—H13120.0
C5—C6—H6119.2C9—C14—H14120.2
C5—C6—C7121.6 (3)C13—C14—C9119.6 (3)
C7—C6—H6119.2C13—C14—H14120.2
Br1—C12—C13—C14179.4 (2)C4—C5—C6—C72.4 (4)
O1—C4—C5—C6179.2 (2)C5—C6—C7—C21.6 (4)
O2—C2—C3—C4175.4 (3)C5—C6—C7—C8179.8 (3)
O2—C2—C7—C6177.6 (3)C6—C7—C8—N1174.3 (3)
O2—C2—C7—C83.7 (4)C7—C2—C3—C44.0 (4)
N1—C9—C10—C11175.3 (3)C8—N1—C9—C1039.0 (4)
N1—C9—C14—C13176.2 (3)C8—N1—C9—C14145.0 (3)
C1—O1—C4—C31.1 (4)C9—N1—C8—C7173.2 (2)
C1—O1—C4—C5179.8 (3)C9—C10—C11—C120.6 (4)
C2—C3—C4—O1176.0 (3)C10—C9—C14—C130.1 (4)
C2—C3—C4—C53.1 (4)C10—C11—C12—Br1179.9 (2)
C2—C7—C8—N17.1 (4)C10—C11—C12—C130.1 (4)
C3—C2—C7—C61.7 (4)C11—C12—C13—C140.8 (5)
C3—C2—C7—C8177.0 (3)C12—C13—C14—C90.8 (4)
C3—C4—C5—C60.0 (5)C14—C9—C10—C110.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.84 (4)1.86 (4)2.610 (3)147 (4)
(9Br_220K) top
Crystal data top
C14H12BrNO2F(000) = 308
Mr = 306.16Dx = 1.620 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 14.077 (3) ÅCell parameters from 561 reflections
b = 6.8915 (15) Åθ = 2.9–23.4°
c = 6.5365 (13) ŵ = 3.27 mm1
β = 98.320 (4)°T = 220 K
V = 627.5 (2) Å3Block, orange
Z = 20.16 × 0.1 × 0.08 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
1818 independent reflections
Radiation source: sealed X-ray tube1338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 7.9 pixels mm-1θmax = 27.1°, θmin = 2.9°
ω scansh = 1318
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0553 before and 0.0450 after correction. The Ratio of minimum to maximum transmission is 0.8846. The λ/2 correction factor is 0.0015.
k = 88
Tmin = 0.885, Tmax = 1.000l = 85
3788 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.43 e Å3
1818 reflectionsΔρmin = 0.45 e Å3
169 parametersAbsolute structure: Refined as an inversion twin.
2 restraintsAbsolute structure parameter: 0.03 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59998 (7)0.78866 (9)1.04414 (11)0.0479 (2)
O10.2134 (3)0.7345 (7)0.3613 (7)0.0484 (15)
O20.1399 (3)0.7993 (7)0.0983 (7)0.0413 (12)
H20.184 (6)0.769 (8)0.188 (12)0.035 (19)*
N10.2220 (4)0.7214 (7)0.4654 (8)0.0306 (12)
C10.2255 (7)0.7115 (12)0.5682 (15)0.045 (2)
H1A0.2024240.5843940.6160740.067*
H1B0.2930250.7231580.5811250.067*
H1C0.1893990.8108410.6510390.067*
C20.0549 (4)0.7777 (8)0.1734 (9)0.0296 (14)
C30.0284 (4)0.8153 (9)0.0426 (9)0.0316 (15)
H30.0256170.8520200.0948630.038*
C40.1153 (5)0.7996 (9)0.1110 (10)0.0327 (14)
H40.1716610.8291660.0208400.039*
C50.1214 (6)0.7407 (12)0.3119 (15)0.034 (2)
C60.0386 (5)0.7013 (9)0.4469 (10)0.0289 (13)
H60.0422780.6617350.5832000.035*
C70.0523 (4)0.7214 (8)0.3774 (9)0.0272 (14)
C80.1396 (4)0.6999 (9)0.5248 (10)0.0285 (14)
H80.1356580.6701760.6636300.034*
C90.3069 (5)0.7311 (8)0.6087 (11)0.0265 (14)
C100.3109 (6)0.8067 (11)0.8064 (13)0.030 (2)
H100.2537310.8462140.8526700.036*
C110.3975 (5)0.8256 (9)0.9381 (10)0.0334 (15)
H110.3993630.8771851.0717160.040*
C120.4807 (5)0.7662 (9)0.8665 (11)0.0335 (16)
C130.4796 (5)0.6905 (10)0.6700 (11)0.0346 (16)
H130.5368090.6503240.6244430.042*
C140.3925 (5)0.6749 (11)0.5416 (14)0.032 (2)
H140.3910900.6256670.4070460.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0285 (3)0.0540 (4)0.0570 (4)0.0015 (9)0.0080 (2)0.0002 (9)
O10.022 (3)0.090 (5)0.032 (3)0.004 (2)0.001 (2)0.009 (2)
O20.032 (3)0.058 (3)0.034 (3)0.000 (2)0.009 (2)0.010 (2)
N10.026 (3)0.028 (3)0.037 (3)0.002 (2)0.003 (2)0.004 (2)
C10.035 (6)0.059 (6)0.043 (5)0.002 (4)0.016 (4)0.011 (4)
C20.030 (3)0.028 (4)0.032 (4)0.003 (3)0.010 (3)0.001 (3)
C30.037 (4)0.036 (4)0.022 (3)0.001 (3)0.006 (3)0.000 (3)
C40.027 (4)0.041 (4)0.028 (4)0.001 (3)0.002 (3)0.005 (3)
C50.019 (4)0.040 (5)0.044 (6)0.000 (3)0.006 (3)0.012 (4)
C60.030 (4)0.033 (4)0.025 (4)0.000 (3)0.008 (3)0.001 (3)
C70.029 (3)0.020 (3)0.032 (4)0.002 (3)0.005 (3)0.001 (3)
C80.027 (3)0.028 (4)0.030 (4)0.003 (3)0.003 (3)0.004 (3)
C90.022 (4)0.021 (4)0.035 (4)0.000 (2)0.000 (3)0.003 (3)
C100.021 (4)0.035 (5)0.034 (5)0.007 (3)0.007 (3)0.009 (3)
C110.036 (4)0.030 (4)0.033 (4)0.003 (3)0.002 (3)0.003 (3)
C120.021 (3)0.031 (4)0.049 (4)0.000 (3)0.005 (3)0.010 (3)
C130.022 (3)0.038 (4)0.045 (5)0.002 (3)0.008 (3)0.004 (3)
C140.030 (5)0.032 (5)0.035 (5)0.003 (3)0.006 (4)0.002 (3)
Geometric parameters (Å, º) top
Br1—C121.904 (7)C5—C61.383 (11)
O1—C11.396 (10)C6—H60.9400
O1—C51.381 (10)C6—C71.425 (9)
O2—H20.82 (8)C7—C81.456 (8)
O2—C21.365 (8)C8—H80.9400
N1—C81.284 (7)C9—C101.387 (10)
N1—C91.409 (8)C9—C141.395 (10)
C1—H1A0.9700C10—H100.9400
C1—H1B0.9700C10—C111.393 (10)
C1—H1C0.9700C11—H110.9400
C2—C31.372 (8)C11—C121.385 (9)
C2—C71.394 (8)C12—C131.385 (10)
C3—H30.9400C13—H130.9400
C3—C41.366 (9)C13—C141.386 (10)
C4—H40.9400C14—H140.9400
C4—C51.389 (11)
C5—O1—C1118.7 (6)C2—C7—C6118.8 (5)
C2—O2—H2109 (6)C2—C7—C8121.6 (5)
C8—N1—C9121.4 (6)C6—C7—C8119.4 (6)
O1—C1—H1A109.5N1—C8—C7120.1 (6)
O1—C1—H1B109.5N1—C8—H8119.9
O1—C1—H1C109.5C7—C8—H8119.9
H1A—C1—H1B109.5C10—C9—N1123.6 (6)
H1A—C1—H1C109.5C10—C9—C14118.5 (7)
H1B—C1—H1C109.5C14—C9—N1117.8 (6)
O2—C2—C3118.0 (5)C9—C10—H10119.2
O2—C2—C7121.3 (5)C9—C10—C11121.6 (7)
C3—C2—C7120.6 (5)C11—C10—H10119.2
C2—C3—H3119.8C10—C11—H11120.9
C4—C3—C2120.4 (5)C12—C11—C10118.1 (6)
C4—C3—H3119.8C12—C11—H11120.9
C3—C4—H4119.6C11—C12—Br1119.0 (5)
C3—C4—C5120.9 (6)C13—C12—Br1119.2 (5)
C5—C4—H4119.6C13—C12—C11121.8 (6)
O1—C5—C4114.8 (8)C12—C13—H13120.6
O1—C5—C6125.2 (8)C12—C13—C14118.8 (6)
C6—C5—C4119.9 (8)C14—C13—H13120.6
C5—C6—H6120.3C9—C14—H14119.5
C5—C6—C7119.3 (7)C13—C14—C9121.1 (7)
C7—C6—H6120.3C13—C14—H14119.5
Br1—C12—C13—C14179.9 (5)C4—C5—C6—C70.2 (11)
O1—C5—C6—C7177.3 (6)C5—C6—C7—C20.9 (9)
O2—C2—C3—C4178.7 (5)C5—C6—C7—C8173.6 (6)
O2—C2—C7—C6180.0 (6)C6—C7—C8—N1178.6 (6)
O2—C2—C7—C85.6 (8)C7—C2—C3—C40.6 (10)
N1—C9—C10—C11175.6 (6)C8—N1—C9—C1031.0 (9)
N1—C9—C14—C13176.4 (6)C8—N1—C9—C14154.1 (6)
C1—O1—C5—C4168.5 (6)C9—N1—C8—C7170.1 (5)
C1—O1—C5—C68.7 (12)C9—C10—C11—C120.1 (10)
C2—C3—C4—C51.7 (10)C10—C9—C14—C131.2 (10)
C2—C7—C8—N14.2 (9)C10—C11—C12—Br1179.5 (5)
C3—C2—C7—C60.7 (9)C10—C11—C12—C130.2 (9)
C3—C2—C7—C8173.7 (6)C11—C12—C13—C140.3 (10)
C3—C4—C5—O1178.9 (6)C12—C13—C14—C91.0 (10)
C3—C4—C5—C61.5 (11)C14—C9—C10—C110.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.82 (8)1.85 (8)2.565 (7)146 (8)
(9Br_120K) top
Crystal data top
C14H12BrNO2F(000) = 616
Mr = 306.16Dx = 1.646 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 27.874 (5) ÅCell parameters from 990 reflections
b = 6.8640 (12) Åθ = 2.9–27.8°
c = 6.4840 (12) ŵ = 3.32 mm1
β = 95.091 (4)°T = 120 K
V = 1235.7 (4) Å3Needle, orange
Z = 40.16 × 0.1 × 0.08 mm
Data collection top
Bruker SMART CCD 1K area detector
diffractometer
1623 independent reflections
Radiation source: sealed X-ray tube1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 1.5°
ω scansh = 1934
Absorption correction: multi-scan
SADABS v.2.10 (Bruker,2003) was used for absorption correction. R(int) was 0.0606 before and 0.0506 after correction. The Ratio of minimum to maximum transmission is 0.6214. The λ/2 correction factor is 0.0015.
k = 88
Tmin = 0.621, Tmax = 1.000l = 78
3511 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.12Δρmax = 1.00 e Å3
1623 reflectionsΔρmin = 0.57 e Å3
169 parametersAbsolute structure: Refined as an inversion twin.
2 restraintsAbsolute structure parameter: 0.08 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81517 (4)0.78253 (9)0.75697 (7)0.0234 (2)
O10.4071 (2)0.7267 (8)1.0291 (9)0.0261 (13)
O20.5841 (2)0.7990 (8)1.4751 (9)0.0248 (12)
H20.610 (4)0.772 (12)1.404 (17)0.03 (2)*
N10.6257 (2)0.7214 (9)1.1483 (10)0.0175 (13)
C10.4018 (3)0.7164 (12)0.8092 (12)0.0221 (16)
H1A0.4195720.6033650.7634240.033*
H1B0.4146760.8354730.7513930.033*
H1C0.3676500.7032320.7612840.033*
C20.5416 (3)0.7764 (10)1.3571 (12)0.0171 (15)
C30.4991 (3)0.8131 (10)1.4492 (12)0.0189 (16)
H30.5003220.8510751.5904870.023*
C40.4552 (3)0.7936 (10)1.3328 (12)0.0197 (15)
H40.4262310.8172821.3956760.024*
C50.4529 (4)0.7399 (12)1.1260 (15)0.015 (2)
C60.4948 (3)0.7003 (11)1.0346 (12)0.0180 (16)
H60.4930710.6583160.8945190.022*
C70.5404 (3)0.7220 (10)1.1493 (11)0.0146 (14)
C80.5837 (3)0.7015 (10)1.0465 (12)0.0160 (14)
H80.5816410.6732350.9025620.019*
C90.6683 (3)0.7321 (9)1.0463 (13)0.0152 (15)
C100.6699 (4)0.8114 (12)0.8479 (16)0.016 (2)
H100.6411520.8557040.7729200.019*
C110.7135 (3)0.8255 (10)0.7607 (12)0.0195 (16)
H110.7148010.8751430.6245670.023*
C120.7552 (3)0.7652 (9)0.8769 (13)0.0180 (16)
C130.7545 (3)0.6883 (10)1.0745 (13)0.0222 (17)
H130.7835260.6463251.1495120.027*
C140.7110 (3)0.6738 (10)1.1604 (12)0.0181 (16)
H140.7100450.6244091.2968640.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0133 (3)0.0284 (3)0.0295 (4)0.0023 (8)0.0076 (2)0.0003 (9)
O10.013 (3)0.049 (3)0.017 (3)0.003 (2)0.006 (2)0.002 (3)
O20.016 (3)0.041 (3)0.017 (3)0.000 (2)0.001 (2)0.002 (2)
N10.011 (3)0.024 (3)0.017 (3)0.001 (3)0.001 (2)0.000 (3)
C10.016 (4)0.031 (4)0.018 (4)0.002 (3)0.001 (3)0.003 (4)
C20.017 (4)0.013 (3)0.021 (4)0.004 (3)0.001 (3)0.000 (3)
C30.017 (4)0.024 (4)0.017 (4)0.001 (3)0.007 (3)0.003 (3)
C40.017 (4)0.021 (4)0.023 (4)0.001 (3)0.008 (3)0.000 (3)
C50.013 (4)0.018 (5)0.012 (5)0.004 (3)0.001 (3)0.009 (3)
C60.019 (4)0.016 (4)0.020 (4)0.005 (3)0.004 (3)0.006 (3)
C70.013 (4)0.014 (3)0.017 (4)0.002 (3)0.003 (3)0.000 (3)
C80.014 (3)0.012 (3)0.022 (4)0.003 (3)0.001 (3)0.000 (3)
C90.010 (4)0.012 (3)0.023 (4)0.002 (3)0.000 (3)0.007 (3)
C100.012 (4)0.008 (4)0.027 (5)0.003 (3)0.005 (4)0.001 (3)
C110.024 (4)0.015 (4)0.020 (4)0.000 (3)0.004 (3)0.000 (3)
C120.018 (4)0.013 (4)0.023 (4)0.000 (3)0.002 (3)0.004 (3)
C130.014 (4)0.021 (4)0.031 (5)0.002 (3)0.002 (3)0.004 (3)
C140.017 (4)0.015 (4)0.023 (4)0.003 (3)0.004 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C121.908 (8)C5—C61.382 (13)
O1—C11.422 (10)C6—H60.9500
O1—C51.374 (12)C6—C71.423 (10)
O2—H20.90 (11)C7—C81.437 (10)
O2—C21.363 (9)C8—H80.9500
N1—C81.299 (10)C9—C101.402 (13)
N1—C91.410 (9)C9—C141.403 (11)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C10—C111.387 (12)
C1—H1C0.9800C11—H110.9500
C2—C31.394 (10)C11—C121.391 (11)
C2—C71.396 (10)C12—C131.387 (12)
C3—H30.9500C13—H130.9500
C3—C41.387 (11)C13—C141.383 (10)
C4—H40.9500C14—H140.9500
C4—C51.387 (13)
C5—O1—C1118.1 (6)C2—C7—C6118.4 (7)
C2—O2—H2112 (7)C2—C7—C8121.7 (7)
C8—N1—C9121.6 (7)C6—C7—C8119.8 (7)
O1—C1—H1A109.5N1—C8—C7120.7 (7)
O1—C1—H1B109.5N1—C8—H8119.6
O1—C1—H1C109.5C7—C8—H8119.6
H1A—C1—H1B109.5C10—C9—N1123.2 (7)
H1A—C1—H1C109.5C10—C9—C14120.0 (8)
H1B—C1—H1C109.5C14—C9—N1116.6 (7)
O2—C2—C3117.9 (7)C9—C10—H10119.9
O2—C2—C7121.1 (6)C11—C10—C9120.1 (9)
C3—C2—C7121.0 (7)C11—C10—H10119.9
C2—C3—H3120.3C10—C11—H11120.7
C4—C3—C2119.4 (7)C10—C11—C12118.6 (8)
C4—C3—H3120.3C12—C11—H11120.7
C3—C4—H4119.5C11—C12—Br1118.8 (6)
C5—C4—C3121.0 (7)C13—C12—Br1118.9 (6)
C5—C4—H4119.5C13—C12—C11122.3 (7)
O1—C5—C4114.9 (8)C12—C13—H13120.5
O1—C5—C6125.2 (8)C14—C13—C12118.9 (7)
C6—C5—C4119.9 (9)C14—C13—H13120.5
C5—C6—H6119.8C9—C14—H14120.0
C5—C6—C7120.3 (8)C13—C14—C9120.1 (7)
C7—C6—H6119.8C13—C14—H14120.0
Br1—C12—C13—C14179.3 (5)C4—C5—C6—C72.6 (12)
O1—C5—C6—C7179.0 (7)C5—C6—C7—C22.5 (10)
O2—C2—C3—C4179.3 (6)C5—C6—C7—C8173.1 (7)
O2—C2—C7—C6179.8 (7)C6—C7—C8—N1179.8 (6)
O2—C2—C7—C84.7 (11)C7—C2—C3—C40.5 (11)
N1—C9—C10—C11177.0 (7)C8—N1—C9—C1030.7 (10)
N1—C9—C14—C13177.1 (6)C8—N1—C9—C14154.6 (7)
C1—O1—C5—C4166.0 (7)C9—N1—C8—C7170.0 (6)
C1—O1—C5—C615.5 (12)C9—C10—C11—C122.0 (11)
C2—C3—C4—C50.6 (11)C10—C9—C14—C132.3 (11)
C2—C7—C8—N14.4 (11)C10—C11—C12—Br1179.6 (6)
C3—C2—C7—C61.4 (10)C10—C11—C12—C131.3 (11)
C3—C2—C7—C8174.0 (6)C11—C12—C13—C141.0 (11)
C3—C4—C5—O1179.8 (7)C12—C13—C14—C91.5 (11)
C3—C4—C5—C61.7 (12)C14—C9—C10—C112.5 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.90 (11)1.79 (11)2.561 (8)142 (10)
(3Cl_300Kneutron) top
Crystal data top
C14H12ClNO2F(000) = 345
Mr = 261.70Dx = 1.393 Mg m3
Monoclinic, P21/cNeutron radiation, λ = 0.38- 8.8 Å
a = 13.266 (4) ÅCell parameters from 550 reflections
b = 8.487 (2) ŵ = 3.52+ 0.07 * lambda cm-1 mm1
c = 12.028 (4) ÅT = 300 K
β = 112.830 (19)°Block, red
V = 1248.0 (6) Å36 × 3 × 3 mm
Z = 4
Data collection top
SXD
diffractometer
5040 independent reflections
Radiation source: ISIS spallation source4278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0000
time–of–flight LAUE diffraction scansθmax = 83.3°, θmin = 8.5°
Absorption correction: numerical Gauss integration
SXD2001
h = 4251
Tmin = 0.167, Tmax = 0.542k = 1933
5040 measured reflectionsl = 2612
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081All H-atom parameters refined
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.1046P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
5040 reflectionsΔρmax = 0.98 e Å3
276 parametersΔρmin = 1.07 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0230 (7)
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 30 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 550 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.38-8.8 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = -4% of Carbon

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88385 (16)0.2333 (3)0.9487 (3)0.0494 (8)
O10.2231 (2)0.0942 (5)0.8964 (5)0.0587 (14)
O20.5991 (3)0.1291 (5)0.8058 (4)0.0481 (10)
N10.68930 (14)0.2943 (2)1.0015 (2)0.0336 (6)
C10.2146 (3)0.1640 (6)1.0007 (6)0.0605 (13)
C20.41092 (19)0.1890 (4)0.9610 (3)0.0370 (8)
C30.3195 (2)0.1109 (3)0.8819 (3)0.0411 (9)
C40.3233 (2)0.0421 (4)0.7785 (4)0.0489 (10)
C50.4162 (2)0.0499 (4)0.7547 (4)0.0460 (9)
C60.5091 (2)0.1283 (3)0.8318 (3)0.0359 (8)
C70.50663 (18)0.1982 (3)0.9361 (3)0.0318 (7)
C80.60195 (19)0.2776 (3)1.0231 (3)0.0329 (8)
C90.78218 (18)0.3732 (3)1.0803 (3)0.0324 (8)
C100.87985 (18)0.3556 (3)1.0631 (3)0.0351 (8)
C110.9750 (2)0.4312 (4)1.1356 (4)0.0465 (10)
C120.9750 (2)0.5293 (4)1.2267 (4)0.0510 (10)
C130.8779 (3)0.5499 (4)1.2441 (4)0.0505 (10)
C140.7833 (2)0.4744 (4)1.1736 (4)0.0426 (9)
H1A0.2262 (7)0.2911 (10)0.9956 (10)0.087 (3)
H1B0.2686 (9)0.1156 (13)1.0784 (12)0.099 (3)
H1C0.1304 (6)0.1425 (12)0.9862 (12)0.112 (4)
H2A0.4127 (5)0.2436 (9)1.0452 (8)0.062 (2)
H20.6568 (5)0.1912 (8)0.8721 (8)0.060 (2)
H40.2517 (5)0.0231 (10)0.7198 (9)0.082 (3)
H50.4214 (7)0.0097 (11)0.6747 (10)0.088 (3)
H80.5965 (5)0.3205 (9)1.1077 (8)0.066 (2)
H111.0498 (5)0.4131 (9)1.1202 (9)0.078 (3)
H121.0485 (6)0.5919 (10)1.2832 (9)0.086 (3)
H130.8780 (7)0.6346 (11)1.3159 (9)0.081 (3)
H140.7092 (5)0.4918 (9)1.1898 (8)0.069 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0377 (12)0.0544 (15)0.065 (2)0.0081 (9)0.0295 (13)0.0181 (15)
O10.0332 (16)0.071 (3)0.072 (4)0.0144 (14)0.021 (2)0.005 (3)
O20.052 (2)0.058 (2)0.039 (3)0.0090 (16)0.0230 (19)0.013 (2)
N10.0319 (8)0.0391 (11)0.0304 (15)0.0049 (7)0.0127 (8)0.0016 (11)
C10.0431 (18)0.067 (3)0.078 (4)0.0018 (16)0.032 (2)0.015 (3)
C20.0311 (12)0.0487 (18)0.032 (2)0.0054 (10)0.0126 (13)0.0012 (17)
C30.0305 (12)0.0440 (16)0.045 (3)0.0054 (10)0.0098 (13)0.0002 (17)
C40.0374 (14)0.0523 (19)0.046 (3)0.0126 (12)0.0038 (14)0.0094 (19)
C50.0502 (16)0.0523 (19)0.031 (2)0.0108 (12)0.0109 (15)0.0158 (18)
C60.0391 (13)0.0419 (16)0.027 (2)0.0033 (10)0.0127 (13)0.0034 (15)
C70.0277 (10)0.0380 (15)0.029 (2)0.0031 (9)0.0096 (11)0.0001 (15)
C80.0342 (13)0.0408 (16)0.025 (2)0.0057 (10)0.0127 (12)0.0024 (15)
C90.0299 (11)0.0352 (15)0.031 (2)0.0038 (9)0.0109 (12)0.0016 (15)
C100.0311 (11)0.0331 (14)0.041 (2)0.0023 (9)0.0135 (12)0.0004 (15)
C110.0273 (12)0.0454 (18)0.062 (3)0.0044 (10)0.0124 (14)0.0012 (19)
C120.0393 (14)0.0533 (19)0.050 (3)0.0117 (12)0.0065 (15)0.009 (2)
C130.0529 (17)0.059 (2)0.038 (3)0.0174 (14)0.0167 (16)0.017 (2)
C140.0429 (14)0.0489 (17)0.042 (3)0.0095 (12)0.0228 (14)0.0095 (18)
H1A0.112 (6)0.060 (5)0.105 (9)0.000 (4)0.061 (6)0.001 (5)
H1B0.097 (7)0.119 (8)0.091 (9)0.001 (6)0.047 (7)0.012 (7)
H1C0.056 (4)0.137 (8)0.155 (12)0.013 (4)0.055 (6)0.020 (8)
H2A0.056 (3)0.078 (5)0.061 (6)0.013 (3)0.033 (4)0.026 (5)
H20.047 (3)0.071 (4)0.065 (6)0.012 (3)0.023 (3)0.015 (4)
H40.055 (3)0.100 (5)0.071 (6)0.038 (3)0.002 (4)0.027 (5)
H50.100 (5)0.101 (6)0.072 (7)0.023 (4)0.045 (5)0.063 (6)
H80.061 (4)0.093 (5)0.053 (6)0.025 (3)0.031 (4)0.035 (5)
H110.040 (3)0.087 (5)0.112 (8)0.014 (3)0.035 (4)0.022 (5)
H120.058 (4)0.105 (6)0.080 (7)0.035 (4)0.011 (4)0.027 (5)
H130.107 (6)0.094 (6)0.056 (6)0.027 (4)0.046 (5)0.038 (5)
H140.058 (3)0.094 (5)0.072 (6)0.017 (3)0.042 (4)0.034 (5)
Geometric parameters (Å, º) top
Cl1—C101.740 (4)C5—C61.391 (4)
O1—C11.431 (7)C5—H51.113 (12)
O1—C31.362 (5)C6—C71.399 (5)
O2—C61.346 (5)C7—C81.456 (4)
O2—H21.013 (9)C8—H81.109 (11)
N1—C81.290 (3)C9—C101.398 (4)
N1—C91.400 (3)C9—C141.408 (5)
C1—H1A1.094 (12)C10—C111.383 (4)
C1—H1B1.018 (17)C11—C121.376 (5)
C1—H1C1.078 (8)C11—H111.088 (8)
C2—C31.386 (4)C12—C131.393 (5)
C2—C71.415 (4)C12—H121.087 (7)
C2—H2A1.106 (11)C13—C141.371 (5)
C3—C41.393 (5)C13—H131.124 (11)
C4—C51.370 (5)C14—H141.083 (7)
C4—H41.089 (6)
C3—O1—C1117.7 (3)C2—C7—C8118.3 (3)
C6—O2—H2106.7 (5)C6—C7—C2120.1 (3)
C8—N1—C9122.6 (3)C6—C7—C8121.6 (2)
O1—C1—H1A107.4 (7)N1—C8—C7120.2 (3)
O1—C1—H1B111.8 (7)N1—C8—H8122.2 (4)
O1—C1—H1C102.6 (8)C7—C8—H8117.6 (4)
H1A—C1—H1B112.7 (9)C10—C9—N1118.1 (3)
H1A—C1—H1C108.5 (8)C10—C9—C14117.4 (2)
H1B—C1—H1C113.3 (10)C14—C9—N1124.5 (2)
C3—C2—C7120.0 (4)C9—C10—Cl1119.7 (2)
C3—C2—H2A122.0 (4)C11—C10—Cl1118.4 (2)
C7—C2—H2A118.0 (4)C11—C10—C9121.9 (3)
O1—C3—C2125.3 (4)C10—C11—H11119.8 (6)
O1—C3—C4115.5 (3)C12—C11—C10120.0 (3)
C2—C3—C4119.2 (3)C12—C11—H11120.2 (5)
C3—C4—H4117.8 (6)C11—C12—C13118.8 (3)
C5—C4—C3120.9 (3)C11—C12—H12121.0 (6)
C5—C4—H4121.2 (6)C13—C12—H12120.2 (6)
C4—C5—C6121.3 (4)C12—C13—H13118.1 (5)
C4—C5—H5121.4 (5)C14—C13—C12121.8 (4)
C6—C5—H5117.2 (5)C14—C13—H13120.1 (5)
O2—C6—C5118.9 (4)C9—C14—H14119.8 (5)
O2—C6—C7122.5 (3)C13—C14—C9120.1 (3)
C5—C6—C7118.5 (3)C13—C14—H14120.1 (5)
Cl1—C10—C11—C12179.8 (3)C5—C6—C7—C20.3 (4)
O1—C3—C4—C5179.4 (3)C5—C6—C7—C8177.9 (3)
O2—C6—C7—C2177.8 (3)C6—C7—C8—N14.7 (4)
O2—C6—C7—C80.3 (5)C7—C2—C3—O1179.9 (3)
N1—C9—C10—Cl11.9 (4)C7—C2—C3—C40.0 (4)
N1—C9—C10—C11179.0 (3)C8—N1—C9—C10166.2 (3)
N1—C9—C14—C13178.2 (3)C8—N1—C9—C1416.4 (4)
C1—O1—C3—C20.7 (6)C9—N1—C8—C7178.3 (2)
C1—O1—C3—C4179.4 (4)C9—C10—C11—C121.2 (5)
C2—C3—C4—C50.5 (5)C10—C9—C14—C130.7 (5)
C2—C7—C8—N1177.1 (3)C10—C11—C12—C130.2 (5)
C3—C2—C7—C60.1 (4)C11—C12—C13—C140.5 (6)
C3—C2—C7—C8178.3 (3)C12—C13—C14—C90.2 (6)
C3—C4—C5—C60.9 (5)C14—C9—C10—Cl1179.5 (3)
C4—C5—C6—O2178.4 (3)C14—C9—C10—C111.4 (5)
C4—C5—C6—C70.8 (5)
(3Cl_120Kneutron) top
Crystal data top
C14H12ClNO2Z = 4
Mr = 261.70F(000) = 345
Monoclinic, P21/cDx = 1.438 Mg m3
a = 13.208 (3) ÅNeutron radiation, λ = 0.38- 8.8 Å
b = 8.3042 (17) ŵ = 3.52+ 0.07 * lambda cm-1 mm1
c = 11.929 (3) ÅT = 120 K
β = 112.499 (13)°Block, orange
V = 1208.8 (5) Å36 × 3 × 3 mm
Data collection top
SXD
diffractometer
9673 independent reflections
Radiation source: ISIS spallation source7996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0000
time–of–flight LAUE diffraction scansθmax = 83.3°, θmin = 8.5°
Absorption correction: numerical Gauss integration
SXD2001
h = 4448
Tmin = 0.160, Tmax = 0.532k = 2130
9673 measured reflectionsl = 2611
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072All H-atom parameters refined
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max < 0.001
9673 reflectionsΔρmax = 1.83 e Å3
276 parametersΔρmin = 2.01 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0133 (3)
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 30 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 550 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.38-8.8 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = -4% of Carbon

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88332 (8)0.22934 (14)0.94833 (14)0.0065 (3)
O10.21885 (13)0.0944 (2)0.8933 (2)0.0190 (5)
O20.60073 (13)0.1246 (2)0.8081 (2)0.0160 (5)
N10.68898 (7)0.29268 (13)1.00362 (13)0.0106 (3)
C10.20904 (12)0.1678 (2)0.9965 (2)0.0198 (5)
C20.40804 (10)0.18949 (19)0.9608 (2)0.0121 (4)
C30.31641 (10)0.10999 (19)0.8804 (2)0.0133 (4)
C40.32154 (11)0.0378 (2)0.7758 (2)0.0158 (4)
C50.41644 (12)0.0441 (2)0.7534 (2)0.0154 (4)
C60.50926 (11)0.12430 (19)0.83267 (18)0.0106 (4)
C70.50532 (10)0.19773 (18)0.93812 (18)0.0103 (4)
C80.60074 (10)0.27745 (19)1.02553 (18)0.0106 (4)
C90.78246 (10)0.37377 (18)1.08297 (18)0.0097 (4)
C100.88020 (10)0.35603 (17)1.06339 (19)0.0104 (4)
C110.97589 (11)0.43472 (19)1.1343 (2)0.0147 (4)
C120.97573 (11)0.5357 (2)1.2277 (2)0.0164 (4)
C130.87944 (12)0.5565 (2)1.2472 (2)0.0167 (4)
C140.78383 (11)0.47666 (19)1.1768 (2)0.0137 (4)
H1A0.2228 (3)0.2966 (5)0.9969 (5)0.0368 (11)
H1B0.2654 (3)0.1163 (6)1.0801 (5)0.0421 (13)
H1C0.1247 (3)0.1466 (6)0.9859 (6)0.0461 (15)
H2A0.4082 (3)0.2450 (5)1.0433 (5)0.0293 (10)
H20.6576 (2)0.1878 (4)0.8747 (4)0.0265 (9)
H40.2502 (3)0.0274 (5)0.7161 (5)0.0365 (12)
H50.4210 (3)0.0167 (5)0.6743 (5)0.0352 (11)
H80.5941 (3)0.3235 (5)1.1090 (5)0.0307 (10)
H111.0506 (3)0.4158 (5)1.1174 (5)0.0328 (11)
H121.0499 (3)0.6003 (5)1.2827 (5)0.0389 (13)
H130.8791 (3)0.6395 (5)1.3188 (5)0.0340 (11)
H140.7097 (3)0.4952 (5)1.1933 (5)0.0300 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0038 (4)0.0069 (5)0.0117 (9)0.0021 (3)0.0061 (5)0.0057 (6)
O10.0100 (6)0.0239 (10)0.0222 (16)0.0047 (5)0.0051 (7)0.0028 (10)
O20.0167 (6)0.0196 (9)0.0137 (14)0.0032 (6)0.0082 (8)0.0055 (9)
N10.0099 (3)0.0130 (5)0.0090 (7)0.0018 (3)0.0037 (4)0.0005 (5)
C10.0151 (6)0.0240 (9)0.0233 (14)0.0001 (5)0.0109 (7)0.0063 (9)
C20.0102 (5)0.0142 (7)0.0124 (12)0.0017 (4)0.0048 (6)0.0004 (7)
C30.0093 (4)0.0144 (7)0.0150 (12)0.0024 (4)0.0031 (6)0.0002 (7)
C40.0128 (5)0.0173 (7)0.0140 (12)0.0049 (4)0.0015 (6)0.0034 (8)
C50.0164 (6)0.0172 (8)0.0115 (12)0.0038 (5)0.0042 (6)0.0056 (8)
C60.0127 (5)0.0134 (7)0.0060 (11)0.0014 (4)0.0039 (6)0.0021 (7)
C70.0088 (4)0.0129 (6)0.0092 (11)0.0015 (4)0.0035 (5)0.0008 (7)
C80.0106 (5)0.0144 (7)0.0067 (11)0.0025 (4)0.0032 (5)0.0016 (7)
C90.0096 (4)0.0106 (6)0.0092 (11)0.0013 (4)0.0039 (5)0.0002 (6)
C100.0097 (4)0.0099 (6)0.0114 (11)0.0010 (4)0.0037 (5)0.0011 (7)
C110.0095 (5)0.0153 (7)0.0182 (12)0.0017 (4)0.0042 (6)0.0025 (8)
C120.0131 (5)0.0171 (7)0.0155 (12)0.0045 (4)0.0016 (6)0.0029 (8)
C130.0169 (6)0.0188 (8)0.0137 (12)0.0063 (5)0.0050 (7)0.0054 (8)
C140.0140 (5)0.0158 (7)0.0128 (12)0.0037 (4)0.0066 (6)0.0034 (7)
H1A0.050 (2)0.027 (2)0.042 (3)0.0003 (15)0.027 (2)0.001 (2)
H1B0.0385 (19)0.049 (3)0.036 (4)0.0061 (17)0.011 (2)0.008 (3)
H1C0.0254 (15)0.056 (3)0.064 (4)0.0023 (15)0.025 (2)0.003 (3)
H2A0.0285 (15)0.035 (2)0.028 (3)0.0053 (13)0.0151 (17)0.010 (2)
H20.0215 (12)0.0307 (18)0.028 (3)0.0067 (11)0.0102 (15)0.0052 (19)
H40.0261 (14)0.043 (2)0.033 (3)0.0167 (13)0.0032 (17)0.012 (2)
H50.0414 (19)0.041 (2)0.025 (3)0.0096 (15)0.0143 (19)0.023 (2)
H80.0285 (15)0.042 (2)0.026 (3)0.0111 (13)0.0143 (16)0.016 (2)
H110.0208 (13)0.0366 (19)0.046 (3)0.0045 (11)0.0178 (17)0.009 (2)
H120.0237 (14)0.045 (2)0.041 (3)0.0127 (13)0.0050 (18)0.015 (2)
H130.0445 (19)0.038 (2)0.025 (3)0.0128 (16)0.020 (2)0.016 (2)
H140.0253 (14)0.043 (2)0.028 (3)0.0072 (13)0.0173 (16)0.014 (2)
Geometric parameters (Å, º) top
Cl1—C101.742 (2)C5—C61.398 (2)
O1—C11.424 (4)C5—H51.091 (6)
O1—C31.361 (2)C6—C71.417 (3)
O2—C61.348 (3)C7—C81.452 (2)
O2—H21.007 (4)C8—H81.101 (6)
N1—C81.2946 (19)C9—C101.405 (2)
N1—C91.4069 (18)C9—C141.403 (3)
C1—H1A1.085 (5)C10—C111.386 (2)
C1—H1B1.079 (6)C11—C121.395 (3)
C1—H1C1.087 (4)C11—H111.091 (4)
C2—C31.390 (2)C12—C131.388 (3)
C2—C71.413 (2)C12—H121.089 (4)
C2—H2A1.086 (6)C13—C141.388 (2)
C3—C41.409 (3)C13—H131.098 (6)
C4—C51.379 (3)C14—H141.081 (4)
C4—H41.084 (4)
C3—O1—C1117.40 (18)C2—C7—C6119.64 (14)
C6—O2—H2106.8 (3)C2—C7—C8119.18 (18)
C8—N1—C9122.48 (16)C6—C7—C8121.15 (14)
O1—C1—H1A110.8 (4)N1—C8—C7120.04 (18)
O1—C1—H1B111.8 (3)N1—C8—H8122.5 (2)
O1—C1—H1C105.0 (4)C7—C8—H8117.4 (2)
H1A—C1—H1B109.4 (4)N1—C9—C10117.62 (17)
H1A—C1—H1C108.8 (4)C14—C9—N1124.64 (13)
H1B—C1—H1C111.0 (4)C14—C9—C10117.68 (13)
C3—C2—C7120.42 (19)C9—C10—Cl1119.64 (12)
C3—C2—H2A121.8 (2)C11—C10—Cl1118.31 (13)
C7—C2—H2A117.8 (2)C11—C10—C9122.04 (18)
O1—C3—C2125.4 (2)C10—C11—C12119.39 (15)
O1—C3—C4115.32 (17)C10—C11—H11119.8 (3)
C2—C3—C4119.27 (15)C12—C11—H11120.8 (3)
C3—C4—H4118.0 (3)C11—C12—H12120.1 (3)
C5—C4—C3120.74 (15)C13—C12—C11119.36 (14)
C5—C4—H4121.2 (3)C13—C12—H12120.5 (3)
C4—C5—C6120.9 (2)C12—C13—C14121.2 (2)
C4—C5—H5120.3 (3)C12—C13—H13119.0 (3)
C6—C5—H5118.8 (3)C14—C13—H13119.7 (3)
O2—C6—C5118.7 (2)C9—C14—H14119.7 (3)
O2—C6—C7122.19 (15)C13—C14—C9120.28 (16)
C5—C6—C7119.03 (15)C13—C14—H14120.0 (3)
Cl1—C10—C11—C12179.41 (15)C5—C6—C7—C20.4 (2)
O1—C3—C4—C5179.36 (18)C5—C6—C7—C8177.76 (17)
O2—C6—C7—C2178.15 (18)C6—C7—C8—N15.1 (2)
O2—C6—C7—C80.0 (3)C7—C2—C3—O1179.87 (18)
N1—C9—C10—Cl12.9 (2)C7—C2—C3—C40.1 (2)
N1—C9—C10—C11178.05 (16)C8—N1—C9—C10167.58 (15)
N1—C9—C14—C13177.30 (18)C8—N1—C9—C1415.4 (2)
C1—O1—C3—C21.1 (3)C9—N1—C8—C7177.68 (15)
C1—O1—C3—C4178.93 (17)C9—C10—C11—C120.4 (3)
C2—C3—C4—C50.6 (3)C10—C9—C14—C130.3 (3)
C2—C7—C8—N1176.82 (15)C10—C11—C12—C130.6 (3)
C3—C2—C7—C60.0 (2)C11—C12—C13—C141.1 (3)
C3—C2—C7—C8178.19 (16)C12—C13—C14—C90.7 (3)
C3—C4—C5—C61.0 (3)C14—C9—C10—Cl1179.82 (14)
C4—C5—C6—O2178.75 (19)C14—C9—C10—C110.8 (3)
C4—C5—C6—C70.9 (3)
(3Br_300Kneutron) top
Crystal data top
C14H12BrNO2F(000) = 304
Mr = 306.16Dx = 1.587 Mg m3
Monoclinic, P21/cNeutron radiation, λ = 0.38- 8.8 Å
a = 13.364 (4) ÅCell parameters from 550 reflections
b = 8.733 (2) ŵ = 3.40+ 0.022 * lambda cm-1 mm1
c = 12.003 (4) ÅT = 300 K
β = 113.804 (18)°Block, red
V = 1281.7 (7) Å38 × 2 × 2 mm
Z = 4
Data collection top
SXD
diffractometer
4412 reflections with I > 2σ(I)
Radiation source: ISIS spallation sourceRint = 0.0000
time–of–flight LAUE diffraction scansθmax = 85.4°, θmin = 8.0°
Absorption correction: numerical Gauss integration
SXD2001
h = 3741
Tmin = 0.424, Tmax = 0.782k = 3127
5043 measured reflectionsl = 2310
5043 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066All H-atom parameters refined
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0862P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5043 reflectionsΔρmax = 0.73 e Å3
276 parametersΔρmin = 0.61 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0180 (4)
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 30 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 550 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.38-8.8 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = -4% of Carbon

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22747 (19)0.0945 (3)0.9003 (4)0.0624 (10)
O20.5954 (2)0.1332 (3)0.8017 (3)0.0528 (8)
N10.68894 (10)0.29738 (14)0.99844 (15)0.0341 (4)
C10.2213 (2)0.1632 (4)1.0039 (4)0.0616 (9)
C20.41460 (15)0.1867 (2)0.9632 (3)0.0388 (6)
C30.32226 (15)0.1108 (2)0.8850 (3)0.0436 (7)
C40.32287 (17)0.0421 (3)0.7788 (3)0.0535 (8)
C50.41492 (18)0.0511 (3)0.7528 (3)0.0509 (7)
C60.50810 (15)0.1300 (2)0.8302 (2)0.0386 (6)
C70.50832 (13)0.1982 (2)0.9365 (2)0.0333 (5)
C80.60401 (15)0.2770 (2)1.0217 (3)0.0347 (6)
C90.78168 (13)0.3763 (2)1.0783 (2)0.0317 (5)
C100.88018 (13)0.35800 (19)1.0644 (2)0.0338 (6)
C110.97498 (16)0.4349 (2)1.1382 (3)0.0461 (7)
C120.97254 (17)0.5345 (3)1.2276 (3)0.0510 (7)
C130.87536 (19)0.5581 (3)1.2404 (3)0.0482 (7)
C140.78056 (17)0.4802 (2)1.1675 (3)0.0418 (6)
H1A0.2357 (5)0.2859 (7)1.0057 (8)0.094 (2)
H1B0.2784 (6)0.1169 (9)1.0857 (8)0.096 (2)
H1C0.1384 (5)0.1432 (8)0.9955 (8)0.109 (3)
H2A0.4180 (4)0.2387 (6)1.0461 (7)0.0678 (16)
H20.6536 (4)0.1953 (5)0.8671 (6)0.0587 (13)
H40.2511 (4)0.0206 (6)0.7197 (6)0.089 (2)
H50.4164 (5)0.0064 (7)0.6730 (7)0.0844 (19)
H80.6003 (4)0.3168 (6)1.1076 (6)0.0625 (14)
H111.0496 (4)0.4161 (5)1.1253 (7)0.0772 (18)
H121.0463 (4)0.5955 (6)1.2854 (6)0.085 (2)
H130.8716 (5)0.6399 (6)1.3070 (7)0.0837 (19)
H140.7051 (4)0.5013 (6)1.1779 (6)0.0718 (17)
Br10.88679 (16)0.2242 (2)0.9442 (3)0.0479 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0367 (13)0.0719 (17)0.078 (3)0.0144 (11)0.0224 (16)0.0029 (19)
O20.0541 (16)0.0692 (17)0.040 (2)0.0112 (13)0.0236 (15)0.0131 (16)
N10.0330 (6)0.0415 (7)0.0271 (11)0.0047 (5)0.0115 (7)0.0023 (7)
C10.0473 (14)0.0696 (18)0.077 (3)0.0019 (13)0.0343 (16)0.0126 (19)
C20.0318 (9)0.0466 (11)0.0370 (18)0.0067 (8)0.0128 (11)0.0012 (12)
C30.0313 (9)0.0476 (10)0.0463 (19)0.0070 (8)0.0097 (10)0.0004 (12)
C40.0406 (11)0.0562 (12)0.049 (2)0.0149 (9)0.0032 (12)0.0109 (14)
C50.0497 (13)0.0587 (13)0.036 (2)0.0116 (10)0.0087 (12)0.0127 (13)
C60.0401 (10)0.0440 (10)0.0296 (16)0.0057 (8)0.0120 (10)0.0059 (11)
C70.0307 (8)0.0398 (9)0.0274 (15)0.0055 (7)0.0097 (9)0.0027 (10)
C80.0314 (9)0.0449 (10)0.0282 (17)0.0061 (7)0.0125 (10)0.0004 (11)
C90.0329 (9)0.0346 (8)0.0282 (15)0.0038 (7)0.0130 (9)0.0007 (10)
C100.0323 (8)0.0340 (9)0.0348 (16)0.0040 (7)0.0132 (9)0.0012 (10)
C110.0326 (10)0.0471 (11)0.053 (2)0.0077 (8)0.0118 (11)0.0031 (12)
C120.0432 (11)0.0545 (12)0.0465 (19)0.0167 (9)0.0088 (12)0.0083 (13)
C130.0576 (13)0.0507 (12)0.0355 (19)0.0165 (10)0.0178 (12)0.0122 (13)
C140.0428 (10)0.0450 (10)0.0392 (17)0.0090 (9)0.0182 (11)0.0062 (12)
H1A0.112 (4)0.074 (3)0.122 (7)0.001 (3)0.075 (5)0.002 (4)
H1B0.090 (4)0.131 (5)0.079 (6)0.004 (4)0.046 (4)0.025 (5)
H1C0.059 (3)0.154 (5)0.128 (8)0.018 (4)0.054 (4)0.008 (5)
H2A0.061 (3)0.086 (3)0.069 (5)0.014 (2)0.038 (3)0.017 (3)
H20.048 (2)0.077 (3)0.054 (4)0.012 (2)0.024 (2)0.013 (3)
H40.064 (3)0.103 (4)0.083 (5)0.038 (3)0.011 (3)0.041 (4)
H50.090 (3)0.103 (4)0.060 (5)0.023 (3)0.030 (3)0.042 (4)
H80.058 (2)0.096 (3)0.039 (4)0.021 (2)0.025 (2)0.023 (3)
H110.045 (2)0.088 (3)0.102 (5)0.012 (2)0.032 (3)0.018 (4)
H120.061 (3)0.095 (3)0.082 (5)0.032 (2)0.012 (3)0.037 (4)
H130.100 (4)0.081 (3)0.082 (5)0.030 (3)0.048 (4)0.043 (4)
H140.062 (3)0.086 (3)0.080 (5)0.015 (2)0.041 (3)0.028 (3)
Br10.0459 (11)0.0497 (10)0.0571 (19)0.0043 (8)0.0301 (12)0.0097 (12)
Geometric parameters (Å, º) top
O1—C11.412 (5)C5—H51.088 (9)
O1—C31.359 (4)C6—C71.407 (3)
O2—C61.342 (4)C7—C81.449 (3)
O2—H21.011 (7)C8—H81.108 (8)
N1—C81.286 (3)C9—C101.401 (3)
N1—C91.404 (2)C9—C141.408 (3)
C1—H1A1.087 (8)C10—C111.391 (3)
C1—H1B1.051 (11)C10—Br11.887 (4)
C1—H1C1.085 (6)C11—C121.391 (4)
C2—C31.381 (3)C11—H111.082 (6)
C2—C71.416 (3)C12—C131.384 (4)
C2—H2A1.078 (9)C12—H121.088 (5)
C3—C41.411 (4)C13—C141.393 (3)
C4—C51.388 (4)C13—H131.088 (8)
C4—H41.084 (5)C14—H141.081 (6)
C5—C61.398 (3)
C3—O1—C1117.6 (3)C2—C7—C8118.9 (2)
C6—O2—H2106.8 (4)C6—C7—C2119.78 (18)
C8—N1—C9122.18 (19)C6—C7—C8121.31 (19)
O1—C1—H1A111.3 (6)N1—C8—C7121.1 (2)
O1—C1—H1B112.4 (5)N1—C8—H8122.2 (3)
O1—C1—H1C105.7 (6)C7—C8—H8116.6 (3)
H1A—C1—H1B107.7 (7)N1—C9—C14123.94 (17)
H1A—C1—H1C109.0 (6)C10—C9—N1118.4 (2)
H1B—C1—H1C110.7 (7)C10—C9—C14117.57 (17)
C3—C2—C7120.6 (3)C9—C10—Br1119.88 (15)
C3—C2—H2A121.6 (3)C11—C10—C9121.8 (2)
C7—C2—H2A117.8 (3)C11—C10—Br1118.32 (18)
O1—C3—C2125.7 (3)C10—C11—C12119.6 (2)
O1—C3—C4115.0 (2)C10—C11—H11119.4 (4)
C2—C3—C4119.2 (2)C12—C11—H11121.0 (4)
C3—C4—H4118.7 (4)C11—C12—H12120.0 (4)
C5—C4—C3120.5 (2)C13—C12—C11119.6 (2)
C5—C4—H4120.8 (5)C13—C12—H12120.3 (4)
C4—C5—C6120.7 (3)C12—C13—C14120.9 (3)
C4—C5—H5120.3 (4)C12—C13—H13120.2 (4)
C6—C5—H5119.0 (4)C14—C13—H13118.9 (4)
O2—C6—C5118.2 (3)C9—C14—H14119.6 (3)
O2—C6—C7122.6 (2)C13—C14—C9120.4 (2)
C5—C6—C7119.1 (2)C13—C14—H14119.9 (4)
O1—C3—C4—C5179.9 (2)C5—C6—C7—C8178.0 (2)
O2—C6—C7—C2178.1 (2)C6—C7—C8—N15.4 (3)
O2—C6—C7—C80.2 (3)C7—C2—C3—O1179.0 (2)
N1—C9—C10—C11178.58 (19)C7—C2—C3—C41.2 (3)
N1—C9—C10—Br12.2 (3)C8—N1—C9—C10162.64 (19)
N1—C9—C14—C13177.7 (2)C8—N1—C9—C1421.3 (3)
C1—O1—C3—C21.3 (4)C9—N1—C8—C7178.55 (17)
C1—O1—C3—C4178.9 (3)C9—C10—C11—C120.9 (3)
C2—C3—C4—C50.3 (3)C10—C9—C14—C131.6 (3)
C2—C7—C8—N1176.30 (17)C10—C11—C12—C131.2 (4)
C3—C2—C7—C60.9 (3)C11—C12—C13—C141.9 (4)
C3—C2—C7—C8179.2 (2)C12—C13—C14—C90.5 (4)
C3—C4—C5—C60.9 (4)C14—C9—C10—C112.2 (3)
C4—C5—C6—O2179.0 (2)C14—C9—C10—Br1178.54 (17)
C4—C5—C6—C71.2 (4)Br1—C10—C11—C12179.90 (19)
C5—C6—C7—C20.3 (3)
(3Br_120Kneutron) top
Crystal data top
C14H12BrNO2Z = 4
Mr = 306.16F(000) = 304
Monoclinic, P21/cDx = 1.639 Mg m3
a = 13.307 (3) ÅNeutron radiation, λ = 0.38- 8.8 Å
b = 8.5309 (18) ŵ = 3.40+ 0.022 * lambda cm-1 mm1
c = 11.915 (3) ÅT = 120 K
β = 113.459 (15)°Block, yellow
V = 1240.8 (5) Å38 × 2 × 2 mm
Data collection top
SXD
diffractometer
9678 independent reflections
Radiation source: ISIS spallation source8147 reflections with I > 2σ(I)
time–of–flight LAUE diffraction scansθmax = 84.1°, θmin = 8.6°
Absorption correction: numerical Gauss integration
SXD2001
h = 4841
Tmin = 0.424, Tmax = 0.782k = 3324
9678 measured reflectionsl = 249
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.05Δρmax = 1.34 e Å3
9678 reflectionsΔρmin = 1.11 e Å3
271 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0082 (2)
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 30 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 550 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.38-8.8 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22276 (17)0.0949 (3)0.8979 (3)0.0205 (7)
O20.59729 (17)0.1276 (3)0.8048 (3)0.0168 (6)
N10.68864 (10)0.29602 (14)1.00181 (17)0.0114 (3)
C10.21559 (16)0.1679 (2)1.0017 (3)0.0198 (6)
C20.41130 (14)0.1879 (2)0.9636 (2)0.0129 (5)
C30.31884 (14)0.1104 (2)0.8835 (3)0.0146 (5)
C40.32139 (15)0.0386 (2)0.7784 (3)0.0174 (6)
C50.41439 (15)0.0460 (2)0.7534 (3)0.0168 (5)
C60.50788 (14)0.1256 (2)0.8323 (2)0.0127 (5)
C70.50666 (13)0.19712 (19)0.9385 (2)0.0112 (5)
C80.60256 (14)0.2773 (2)1.0252 (2)0.0109 (5)
C90.78155 (13)0.37773 (19)1.0808 (2)0.0095 (4)
C100.88010 (13)0.35871 (19)1.0655 (2)0.0111 (5)
C110.97544 (14)0.4379 (2)1.1380 (3)0.0150 (5)
C120.97378 (15)0.5404 (2)1.2282 (3)0.0167 (5)
C130.87639 (16)0.5636 (2)1.2441 (3)0.0162 (5)
C140.78114 (14)0.4835 (2)1.1716 (2)0.0134 (5)
H1A0.2314 (4)0.2939 (5)1.0039 (7)0.0389 (15)
H1B0.2744 (4)0.1162 (7)1.0870 (6)0.0410 (15)
H1C0.1317 (4)0.1474 (7)0.9933 (7)0.0457 (17)
H2A0.4131 (4)0.2421 (5)1.0470 (6)0.0305 (12)
H20.6547 (3)0.1915 (5)0.8714 (5)0.0258 (11)
H40.2492 (4)0.0258 (6)0.7171 (6)0.0377 (15)
H50.4169 (4)0.0126 (6)0.6729 (6)0.0363 (14)
H80.5976 (4)0.3195 (5)1.1096 (5)0.0275 (11)
H111.0503 (3)0.4192 (5)1.1238 (6)0.0326 (14)
H121.0483 (3)0.6027 (6)1.2848 (6)0.0373 (15)
H130.8741 (4)0.6467 (5)1.3130 (6)0.0348 (13)
H140.7059 (3)0.5038 (5)1.1850 (6)0.0315 (13)
Br10.88568 (14)0.22051 (19)0.9435 (2)0.0142 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0116 (8)0.0246 (10)0.025 (2)0.0048 (7)0.0070 (11)0.0025 (12)
O20.0174 (9)0.0215 (9)0.0136 (17)0.0034 (7)0.0082 (10)0.0038 (11)
N10.0103 (4)0.0140 (5)0.0096 (10)0.0023 (4)0.0039 (5)0.0018 (6)
C10.0155 (7)0.0239 (8)0.0233 (17)0.0009 (7)0.0112 (9)0.0043 (10)
C20.0108 (6)0.0156 (7)0.0131 (15)0.0028 (5)0.0055 (8)0.0016 (9)
C30.0100 (6)0.0159 (7)0.0165 (15)0.0020 (5)0.0037 (8)0.0006 (9)
C40.0141 (7)0.0192 (8)0.0147 (16)0.0053 (6)0.0014 (9)0.0037 (9)
C50.0167 (8)0.0196 (8)0.0122 (16)0.0046 (6)0.0037 (9)0.0062 (9)
C60.0136 (7)0.0148 (7)0.0096 (14)0.0016 (5)0.0045 (8)0.0020 (8)
C70.0104 (6)0.0136 (6)0.0096 (13)0.0019 (5)0.0039 (8)0.0015 (8)
C80.0104 (6)0.0149 (7)0.0075 (14)0.0026 (5)0.0035 (8)0.0011 (8)
C90.0103 (6)0.0109 (6)0.0074 (13)0.0014 (5)0.0035 (7)0.0001 (7)
C100.0103 (6)0.0118 (6)0.0111 (14)0.0011 (5)0.0040 (8)0.0004 (8)
C110.0105 (7)0.0154 (7)0.0176 (15)0.0024 (5)0.0039 (8)0.0021 (9)
C120.0148 (7)0.0167 (7)0.0156 (16)0.0051 (6)0.0030 (9)0.0030 (9)
C130.0183 (8)0.0165 (7)0.0131 (16)0.0053 (6)0.0055 (9)0.0038 (9)
C140.0143 (7)0.0146 (7)0.0117 (14)0.0033 (5)0.0056 (8)0.0029 (8)
H1A0.054 (3)0.0266 (18)0.046 (5)0.0012 (18)0.029 (3)0.002 (3)
H1B0.040 (2)0.053 (3)0.030 (4)0.009 (2)0.014 (3)0.014 (3)
H1C0.0265 (19)0.064 (3)0.057 (5)0.004 (2)0.027 (3)0.001 (3)
H2A0.029 (2)0.041 (2)0.025 (4)0.0055 (17)0.015 (2)0.011 (3)
H20.0222 (16)0.0343 (19)0.022 (3)0.0048 (14)0.0105 (19)0.005 (2)
H40.0261 (19)0.046 (2)0.034 (4)0.0156 (17)0.004 (2)0.011 (3)
H50.040 (2)0.044 (2)0.024 (4)0.009 (2)0.012 (2)0.017 (3)
H80.0310 (19)0.045 (2)0.012 (3)0.0089 (17)0.014 (2)0.012 (2)
H110.0177 (16)0.041 (2)0.041 (4)0.0040 (14)0.013 (2)0.009 (3)
H120.0260 (19)0.041 (2)0.040 (4)0.0141 (17)0.008 (2)0.020 (3)
H130.042 (2)0.038 (2)0.029 (4)0.0119 (19)0.019 (3)0.017 (2)
H140.0265 (18)0.039 (2)0.037 (4)0.0051 (16)0.021 (2)0.012 (2)
Geometric parameters (Å, º) top
O1—C11.421 (4)C5—H51.094 (7)
O1—C31.362 (3)C6—C71.410 (3)
O2—C61.354 (3)C7—C81.454 (3)
O2—H21.014 (6)C8—H81.096 (7)
N1—C81.292 (3)C9—C101.403 (3)
N1—C91.405 (2)C9—C141.411 (3)
C1—H1A1.094 (5)C10—C111.393 (3)
C1—H1B1.099 (7)C10—Br11.896 (3)
C1—H1C1.095 (5)C11—C121.392 (4)
C2—C31.388 (3)C11—H111.086 (5)
C2—C71.417 (3)C12—C131.397 (3)
C2—H2A1.088 (7)C12—H121.090 (5)
C3—C41.407 (4)C13—C141.396 (3)
C4—C51.384 (3)C13—H131.094 (7)
C4—H41.095 (5)C14—H141.089 (5)
C5—C61.400 (3)
C3—O1—C1117.3 (2)C2—C7—C8118.9 (2)
C6—O2—H2106.1 (4)C6—C7—C2119.76 (18)
C8—N1—C9122.4 (2)C6—C7—C8121.36 (18)
O1—C1—H1A111.9 (5)N1—C8—C7120.5 (2)
O1—C1—H1B111.1 (4)N1—C8—H8122.7 (3)
O1—C1—H1C105.7 (4)C7—C8—H8116.8 (3)
H1A—C1—H1B108.2 (5)N1—C9—C14124.06 (17)
H1A—C1—H1C109.7 (4)C10—C9—N1118.3 (2)
H1B—C1—H1C110.2 (5)C10—C9—C14117.57 (17)
C3—C2—C7120.3 (2)C9—C10—Br1119.69 (15)
C3—C2—H2A121.5 (3)C11—C10—C9122.1 (2)
C7—C2—H2A118.2 (3)C11—C10—Br1118.26 (17)
O1—C3—C2125.4 (3)C10—C11—H11119.8 (4)
O1—C3—C4115.2 (2)C12—C11—C10119.55 (19)
C2—C3—C4119.4 (2)C12—C11—H11120.6 (3)
C3—C4—H4119.1 (4)C11—C12—C13119.65 (18)
C5—C4—C3120.77 (19)C11—C12—H12119.6 (4)
C5—C4—H4120.1 (4)C13—C12—H12120.8 (4)
C4—C5—C6120.6 (3)C12—C13—H13119.9 (3)
C4—C5—H5120.6 (3)C14—C13—C12120.6 (2)
C6—C5—H5118.8 (3)C14—C13—H13119.5 (3)
O2—C6—C5118.4 (3)C9—C14—H14119.9 (3)
O2—C6—C7122.5 (2)C13—C14—C9120.5 (2)
C5—C6—C7119.1 (2)C13—C14—H14119.5 (3)
O1—C3—C4—C5180.0 (2)C5—C6—C7—C8178.2 (2)
O2—C6—C7—C2178.5 (2)C6—C7—C8—N15.7 (3)
O2—C6—C7—C80.1 (3)C7—C2—C3—O1179.6 (2)
N1—C9—C10—C11178.58 (19)C7—C2—C3—C41.2 (3)
N1—C9—C10—Br11.8 (3)C8—N1—C9—C10163.90 (19)
N1—C9—C14—C13178.1 (2)C8—N1—C9—C1419.0 (3)
C1—O1—C3—C21.9 (4)C9—N1—C8—C7177.61 (17)
C1—O1—C3—C4178.9 (2)C9—C10—C11—C120.5 (3)
C2—C3—C4—C50.8 (3)C10—C9—C14—C131.0 (3)
C2—C7—C8—N1175.92 (17)C10—C11—C12—C130.5 (3)
C3—C2—C7—C60.7 (3)C11—C12—C13—C140.8 (4)
C3—C2—C7—C8179.18 (19)C12—C13—C14—C90.0 (4)
C3—C4—C5—C60.2 (3)C14—C9—C10—C111.3 (3)
C4—C5—C6—O2179.1 (2)C14—C9—C10—Br1179.14 (17)
C4—C5—C6—C70.6 (3)Br1—C10—C11—C12179.88 (18)
C5—C6—C7—C20.2 (3)
 

Footnotes

Died December 2019.

Acknowledgements

The authors are grateful to Professor Andrew Beeby, Durham University, for help with discussions on the chromism. HEM is grateful to the EPSRC and Durham University for funding and Professor Jonathan Steed, Durham University for useful discussions.

References

First citationAlbayrak, C., Özek, A., Koşar, B., Odabaşoğlu, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o315.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442–2446.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationD'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423–436.  CAS Google Scholar
First citationFrancis, S., Muthiah, P. T., Venkatachalam, G. & Ramesh, R. (2003). Acta Cryst. E59, o1045–o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035–4038.  Web of Science CrossRef CAS Google Scholar
First citationGu, Y. L., Kar, T. & Scheiner, S. (1999). J. Am. Chem. Soc. 121, 9411–9422.  CrossRef CAS Google Scholar
First citationGutmann, M. J. (2005). SXD2001. ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire, England.  Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHarada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216–16221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationKargar, H., Torabi, V., Akbari, A., Behjatmanesh-Ardakani, R., Sahraei, A. & Tahir, M. N. (2020). J. Mol. Struct. 1205, 127642.  CSD CrossRef Google Scholar
First citationKeen, D. A., Gutmann, M. J. & Wilson, C. C. (2006). J. Appl. Cryst. 39, 714–722.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2009). Acta Cryst. C65, o517–o520.  CSD CrossRef IUCr Journals Google Scholar
First citationKumari, S., Das, B. & Ray, S. (2019). Dalton Trans. 48, 15942–15954.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMighani, H. (2020). J. Polym. Res. 27, 168.  CrossRef Google Scholar
First citationOgawa, K., Harada, J., Tamura, I. & Noda, Y. (2000). Chem. Lett. 29, 528–529.  Web of Science CSD CrossRef Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖzek, A., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2008b). J. Chem. Crystallogr. 39, 353–357.  Google Scholar
First citationÖzek, A., Büyükgüngör, O., Albayrak, C. & Odabaşoğlu, M. (2008a). Acta Cryst. E64, o1579–o1580.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Büyükgüngör, O., Albayrak, C. & Odabaşoğlu, M. (2008c). Acta Cryst. E64, o1613–o1614.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParveen, S. (2020). Appl. Organomet. Chem. 2020, e5687.  Google Scholar
First citationRobert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327–4342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). Inorg. Chim. Acta, 508, 119633.  Web of Science CSD CrossRef Google Scholar
First citationSenier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943–1955.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.  Web of Science CSD CrossRef CAS Google Scholar
First citationÜnver, H., Kendi, E., Güven, K. & Durlu, T. N. (2002). Z. Naturforsch. 57, 685–690.  Google Scholar
First citationYeap, G.-Y., Ha, S.-T., Ishizawa, N., Suda, K., Boey, P.-L. & Kamil Mahmood, W. A. (2003). J. Mol. Struct. 658, 87–99.  CSD CrossRef CAS Google Scholar
First citationZheng, C.-S., Yang, N., Li, M. & Jing, Z.-L. (2005). Acta Cryst. E61, o3613–o3614.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds