research papers
Asymmetric rotations and dimerization driven by normal to modulated L-phenylalaninate
in 4-biphenylcarboxy coupledaDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India, and bInstitute of Crystallography, RWTH Aachen University, Jägerstraße 17-19, 52066 Aachen, Germany
*Correspondence e-mail: somnathdey226@gmail.com
Amongst the derivatives of 4-biphenylcarboxylic acid and amino acid L)-phenylalaninate is unusual owing to its monoclinic symmetry within a pseudo-orthorhombic The distortion is described by a disparate rotational property around the chiral centers (φchiral ≃ −129° and 58°) of the two molecules in the Each of these molecules comprises planar biphenyl moieties (φbiphenyl = 0°). Using temperature-dependent single-crystal X-ray diffraction experiments we show that the compound undergoes a below T ∼ 124 K that is characterized by a commensurate modulation wavevector, q = δ(101), δ = ½. The (3+1)-dimensional modulated structure at T = 100 K suggests that the drives the biphenyl moieties towards noncoplanar conformations with significant variation of internal torsion angle (φmaxbiphenyl ≤ 20°). These intramolecular rotations lead to dimerization of the molecular stacks that are described predominantly by distortions in intermolecular tilts (θmax ≤ 20°) and small variations in intermolecular distances (Δdmax ≃ 0.05 Å) between biphenyl molecules. Atypical of modulated structures and superstructures of biphenyl and other polyphenyls, the rotations of individual molecules are asymmetric (Δφbiphenyl ≈ 5°) while φbiphenyl of one independent molecule is two to four times larger than the other. Crystal-chemical analysis and phase relations in suggest multiple competing factors involving intramolecular steric factors, intermolecular H—C⋯C—H contacts and weak C—H⋯O hydrogen bonds that govern the distinctively unequal torsional properties of the molecules.
the of 4-biphenylcarboxy-(Keywords: phase transitions; intermolecular interactions; hydrogen bonding; molecular crystals; couple; rotations; modulation; steric.
B-IncStrDB reference: 0YDiRh5cfxe
1. Introduction
Molecular biphenyl has been investigated extensively for its stability and conformation in different thermodynamic states. At ambient conditions, the differences in the conjugation states of the π electrons are governed primarily by the twist about the central C—C single bond in the order 40°–45° in gas phase, 20°–25° in solution and 0° (mutually coplanar) in solid state in centrosymmetric monoclinic P21/a (Bastiansen, 1949; Suzuki, 1959; Trotter, 1961; Hargreaves & Rizvi, 1962).
The planar conformation due to constraints from intermolecular interactions is energetically unfavorable and ortho hydrogen atoms is compensated for by out-of-plane dynamic disorder and in-plane displacements of those hydrogen atoms away from each other (Hargreaves & Rizvi, 1962; Casalone et al., 1968; Charbonneau & Delugeard, 1976; Charbonneau & Delugeard, 1977; Busing, 1983; Lenstra et al., 1994). A recent study has also suggested the role of intramolecular exchange energy between single-bonded carbon atoms in stabilizing the planar conformation (Popelier et al., 2019).
between theAbsorption and fluorescence studies showed additional bands in their spectra at low temperatures (Hochstrasser et al., 1973; Wakayama, 1981).
Temperature-dependent Raman spectroscopy and Brillouin scattering experiments both suggested two phase transitions at Tc1 = 42 K and Tc2 = 17 K (Friedman et al., 1974; Bree & Edelson, 1977, 1978; Ecolivet et al., 1983). The at Tc1 is continuous and governed by a soft mode associated with the torsion about the central C—C single bond followed by discontinuous changes at Tc2.
Inelastic neutron scattering experiments on its deuterated form confirmed the phase transitions with the appearance of additional satellite reflections (Cailleau et al., 1979). The modulation wavevector q was determined to be qI = and qII = at the intermediate- and low-temperature phases, respectively. The wavevectors were found to vary with temperature, suggesting the incommensurate nature of the modulation (Cailleau et al., 1979).
The modulated structure of low-temperature phase II was described within a noncentrosymmetric Pa(0σ20)0 (de Wolff, 1974; Stokes et al., 2011; van Smaalen et al., 2013) and found to be essentially associated with a small modulation of translation and a rotation (ω) normal to the mean molecular plane, and a significant torsion angle (φ) between the phenyl rings (Baudour & Sanquer, 1983; Petricek et al., 1985; Pinheiro & Abakumov, 2015; Schoenleber, 2011).
Theoretical studies have suggested that competition between intramolecular and intermolecular forces drives the ; Benkert et al., 1987; Benkert & Heine, 1987; Parlinski et al., 1989).
towards the incommensurately modulated states (Ishibashi, 1981The fundamental property of flexibility in conformations has made biphenyl an excellent candidate to tune multifaceted properties in materials.
Twisting between the rings has been demonstrated to regulate conductivity of single molecule biphenyl–dithiol junctions (Vonlanthen et al., 2009; Mishchenko et al., 2010; Bürkle et al., 2012; Jeong et al., 2020), tune thermopower as a function of the twist angle (Bürkle et al., 2012), degeneracy of energy states on substrates (Cranney et al., 2007) and theoretically suggest wide band gap semiconducting properties of its derivatives (Khatua et al., 2020). On the other hand, biphenyl derivatives have also been reported to influence and increase the efficiency of photophysical properties (Oniwa et al., 2013; Wei et al., 2016).
Planar biphenyl molecules in the solid state favor maximum intramolecular conjugation of π electrons as well as increasing the probability of interactions between delocalized electrons that could aid in optimal stacking of molecules.
A coupling et al., 2012) was successfully employed to synthesize 4-biphenylcarboxy protected amino acid of L-serine, L-tyrosine, L-alanine, L-leucine and L-phenylalanine via the formation of peptide-type linker O=C—NH groups (Sasmal et al., 2019b,a).
(SeechurnIn the solid state, the compounds crystallize either in noncentrosymmetric P212121 or the monoclinic P21 (Sasmal et al., 2019b,a). Crystal packing in these systems is determined by π⋯π stacking between the biphenyl fragments and strong linear hydrogen bonds between the amino acid ester moieties.
We presumed that the biphenyl moieties in these chemically coupled systems could influence the bioactive amino acid vice versa with respect to evolution or suppression of translational and rotational in their crystal structures at some thermodynamic condition.
andReanalyzing all their crystal structures, the system of 4-biphenylcarboxy-(L)-phenylalaninate attracted our attention because the structure appeared to be similar to the L-tyrosine analog albeit the monoclinic distortion [Table 1, Sasmal et al. (2019a)] and two crystallographically-independent formula units [Z′ = 2 (Steed & Steed, 2015), Fig. 1(a)] in the of the former.
|
The torsion angle about the chiral center is significantly different for the independent molecules while the remainder of the rotations are similar [Fig. 1(a), (Sasmal et al., 2019a)].
Each of these molecules consists of coplanar biphenyl moieties which are stacked along a and b, while the amide groups are connected by intermolecular N—H⋯O hydrogen bonds [Fig. 1(b), Sasmal et al. (2019a)].
In the present study, the temperature-dependent L)-phenylalaninate has been investigated using single-crystal X-ray diffraction experiments. Low-temperature phase II is found to be a 2a × b × 2c of the high-temperature (phase I) structure.
of 4-biphenylcarboxy-(The ; Janner & Janssen, 1977; Wagner & Schönleber, 2009; van Smaalen, 2012; Janssen et al., 2018).
is described within the (3 + 1)D-superspace approach as a commensurately modulated structure (de Wolff, 1974Structural properties of phase I and the modulated structure have been tabulated and compiled within t-plots (t = phase of the modulation). The origin and stability of phase II is discussed in terms of intramolecular steric factors and intermolecular HC⋯CH contacts and intermolecular hydrogen bonds. It is suggested that the of the is correlated with the suppression of dynamic disorder.
2. Experimental
2.1. Temperature-dependent single-crystal X-ray diffraction
Single crystals of the compound used in this study were obtained from those reported in Sasmal et al. (2019a). The crystals were protected in oil under mild refrigeration. Single-crystal X-ray diffraction (SCXRD) experiments were performed on an Agilent SuperNova, Eos diffractometer employing Cu Kα radiation. The temperature of the crystal was maintained by an Oxford Cryosystems open flow nitrogen cryostat.
During cooling, visual inspection of diffraction images revealed weaker reflections in addition to strong reflections at low temperatures.
Diffraction images collected at 150 K, 140 K and 130 K–114 K in steps of ΔT = 2 K showed that the weaker diffuse features appear at 124 K and condense into satellite reflections at 122 K (Table 1 and Fig. S1 in supporting information). The transition temperature is significantly higher than that of molecular biphenyl (Tc, biphenyl = 42 K). On the other hand, related polyphenyls p-terphenyl and p-quarterphenyl undergo towards phases at much higher critical temperatures [Tc, terphenyl ≈ 190 K (Yamamura et al., 1998), Tc, quarterphenyl ≈ 233 K (Saito et al., 1985)]. Complete diffraction data were collected at T = 160 K and 100 K.
Determination of unit-cell parameters and data reductions were performed using the software suite CrysAlisPro (Rigaku Oxford Diffraction, 2019) (Tables 1 and S1).
Satellite reflections of first order (m = 1) observed below Tc could be indexed with modulation wavevector q = (σ1, 0, σ3), σ1 = σ3 ≃ with respect to the basic monoclinic Here, q = (101) is perpendicular to the b axis consistent with monoclinic symmetry while in molecular biphenyl qI violates monoclinic symmetry and qII is parallel to b (Cailleau et al., 1979).
Using the plugin program NADA (Schönleber et al., 2001) in CrysAlisPro, deviations of the σ values as a function of T from a rational value of 0.5 were found to be within their standard uncertainities (Table 1), indicating a commensurate nature of the modulation.
Reflections at T = 100 K were indexed by four integers (hklm) using a basic monoclinic b-unique lattice (Tables 1 and S1) and modulation wavevector, q = (, 0, ) and data integration was performed. Empirical absorption correction was performed using the AbsPack program embedded in CrysAlisPro.
The ratio of the average intensities (〈I〉) between main and satellite reflections is 13:1 and that of their average significance [〈I/σ(I)〉] is 3:1. This indicates pronounced modulation which is characteristic of modulated molecular crystals (Schönleber & Chapuis, 2001; Schönleber et al., 2003; Dey et al., 2016, 2018; Rekis et al., 2020, 2021).
The monoclinic P21(σ10σ3)0 with σ1 = σ3 = ½ (Stokes et al., 2011; van Smaalen et al., 2013).
in addition to the suggest the2.2. Structure of the modulated structure
The Superflip (Palatinus & Chapuis, 2007) and refined using Jana2006 and Jana2020 (Petříček et al., 2014).
of the room-temperature phase (phase I hereon) was redetermined at 160 K usingAtoms were renamed with suffixes a and b for the two independent molecules A and B [Fig. 1(a)]. Anisotropic atomic displacement parameters (ADPs) of all non-hydrogen atoms were refined. Hydrogen atoms were added to carbon and nitrogen atoms using a riding model in ideal chemical geometry with constraints for isotropic ADPs [Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq(Caromatic) and Uiso(H) = 1.5Ueq(Csp3)].
Owing to the pseudoorthorhombic et al., 2016; Nespolo, 2019). The fit of the structure model improved (compare = 0.0463 to 0.0408) and volume of the second component refined to 0.0240 (8) (Table S2). Finally, positions of the H atoms of NH groups and the parameter corresponding to isotropic extinction correction were refined that further improved values (= 0.0393, Table S2 in supporting information).
the integrated data was tested for employing twofold rotation along the [100] direction as This is a true in the case of a hypothetical orthorhombic with symmetry 222 (PetříčekThe T = 200 K [φchiral = φ1 (hereon) and ψ in Fig. 1(a)]. In addition, we also observe that the coplanar biphenyl rings are significantly rotated with respect to the amide groups [at T = 200 K: φ2 = 32.8° and 31.2° (Sasmal et al., 2019a) and at T = 160 K in Fig. 1(a)] which also remains invariant as a function of temperature.
reproduced the values for intramolecular rotations reported those for the structure atThe modulated structure of phase II at 100 K was refined using Jana2006 and Jana2020. Fractional coordinates of all atoms from the at T = 160 K were used in the starting model while retaining the same riding model geometry for hydrogen atoms as in phase I and the average structure was refined as main reflections. In successive steps, an incommensurate (IC) model described by one harmonic wave for describing the atomic modulation functions (AMFs) and basic parameters for anisotropic ADPs for non-hydrogen atoms was refined against main and satellite reflections that resulted in good fit to the diffraction pattern ( = 0.0425). However, ADPs of four non-hydrogen atoms were found to be non-positive definite.
Since the components of q (σ1 and σ3) are rational, three commensurately modulated structures were pursued by fixing the initial phase of the modulation to values t0 = 0, and , respectively. While the former two t0 values describe monoclinic B21 symmetry for the equivalent 3D 2a × b × 2c the third corresponds to triclinic B1 symmetry. The commensurately modulated structure (C) model corresponding to t0 = resulted in the best fit to the diffraction data ( = 0.0426) including ADPs of all atoms positive definite.
As the atomic modulation functions (AMFs) have sinusoidal character, the residual values are similar to the IC model (Fig. 2, Figs. S2–S4 and Table S2 in supporting information). However, the C model at t0 = is described with either cosine or sine waves for the AMFs (equal to number of refinable fractional coordinates in the equivalent superstructure) reducing significantly the number of refinable parameters as compared with the IC model (compare NC = 649 with NIC = 811, further tests in supporting information).
The final C model was further improved by refining the parameter corresponding to isotropic extinction correction and AMFs and positions of hydrogen atoms of NH groups ( = 0.0419, Table S2). The refined twin volume in phase II reproduced the value similar to that in phase I [T = 100 K, twvol2 = 0.0242 (7) in Table S2]. Presumably, the crystal possesses pseudo-merohedral growth twins.
3. Results and discussion
3.1. Structural and unequal distortion of molecules
In the present case, the monoclinic symmetry is retained below Tc unlike monoclinic to triclinic distortion at the disorder–order of p-terphenyl (Rice et al., 2013) and p-quarterphenyl (Baudour et al., 1978).
In the final commensurately modulated structure model with t0 = , sections corresponding to t = and (Figs. 3 and S5) are physically relevant. These sections represent the atomic coordinates in the equivalent twofold in 3D (Figs. 4, S6 and S7).
Crystal structures of phase I and phase II have group–subgroup relations and the doubling of the a and c axes describes the additional B-centering of the in phase II.
The Jana2006 comprises four molecules in the (Z′ = 4); two each corresponding to molecules A and B of phase I (Fig. 4).
derived usingThe Table S7).
distances are similar for the independent set of molecules and are practically unaffected by modulationIn the present study, discussion is based on the modulated structure in order to establish unique relations between phase I and phase II (Rekis et al., 2021; Chapuis, 2020; Ramakrishnan et al., 2019; Dey et al., 2016; Noohinejad et al., 2015; Schoenleber, 2011; Schönleber et al., 2003).
The modulated structure suggests that the φ3 > 0°) within the biphenyl moieties [Fig. 3(a)]. The twists about the central C—C bond are significantly different for the two molecules where the torsional modulation of A are 2–4 times larger than those of B (dihedral angles = 15.6°, 20.5° and = 4.1°, 9.3°). These distortions are described by highly anisotropic AMFs (u) along the three basis vectors where the maximum amplitude are along b for the carbon atoms of biphenyl (Fig. 2 and Table S4). Notably, the rotations in the present structure are significantly larger than those reported for molecular biphenyl [φ ≃ ± 5.5° (Petricek et al., 1985; Baudour & Sanquer, 1983)]. These values are smaller than those in the low-temperature of p-terphenyl and p-quarterphenyl [maximum φterphenyl, quarterphenyl ≃ 23° (Rice et al., 2013; Baudour et al., 1976, 1978)].
is dominated by evolution of internal torsional (The nature of structural changes in the present system and molecular biphenyl below the p-(n > 2)-phenyl systems described by the property that in the later cases two disordered conformations of the molecules freeze by formation and breaking the monoclinic symmetry of their high-temperature phase.
temperature is different toA distinctive property of the present modulated structure is the unequal modulation for the two different moieties where ubiphenyl > uphenylalaninate (Table S4). Compared to , the distortions in torsion angles φ1 are lesser and those in ψ are very small and virtually equal for both A and B [ = −133.7°, −127.6°; = 55°, 56.2°; = 36.8°, 37.7°; = 36°, 36.6° in Figs. 3(c) and 3(d)].
A possible reason for the weaker modulations of the atoms around the chiral centers is the directional strong intermolecular N—H⋯O bonds makes large intramolecular rotations unfavorable.
Note that the observed changes in the rotations of φ2 of molecule A [compare = 39.1°, 25.8° with = 32.9°, 28.9° in Fig. 3(b)] are predominantly described by strong modulations of the molecule's biphenyl moiety. The asymmetry in rotations of individual molecules (Δ|φ3| ≈ 5°) is determined by the disparate bonding environments of the biphenyl moieties where the inner rings are that are covalently bonded to amide groups while the outer interact weakly via C—H⋯H—C interactions with the phenyl rings of phenylalaninate groups (Fig. 4). Subsequently, the unequal values at the relevant t-sections of φ3 are correlated with those of φ2 [compare Figs. 3(a) and 3(b)].
It is also observed that the variation in φ1 is greater for molecule A than that of B [compare ≃ 6° with ≃ 1° in Fig. 3(c)]. The origin of disparate distortions in intramolecular rotations is explained in §3.2.
In the modulated structure, the biphenyl moieties in (AA)n and (BB)n stacks which are parallel (θ = 0°) in phase I are tilted with respect to each other [Fig. 3(e)]. These tilts (θAA/BB) are of the order of the internal twists (φ3) of the independent biphenyl moieties [θAA = 19.5° and 16.6°; θBB = 5° and 7.2° for inner and outer rings of biphenyl respectively, compare Fig. 3(e) with Fig. 3(a)] The orientation between the biphenyl moieties within the (ABAB)n stacks also vary with ΔθAA/BB ≃ 12° where the value is intermediate to and [compare Fig. 3(e) with Fig. 3(a)]. In addition, intermolecular distances between the biphenyl moieties within the stacks at the two t-sections are different and vary up to ΔdAA/BB ≃ 0.05 Å and ΔdABAB ≃ 0.02 Å [Fig. 3(f)].
Overall distortions in dAA and dBB are nearly equal although θAA is greater than θBB. These variations in d may arise to compensate for the mutual rotations of aromatic rings within the stacks. For example, the comparison θAA for outer rings > θAA for inner rings as opposed to θBB for outer rings < θBB for inner rings could explain the complimentary variations of dAA and of dBB [sets of distances (Å) in t = (, ): dAA = (5.01, 5.06); dBB = (5.06, 5.02) in Fig. 3(f)]. It could therefore be argued that the dimerization of biphenyl molecular stacks below Tc is predominantly governed by distortion described by molecular rotations rather than intermolecular distances. On the other hand, variation of intermolecular distances between aromatic rings of L-phenylalaninate are similar to those of the biphenyls albeit the interstack rotations of the former are significantly smaller (θ < 3°, Fig. S5 in supporting information).
3.2. Competitive forces governing modulations
Structural studies in the 3D phase of molecular biphenyl have suggested that the ortho-hydrogen atoms are displaced away in the plane of the rings to minimize (Trotter, 1961; Hargreaves & Rizvi, 1962; Charbonneau & Delugeard, 1976). On the other hand, dynamic disorder predominantly governed by torsional vibrations around the long molecular axis (Petricek et al., 1985) is predicted to balance the planar conformation of biphenyl favorable for crystal packing (Lenstra et al., 1994).
As short as 1.98 Å in phase I (Table 2), these contacts are shorter than the predicted values for twice van der Waals radius for hydrogen [r = 1.1–1.2 Å (Rowland & Taylor, 1996; Alvarez, 2013)]. In the modulated structure, we observe that the distances between the ortho-hydrogen atoms are marginally but consistently larger than those in phase I (Table 2) that could suggest that the torsional modulations aid in minimization of the presumed below Tc (Dey et al., 2022, 2018).
A peculiar property of the modulated structure under discussion is the significant difference in the torsional amplitude φ3 of the independent molecules. This aspect cannot be explained solely based on the intramolecular steric factors. Analysis of the crystal packing shows that each of these independent biphenyl moieties maintains close intermolecular CH⋯HC contacts with the phenyl rings of L-phenylalaninate in AB and BA fashion (Fig. 4).
These distances are significantly longer (intermolecular dH⋯H ≥ 2.4 Å, Table 2) compared with the intramolecular H⋯H distances. On the other hand, the aromatic rings of L-phenylalaninate interact with adjacent oxygen atoms of –COOCH3 via C—H⋯O hydrogen bonds (Fig. 4 and Table 2). These hydrogen bonds are weaker (Desiraju & Steiner, 2001) but highly directional [∠(C—H⋯O) = 159–164°] with very little variation in the distances.
Interestingly, those H⋯H distances involving biphenyl moieties of molecule B are consistently smaller than those of molecule A in both phases (Table 2). We argue that in the presence of both the van der Waals interactions and weak C—H⋯O bonds, the larger distortions of A is favored by weaker CH⋯HC interactions while that is suppressed in B.
The variations in φ2 and asymmetry in φ3 can be explained with respect to the intramolecular nonbonded nearest distances between the hydrogen atoms bonded to C13 atoms (Fig. 1) of inner rings of biphenyl and the oxygen atoms O3 of the amide groups. The distances are short (dH13⋯O3 = 2.59 Å in phase I, Table 2) and are in the range of the sum of the van der Waals radii of oxygen and hydrogens [rH = 1.1–1.2 Å, rO = 1.4–1.56 Å (Rowland & Taylor, 1996; Alvarez, 2013)]. In the modulated structure, the larger distortions of requires the amide groups to rotate with respect to the inner phenyl ring to optimize these C—H⋯O=C contacts to avoid steric effects (compare dH13a⋯O3a = 2.66 Å, 2.54 Å in Table 2 with = 39.1°, 25.8° in Fig. 3). Although the variation in is smaller, the positive correlation that is larger rotations with greater H⋯O distances and vice versa are observed (compare dH13b⋯O3b = 2.61 Å, 2.56 Å in Table 2 with = 32.9°, 28.9° in Fig. 3). Alternatively, it could be argued that the asymmetric distortion of φ3 within individual molecules is a result of the constraint of the amide groups, where rotations are hindered when the C—H⋯O=C contact distances are short and favored when those are longer. Therefore, the four different values of intramolecular torsion φ3 within the biphenyl moieties are distinctively governed by intramolecular nonbonded H⋯H and H⋯O; and intermolecular nonbonded H⋯H contacts and weak C—H⋯O hydrogen bonds.
The independent molecules A and B differ from each other with respect to their torsion around the chiral center namely φ1 (= −130.1° and 56.1° for A and B, respectively, in phase I). The difference in twist angles has remarkable effects on the with respect to the distance between the O3 atoms of the amide groups and hydrogen atoms of the chiral centers C3 carbon atoms (dH3⋯O3 = 2.37 Å, 3.65 Å for A and B, respectively, in phase I, Table 2). In phase II, the modulations of L-phenylalaninate moieties are weaker than that of the biphenyl groups possibly due to the presence of strong intermolecular N—H⋯O hydrogen bonds. However, the variations in ( ≃6°) as compared with ( ≃1°) are greater which could arise to optimize significantly shorter H3⋯O3 nonbonded contacts of A as compared with B (dH3⋯O3 = 2.38 Å, and 3.65 Å for A and B, respectively, in phase II, Table 2).
As noted in §2.2 the average intensities of the satellite reflections are an order of magnitude smaller than the main reflections. The of the might be expressed as proportional to the amplitude of the modulation which is approximately proportional to square root of the intensities of the satellite reflections (van Smaalen, 2005). The pronounced AMFs of the biphenyl moieties describing the predominant distortions in the are accompanied by suppression of dynamic disorder in phase II as compared with phase I. For example, the carbon atoms at ortho (C14, C16, C19, C23) and meta (C13, C17, C20, C22) positions are strongly displaced [Fig. 5(b), Tables S4 and S5]. Subsequently, the ADPs are significantly reduced as compared with phase I [Fig. 5(a), Table S5]. Notably, the decrease of the ADPs (Ueq) from T = 160 K to T = 100 K is larger for those of molecule A than those for B in conjunction with the fact that overall the ADPs are smaller or similar for the former as opposed to phase I, while the square of the amplitude of modulations (u2) are greater for A than those for B [compare Figs. 5(b) with 5(a)].
The decrease in ADPs of atoms of L-phenylalaninate moieties of A are greater than B from T = 160 K to T = 100 K [Fig. 5(c)]. Unlike the biphenyl moieties, such apparent switch-over of the ADPs is not observed where the overall values of A are greater than those of B in both phases I and II, while the squares of the AMFs in II are larger for A than those for B [compare Figs. 5(d) with 5(c), Tables S4 and S6]. It is possible that the formation below the aids in optimal conformation of the biphenyl moieties by significant distortions of their internal torsion while the modulations in L-phenylalaninate groups compensates for the former.
In hindsight, the observed larger mean-squared displacements of atoms of molecule A than B in high-T phase I possibly arises to optimize the short nonbonded H⋯O distances around the chiral center that is largely minimized in phase II by greater intramolecular distortions of torsional angles in the former than the later. This hypothesis is supported by the small but observable distortion of (∼ 6°) as compared with (∼ 1°) while those for ψ are significantly smaller (∼ 1°) for both molecules in phase II.
4. Conclusions
The 2a × b × 2c of 4-biphenylcarboxy-(L)-phenylalaninate at T = 100 K has been successfully described as a commensurately modulated structure within (3+1)D with symmetry P21(σ10σ3)0. The single crystal to single crystal below T = 124 K drives the 3D structure directly to a locked-in twofold accompanied by significant distortion of torsional rotations within biphenyl away from coplanarity that is also a property of incommensurately modulated structure of biphenyl but with amplitudes four times smaller than the present system.
The p-terphenyl and p-quarterphenyl. Consistent with the Tc, the maximum amplitude of torsion is also intermediate and in the order φquarterphenyl ≥ φterphenyl > φ4-biphenylcarboxy-L-phenylalaninate > φbiphenyl.
temperature is significantly higher than that in biphenyl yet significantly lower than forTopologically separated, conformations of both the weaker C—H⋯O bonds and stronger N—H⋯O bonds are rigid and that underlines their role in stabilizing the crystal packing in both phases. A unique property of the present polyphenyl coupled amino acid ester is the distinctively unequal torsional amplitude (φA > φB) within the independent molecules which is governed by multiple level of competitions involving unequal van der Waals constraints in the presence of weak hydrogen bonds between the biphenyl and L-phenylalaninate moieties while the asymmetry of φ3 is determined by intramolecular nonbonded constraints between phenyl rings and amide groups.
The unusual nature of the Tc.
is rationalised by the fact that unequal intramolecular distortions of the two molecules are complemented by unequal suppression of the dynamic disorder of their atoms belowThe present investigation of the π⋯π stacking arrangements (θAA/BB > 0°) of phenyl groups but preserves the conformations of intermolecular directional N—H⋯O hydrogen bonds of the high-temperature structure.
in the biphenylcarboxy coupled amino acid ester system also shows consequences for crystal packing where significant distortions in conjugations represented by mutual intramolecular rotations between homo aromatic groups as well as with aliphatic amide groups results in modulated5. Related literature
The following references are cited in the supporting information: Becker & Coppens (1974), Coelho (2003, 2018), Petříček et al. (2014).
Supporting information
B-IncStrDB reference: 0YDiRh5cfxe
https://doi.org/10.1107/S2052520623000215/bm5150sup1.cif
contains datablocks global, I_phaseII_modulated, I_phaseI, I_phaseII. DOI:Structure factors: contains datablock I_phaseII_modulated. DOI: https://doi.org/10.1107/S2052520623000215/bm5150I_phaseII_modulatedsup2.hkl
Structure factors: contains datablock I_phaseI. DOI: https://doi.org/10.1107/S2052520623000215/bm5150I_phaseIsup3.hkl
Structure factors: contains datablock I_phaseII. DOI: https://doi.org/10.1107/S2052520623000215/bm5150I_phaseIIsup4.hkl
Details of structure refinements, powder X-ray di raction experiments, Figs S1-S8, Table S1-S8. DOI: https://doi.org/10.1107/S2052520623000215/bm5150sup5.pdf
Data collection: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021) for I_phaseII_modulated; CrysAlis PRO 1.171.40.54a (Rigaku OD, 2019) for I_phaseI. Cell
CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021) for I_phaseII_modulated; CrysAlis PRO 1.171.40.54a (Rigaku OD, 2019) for I_phaseI. Data reduction: CrysAlis PRO 1.171.41.122a (Rigaku OD, 2021) for I_phaseII_modulated; CrysAlis PRO 1.171.40.54a (Rigaku OD, 2019) for I_phaseI.C23H21NO3 | F(000) = 760 |
Mr = 359.4 | Dx = 1.312 Mg m−3 |
Monoclinic, P21(α0γ)0† | Cu Kα radiation, λ = 1.54184 Å |
q = 0.500000a* + 0.500000c* | Cell parameters from 3948 reflections |
a = 5.0377 (2) Å | θ = 4.2–65.7° |
b = 8.5898 (3) Å | µ = 0.70 mm−1 |
c = 42.0432 (14) Å | T = 100 K |
β = 90.884 (3)° | Rectangular, colorless |
V = 1819.11 (11) Å3 | 0.24 × 0.16 × 0.11 mm |
Z = 4 |
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2+1/2, −x3, −x4. |
SuperNova, Dual, Cu at home/near, Eos diffractometer | 8898 independent reflections |
Radiation source: X-ray tube | 5940 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 7.9580 pixels mm-1 | θmax = 65.8°, θmin = 3.2° |
ω scans | h = −5→6 |
Absorption correction: multi-scan CrysAlisPro 1.171.41.122a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→7 |
Tmin = 0.966, Tmax = 1 | l = −43→49 |
13838 measured reflections |
Refinement on F | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.042 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F2) = 0.053 | (Δ/σ)max = 0.001 |
S = 1.40 | Δρmax = 0.28 e Å−3 |
8898 reflections | Δρmin = −0.26 e Å−3 |
662 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 2000 (200) |
403 constraints | Absolute structure: 2293 of Friedel pairs used in the refinement |
x | y | z | Uiso*/Ueq | ||
O1a | 0.3281 (4) | 0.0586 (3) | 0.45604 (4) | 0.0324 (6) | |
O1b | 0.8601 (3) | 0.5767 (3) | 0.04224 (4) | 0.0245 (5) | |
O2a | 0.1716 (5) | 0.2539 (3) | 0.48497 (5) | 0.0528 (8) | |
O2b | 0.6592 (4) | 0.3891 (3) | 0.01379 (4) | 0.0357 (6) | |
O3a | 0.8641 (3) | 0.2662 (3) | 0.39922 (4) | 0.0268 (5) | |
O3b | 0.5649 (3) | 0.4034 (3) | 0.09454 (4) | 0.0242 (5) | |
N1a | 0.4221 (4) | 0.253675 | 0.40734 (4) | 0.0202 (6) | |
N1b | 1.0017 (4) | 0.3687 (3) | 0.08786 (4) | 0.0174 (5) | |
C1a | 0.2019 (6) | −0.0493 (4) | 0.47735 (6) | 0.0344 (9) | |
C1b | 0.7017 (5) | 0.6894 (4) | 0.02465 (6) | 0.0290 (8) | |
C2a | 0.2943 (5) | 0.2079 (4) | 0.46273 (5) | 0.0246 (7) | |
C2b | 0.8090 (4) | 0.4294 (4) | 0.03488 (5) | 0.0214 (7) | |
C3a | 0.4348 (5) | 0.3147 (4) | 0.43962 (5) | 0.0215 (7) | |
C3b | 0.9674 (5) | 0.3156 (4) | 0.05526 (5) | 0.0193 (6) | |
C4a | 0.3236 (5) | 0.4818 (4) | 0.44133 (5) | 0.0229 (7) | |
C4b | 0.8374 (5) | 0.1516 (3) | 0.05272 (5) | 0.0220 (7) | |
C5a | 0.4652 (5) | 0.5942 (4) | 0.41993 (5) | 0.0232 (7) | |
C5b | 0.9455 (5) | 0.0347 (3) | 0.07633 (5) | 0.0223 (7) | |
C6a | 0.3934 (5) | 0.6056 (4) | 0.38805 (6) | 0.0271 (7) | |
C6b | 0.8291 (5) | 0.0212 (4) | 0.10608 (5) | 0.0245 (7) | |
C7a | 0.5263 (5) | 0.7059 (4) | 0.36807 (6) | 0.0287 (8) | |
C7b | 0.9184 (5) | −0.0881 (4) | 0.12781 (6) | 0.0273 (7) | |
C8a | 0.7338 (5) | 0.7984 (4) | 0.37965 (6) | 0.0273 (7) | |
C8b | 1.1270 (5) | −0.1852 (4) | 0.12056 (6) | 0.0290 (8) | |
C9a | 0.8041 (5) | 0.7890 (4) | 0.41150 (6) | 0.0288 (8) | |
C9b | 1.2478 (5) | −0.1728 (4) | 0.09106 (6) | 0.0285 (8) | |
C10a | 0.6718 (5) | 0.6877 (4) | 0.43153 (6) | 0.0254 (7) | |
C10b | 1.1568 (5) | −0.0635 (4) | 0.06929 (5) | 0.0246 (7) | |
C11a | 0.6357 (4) | 0.2417 (4) | 0.38927 (5) | 0.0193 (7) | |
C11b | 0.7942 (4) | 0.4048 (4) | 0.10536 (5) | 0.0177 (6) | |
C12a | 0.5851 (4) | 0.1990 (4) | 0.35516 (5) | 0.0193 (6) | |
C12b | 0.8486 (4) | 0.4459 (4) | 0.13957 (5) | 0.0182 (6) | |
C13a | 0.7508 (5) | 0.2571 (4) | 0.33255 (5) | 0.0250 (7) | |
C13b | 0.6799 (5) | 0.5475 (4) | 0.15426 (6) | 0.0369 (9) | |
C14a | 0.7120 (5) | 0.2217 (4) | 0.30072 (6) | 0.0267 (8) | |
C14b | 0.7182 (5) | 0.5891 (4) | 0.18587 (6) | 0.0371 (9) | |
C15a | 0.5115 (4) | 0.1245 (4) | 0.29032 (5) | 0.0203 (6) | |
C15b | 0.9251 (4) | 0.5269 (3) | 0.20397 (5) | 0.0185 (6) | |
C16a | 0.3465 (5) | 0.0658 (4) | 0.31327 (6) | 0.0256 (8) | |
C16b | 1.0894 (5) | 0.4230 (4) | 0.18885 (5) | 0.0334 (8) | |
C17a | 0.3818 (5) | 0.1034 (4) | 0.34520 (5) | 0.0233 (7) | |
C17b | 1.0577 (5) | 0.3836 (4) | 0.15712 (6) | 0.0310 (8) | |
C18a | 0.4741 (4) | 0.0871 (4) | 0.25609 (5) | 0.0193 (6) | |
C18b | 0.9603 (4) | 0.5671 (4) | 0.23844 (5) | 0.0202 (7) | |
C19a | 0.6345 (5) | 0.1510 (4) | 0.23310 (6) | 0.0286 (8) | |
C19b | 0.7931 (5) | 0.6736 (4) | 0.25293 (5) | 0.0304 (8) | |
C20a | 0.6015 (6) | 0.1174 (4) | 0.20114 (6) | 0.0314 (8) | |
C20b | 0.8211 (5) | 0.7084 (4) | 0.28498 (6) | 0.0311 (8) | |
C21a | 0.4041 (5) | 0.0168 (4) | 0.19119 (6) | 0.0270 (7) | |
C21b | 1.0142 (4) | 0.6378 (4) | 0.30348 (5) | 0.0232 (7) | |
C22a | 0.2431 (5) | −0.0484 (4) | 0.21341 (6) | 0.0311 (8) | |
C22b | 1.1828 (5) | 0.5347 (4) | 0.28921 (6) | 0.0293 (8) | |
C23a | 0.2771 (5) | −0.0138 (4) | 0.24536 (6) | 0.0272 (8) | |
C23b | 1.1584 (5) | 0.4989 (4) | 0.25727 (6) | 0.0262 (7) | |
H1c3a | 0.618836 | 0.318816 | 0.445839 | 0.0322* | |
H1c3b | 1.144647 | 0.308885 | 0.047295 | 0.029* | |
H1c4a | 0.137775 | 0.480681 | 0.435915 | 0.0343* | |
H2c4a | 0.334422 | 0.518391 | 0.462889 | 0.0343* | |
H1c4b | 0.64889 | 0.160976 | 0.055154 | 0.033* | |
H2c4b | 0.857399 | 0.112158 | 0.031532 | 0.033* | |
H1c6a | 0.250178 | 0.543224 | 0.379746 | 0.0325* | |
H1c6b | 0.684882 | 0.088689 | 0.111512 | 0.0294* | |
H1c7a | 0.475132 | 0.711883 | 0.346022 | 0.0345* | |
H1c7b | 0.834829 | −0.096535 | 0.148107 | 0.0328* | |
H1c8a | 0.826414 | 0.867424 | 0.365715 | 0.0327* | |
H1c8b | 1.188658 | −0.260863 | 0.13576 | 0.0347* | |
H1c9a | 0.945149 | 0.853008 | 0.419823 | 0.0346* | |
H1c9b | 1.393387 | −0.239779 | 0.08587 | 0.0342* | |
H1c10a | 0.722958 | 0.681826 | 0.453577 | 0.0305* | |
H1c10b | 1.240567 | −0.055308 | 0.049001 | 0.0295* | |
H1n1a | 0.253 (5) | 0.254 (3) | 0.3989 (6) | 0.0243* | |
H1n1b | 1.172 (5) | 0.381 (3) | 0.0954 (5) | 0.0208* | |
H1c13a | 0.893824 | 0.322492 | 0.339022 | 0.03* | |
H1c13b | 0.532889 | 0.590411 | 0.14245 | 0.0443* | |
H1c14a | 0.826301 | 0.26514 | 0.285403 | 0.032* | |
H1c14b | 0.599656 | 0.662307 | 0.195409 | 0.0446* | |
H1c16a | 0.206194 | −0.001581 | 0.306925 | 0.0307* | |
H1c16b | 1.231637 | 0.376016 | 0.200867 | 0.0401* | |
H1c17a | 0.263687 | 0.062576 | 0.360572 | 0.028* | |
H1c17b | 1.180054 | 0.313485 | 0.147303 | 0.0371* | |
H1c19a | 0.772211 | 0.220388 | 0.239673 | 0.0343* | |
H1c19b | 0.656647 | 0.723683 | 0.240543 | 0.0365* | |
H1c20a | 0.714746 | 0.16355 | 0.185851 | 0.0376* | |
H1c20b | 0.704435 | 0.7827 | 0.294451 | 0.0373* | |
H1c22a | 0.106273 | −0.118415 | 0.206696 | 0.0374* | |
H1c22b | 1.320725 | 0.486353 | 0.301714 | 0.0352* | |
H1c23a | 0.162843 | −0.059866 | 0.26048 | 0.0326* | |
H1c23b | 1.279065 | 0.426399 | 0.247926 | 0.0314* | |
H1c21a | 0.380038 | −0.007098 | 0.169026 | 0.0324* | |
H1c21b | 1.030215 | 0.660313 | 0.325786 | 0.0279* | |
H1c1a | 0.237302 | −0.153941 | 0.470628 | 0.0516* | |
H2c1a | 0.270779 | −0.034204 | 0.498543 | 0.0516* | |
H3c1a | 0.013797 | −0.031416 | 0.477042 | 0.0516* | |
H1c1b | 0.75009 | 0.792587 | 0.031285 | 0.0436* | |
H2c1b | 0.733216 | 0.677993 | 0.002307 | 0.0436* | |
H3c1b | 0.517047 | 0.672102 | 0.028702 | 0.0436* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1a | 0.0429 (11) | 0.0232 (9) | 0.0314 (9) | 0.0014 (8) | 0.0128 (8) | 0.0012 (7) |
O1b | 0.0298 (9) | 0.0186 (8) | 0.0249 (8) | −0.0019 (7) | −0.0074 (6) | 0.0017 (7) |
O2a | 0.0936 (17) | 0.0291 (11) | 0.0369 (11) | 0.0007 (12) | 0.0360 (11) | −0.0019 (9) |
O2b | 0.0507 (11) | 0.0247 (9) | 0.0309 (9) | −0.0020 (9) | −0.0218 (8) | −0.0008 (8) |
O3a | 0.0145 (8) | 0.0396 (10) | 0.0265 (9) | −0.0001 (8) | −0.0001 (6) | −0.0032 (8) |
O3b | 0.0147 (8) | 0.0325 (9) | 0.0252 (8) | −0.0002 (7) | −0.0029 (6) | −0.0009 (8) |
N1a | 0.0163 (10) | 0.0250 (10) | 0.0193 (9) | 0.0005 (8) | −0.0008 (7) | −0.0013 (8) |
N1b | 0.0137 (9) | 0.0189 (9) | 0.0193 (9) | −0.0022 (8) | −0.0018 (7) | 0.0001 (7) |
C1a | 0.0492 (17) | 0.0277 (14) | 0.0265 (13) | −0.0096 (13) | 0.0037 (11) | 0.0022 (11) |
C1b | 0.0399 (15) | 0.0202 (12) | 0.0269 (12) | 0.0048 (12) | −0.0037 (10) | 0.0032 (10) |
C2a | 0.0254 (13) | 0.0282 (13) | 0.0202 (11) | −0.0010 (11) | 0.0001 (9) | −0.0050 (10) |
C2b | 0.0229 (12) | 0.0230 (12) | 0.0184 (11) | −0.0007 (10) | 0.0019 (9) | 0.0003 (9) |
C3a | 0.0217 (12) | 0.0235 (12) | 0.0192 (11) | 0.0012 (10) | −0.0020 (9) | −0.0028 (9) |
C3b | 0.0193 (12) | 0.0210 (11) | 0.0177 (11) | −0.0004 (10) | −0.0013 (8) | −0.0008 (9) |
C4a | 0.0210 (12) | 0.0249 (12) | 0.0228 (12) | 0.0033 (10) | 0.0020 (9) | −0.0042 (10) |
C4b | 0.0248 (13) | 0.0161 (11) | 0.0249 (12) | −0.0011 (10) | −0.0056 (9) | −0.0016 (9) |
C5a | 0.0253 (13) | 0.0184 (12) | 0.0261 (12) | 0.0040 (10) | 0.0043 (9) | −0.0010 (9) |
C5b | 0.0248 (13) | 0.0151 (11) | 0.0270 (12) | −0.0039 (10) | −0.0048 (9) | −0.0040 (9) |
C6a | 0.0227 (13) | 0.0277 (13) | 0.0308 (13) | 0.0028 (11) | −0.0041 (9) | −0.0032 (11) |
C6b | 0.0243 (13) | 0.0182 (11) | 0.0310 (13) | 0.0012 (10) | −0.0021 (9) | −0.0027 (10) |
C7a | 0.0297 (13) | 0.0321 (14) | 0.0245 (12) | 0.0009 (12) | 0.0002 (10) | 0.0034 (11) |
C7b | 0.0331 (13) | 0.0229 (12) | 0.0259 (12) | 0.0006 (11) | −0.0010 (10) | −0.0001 (10) |
C8a | 0.0309 (14) | 0.0206 (12) | 0.0304 (13) | 0.0022 (11) | 0.0032 (10) | 0.0034 (10) |
C8b | 0.0313 (14) | 0.0213 (12) | 0.0340 (14) | 0.0003 (11) | −0.0081 (10) | 0.0030 (11) |
C9a | 0.0294 (14) | 0.0249 (13) | 0.0321 (13) | −0.0023 (11) | −0.0020 (10) | −0.0046 (11) |
C9b | 0.0265 (13) | 0.0217 (12) | 0.0372 (14) | 0.0038 (10) | −0.0026 (10) | −0.0031 (10) |
C10a | 0.0271 (13) | 0.0245 (12) | 0.0244 (12) | 0.0006 (11) | −0.0022 (9) | −0.0024 (10) |
C10b | 0.0255 (12) | 0.0217 (12) | 0.0264 (12) | −0.0030 (11) | −0.0001 (9) | −0.0051 (10) |
C11a | 0.0121 (11) | 0.0200 (12) | 0.0259 (11) | −0.0001 (9) | 0.0008 (8) | 0.0012 (9) |
C11b | 0.0116 (11) | 0.0157 (11) | 0.0258 (11) | 0.0002 (9) | −0.0005 (8) | 0.0030 (9) |
C12a | 0.0165 (11) | 0.0194 (11) | 0.0221 (11) | 0.0013 (10) | 0.0005 (8) | 0.0000 (9) |
C12b | 0.0168 (11) | 0.0174 (11) | 0.0204 (11) | −0.0020 (9) | 0.0040 (8) | 0.0018 (9) |
C13a | 0.0166 (12) | 0.0324 (14) | 0.0260 (12) | −0.0046 (11) | −0.0011 (9) | −0.0031 (11) |
C13b | 0.0315 (15) | 0.0518 (18) | 0.0272 (13) | 0.0237 (14) | −0.0088 (10) | −0.0068 (13) |
C14a | 0.0248 (13) | 0.0309 (14) | 0.0245 (12) | −0.0032 (12) | 0.0057 (10) | 0.0018 (11) |
C14b | 0.0381 (15) | 0.0444 (16) | 0.0287 (13) | 0.0247 (14) | −0.0076 (11) | −0.0112 (12) |
C15a | 0.0195 (11) | 0.0169 (11) | 0.0244 (11) | 0.0031 (10) | 0.0002 (8) | 0.0005 (9) |
C15b | 0.0166 (11) | 0.0162 (11) | 0.0227 (11) | −0.0004 (9) | 0.0009 (8) | 0.0006 (9) |
C16a | 0.0244 (13) | 0.0254 (13) | 0.0268 (13) | −0.0040 (11) | 0.0001 (10) | −0.0021 (11) |
C16b | 0.0297 (14) | 0.0460 (16) | 0.0243 (12) | 0.0194 (13) | −0.0057 (10) | −0.0048 (12) |
C17a | 0.0180 (12) | 0.0249 (13) | 0.0272 (12) | −0.0028 (11) | 0.0063 (9) | −0.0005 (10) |
C17b | 0.0239 (13) | 0.0430 (16) | 0.0258 (12) | 0.0144 (12) | −0.0041 (9) | −0.0079 (11) |
C18a | 0.0164 (11) | 0.0168 (11) | 0.0247 (11) | 0.0038 (9) | −0.0014 (8) | −0.0023 (9) |
C18b | 0.0212 (12) | 0.0179 (11) | 0.0217 (11) | −0.0053 (10) | 0.0042 (8) | −0.0004 (9) |
C19a | 0.0279 (14) | 0.0289 (14) | 0.0290 (13) | −0.0055 (12) | 0.0015 (10) | −0.0032 (11) |
C19b | 0.0287 (14) | 0.0391 (16) | 0.0233 (12) | 0.0120 (12) | −0.0030 (10) | −0.0001 (11) |
C20a | 0.0376 (15) | 0.0338 (15) | 0.0227 (12) | −0.0031 (13) | 0.0025 (11) | −0.0038 (11) |
C20b | 0.0298 (14) | 0.0365 (15) | 0.0271 (12) | 0.0071 (12) | 0.0044 (10) | −0.0069 (11) |
C21a | 0.0321 (14) | 0.0258 (13) | 0.0228 (12) | 0.0068 (11) | −0.0048 (9) | −0.0063 (10) |
C21b | 0.0211 (12) | 0.0266 (12) | 0.0220 (12) | −0.0074 (10) | 0.0003 (9) | −0.0018 (10) |
C22a | 0.0315 (15) | 0.0300 (15) | 0.0318 (14) | −0.0040 (12) | −0.0048 (11) | −0.0057 (12) |
C22b | 0.0290 (14) | 0.0314 (14) | 0.0273 (13) | 0.0038 (12) | −0.0078 (10) | −0.0003 (11) |
C23a | 0.0245 (13) | 0.0297 (14) | 0.0273 (13) | −0.0045 (12) | 0.0007 (10) | −0.0015 (11) |
C23b | 0.0266 (13) | 0.0259 (13) | 0.0260 (12) | 0.0056 (11) | −0.0008 (9) | −0.0039 (10) |
Average | Minimum | Maximum | |
O1a—C1a | 1.443 (4) | 1.438 (4) | 1.448 (4) |
O1a—C2a | 1.324 (5) | 1.324 (5) | 1.324 (5) |
O1b—C1b | 1.450 (5) | 1.450 (5) | 1.450 (5) |
O1b—C2b | 1.327 (5) | 1.326 (5) | 1.327 (5) |
O2a—C2a | 1.196 (5) | 1.193 (5) | 1.199 (5) |
O2b—C2b | 1.206 (4) | 1.205 (4) | 1.206 (4) |
O3a—C11a | 1.238 (6) | 1.236 (6) | 1.239 (6) |
O3b—C11b | 1.235 (6) | 1.230 (6) | 1.240 (6) |
N1a—C3a | 1.455 (4) | 1.454 (4) | 1.457 (4) |
N1a—C11a | 1.332 (6) | 1.331 (6) | 1.334 (6) |
N1a—H1n1a | 0.92 (3) | 0.91 (3) | 0.92 (3) |
N1b—C3b | 1.453 (4) | 1.453 (4) | 1.453 (4) |
N1b—C11b | 1.324 (5) | 1.320 (5) | 1.329 (5) |
N1b—H1n1b | 0.92 (3) | 0.91 (3) | 0.92 (3) |
C1a—H1c1a | 1.0 (5) | 1.0 (6) | 1.0 (6) |
C1a—H2c1a | 1(2) | 1(2) | 1(2) |
C1a—H3c1a | 0.960 (6) | 0.960 (6) | 0.960 (6) |
C1b—H1c1b | 1.0 (9) | 1.0 (9) | 1.0 (9) |
C1b—H2c1b | 1.0 (19) | 1.0 (19) | 1.0 (19) |
C1b—H3c1b | 0.96 (2) | 0.96 (2) | 0.96 (2) |
C2a—C3a | 1.519 (5) | 1.519 (5) | 1.520 (5) |
C2b—C3b | 1.519 (5) | 1.518 (5) | 1.520 (5) |
C3a—C4a | 1.543 (5) | 1.542 (5) | 1.545 (5) |
C3a—H1c3a | 1.0 (11) | 1.0 (12) | 1.0 (12) |
C3b—C4b | 1.556 (5) | 1.555 (5) | 1.556 (5) |
C3b—H1c3b | 1.0 (11) | 1.0 (11) | 1.0 (11) |
C4a—C5a | 1.507 (5) | 1.504 (5) | 1.509 (5) |
C4a—H1c4a | 0.96 (6) | 0.96 (6) | 0.96 (6) |
C4a—H2c4a | 1(3) | 1(3) | 1(3) |
C4b—C5b | 1.508 (5) | 1.506 (5) | 1.511 (5) |
C4b—H1c4b | 1.0 (3) | 1.0 (3) | 1.0 (3) |
C4b—H2c4b | 1(3) | 1(3) | 1(3) |
C5a—C6a | 1.387 (5) | 1.385 (5) | 1.389 (5) |
C5a—C10a | 1.397 (6) | 1.390 (6) | 1.404 (6) |
C5b—C6b | 1.395 (5) | 1.392 (5) | 1.397 (5) |
C5b—C10b | 1.394 (6) | 1.392 (6) | 1.395 (6) |
C6a—C7a | 1.383 (5) | 1.383 (5) | 1.384 (5) |
C6a—H1c6a | 1.0 (3) | 1.0 (3) | 1.0 (3) |
C6b—C7b | 1.380 (5) | 1.376 (5) | 1.384 (5) |
C6b—H1c6b | 1.0 (8) | 1.0 (8) | 1.0 (8) |
C7a—C8a | 1.395 (6) | 1.393 (6) | 1.396 (6) |
C7a—H1c7a | 1(3) | 1(3) | 1(3) |
C7b—C8b | 1.379 (6) | 1.379 (6) | 1.380 (6) |
C7b—H1c7b | 1(4) | 1(4) | 1(4) |
C8a—C9a | 1.382 (5) | 1.379 (5) | 1.386 (5) |
C8a—H1c8a | 1.0 (18) | 1.0 (18) | 1.0 (18) |
C8b—C9b | 1.394 (5) | 1.391 (5) | 1.397 (5) |
C8b—H1c8b | 1.0 (8) | 1.0 (8) | 1.0 (8) |
C9a—C10a | 1.389 (5) | 1.386 (5) | 1.392 (5) |
C9a—H1c9a | 1.0 (3) | 1.0 (3) | 1.0 (3) |
C9b—C10b | 1.384 (5) | 1.383 (5) | 1.385 (5) |
C9b—H1c9b | 0.960 (7) | 0.960 (7) | 0.960 (7) |
C10a—H1c10a | 1(3) | 1(3) | 1(3) |
C10b—H1c10b | 1.0 (14) | 1.0 (14) | 1.0 (14) |
C11a—C12a | 1.498 (5) | 1.498 (5) | 1.498 (5) |
C11b—C12b | 1.502 (5) | 1.497 (5) | 1.508 (5) |
C12a—C13a | 1.385 (6) | 1.383 (6) | 1.388 (6) |
C12a—C17a | 1.386 (6) | 1.384 (6) | 1.388 (6) |
C12b—C13b | 1.373 (6) | 1.371 (6) | 1.374 (6) |
C12b—C17b | 1.385 (6) | 1.383 (6) | 1.387 (6) |
C13a—C14a | 1.384 (5) | 1.381 (5) | 1.386 (5) |
C13a—H1c13a | 1.0 (7) | 1.0 (7) | 1.0 (7) |
C13b—C14b | 1.387 (5) | 1.387 (5) | 1.387 (5) |
C13b—H1c13b | 1.0 (6) | 1.0 (6) | 1.0 (6) |
C14a—C15a | 1.392 (6) | 1.388 (7) | 1.396 (7) |
C14a—H1c14a | 1(3) | 1(3) | 1(3) |
C14b—C15b | 1.389 (6) | 1.386 (6) | 1.392 (6) |
C14b—H1c14b | 1.0 (12) | 1.0 (13) | 1.0 (13) |
C15a—C16a | 1.394 (5) | 1.384 (6) | 1.404 (6) |
C15a—C18a | 1.484 (4) | 1.476 (4) | 1.491 (4) |
C15b—C16b | 1.380 (5) | 1.377 (5) | 1.383 (5) |
C15b—C18b | 1.498 (4) | 1.497 (4) | 1.499 (4) |
C16a—C17a | 1.389 (5) | 1.386 (5) | 1.393 (5) |
C16a—H1c16a | 0.960 (5) | 0.960 (5) | 0.960 (5) |
C16b—C17b | 1.383 (4) | 1.376 (4) | 1.390 (4) |
C16b—H1c16b | 0.96 (10) | 0.96 (10) | 0.96 (10) |
C17a—H1c17a | 1.0 (4) | 1.0 (4) | 1.0 (4) |
C17b—H1c17b | 1.0 (5) | 1.0 (5) | 1.0 (5) |
C18a—C19a | 1.394 (5) | 1.390 (5) | 1.399 (5) |
C18a—C23a | 1.399 (6) | 1.393 (6) | 1.404 (6) |
C18b—C19b | 1.392 (6) | 1.391 (6) | 1.394 (6) |
C18b—C23b | 1.396 (6) | 1.392 (6) | 1.399 (6) |
C19a—C20a | 1.382 (5) | 1.381 (5) | 1.383 (5) |
C19a—H1c19a | 1.0 (13) | 1.0 (13) | 1.0 (13) |
C19b—C20b | 1.385 (5) | 1.378 (5) | 1.392 (5) |
C19b—H1c19b | 1(2) | 1(2) | 1(2) |
C20a—C21a | 1.389 (6) | 1.386 (7) | 1.392 (7) |
C20a—H1c20a | 1(3) | 1(3) | 1(3) |
C20b—C21b | 1.380 (6) | 1.375 (6) | 1.384 (6) |
C20b—H1c20b | 1.0 (19) | 1(2) | 1(2) |
C21a—C22a | 1.376 (6) | 1.371 (6) | 1.381 (6) |
C21a—H1c21a | 0.96 (10) | 0.96 (10) | 0.96 (10) |
C21b—C22b | 1.373 (6) | 1.371 (6) | 1.375 (6) |
C21b—H1c21b | 1.0 (8) | 1.0 (8) | 1.0 (8) |
C22a—C23a | 1.384 (5) | 1.382 (5) | 1.387 (5) |
C22a—H1c22a | 1.0 (4) | 1.0 (4) | 1.0 (4) |
C22b—C23b | 1.381 (5) | 1.374 (5) | 1.389 (5) |
C22b—H1c22b | 1.0 (3) | 1.0 (3) | 1.0 (3) |
C23a—H1c23a | 0.96 (16) | 0.96 (17) | 0.96 (17) |
C23b—H1c23b | 0.960 (14) | 0.960 (15) | 0.960 (15) |
C1a—O1a—C2a | 115.5 (3) | 115.5 (3) | 115.6 (3) |
C1b—O1b—C2b | 114.5 (3) | 114.4 (3) | 114.5 (3) |
C3a—N1a—C11a | 122.4 (3) | 122.0 (3) | 122.7 (3) |
C3a—N1a—H1n1a | 113 (4) | 112 (4) | 113 (4) |
C11a—N1a—H1n1a | 122 (4) | 121 (4) | 124 (4) |
C3b—N1b—C11b | 121.0 (2) | 120.4 (2) | 121.5 (2) |
C3b—N1b—H1n1b | 117.3 (15) | 117.2 (15) | 117.5 (15) |
C11b—N1b—H1n1b | 121.6 (15) | 121.0 (15) | 122.2 (15) |
O1a—C1a—H1c1a | 109.47 | 109.47 | 109.47 |
O1a—C1a—H2c1a | 109.47 | 109.47 | 109.47 |
O1a—C1a—H3c1a | 109.47 | 109.47 | 109.47 |
H1c1a—C1a—H2c1a | 109.47 | 109.47 | 109.47 |
H1c1a—C1a—H3c1a | 109.47 | 109.47 | 109.47 |
H2c1a—C1a—H3c1a | 109.47 | 109.47 | 109.47 |
O1b—C1b—H1c1b | 109.47 | 109.47 | 109.47 |
O1b—C1b—H2c1b | 109.47 | 109.47 | 109.47 |
O1b—C1b—H3c1b | 109.47 | 109.47 | 109.47 |
H1c1b—C1b—H2c1b | 109.47 | 109.47 | 109.47 |
H1c1b—C1b—H3c1b | 109.47 | 109.47 | 109.47 |
H2c1b—C1b—H3c1b | 109.47 | 109.47 | 109.47 |
O1a—C2a—O2a | 123.8 (3) | 123.4 (3) | 124.2 (3) |
O1a—C2a—C3a | 112.7 (3) | 112.5 (3) | 112.9 (3) |
O2a—C2a—C3a | 123.5 (4) | 123.4 (4) | 123.7 (4) |
O1b—C2b—O2b | 124.2 (4) | 124.1 (4) | 124.3 (4) |
O1b—C2b—C3b | 112.6 (3) | 112.5 (3) | 112.6 (3) |
O2b—C2b—C3b | 123.2 (4) | 123.2 (4) | 123.3 (4) |
N1a—C3a—C2a | 111.4 (3) | 111.0 (3) | 111.8 (3) |
N1a—C3a—C4a | 111.6 (3) | 111.4 (3) | 111.7 (3) |
N1a—C3a—H1c3a | 107.2 | 107.06 | 107.35 |
C2a—C3a—C4a | 111.0 (3) | 110.9 (3) | 111.1 (3) |
C2a—C3a—H1c3a | 107.81 | 107.43 | 108.19 |
C4a—C3a—H1c3a | 107.62 | 107.44 | 107.8 |
N1b—C3b—C2b | 112.6 (3) | 112.5 (3) | 112.7 (3) |
N1b—C3b—C4b | 113.1 (3) | 112.9 (3) | 113.4 (3) |
N1b—C3b—H1c3b | 104.51 | 104.21 | 104.81 |
C2b—C3b—C4b | 109.1 (3) | 109.0 (3) | 109.1 (3) |
C2b—C3b—H1c3b | 108.98 | 108.94 | 109.01 |
C4b—C3b—H1c3b | 108.35 | 108.22 | 108.48 |
C3a—C4a—C5a | 113.1 (3) | 112.6 (3) | 113.6 (3) |
C3a—C4a—H1c4a | 109.47 | 109.47 | 109.47 |
C3a—C4a—H2c4a | 109.47 | 109.47 | 109.47 |
C5a—C4a—H1c4a | 109.47 | 109.47 | 109.47 |
C5a—C4a—H2c4a | 109.47 | 109.47 | 109.47 |
H1c4a—C4a—H2c4a | 105.58 | 105.05 | 106.1 |
C3b—C4b—C5b | 114.2 (3) | 114.1 (3) | 114.3 (3) |
C3b—C4b—H1c4b | 109.47 | 109.47 | 109.47 |
C3b—C4b—H2c4b | 109.47 | 109.47 | 109.47 |
C5b—C4b—H1c4b | 109.47 | 109.47 | 109.47 |
C5b—C4b—H2c4b | 109.47 | 109.47 | 109.47 |
H1c4b—C4b—H2c4b | 104.28 | 104.2 | 104.36 |
C4a—C5a—C6a | 120.3 (3) | 120.1 (3) | 120.5 (3) |
C4a—C5a—C10a | 121.1 (3) | 120.9 (3) | 121.3 (3) |
C6a—C5a—C10a | 118.6 (3) | 118.6 (3) | 118.6 (3) |
C4b—C5b—C6b | 119.5 (3) | 119.2 (3) | 119.9 (3) |
C4b—C5b—C10b | 122.2 (3) | 122.1 (3) | 122.3 (3) |
C6b—C5b—C10b | 118.3 (4) | 118.0 (3) | 118.5 (4) |
C5a—C6a—C7a | 120.7 (3) | 120.5 (3) | 120.8 (3) |
C5a—C6a—H1c6a | 119.68 | 119.62 | 119.73 |
C7a—C6a—H1c6a | 119.67 | 119.61 | 119.73 |
C5b—C6b—C7b | 120.9 (3) | 120.7 (3) | 121.0 (3) |
C5b—C6b—H1c6b | 119.57 | 119.5 | 119.63 |
C7b—C6b—H1c6b | 119.57 | 119.5 | 119.63 |
C6a—C7a—C8a | 120.7 (3) | 120.3 (3) | 121.1 (3) |
C6a—C7a—H1c7a | 119.67 | 119.47 | 119.87 |
C8a—C7a—H1c7a | 119.67 | 119.46 | 119.87 |
C6b—C7b—C8b | 120.4 (4) | 120.4 (4) | 120.4 (4) |
C6b—C7b—H1c7b | 119.79 | 119.78 | 119.8 |
C8b—C7b—H1c7b | 119.79 | 119.78 | 119.8 |
C7a—C8a—C9a | 119.0 (4) | 118.6 (4) | 119.4 (4) |
C7a—C8a—H1c8a | 120.51 | 120.32 | 120.69 |
C9a—C8a—H1c8a | 120.51 | 120.33 | 120.7 |
C7b—C8b—C9b | 119.7 (4) | 119.7 (4) | 119.7 (4) |
C7b—C8b—H1c8b | 120.16 | 120.14 | 120.17 |
C9b—C8b—H1c8b | 120.16 | 120.14 | 120.17 |
C8a—C9a—C10a | 120.4 (3) | 120.1 (3) | 120.6 (3) |
C8a—C9a—H1c9a | 119.81 | 119.68 | 119.94 |
C10a—C9a—H1c9a | 119.81 | 119.68 | 119.94 |
C8b—C9b—C10b | 119.7 (3) | 119.6 (3) | 119.7 (3) |
C8b—C9b—H1c9b | 120.16 | 120.13 | 120.19 |
C10b—C9b—H1c9b | 120.16 | 120.13 | 120.19 |
C5a—C10a—C9a | 120.7 (3) | 120.5 (3) | 120.9 (3) |
C5a—C10a—H1c10a | 119.64 | 119.54 | 119.74 |
C9a—C10a—H1c10a | 119.64 | 119.54 | 119.74 |
C5b—C10b—C9b | 121.1 (4) | 121.1 (4) | 121.1 (4) |
C5b—C10b—H1c10b | 119.46 | 119.45 | 119.47 |
C9b—C10b—H1c10b | 119.46 | 119.45 | 119.47 |
O3a—C11a—N1a | 123.5 (3) | 123.3 (3) | 123.6 (3) |
O3a—C11a—C12a | 120.6 (3) | 120.3 (3) | 120.8 (3) |
N1a—C11a—C12a | 116.0 (3) | 115.8 (3) | 116.1 (3) |
O3b—C11b—N1b | 122.3 (3) | 122.0 (3) | 122.7 (3) |
O3b—C11b—C12b | 120.7 (3) | 120.7 (3) | 120.8 (3) |
N1b—C11b—C12b | 116.9 (3) | 116.7 (3) | 117.2 (3) |
C11a—C12a—C13a | 118.2 (3) | 117.8 (3) | 118.5 (3) |
C11a—C12a—C17a | 123.3 (3) | 122.7 (3) | 123.9 (3) |
C13a—C12a—C17a | 118.5 (3) | 118.2 (3) | 118.8 (3) |
C11b—C12b—C13b | 118.3 (3) | 118.2 (3) | 118.5 (3) |
C11b—C12b—C17b | 123.1 (3) | 123.0 (3) | 123.1 (3) |
C13b—C12b—C17b | 118.6 (3) | 118.4 (3) | 118.7 (3) |
C12a—C13a—C14a | 120.5 (3) | 120.4 (4) | 120.6 (3) |
C12a—C13a—H1c13a | 119.75 | 119.71 | 119.79 |
C14a—C13a—H1c13a | 119.75 | 119.71 | 119.79 |
C12b—C13b—C14b | 121.2 (4) | 121.1 (4) | 121.2 (4) |
C12b—C13b—H1c13b | 119.42 | 119.4 | 119.45 |
C14b—C13b—H1c13b | 119.42 | 119.39 | 119.45 |
C13a—C14a—C15a | 121.7 (3) | 121.6 (4) | 121.9 (3) |
C13a—C14a—H1c14a | 119.13 | 119.06 | 119.2 |
C15a—C14a—H1c14a | 119.13 | 119.06 | 119.2 |
C13b—C14b—C15b | 121.2 (4) | 121.0 (4) | 121.4 (4) |
C13b—C14b—H1c14b | 119.41 | 119.32 | 119.51 |
C15b—C14b—H1c14b | 119.41 | 119.32 | 119.51 |
C14a—C15a—C16a | 117.3 (3) | 117.3 (3) | 117.3 (3) |
C14a—C15a—C18a | 121.0 (3) | 121.0 (3) | 121.1 (3) |
C16a—C15a—C18a | 121.6 (3) | 121.5 (3) | 121.7 (3) |
C14b—C15b—C16b | 116.6 (3) | 116.3 (3) | 117.0 (3) |
C14b—C15b—C18b | 121.2 (3) | 120.6 (3) | 121.8 (3) |
C16b—C15b—C18b | 122.1 (3) | 121.8 (3) | 122.4 (3) |
C15a—C16a—C17a | 121.0 (3) | 120.9 (3) | 121.0 (3) |
C15a—C16a—H1c16a | 119.52 | 119.48 | 119.56 |
C17a—C16a—H1c16a | 119.52 | 119.48 | 119.56 |
C15b—C16b—C17b | 122.7 (3) | 122.3 (3) | 123.2 (3) |
C15b—C16b—H1c16b | 118.63 | 118.42 | 118.83 |
C17b—C16b—H1c16b | 118.63 | 118.42 | 118.83 |
C12a—C17a—C16a | 120.9 (3) | 120.9 (3) | 120.9 (3) |
C12a—C17a—H1c17a | 119.54 | 119.54 | 119.54 |
C16a—C17a—H1c17a | 119.54 | 119.53 | 119.54 |
C12b—C17b—C16b | 119.7 (4) | 119.6 (4) | 119.7 (4) |
C12b—C17b—H1c17b | 120.16 | 120.13 | 120.2 |
C16b—C17b—H1c17b | 120.17 | 120.13 | 120.2 |
C15a—C18a—C19a | 121.4 (3) | 120.9 (3) | 121.9 (3) |
C15a—C18a—C23a | 121.7 (3) | 121.6 (3) | 121.9 (3) |
C19a—C18a—C23a | 116.9 (3) | 116.3 (3) | 117.4 (3) |
C15b—C18b—C19b | 120.8 (3) | 120.7 (3) | 120.9 (3) |
C15b—C18b—C23b | 121.7 (3) | 121.7 (3) | 121.7 (3) |
C19b—C18b—C23b | 117.5 (3) | 117.4 (3) | 117.7 (3) |
C18a—C19a—C20a | 122.0 (4) | 121.4 (4) | 122.6 (4) |
C18a—C19a—H1c19a | 118.99 | 118.71 | 119.28 |
C20a—C19a—H1c19a | 118.99 | 118.71 | 119.28 |
C18b—C19b—C20b | 120.9 (4) | 120.4 (3) | 121.5 (4) |
C18b—C19b—H1c19b | 119.54 | 119.26 | 119.82 |
C20b—C19b—H1c19b | 119.53 | 119.25 | 119.81 |
C19a—C20a—C21a | 119.8 (3) | 119.5 (3) | 120.1 (3) |
C19a—C20a—H1c20a | 120.09 | 119.95 | 120.24 |
C21a—C20a—H1c20a | 120.09 | 119.95 | 120.24 |
C19b—C20b—C21b | 121.0 (4) | 120.6 (4) | 121.3 (4) |
C19b—C20b—H1c20b | 119.52 | 119.36 | 119.69 |
C21b—C20b—H1c20b | 119.52 | 119.36 | 119.69 |
C20a—C21a—C22a | 119.4 (3) | 119.4 (3) | 119.4 (3) |
C20a—C21a—H1c21a | 120.31 | 120.3 | 120.32 |
C22a—C21a—H1c21a | 120.31 | 120.3 | 120.32 |
C20b—C21b—C22b | 118.4 (3) | 118.3 (3) | 118.5 (3) |
C20b—C21b—H1c21b | 120.8 | 120.75 | 120.86 |
C22b—C21b—H1c21b | 120.8 | 120.75 | 120.85 |
C21a—C22a—C23a | 120.5 (4) | 120.0 (3) | 121.0 (4) |
C21a—C22a—H1c22a | 119.76 | 119.51 | 120.01 |
C23a—C22a—H1c22a | 119.76 | 119.51 | 120 |
C21b—C22b—C23b | 121.4 (3) | 121.3 (3) | 121.6 (3) |
C21b—C22b—H1c22b | 119.29 | 119.2 | 119.37 |
C23b—C22b—H1c22b | 119.29 | 119.2 | 119.38 |
C18a—C23a—C22a | 121.4 (3) | 120.7 (3) | 122.2 (3) |
C18a—C23a—H1c23a | 119.28 | 118.9 | 119.66 |
C22a—C23a—H1c23a | 119.28 | 118.9 | 119.66 |
C18b—C23b—C22b | 120.7 (3) | 120.6 (3) | 120.8 (3) |
C18b—C23b—H1c23b | 119.64 | 119.6 | 119.68 |
C22b—C23b—H1c23b | 119.64 | 119.6 | 119.68 |
C23H21NO3 | F(000) = 760 |
Mr = 359.4 | Dx = 1.300 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 3437 reflections |
a = 5.0479 (2) Å | θ = 4.2–65.4° |
b = 8.6330 (4) Å | µ = 0.69 mm−1 |
c = 42.1525 (15) Å | T = 160 K |
β = 90.513 (3)° | Rectrangular, colorless |
V = 1836.87 (13) Å3 | 0.24 × 0.16 × 0.11 mm |
Z = 4 |
SuperNova, Dual, Cu at home/near, Eos diffractometer | 4555 independent reflections |
Radiation source: X-ray tube | 4219 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 7.9580 pixels mm-1 | θmax = 65.3°, θmin = 2.1° |
ω scans | h = −5→5 |
Absorption correction: multi-scan CrysAlisPro 1.171.40.54a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −10→10 |
Tmin = 0.898, Tmax = 1 | l = −27→49 |
6108 measured reflections |
Refinement on F | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.039 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F2) = 0.049 | (Δ/σ)max = 0.0003 |
S = 1.54 | Δρmax = 0.17 e Å−3 |
4555 reflections | Δρmin = −0.15 e Å−3 |
494 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 3400 (300) |
163 constraints | Absolute structure: 1218 of Friedel pairs used in the refinement |
x | y | z | Uiso*/Ueq | ||
O1a | 0.3209 (5) | 0.0596 (4) | 0.45564 (5) | 0.0488 (8) | |
O1b | 0.8559 (4) | 0.5788 (4) | 0.04235 (4) | 0.0340 (6) | |
O2a | 0.1752 (8) | 0.2511 (5) | 0.48507 (7) | 0.0852 (14) | |
O2b | 0.6560 (6) | 0.3932 (4) | 0.01419 (5) | 0.0533 (9) | |
O3a | 0.8541 (4) | 0.2654 (4) | 0.39851 (5) | 0.0383 (7) | |
O3b | 0.5560 (4) | 0.4070 (4) | 0.09509 (4) | 0.0330 (6) | |
N1a | 0.4147 (5) | 0.253675 | 0.40714 (5) | 0.0265 (7) | |
N1b | 0.9919 (4) | 0.3722 (4) | 0.08810 (5) | 0.0235 (7) | |
C1a | 0.1977 (9) | −0.0488 (6) | 0.47710 (8) | 0.0552 (14) | |
C1b | 0.7025 (7) | 0.6917 (5) | 0.02466 (7) | 0.0414 (11) | |
C2a | 0.2913 (6) | 0.2070 (5) | 0.46255 (6) | 0.0335 (9) | |
C2b | 0.8031 (6) | 0.4325 (5) | 0.03514 (6) | 0.0291 (9) | |
C3a | 0.4295 (6) | 0.3143 (5) | 0.43929 (6) | 0.0281 (8) | |
C3b | 0.9592 (6) | 0.3187 (5) | 0.05575 (6) | 0.0255 (8) | |
C4a | 0.3154 (6) | 0.4788 (5) | 0.44110 (7) | 0.0336 (9) | |
C4b | 0.8291 (6) | 0.1568 (5) | 0.05334 (6) | 0.0296 (9) | |
C5a | 0.4559 (6) | 0.5923 (5) | 0.41986 (6) | 0.0316 (9) | |
C5b | 0.9369 (6) | 0.0394 (5) | 0.07655 (6) | 0.0288 (8) | |
C6a | 0.3833 (7) | 0.6055 (5) | 0.38816 (7) | 0.0388 (10) | |
C6b | 0.8186 (6) | 0.0248 (5) | 0.10632 (7) | 0.0331 (9) | |
C7a | 0.5160 (7) | 0.7071 (6) | 0.36839 (7) | 0.0431 (11) | |
C7b | 0.9087 (6) | −0.0847 (5) | 0.12755 (7) | 0.0384 (10) | |
C8a | 0.7185 (7) | 0.7981 (5) | 0.37988 (7) | 0.0414 (11) | |
C8b | 1.1171 (7) | −0.1809 (5) | 0.12010 (8) | 0.0398 (10) | |
C9a | 0.7912 (7) | 0.7871 (5) | 0.41144 (8) | 0.0435 (11) | |
C9b | 1.2378 (6) | −0.1683 (5) | 0.09081 (8) | 0.0380 (10) | |
C10a | 0.6598 (6) | 0.6856 (5) | 0.43137 (7) | 0.0369 (10) | |
C10b | 1.1468 (6) | −0.0567 (5) | 0.06921 (7) | 0.0352 (10) | |
C11a | 0.6282 (5) | 0.2414 (5) | 0.38875 (6) | 0.0275 (8) | |
C11b | 0.7833 (5) | 0.4085 (5) | 0.10570 (6) | 0.0236 (8) | |
C12a | 0.5746 (5) | 0.1993 (5) | 0.35478 (6) | 0.0271 (8) | |
C12b | 0.8386 (5) | 0.4494 (5) | 0.13964 (6) | 0.0235 (8) | |
C13a | 0.7404 (7) | 0.2577 (6) | 0.33210 (7) | 0.0489 (12) | |
C13b | 0.6711 (7) | 0.5509 (6) | 0.15456 (7) | 0.0430 (11) | |
C14a | 0.7010 (7) | 0.2228 (6) | 0.30031 (7) | 0.0505 (13) | |
C14b | 0.7094 (7) | 0.5917 (6) | 0.18620 (7) | 0.0439 (11) | |
C15a | 0.5008 (6) | 0.1252 (5) | 0.29014 (6) | 0.0274 (8) | |
C15b | 0.9146 (5) | 0.5288 (5) | 0.20401 (6) | 0.0248 (8) | |
C16a | 0.3368 (7) | 0.0662 (6) | 0.31326 (7) | 0.0439 (11) | |
C16b | 1.0803 (6) | 0.4268 (6) | 0.18894 (7) | 0.0414 (11) | |
C17a | 0.3717 (7) | 0.1040 (5) | 0.34503 (7) | 0.0430 (11) | |
C17b | 1.0469 (6) | 0.3877 (6) | 0.15710 (7) | 0.0393 (10) | |
C18a | 0.4636 (6) | 0.0879 (5) | 0.25594 (6) | 0.0275 (8) | |
C18b | 0.9493 (5) | 0.5681 (5) | 0.23843 (6) | 0.0279 (8) | |
C19a | 0.6213 (7) | 0.1549 (6) | 0.23294 (7) | 0.0482 (12) | |
C19b | 0.7833 (7) | 0.6755 (6) | 0.25305 (7) | 0.0419 (11) | |
C20a | 0.5851 (8) | 0.1201 (6) | 0.20106 (7) | 0.0535 (13) | |
C20b | 0.8104 (7) | 0.7094 (6) | 0.28491 (7) | 0.0442 (11) | |
C21a | 0.3936 (7) | 0.0194 (5) | 0.19124 (7) | 0.0363 (10) | |
C21b | 1.0040 (6) | 0.6387 (5) | 0.30308 (7) | 0.0354 (10) | |
C22a | 0.2357 (8) | −0.0474 (6) | 0.21338 (8) | 0.0497 (13) | |
C22b | 1.1728 (7) | 0.5358 (6) | 0.28887 (7) | 0.0418 (11) | |
C23a | 0.2706 (7) | −0.0139 (6) | 0.24550 (7) | 0.0488 (12) | |
C23b | 1.1471 (7) | 0.5003 (5) | 0.25696 (7) | 0.0356 (10) | |
H1c1a | 0.251308 | −0.152259 | 0.471816 | 0.0828* | |
H2c1a | 0.25145 | −0.025677 | 0.498482 | 0.0828* | |
H3c1a | 0.008574 | −0.040418 | 0.475241 | 0.0828* | |
H1c1b | 0.742097 | 0.793688 | 0.032416 | 0.062* | |
H2c1b | 0.746415 | 0.685269 | 0.002591 | 0.062* | |
H3c1b | 0.517087 | 0.670854 | 0.02725 | 0.062* | |
H1c3a | 0.613348 | 0.319577 | 0.445211 | 0.0421* | |
H1c3b | 1.136613 | 0.311321 | 0.047862 | 0.0382* | |
H1c4a | 0.130402 | 0.476416 | 0.435663 | 0.0504* | |
H2c4a | 0.323956 | 0.514785 | 0.462634 | 0.0504* | |
H1c4b | 0.641145 | 0.166454 | 0.056025 | 0.0444* | |
H2c4b | 0.846895 | 0.117959 | 0.032128 | 0.0444* | |
H1c6a | 0.240255 | 0.543918 | 0.379864 | 0.0465* | |
H1c6b | 0.674133 | 0.091404 | 0.111932 | 0.0397* | |
H1c7a | 0.465776 | 0.714034 | 0.346419 | 0.0517* | |
H1c7b | 0.825345 | −0.094164 | 0.147836 | 0.0461* | |
H1c8a | 0.80861 | 0.868643 | 0.366076 | 0.0497* | |
H1c8b | 1.178532 | −0.256411 | 0.13517 | 0.0477* | |
H1c9a | 0.933146 | 0.849834 | 0.419618 | 0.0522* | |
H1c9b | 1.382187 | −0.2354 | 0.085392 | 0.0456* | |
H1c10a | 0.710185 | 0.679619 | 0.453352 | 0.0442* | |
H1c10b | 1.231312 | −0.046782 | 0.048999 | 0.0422* | |
H1n1a | 0.248 (7) | 0.240 (4) | 0.3988 (7) | 0.0319* | |
H1n1b | 1.162 (7) | 0.384 (4) | 0.0961 (7) | 0.0282* | |
H1c13a | 0.885181 | 0.323399 | 0.338318 | 0.0586* | |
H1c13b | 0.524743 | 0.594576 | 0.142923 | 0.0515* | |
H1c14a | 0.816527 | 0.267965 | 0.284877 | 0.0606* | |
H1c14b | 0.591423 | 0.664648 | 0.195856 | 0.0527* | |
H1c16a | 0.195607 | −0.002446 | 0.307208 | 0.0527* | |
H1c16b | 1.223823 | 0.38108 | 0.200739 | 0.0496* | |
H1c17a | 0.251917 | 0.062771 | 0.360457 | 0.0516* | |
H1c17b | 1.168626 | 0.317575 | 0.147232 | 0.0472* | |
H1c19a | 0.757737 | 0.226421 | 0.239165 | 0.0578* | |
H1c19b | 0.648297 | 0.726572 | 0.24074 | 0.0503* | |
H1c20a | 0.697303 | 0.167937 | 0.185617 | 0.0642* | |
H1c20b | 0.693164 | 0.782965 | 0.294526 | 0.0531* | |
H1c21a | 0.370444 | −0.004103 | 0.169127 | 0.0436* | |
H1c21b | 1.02055 | 0.661099 | 0.325313 | 0.0425* | |
H1c22a | 0.099024 | −0.118109 | 0.206831 | 0.0596* | |
H1c22b | 1.310666 | 0.487709 | 0.301235 | 0.0502* | |
H1c23a | 0.157745 | −0.062754 | 0.260734 | 0.0586* | |
H1c23b | 1.267223 | 0.427894 | 0.247501 | 0.0427* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1a | 0.0640 (16) | 0.0383 (14) | 0.0445 (12) | 0.0019 (13) | 0.0228 (10) | 0.0012 (11) |
O1b | 0.0440 (12) | 0.0249 (11) | 0.0329 (10) | −0.0020 (10) | −0.0108 (8) | 0.0036 (9) |
O2a | 0.158 (3) | 0.0436 (17) | 0.0553 (16) | 0.001 (2) | 0.0651 (19) | −0.0016 (14) |
O2b | 0.0797 (18) | 0.0361 (14) | 0.0434 (12) | −0.0009 (14) | −0.0347 (12) | −0.0036 (12) |
O3a | 0.0195 (10) | 0.0602 (16) | 0.0353 (10) | −0.0008 (10) | −0.0001 (7) | −0.0064 (10) |
O3b | 0.0208 (10) | 0.0468 (14) | 0.0313 (9) | 0.0018 (10) | −0.0034 (7) | −0.0025 (10) |
N1a | 0.0209 (12) | 0.0303 (14) | 0.0284 (11) | −0.0013 (10) | −0.0008 (8) | −0.0034 (10) |
N1b | 0.0198 (11) | 0.0259 (13) | 0.0249 (10) | −0.0004 (9) | −0.0014 (8) | 0.0007 (9) |
C1a | 0.085 (3) | 0.043 (2) | 0.0381 (18) | −0.013 (2) | 0.0091 (17) | 0.0025 (16) |
C1b | 0.061 (2) | 0.0283 (18) | 0.0349 (16) | 0.0089 (17) | −0.0082 (14) | 0.0049 (14) |
C2a | 0.0415 (17) | 0.0342 (18) | 0.0249 (13) | −0.0037 (15) | 0.0040 (11) | −0.0021 (13) |
C2b | 0.0370 (16) | 0.0278 (16) | 0.0223 (13) | 0.0022 (14) | −0.0005 (11) | −0.0006 (11) |
C3a | 0.0256 (14) | 0.0322 (16) | 0.0263 (13) | 0.0045 (12) | −0.0004 (10) | −0.0023 (12) |
C3b | 0.0254 (14) | 0.0271 (15) | 0.0239 (12) | −0.0002 (12) | −0.0019 (10) | −0.0021 (11) |
C4a | 0.0326 (16) | 0.0375 (18) | 0.0308 (14) | 0.0030 (14) | 0.0045 (11) | −0.0038 (13) |
C4b | 0.0318 (15) | 0.0243 (16) | 0.0326 (14) | −0.0010 (13) | −0.0085 (11) | −0.0028 (12) |
C5a | 0.0329 (16) | 0.0294 (17) | 0.0326 (13) | 0.0073 (14) | 0.0033 (11) | −0.0013 (13) |
C5b | 0.0310 (15) | 0.0199 (15) | 0.0353 (14) | −0.0038 (12) | −0.0068 (10) | −0.0042 (12) |
C6a | 0.0339 (17) | 0.046 (2) | 0.0368 (15) | 0.0045 (15) | −0.0047 (12) | −0.0014 (15) |
C6b | 0.0351 (17) | 0.0240 (16) | 0.0402 (15) | 0.0008 (14) | 0.0001 (12) | −0.0006 (13) |
C7a | 0.0454 (19) | 0.049 (2) | 0.0349 (16) | −0.0011 (18) | −0.0040 (13) | 0.0042 (16) |
C7b | 0.0430 (18) | 0.0356 (19) | 0.0367 (15) | 0.0029 (16) | 0.0008 (12) | 0.0040 (15) |
C8a | 0.0457 (18) | 0.037 (2) | 0.0415 (17) | 0.0004 (16) | 0.0035 (14) | 0.0080 (15) |
C8b | 0.0402 (17) | 0.0327 (18) | 0.0463 (17) | 0.0021 (15) | −0.0080 (13) | 0.0059 (15) |
C9a | 0.0418 (18) | 0.039 (2) | 0.0498 (18) | −0.0041 (17) | −0.0031 (14) | −0.0038 (16) |
C9b | 0.0302 (15) | 0.0296 (17) | 0.0541 (18) | 0.0079 (14) | −0.0053 (13) | −0.0047 (15) |
C10a | 0.0410 (17) | 0.0364 (19) | 0.0332 (14) | 0.0029 (15) | −0.0050 (12) | −0.0035 (13) |
C10b | 0.0363 (17) | 0.0317 (18) | 0.0375 (15) | −0.0026 (14) | −0.0012 (12) | −0.0049 (13) |
C11a | 0.0212 (14) | 0.0305 (17) | 0.0310 (13) | 0.0052 (12) | 0.0016 (10) | −0.0016 (12) |
C11b | 0.0198 (13) | 0.0196 (14) | 0.0313 (13) | −0.0011 (12) | −0.0013 (10) | 0.0048 (12) |
C12a | 0.0227 (14) | 0.0294 (16) | 0.0292 (13) | 0.0027 (13) | 0.0016 (10) | −0.0006 (12) |
C12b | 0.0234 (14) | 0.0205 (14) | 0.0266 (13) | −0.0004 (11) | 0.0027 (10) | 0.0043 (11) |
C13a | 0.0408 (18) | 0.075 (3) | 0.0307 (15) | −0.030 (2) | −0.0011 (12) | −0.0045 (17) |
C13b | 0.0400 (18) | 0.055 (2) | 0.0342 (15) | 0.0240 (18) | −0.0087 (12) | −0.0056 (15) |
C14a | 0.0467 (19) | 0.076 (3) | 0.0287 (15) | −0.030 (2) | 0.0036 (13) | −0.0016 (17) |
C14b | 0.051 (2) | 0.048 (2) | 0.0327 (15) | 0.0240 (18) | −0.0020 (13) | −0.0091 (15) |
C15a | 0.0240 (14) | 0.0252 (15) | 0.0329 (14) | 0.0049 (12) | −0.0006 (10) | 0.0004 (12) |
C15b | 0.0245 (14) | 0.0210 (14) | 0.0289 (13) | −0.0025 (12) | 0.0029 (10) | 0.0020 (11) |
C16a | 0.0418 (18) | 0.054 (2) | 0.0364 (16) | −0.0222 (18) | 0.0073 (12) | −0.0131 (16) |
C16b | 0.0320 (16) | 0.062 (2) | 0.0299 (14) | 0.0177 (17) | −0.0071 (11) | −0.0015 (15) |
C17a | 0.0427 (18) | 0.051 (2) | 0.0360 (15) | −0.0205 (17) | 0.0161 (13) | −0.0070 (15) |
C17b | 0.0368 (17) | 0.052 (2) | 0.0290 (14) | 0.0170 (16) | −0.0018 (11) | −0.0084 (14) |
C18a | 0.0284 (14) | 0.0230 (15) | 0.0311 (13) | 0.0058 (12) | −0.0018 (10) | −0.0019 (12) |
C18b | 0.0266 (14) | 0.0295 (16) | 0.0276 (13) | −0.0071 (12) | 0.0038 (10) | 0.0010 (12) |
C19a | 0.049 (2) | 0.062 (3) | 0.0340 (16) | −0.0229 (19) | 0.0062 (14) | −0.0102 (16) |
C19b | 0.0378 (18) | 0.056 (2) | 0.0322 (15) | 0.0116 (17) | 0.0000 (12) | −0.0031 (15) |
C20a | 0.057 (2) | 0.073 (3) | 0.0305 (16) | −0.020 (2) | 0.0074 (14) | −0.0092 (17) |
C20b | 0.0421 (18) | 0.056 (2) | 0.0348 (15) | 0.0056 (18) | 0.0049 (13) | −0.0107 (16) |
C21a | 0.0432 (18) | 0.0365 (18) | 0.0292 (14) | 0.0057 (15) | −0.0022 (11) | −0.0042 (13) |
C21b | 0.0386 (17) | 0.0373 (18) | 0.0305 (14) | −0.0119 (15) | 0.0021 (12) | −0.0024 (13) |
C22a | 0.056 (2) | 0.053 (3) | 0.0402 (17) | −0.0184 (19) | −0.0129 (15) | −0.0022 (17) |
C22b | 0.0415 (18) | 0.047 (2) | 0.0372 (15) | 0.0021 (17) | −0.0076 (12) | 0.0007 (15) |
C23a | 0.053 (2) | 0.059 (2) | 0.0346 (16) | −0.0252 (19) | −0.0022 (14) | 0.0054 (16) |
C23b | 0.0422 (18) | 0.0329 (18) | 0.0316 (15) | 0.0049 (15) | −0.0021 (12) | −0.0058 (13) |
O1a—C1a | 1.446 (5) | C9b—C10b | 1.400 (5) |
O1a—C2a | 1.314 (6) | C9b—H1c9b | 0.96 |
O1b—C1b | 1.447 (5) | C10a—H1c10a | 0.96 |
O1b—C2b | 1.326 (5) | C10b—H1c10b | 0.96 |
O2a—C2a | 1.183 (5) | C11a—C12a | 1.500 (4) |
O2b—C2b | 1.198 (4) | C11b—C12b | 1.498 (4) |
O3a—C11a | 1.227 (3) | C12a—C13a | 1.372 (5) |
O3b—C11b | 1.228 (3) | C12a—C17a | 1.374 (5) |
N1a—C3a | 1.454 (3) | C12b—C13b | 1.374 (5) |
N1a—C11a | 1.337 (3) | C12b—C17b | 1.384 (4) |
N1a—H1n1a | 0.92 (3) | C13a—C14a | 1.386 (4) |
N1b—C3b | 1.448 (3) | C13a—H1c13a | 0.96 |
N1b—C11b | 1.331 (4) | C13b—C14b | 1.391 (4) |
N1b—H1n1b | 0.92 (3) | C13b—H1c13b | 0.96 |
C1a—H1c1a | 0.96 | C14a—C15a | 1.381 (5) |
C1a—H2c1a | 0.96 | C14a—H1c14a | 0.96 |
C1a—H3c1a | 0.96 | C14b—C15b | 1.385 (5) |
C1b—H1c1b | 0.96 | C14b—H1c14b | 0.96 |
C1b—H2c1b | 0.96 | C15a—C16a | 1.381 (5) |
C1b—H3c1b | 0.96 | C15a—C18a | 1.487 (4) |
C2a—C3a | 1.523 (5) | C15b—C16b | 1.374 (5) |
C2b—C3b | 1.526 (5) | C15b—C18b | 1.499 (4) |
C3a—C4a | 1.534 (6) | C16a—C17a | 1.388 (4) |
C3a—H1c3a | 0.96 | C16a—H1c16a | 0.96 |
C3b—C4b | 1.547 (5) | C16b—C17b | 1.393 (4) |
C3b—H1c3b | 0.96 | C16b—H1c16b | 0.96 |
C4a—C5a | 1.509 (5) | C17a—H1c17a | 0.96 |
C4a—H1c4a | 0.96 | C17b—H1c17b | 0.96 |
C4a—H2c4a | 0.96 | C18a—C19a | 1.386 (5) |
C4b—C5b | 1.507 (5) | C18a—C23a | 1.381 (5) |
C4b—H1c4b | 0.96 | C18b—C19b | 1.397 (5) |
C4b—H2c4b | 0.96 | C18b—C23b | 1.391 (5) |
C5a—C6a | 1.387 (4) | C19a—C20a | 1.387 (5) |
C5a—C10a | 1.391 (5) | C19a—H1c19a | 0.96 |
C5b—C6b | 1.400 (4) | C19b—C20b | 1.380 (4) |
C5b—C10b | 1.383 (5) | C19b—H1c19b | 0.96 |
C6a—C7a | 1.387 (5) | C20a—C21a | 1.362 (6) |
C6a—H1c6a | 0.96 | C20a—H1c20a | 0.96 |
C6b—C7b | 1.376 (5) | C20b—C21b | 1.379 (5) |
C6b—H1c6b | 0.96 | C20b—H1c20b | 0.96 |
C7a—C8a | 1.373 (5) | C21a—C22a | 1.361 (5) |
C7a—H1c7a | 0.96 | C21a—H1c21a | 0.96 |
C7b—C8b | 1.379 (5) | C21b—C22b | 1.372 (6) |
C7b—H1c7b | 0.96 | C21b—H1c21b | 0.96 |
C8a—C9a | 1.380 (5) | C22a—C23a | 1.394 (5) |
C8a—H1c8a | 0.96 | C22a—H1c22a | 0.96 |
C8b—C9b | 1.386 (5) | C22b—C23b | 1.385 (4) |
C8b—H1c8b | 0.96 | C22b—H1c22b | 0.96 |
C9a—C10a | 1.387 (5) | C23a—H1c23a | 0.96 |
C9a—H1c9a | 0.96 | C23b—H1c23b | 0.96 |
C1a—O1a—C2a | 115.9 (3) | C9a—C10a—H1c10a | 119.64 |
C1b—O1b—C2b | 114.7 (3) | C5b—C10b—C9b | 121.0 (3) |
C3a—N1a—C11a | 122.3 (2) | C5b—C10b—H1c10b | 119.51 |
C3a—N1a—H1n1a | 116.2 (19) | C9b—C10b—H1c10b | 119.51 |
C11a—N1a—H1n1a | 120.6 (19) | O3a—C11a—N1a | 122.9 (3) |
C3b—N1b—C11b | 121.1 (2) | O3a—C11a—C12a | 121.4 (2) |
C3b—N1b—H1n1b | 118.5 (19) | N1a—C11a—C12a | 115.7 (2) |
C11b—N1b—H1n1b | 120.4 (19) | O3b—C11b—N1b | 122.4 (2) |
O1a—C1a—H1c1a | 109.47 | O3b—C11b—C12b | 121.1 (2) |
O1a—C1a—H2c1a | 109.47 | N1b—C11b—C12b | 116.5 (2) |
O1a—C1a—H3c1a | 109.47 | C11a—C12a—C13a | 118.1 (3) |
H1c1a—C1a—H2c1a | 109.47 | C11a—C12a—C17a | 123.9 (3) |
H1c1a—C1a—H3c1a | 109.47 | C13a—C12a—C17a | 118.0 (3) |
H2c1a—C1a—H3c1a | 109.47 | C11b—C12b—C13b | 118.5 (3) |
O1b—C1b—H1c1b | 109.47 | C11b—C12b—C17b | 123.5 (3) |
O1b—C1b—H2c1b | 109.47 | C13b—C12b—C17b | 118.0 (3) |
O1b—C1b—H3c1b | 109.47 | C12a—C13a—C14a | 120.7 (4) |
H1c1b—C1b—H2c1b | 109.47 | C12a—C13a—H1c13a | 119.64 |
H1c1b—C1b—H3c1b | 109.47 | C14a—C13a—H1c13a | 119.64 |
H2c1b—C1b—H3c1b | 109.47 | C12b—C13b—C14b | 121.3 (3) |
O1a—C2a—O2a | 123.2 (4) | C12b—C13b—H1c13b | 119.37 |
O1a—C2a—C3a | 113.1 (3) | C14b—C13b—H1c13b | 119.37 |
O2a—C2a—C3a | 123.6 (4) | C13a—C14a—C15a | 122.0 (3) |
O1b—C2b—O2b | 124.1 (3) | C13a—C14a—H1c14a | 118.98 |
O1b—C2b—C3b | 112.4 (2) | C15a—C14a—H1c14a | 118.98 |
O2b—C2b—C3b | 123.5 (4) | C13b—C14b—C15b | 121.2 (4) |
N1a—C3a—C2a | 111.2 (3) | C13b—C14b—H1c14b | 119.41 |
N1a—C3a—C4a | 111.3 (2) | C15b—C14b—H1c14b | 119.41 |
N1a—C3a—H1c3a | 107.52 | C14a—C15a—C16a | 116.6 (3) |
C2a—C3a—C4a | 110.9 (3) | C14a—C15a—C18a | 121.2 (3) |
C2a—C3a—H1c3a | 107.97 | C16a—C15a—C18a | 122.2 (3) |
C4a—C3a—H1c3a | 107.8 | C14b—C15b—C16b | 117.1 (3) |
N1b—C3b—C2b | 112.6 (3) | C14b—C15b—C18b | 121.1 (3) |
N1b—C3b—C4b | 113.2 (3) | C16b—C15b—C18b | 121.8 (3) |
N1b—C3b—H1c3b | 104.4 | C15a—C16a—C17a | 121.5 (4) |
C2b—C3b—C4b | 109.1 (2) | C15a—C16a—H1c16a | 119.25 |
C2b—C3b—H1c3b | 108.93 | C17a—C16a—H1c16a | 119.24 |
C4b—C3b—H1c3b | 108.3 | C15b—C16b—C17b | 122.1 (3) |
C3a—C4a—C5a | 113.1 (3) | C15b—C16b—H1c16b | 118.93 |
C3a—C4a—H1c4a | 109.47 | C17b—C16b—H1c16b | 118.93 |
C3a—C4a—H2c4a | 109.47 | C12a—C17a—C16a | 121.1 (3) |
C5a—C4a—H1c4a | 109.47 | C12a—C17a—H1c17a | 119.44 |
C5a—C4a—H2c4a | 109.47 | C16a—C17a—H1c17a | 119.45 |
H1c4a—C4a—H2c4a | 105.54 | C12b—C17b—C16b | 120.2 (3) |
C3b—C4b—C5b | 114.5 (2) | C12b—C17b—H1c17b | 119.88 |
C3b—C4b—H1c4b | 109.47 | C16b—C17b—H1c17b | 119.88 |
C3b—C4b—H2c4b | 109.47 | C15a—C18a—C19a | 121.3 (3) |
C5b—C4b—H1c4b | 109.47 | C15a—C18a—C23a | 121.9 (3) |
C5b—C4b—H2c4b | 109.47 | C19a—C18a—C23a | 116.7 (3) |
H1c4b—C4b—H2c4b | 103.95 | C15b—C18b—C19b | 120.8 (3) |
C4a—C5a—C6a | 120.2 (3) | C15b—C18b—C23b | 121.7 (3) |
C4a—C5a—C10a | 121.3 (3) | C19b—C18b—C23b | 117.5 (3) |
C6a—C5a—C10a | 118.5 (3) | C18a—C19a—C20a | 121.1 (4) |
C4b—C5b—C6b | 119.2 (3) | C18a—C19a—H1c19a | 119.47 |
C4b—C5b—C10b | 122.1 (3) | C20a—C19a—H1c19a | 119.47 |
C6b—C5b—C10b | 118.7 (3) | C18b—C19b—C20b | 121.0 (3) |
C5a—C6a—C7a | 120.4 (3) | C18b—C19b—H1c19b | 119.48 |
C5a—C6a—H1c6a | 119.81 | C20b—C19b—H1c19b | 119.48 |
C7a—C6a—H1c6a | 119.81 | C19a—C20a—C21a | 121.3 (4) |
C5b—C6b—C7b | 120.2 (3) | C19a—C20a—H1c20a | 119.35 |
C5b—C6b—H1c6b | 119.89 | C21a—C20a—H1c20a | 119.35 |
C7b—C6b—H1c6b | 119.89 | C19b—C20b—C21b | 120.7 (4) |
C6a—C7a—C8a | 120.8 (3) | C19b—C20b—H1c20b | 119.67 |
C6a—C7a—H1c7a | 119.61 | C21b—C20b—H1c20b | 119.67 |
C8a—C7a—H1c7a | 119.61 | C20a—C21a—C22a | 118.7 (3) |
C6b—C7b—C8b | 120.9 (3) | C20a—C21a—H1c21a | 120.64 |
C6b—C7b—H1c7b | 119.54 | C22a—C21a—H1c21a | 120.64 |
C8b—C7b—H1c7b | 119.54 | C20b—C21b—C22b | 119.0 (3) |
C7a—C8a—C9a | 119.4 (4) | C20b—C21b—H1c21b | 120.52 |
C7a—C8a—H1c8a | 120.29 | C22b—C21b—H1c21b | 120.52 |
C9a—C8a—H1c8a | 120.29 | C21a—C22a—C23a | 120.6 (4) |
C7b—C8b—C9b | 119.9 (3) | C21a—C22a—H1c22a | 119.72 |
C7b—C8b—H1c8b | 120.06 | C23a—C22a—H1c22a | 119.72 |
C9b—C8b—H1c8b | 120.06 | C21b—C22b—C23b | 120.9 (3) |
C8a—C9a—C10a | 120.2 (4) | C21b—C22b—H1c22b | 119.53 |
C8a—C9a—H1c9a | 119.9 | C23b—C22b—H1c22b | 119.53 |
C10a—C9a—H1c9a | 119.9 | C18a—C23a—C22a | 121.6 (3) |
C8b—C9b—C10b | 119.3 (3) | C18a—C23a—H1c23a | 119.19 |
C8b—C9b—H1c9b | 120.37 | C22a—C23a—H1c23a | 119.19 |
C10b—C9b—H1c9b | 120.37 | C18b—C23b—C22b | 120.8 (3) |
C5a—C10a—C9a | 120.7 (3) | C18b—C23b—H1c23b | 119.58 |
C5a—C10a—H1c10a | 119.64 | C22b—C23b—H1c23b | 119.58 |
O1a—C2a—C3a—N1a | 36.2 (3) | C2a—C3a—N1a—C11a | −130.1 (3) |
O1b—C2b—C3b—N1b | 36.4 (3) | C2b—C3b—N1b—C11b | 56.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4a—H1c4a···O3ai | 0.96 | 2.77 | 3.459 (4) | 129.24 |
C10a—H1c10a···O2aii | 0.96 | 2.72 | 3.656 (4) | 163.61 |
C10b—H1c10b···O2biii | 0.96 | 2.78 | 3.688 (4) | 158.56 |
N1a—H1n1a···O3ai | 0.92 (3) | 2.00 (3) | 2.852 (3) | 154 (3) |
N1b—H1n1b···O3biv | 0.92 (3) | 2.00 (3) | 2.876 (3) | 157 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1; (iii) −x+2, y−1/2, −z; (iv) x+1, y, z. |
C23H21NO3 | F(000) = 3040 |
Mr = 359.4 | Dx = 1.312 Mg m−3 |
Monoclinic, B21 | Cu Kα radiation, λ = 1.54184 Å |
a = 10.0754 (2) Å | Cell parameters from 3948 reflections |
b = 8.5898 (3) Å | θ = 4.2–65.7° |
c = 84.0864 (14) Å | µ = 0.70 mm−1 |
β = 90.884 (3)° | T = 100 K |
V = 7276.4 (3) Å3 | Rectrangular, colorless |
Z = 16 | 0.24 × 0.16 × 0.11 mm |
SuperNova, Dual, Cu at home/near, Eos diffractometer | 8898 independent reflections |
Radiation source: X-ray tube | 5940 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 7.9580 pixels mm-1 | θmax = 65.8°, θmin = 3.2° |
ω scans | h = −11→11 |
Absorption correction: multi-scan | k = −10→7 |
Tmin = 0.966, Tmax = 1 | l = −87→98 |
13838 measured reflections |
Refinement on F | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F2) = 0.053 | (Δ/σ)max < 0.001 |
S = 1.35 | Δρmax = 0.22 e Å−3 |
8898 reflections | Δρmin = −0.21 e Å−3 |
1 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 1998.78 |
1309 constraints | Absolute structure: 2293 of Friedel pairs used in the refinement |
Refinement. The superstructure model was derived from the commensurately modulated structure model using JANA2006. The scale factor has been refined with a damping factor of 1. |
x | y | z | Uiso*/Ueq | ||
O1a-1 | 0.163487 | 0.052529 | 0.228295 | 0.0324 | |
O1a-2 | 0.664614 | 0.064725 | 0.227747 | 0.0324 | |
O1b-1 | 0.430515 | 0.577937 | 0.021036 | 0.0246 | |
O1b-2 | 0.929536 | 0.575363 | 0.021203 | 0.0246 | |
O2a-1 | 0.084228 | 0.246474 | 0.242814 | 0.0528 | |
O2a-2 | 0.587399 | 0.26123 | 0.24216 | 0.0528 | |
O2b-1 | 0.331843 | 0.390845 | 0.006598 | 0.0356 | |
O2b-2 | 0.827385 | 0.387425 | 0.007195 | 0.0356 | |
O3a-1 | 0.43166 | 0.274224 | 0.199869 | 0.0268 | |
O3a-2 | 0.932486 | 0.25823 | 0.19935 | 0.0268 | |
O3b-1 | 0.282052 | 0.405893 | 0.04691 | 0.0241 | |
O3b-2 | 0.782848 | 0.400887 | 0.047626 | 0.0241 | |
N1a-1 | 0.211317 | 0.247607 | 0.204082 | 0.0202 | |
N1a-2 | 0.710829 | 0.259743 | 0.203261 | 0.0202 | |
N1b-1 | 0.500153 | 0.369328 | 0.043804 | 0.0174 | |
N1b-2 | 0.001505 | 0.368136 | 0.044058 | 0.0174 | |
C1a-1 | 0.100894 | 0.944551 | 0.23889 | 0.0344 | |
C1a-2 | 0.60104 | 0.956921 | 0.238457 | 0.0344 | |
C1b-1 | 0.351409 | 0.690829 | 0.012251 | 0.029 | |
C1b-2 | 0.850318 | 0.687877 | 0.012396 | 0.029 | |
C2a-1 | 0.14603 | 0.201635 | 0.231639 | 0.0246 | |
C2a-2 | 0.648296 | 0.214085 | 0.231092 | 0.0246 | |
C2b-1 | 0.405925 | 0.430677 | 0.017232 | 0.0214 | |
C2b-2 | 0.903035 | 0.428071 | 0.017644 | 0.0214 | |
C3a-1 | 0.216302 | 0.309353 | 0.220179 | 0.0215 | |
C3a-2 | 0.718538 | 0.319971 | 0.219442 | 0.0215 | |
C3b-1 | 0.484508 | 0.316487 | 0.027472 | 0.0193 | |
C3b-2 | 0.982939 | 0.314639 | 0.027789 | 0.0193 | |
C4a-1 | 0.158771 | 0.475486 | 0.220967 | 0.0229 | |
C4a-2 | 0.664785 | 0.488078 | 0.220368 | 0.0229 | |
C4b-1 | 0.419107 | 0.152866 | 0.026168 | 0.0221 | |
C4b-2 | 0.918275 | 0.150434 | 0.026552 | 0.0221 | |
C5a-1 | 0.229353 | 0.587552 | 0.21026 | 0.0232 | |
C5a-2 | 0.735811 | 0.60076 | 0.20967 | 0.0232 | |
C5b-1 | 0.473491 | 0.035571 | 0.037878 | 0.0223 | |
C5b-2 | 0.972047 | 0.033825 | 0.038454 | 0.0223 | |
C6a-1 | 0.194869 | 0.597681 | 0.194289 | 0.0271 | |
C6a-2 | 0.698568 | 0.613437 | 0.193756 | 0.0271 | |
C6b-1 | 0.414649 | 0.021264 | 0.05268 | 0.0246 | |
C6b-2 | 0.914428 | 0.021042 | 0.053399 | 0.0246 | |
C7a-1 | 0.26359 | 0.695481 | 0.184279 | 0.0287 | |
C7a-2 | 0.762692 | 0.716269 | 0.183793 | 0.0287 | |
C7b-1 | 0.459853 | 0.911893 | 0.063573 | 0.0273 | |
C7b-2 | 0.958555 | 0.911945 | 0.064241 | 0.0273 | |
C8a-1 | 0.367291 | 0.788099 | 0.190015 | 0.0273 | |
C8a-2 | 0.866526 | 0.808613 | 0.189635 | 0.0273 | |
C8b-1 | 0.56489 | 0.815782 | 0.05996 | 0.029 | |
C8b-2 | 0.06208 | 0.813908 | 0.060604 | 0.029 | |
C9a-1 | 0.400367 | 0.780795 | 0.206053 | 0.0289 | |
C9a-2 | 0.903725 | 0.797301 | 0.205446 | 0.0289 | |
C9b-1 | 0.625762 | 0.829213 | 0.045206 | 0.0285 | |
C9b-2 | 0.122021 | 0.825157 | 0.045855 | 0.0285 | |
C10a-1 | 0.332722 | 0.681949 | 0.216134 | 0.0254 | |
C10a-2 | 0.839083 | 0.693409 | 0.215393 | 0.0254 | |
C10b-1 | 0.579408 | 0.938201 | 0.034321 | 0.0246 | |
C10b-2 | 0.077377 | 0.934709 | 0.034965 | 0.0246 | |
C11a-1 | 0.318083 | 0.243194 | 0.194968 | 0.0193 | |
C11a-2 | 0.817629 | 0.240256 | 0.194303 | 0.0193 | |
C11b-1 | 0.396749 | 0.406579 | 0.052466 | 0.0177 | |
C11b-2 | 0.897428 | 0.403107 | 0.05289 | 0.0177 | |
C12a-1 | 0.294194 | 0.200624 | 0.177882 | 0.0194 | |
C12a-2 | 0.790885 | 0.19742 | 0.17728 | 0.0194 | |
C12b-1 | 0.422945 | 0.447288 | 0.069534 | 0.0182 | |
C12b-2 | 0.925695 | 0.444504 | 0.070034 | 0.0182 | |
C13a-1 | 0.365049 | 0.278518 | 0.166312 | 0.0251 | |
C13a-2 | 0.885782 | 0.23577 | 0.166243 | 0.0251 | |
C13b-1 | 0.341469 | 0.553878 | 0.076683 | 0.0369 | |
C13b-2 | 0.838477 | 0.541066 | 0.077577 | 0.0369 | |
C14a-1 | 0.345082 | 0.243792 | 0.150358 | 0.0266 | |
C14a-2 | 0.866869 | 0.199564 | 0.150363 | 0.0266 | |
C14b-1 | 0.360514 | 0.595601 | 0.092492 | 0.0371 | |
C14b-2 | 0.857707 | 0.582685 | 0.093377 | 0.0371 | |
C15a-1 | 0.257305 | 0.127034 | 0.145429 | 0.0203 | |
C15a-2 | 0.75423 | 0.12205 | 0.144896 | 0.0203 | |
C15b-1 | 0.460215 | 0.528879 | 0.101764 | 0.0185 | |
C15b-2 | 0.964887 | 0.524965 | 0.102202 | 0.0185 | |
C16a-1 | 0.186303 | 0.049166 | 0.15726 | 0.0256 | |
C16a-2 | 0.660159 | 0.082366 | 0.156014 | 0.0256 | |
C16b-1 | 0.539487 | 0.42035 | 0.094326 | 0.0334 | |
C16b-2 | 0.049938 | 0.425602 | 0.094526 | 0.0334 | |
C17a-1 | 0.203339 | 0.087675 | 0.173167 | 0.0233 | |
C17a-2 | 0.678455 | 0.119107 | 0.172033 | 0.0233 | |
C17b-1 | 0.524686 | 0.381024 | 0.078531 | 0.0309 | |
C17b-2 | 0.03304 | 0.386204 | 0.078585 | 0.0309 | |
C18a-1 | 0.238591 | 0.089201 | 0.128414 | 0.0193 | |
C18a-2 | 0.735507 | 0.084931 | 0.127681 | 0.0193 | |
C18b-1 | 0.478159 | 0.568063 | 0.119009 | 0.0203 | |
C18b-2 | 0.982124 | 0.566101 | 0.119431 | 0.0203 | |
C19a-1 | 0.328726 | 0.136433 | 0.117037 | 0.0286 | |
C19a-2 | 0.805763 | 0.165611 | 0.116062 | 0.0286 | |
C19b-1 | 0.390287 | 0.668374 | 0.126518 | 0.0304 | |
C19b-2 | 0.90284 | 0.678854 | 0.126417 | 0.0304 | |
C20a-1 | 0.312446 | 0.102443 | 0.101053 | 0.0313 | |
C20a-2 | 0.789079 | 0.132399 | 0.100084 | 0.0313 | |
C20b-1 | 0.406594 | 0.702864 | 0.142607 | 0.0311 | |
C20b-2 | 0.914526 | 0.713984 | 0.142371 | 0.0311 | |
C21a-1 | 0.202813 | 0.017388 | 0.095973 | 0.027 | |
C21a-2 | 0.701251 | 0.016128 | 0.095218 | 0.027 | |
C21b-1 | 0.508855 | 0.639448 | 0.151483 | 0.0232 | |
C21b-2 | 0.005305 | 0.63623 | 0.151997 | 0.0232 | |
C22a-1 | 0.111974 | 0.967204 | 0.106991 | 0.0312 | |
C22a-2 | 0.631089 | 0.936044 | 0.106417 | 0.0312 | |
C22b-1 | 0.595985 | 0.541221 | 0.144036 | 0.0293 | |
C22b-2 | 0.086864 | 0.528113 | 0.145179 | 0.0293 | |
C23a-1 | 0.129465 | 0.004474 | 0.12287 | 0.0271 | |
C23a-2 | 0.647678 | 0.967932 | 0.122491 | 0.0271 | |
C23b-1 | 0.582533 | 0.505886 | 0.12816 | 0.0262 | |
C23b-2 | 0.075902 | 0.49196 | 0.129113 | 0.0262 | |
H1c3a-1 | 0.308079 | 0.315318 | 0.22336 | 0.0322* | |
H1c3a-2 | 0.810757 | 0.322314 | 0.222479 | 0.0322* | |
H1c3b-1 | 0.573299 | 0.309717 | 0.02355 | 0.029* | |
H1c3b-2 | 0.071348 | 0.308053 | 0.023745 | 0.029* | |
H1c4a-1 | 0.066109 | 0.472973 | 0.218143 | 0.0343* | |
H1c4a-2 | 0.571666 | 0.488389 | 0.217772 | 0.0343* | |
H2c4a-1 | 0.163778 | 0.512583 | 0.231728 | 0.0343* | |
H2c4a-2 | 0.670644 | 0.524199 | 0.231161 | 0.0343* | |
H1c4b-1 | 0.324951 | 0.16239 | 0.027458 | 0.033* | |
H1c4b-2 | 0.823939 | 0.159562 | 0.027696 | 0.033* | |
H2c4b-1 | 0.428636 | 0.113769 | 0.015551 | 0.033* | |
H2c4b-2 | 0.928763 | 0.110547 | 0.015981 | 0.033* | |
H1c6a-1 | 0.122659 | 0.5363 | 0.190133 | 0.0325* | |
H1c6a-2 | 0.627519 | 0.550148 | 0.189613 | 0.0325* | |
H1c6b-1 | 0.341911 | 0.087998 | 0.055361 | 0.0294* | |
H1c6b-2 | 0.842971 | 0.08938 | 0.056151 | 0.0294* | |
H1c7a-1 | 0.23947 | 0.699648 | 0.173198 | 0.0345* | |
H1c7a-2 | 0.735662 | 0.724118 | 0.172824 | 0.0345* | |
H1c7b-1 | 0.417869 | 0.902862 | 0.073703 | 0.0328* | |
H1c7b-2 | 0.91696 | 0.904068 | 0.074404 | 0.0328* | |
H1c8a-1 | 0.414822 | 0.855555 | 0.183001 | 0.0327* | |
H1c8a-2 | 0.911592 | 0.879293 | 0.182714 | 0.0327* | |
H1c8b-1 | 0.595982 | 0.740072 | 0.067543 | 0.0347* | |
H1c8b-2 | 0.092676 | 0.738202 | 0.068217 | 0.0347* | |
H1c9a-1 | 0.470817 | 0.844811 | 0.210225 | 0.0346* | |
H1c9a-2 | 0.974332 | 0.861205 | 0.209598 | 0.0346* | |
H1c9b-1 | 0.699297 | 0.763289 | 0.042627 | 0.0342* | |
H1c9b-2 | 0.19409 | 0.757153 | 0.043243 | 0.0342* | |
H1c10a-1 | 0.356763 | 0.678027 | 0.227218 | 0.0305* | |
H1c10a-2 | 0.866195 | 0.685625 | 0.226359 | 0.0305* | |
H1c10b-1 | 0.620997 | 0.94671 | 0.024162 | 0.0295* | |
H1c10b-2 | 0.11957 | 0.942674 | 0.024839 | 0.0295* | |
H1n1a-1 | 0.127816 | 0.249207 | 0.19967 | 0.0243* | |
H1n1a-2 | 0.624953 | 0.257895 | 0.199267 | 0.0243* | |
H1n1b-1 | 0.585063 | 0.380409 | 0.047749 | 0.0208* | |
H1n1b-2 | 0.086833 | 0.382395 | 0.04762 | 0.0208* | |
H1c13a-1 | 0.428304 | 0.356965 | 0.169377 | 0.03* | |
H1c13a-2 | 0.96552 | 0.288019 | 0.169645 | 0.03* | |
H1c13b-1 | 0.270187 | 0.60023 | 0.070637 | 0.0443* | |
H1c13b-2 | 0.762702 | 0.580592 | 0.071813 | 0.0443* | |
H1c14a-1 | 0.392772 | 0.301432 | 0.142507 | 0.032* | |
H1c14a-2 | 0.933529 | 0.228848 | 0.142896 | 0.032* | |
H1c14b-1 | 0.30346 | 0.672277 | 0.097105 | 0.0446* | |
H1c14b-2 | 0.796196 | 0.652337 | 0.098304 | 0.0446* | |
H1c16a-1 | 0.125129 | 0.968157 | 0.154293 | 0.0307* | |
H1c16a-2 | 0.581065 | 0.028681 | 0.152632 | 0.0307* | |
H1c16b-1 | 0.608131 | 0.370041 | 0.100477 | 0.0401* | |
H1c16b-2 | 0.123506 | 0.381991 | 0.10039 | 0.0401* | |
H1c17a-1 | 0.151548 | 0.035466 | 0.181034 | 0.028* | |
H1c17a-2 | 0.612139 | 0.089686 | 0.179538 | 0.028* | |
H1c17b-1 | 0.584427 | 0.308168 | 0.07377 | 0.0371* | |
H1c17b-2 | 0.095627 | 0.318802 | 0.073533 | 0.0371* | |
H1c19a-1 | 0.405301 | 0.194961 | 0.120408 | 0.0343* | |
H1c19a-2 | 0.86691 | 0.245815 | 0.119265 | 0.0343* | |
H1c19b-1 | 0.318109 | 0.713946 | 0.120563 | 0.0365* | |
H1c19b-2 | 0.838538 | 0.73342 | 0.11998 | 0.0365* | |
H1c20a-1 | 0.376603 | 0.137492 | 0.093527 | 0.0376* | |
H1c20a-2 | 0.838143 | 0.189608 | 0.092324 | 0.0376* | |
H1c20b-1 | 0.345269 | 0.772259 | 0.147603 | 0.0373* | |
H1c20b-2 | 0.859166 | 0.793141 | 0.146848 | 0.0373* | |
H1c22a-1 | 0.036695 | 0.906439 | 0.103616 | 0.0374* | |
H1c22a-2 | 0.569578 | 0.856731 | 0.10308 | 0.0374* | |
H1c22b-1 | 0.667944 | 0.496266 | 0.150079 | 0.0352* | |
H1c22b-2 | 0.152781 | 0.47644 | 0.151635 | 0.0352* | |
H1c23a-1 | 0.064232 | 0.970852 | 0.13033 | 0.0326* | |
H1c23a-2 | 0.598611 | 0.909416 | 0.13015 | 0.0326* | |
H1c23b-1 | 0.645499 | 0.43771 | 0.123283 | 0.0314* | |
H1c23b-2 | 0.133566 | 0.415088 | 0.124643 | 0.0314* | |
H1c21a-1 | 0.190142 | 0.993581 | 0.084899 | 0.0324* | |
H1c21a-2 | 0.689896 | 0.992223 | 0.084127 | 0.0324* | |
H1c21b-1 | 0.519154 | 0.663135 | 0.162591 | 0.0279* | |
H1c21b-2 | 0.011061 | 0.657491 | 0.163195 | 0.0279* | |
H1c1a-1 | 0.119033 | 0.840002 | 0.235523 | 0.0516* | |
H1c1a-2 | 0.618269 | 0.852116 | 0.235105 | 0.0516* | |
H2c1a-1 | 0.135119 | 0.959694 | 0.249495 | 0.0516* | |
H2c1a-2 | 0.63566 | 0.971898 | 0.249048 | 0.0516* | |
H3c1a-1 | 0.006755 | 0.96189 | 0.238721 | 0.0516* | |
H3c1a-2 | 0.507042 | 0.975278 | 0.238321 | 0.0516* | |
H1c1b-1 | 0.374943 | 0.793967 | 0.015669 | 0.0436* | |
H1c1b-2 | 0.875147 | 0.791207 | 0.015616 | 0.0436* | |
H2c1b-1 | 0.367915 | 0.680374 | 0.001088 | 0.0436* | |
H2c1b-2 | 0.865301 | 0.675612 | 0.001219 | 0.0436* | |
H3c1b-1 | 0.259001 | 0.672879 | 0.014181 | 0.0436* | |
H3c1b-2 | 0.758046 | 0.671325 | 0.014521 | 0.0436* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1a-1 | 0.04287 | 0.023246 | 0.031514 | 0.001385 | 0.01283 | 0.001207 |
O1a-2 | 0.04287 | 0.023246 | 0.031514 | 0.001385 | 0.01283 | 0.001207 |
O1b-1 | 0.029795 | 0.018585 | 0.025068 | −0.001925 | −0.007423 | 0.00172 |
O1b-2 | 0.029795 | 0.018585 | 0.025068 | −0.001925 | −0.007423 | 0.00172 |
O2a-1 | 0.093617 | 0.029089 | 0.036885 | 0.000701 | 0.035958 | −0.001939 |
O2a-2 | 0.093617 | 0.029089 | 0.036885 | 0.000701 | 0.035958 | −0.001939 |
O2b-1 | 0.050726 | 0.024678 | 0.030798 | −0.00199 | −0.021841 | −0.000842 |
O2b-2 | 0.050726 | 0.024678 | 0.030798 | −0.00199 | −0.021841 | −0.000842 |
O3a-1 | 0.014473 | 0.039555 | 0.0265 | −0.000132 | −0.000129 | −0.00322 |
O3a-2 | 0.014473 | 0.039555 | 0.0265 | −0.000132 | −0.000129 | −0.00322 |
O3b-1 | 0.014694 | 0.032498 | 0.025068 | −0.000237 | −0.002918 | −0.000915 |
O3b-2 | 0.014694 | 0.032498 | 0.025068 | −0.000237 | −0.002918 | −0.000915 |
N1a-1 | 0.016299 | 0.025018 | 0.019338 | 0.000495 | −0.000772 | −0.001281 |
N1a-2 | 0.016299 | 0.025018 | 0.019338 | 0.000495 | −0.000772 | −0.001281 |
N1b-1 | 0.013733 | 0.018933 | 0.019338 | −0.002183 | −0.001845 | 0.000146 |
N1b-2 | 0.013733 | 0.018933 | 0.019338 | −0.002183 | −0.001845 | 0.000146 |
C1a-1 | 0.049199 | 0.027665 | 0.0265 | −0.009592 | 0.00369 | 0.002159 |
C1a-2 | 0.049199 | 0.027665 | 0.0265 | −0.009592 | 0.00369 | 0.002159 |
C1b-1 | 0.039919 | 0.020163 | 0.026858 | 0.004752 | −0.00369 | 0.00322 |
C1b-2 | 0.039919 | 0.020163 | 0.026858 | 0.004752 | −0.00369 | 0.00322 |
C2a-1 | 0.025425 | 0.02824 | 0.020054 | −0.000964 | 0.000129 | −0.005012 |
C2a-2 | 0.025425 | 0.02824 | 0.020054 | −0.000964 | 0.000129 | −0.005012 |
C2b-1 | 0.022926 | 0.022977 | 0.018264 | −0.000719 | 0.001931 | 0.000293 |
C2b-2 | 0.022926 | 0.022977 | 0.018264 | −0.000719 | 0.001931 | 0.000293 |
C3a-1 | 0.021707 | 0.023512 | 0.019338 | 0.001175 | −0.001974 | −0.002817 |
C3a-2 | 0.021707 | 0.023512 | 0.019338 | 0.001175 | −0.001974 | −0.002817 |
C3b-1 | 0.01926 | 0.020951 | 0.017547 | −0.000368 | −0.001287 | −0.000768 |
C3b-2 | 0.01926 | 0.020951 | 0.017547 | −0.000368 | −0.001287 | −0.000768 |
C4a-1 | 0.020967 | 0.024929 | 0.022919 | 0.003349 | 0.002017 | −0.004244 |
C4a-2 | 0.020967 | 0.024929 | 0.022919 | 0.003349 | 0.002017 | −0.004244 |
C4b-1 | 0.024777 | 0.016144 | 0.025068 | −0.001083 | −0.005621 | −0.00161 |
C4b-2 | 0.024777 | 0.016144 | 0.025068 | −0.001083 | −0.005621 | −0.00161 |
C5a-1 | 0.025286 | 0.018406 | 0.026142 | 0.003959 | 0.004291 | −0.000988 |
C5a-2 | 0.025286 | 0.018406 | 0.026142 | 0.003959 | 0.004291 | −0.000988 |
C5b-1 | 0.024792 | 0.01506 | 0.026858 | −0.003858 | −0.004806 | −0.004025 |
C5b-2 | 0.024792 | 0.01506 | 0.026858 | −0.003858 | −0.004806 | −0.004025 |
C6a-1 | 0.022659 | 0.027657 | 0.030798 | 0.002762 | −0.004076 | −0.003256 |
C6a-2 | 0.022659 | 0.027657 | 0.030798 | 0.002762 | −0.004076 | −0.003256 |
C6b-1 | 0.024294 | 0.018178 | 0.031156 | 0.001162 | −0.002103 | −0.002707 |
C6b-2 | 0.024294 | 0.018178 | 0.031156 | 0.001162 | −0.002103 | −0.002707 |
C7a-1 | 0.029667 | 0.032076 | 0.024352 | 0.000947 | 0.000257 | 0.003403 |
C7a-2 | 0.029667 | 0.032076 | 0.024352 | 0.000947 | 0.000257 | 0.003403 |
C7b-1 | 0.033127 | 0.022914 | 0.025784 | 0.000561 | −0.00103 | −0.00011 |
C7b-2 | 0.033127 | 0.022914 | 0.025784 | 0.000561 | −0.00103 | −0.00011 |
C8a-1 | 0.030931 | 0.020645 | 0.030439 | 0.002218 | 0.003175 | 0.003366 |
C8a-2 | 0.030931 | 0.020645 | 0.030439 | 0.002218 | 0.003175 | 0.003366 |
C8b-1 | 0.031332 | 0.021262 | 0.034021 | 0.000329 | −0.008067 | 0.002964 |
C8b-2 | 0.031332 | 0.021262 | 0.034021 | 0.000329 | −0.008067 | 0.002964 |
C9a-1 | 0.029389 | 0.024869 | 0.03223 | −0.002275 | −0.001974 | −0.004573 |
C9a-2 | 0.029389 | 0.024869 | 0.03223 | −0.002275 | −0.001974 | −0.004573 |
C9b-1 | 0.02651 | 0.021706 | 0.037244 | 0.003775 | −0.002575 | −0.00311 |
C9b-2 | 0.02651 | 0.021706 | 0.037244 | 0.003775 | −0.002575 | −0.00311 |
C10a-1 | 0.027137 | 0.024521 | 0.024352 | 0.000636 | −0.002188 | −0.002378 |
C10a-2 | 0.027137 | 0.024521 | 0.024352 | 0.000636 | −0.002188 | −0.002378 |
C10b-1 | 0.025538 | 0.021718 | 0.0265 | −0.003051 | −0.000086 | −0.005049 |
C10b-2 | 0.025538 | 0.021718 | 0.0265 | −0.003051 | −0.000086 | −0.005049 |
C11a-1 | 0.012134 | 0.019979 | 0.025784 | −0.000092 | 0.000815 | 0.001171 |
C11a-2 | 0.012134 | 0.019979 | 0.025784 | −0.000092 | 0.000815 | 0.001171 |
C11b-1 | 0.011568 | 0.015662 | 0.025784 | 0.000219 | −0.000515 | 0.003037 |
C11b-2 | 0.011568 | 0.015662 | 0.025784 | 0.000219 | −0.000515 | 0.003037 |
C12a-1 | 0.016484 | 0.019393 | 0.022203 | 0.001306 | 0.000515 | 0 |
C12a-2 | 0.016484 | 0.019393 | 0.022203 | 0.001306 | 0.000515 | 0 |
C12b-1 | 0.016823 | 0.017426 | 0.020412 | −0.001999 | 0.004034 | 0.001829 |
C12b-2 | 0.016823 | 0.017426 | 0.020412 | −0.001999 | 0.004034 | 0.001829 |
C13a-1 | 0.016623 | 0.032371 | 0.026142 | −0.004599 | −0.001073 | −0.00311 |
C13a-2 | 0.016623 | 0.032371 | 0.026142 | −0.004599 | −0.001073 | −0.00311 |
C13b-1 | 0.031523 | 0.051782 | 0.027216 | 0.023748 | −0.008796 | −0.006769 |
C13b-2 | 0.031523 | 0.051782 | 0.027216 | 0.023748 | −0.008796 | −0.006769 |
C14a-1 | 0.024767 | 0.030894 | 0.024352 | −0.003187 | 0.005664 | 0.001756 |
C14a-2 | 0.024767 | 0.030894 | 0.024352 | −0.003187 | 0.005664 | 0.001756 |
C14b-1 | 0.038068 | 0.044441 | 0.028649 | 0.024682 | −0.007595 | −0.011232 |
C14b-2 | 0.038068 | 0.044441 | 0.028649 | 0.024682 | −0.007595 | −0.011232 |
C15a-1 | 0.019512 | 0.016948 | 0.024352 | 0.00313 | 0.000172 | 0.000549 |
C15a-2 | 0.019512 | 0.016948 | 0.024352 | 0.00313 | 0.000172 | 0.000549 |
C15b-1 | 0.016617 | 0.01623 | 0.022561 | −0.000416 | 0.000944 | 0.000585 |
C15b-2 | 0.016617 | 0.01623 | 0.022561 | −0.000416 | 0.000944 | 0.000585 |
C16a-1 | 0.024433 | 0.02537 | 0.026858 | −0.003954 | 0.000043 | −0.002049 |
C16a-2 | 0.024433 | 0.02537 | 0.026858 | −0.003954 | 0.000043 | −0.002049 |
C16b-1 | 0.029723 | 0.045985 | 0.024352 | 0.019355 | −0.005707 | −0.004829 |
C16b-2 | 0.029723 | 0.045985 | 0.024352 | 0.019355 | −0.005707 | −0.004829 |
C17a-1 | 0.01797 | 0.024891 | 0.027216 | −0.002845 | 0.006308 | −0.000476 |
C17a-2 | 0.01797 | 0.024891 | 0.027216 | −0.002845 | 0.006308 | −0.000476 |
C17b-1 | 0.023872 | 0.043002 | 0.025784 | 0.014353 | −0.004119 | −0.007939 |
C17b-2 | 0.023872 | 0.043002 | 0.025784 | 0.014353 | −0.004119 | −0.007939 |
C18a-1 | 0.016437 | 0.016825 | 0.02471 | 0.003832 | −0.001416 | −0.002342 |
C18a-2 | 0.016437 | 0.016825 | 0.02471 | 0.003832 | −0.001416 | −0.002342 |
C18b-1 | 0.021178 | 0.017939 | 0.021845 | −0.0053 | 0.004248 | −0.000402 |
C18b-2 | 0.021178 | 0.017939 | 0.021845 | −0.0053 | 0.004248 | −0.000402 |
C19a-1 | 0.027877 | 0.028861 | 0.029007 | −0.005449 | 0.001459 | −0.00322 |
C19a-2 | 0.027877 | 0.028861 | 0.029007 | −0.005449 | 0.001459 | −0.00322 |
C19b-1 | 0.028715 | 0.039137 | 0.023277 | 0.011951 | −0.003004 | −0.000073 |
C19b-2 | 0.028715 | 0.039137 | 0.023277 | 0.011951 | −0.003004 | −0.000073 |
C20a-1 | 0.037615 | 0.033776 | 0.022561 | −0.003104 | 0.002446 | −0.003805 |
C20a-2 | 0.037615 | 0.033776 | 0.022561 | −0.003104 | 0.002446 | −0.003805 |
C20b-1 | 0.02979 | 0.036456 | 0.027216 | 0.007128 | 0.00442 | −0.006878 |
C20b-2 | 0.02979 | 0.036456 | 0.027216 | 0.007128 | 0.00442 | −0.006878 |
C21a-1 | 0.032063 | 0.025841 | 0.022919 | 0.006795 | −0.004806 | −0.00633 |
C21a-2 | 0.032063 | 0.025841 | 0.022919 | 0.006795 | −0.004806 | −0.00633 |
C21b-1 | 0.021106 | 0.026641 | 0.021845 | −0.007378 | 0.000257 | −0.001793 |
C21b-2 | 0.021106 | 0.026641 | 0.021845 | −0.007378 | 0.000257 | −0.001793 |
C22a-1 | 0.031456 | 0.030027 | 0.031872 | −0.004007 | −0.004763 | −0.005671 |
C22a-2 | 0.031456 | 0.030027 | 0.031872 | −0.004007 | −0.004763 | −0.005671 |
C22b-1 | 0.029039 | 0.031425 | 0.027216 | 0.003753 | −0.00781 | −0.000293 |
C22b-2 | 0.029039 | 0.031425 | 0.027216 | 0.003753 | −0.00781 | −0.000293 |
C23a-1 | 0.024489 | 0.029721 | 0.027216 | −0.004537 | 0.000644 | −0.0015 |
C23a-2 | 0.024489 | 0.029721 | 0.027216 | −0.004537 | 0.000644 | −0.0015 |
C23b-1 | 0.026602 | 0.025908 | 0.026142 | 0.005611 | −0.000815 | −0.003915 |
C23b-2 | 0.026602 | 0.025908 | 0.026142 | 0.005611 | −0.000815 | −0.003915 |
O1a-1—C1a-1i | 1.4384 (1) | C9b-1—C10b-1 | 1.3853 (1) |
O1a-1—C2a-1 | 1.3236 (1) | C9b-1—H1c9b-1 | 0.9600 (1) |
O1a-2—C1a-2i | 1.4480 (1) | C9b-2—C10b-2 | 1.3834 (1) |
O1a-2—C2a-2 | 1.3242 (1) | C9b-2—H1c9b-2 | 0.9600 (1) |
O1b-1—C1b-1 | 1.4502 (1) | C10a-1—H1c10a-1 | 0.9599 (1) |
O1b-1—C2b-1 | 1.3271 (1) | C10a-2—H1c10a-2 | 0.9600 (1) |
O1b-2—C1b-2 | 1.4496 (1) | C10b-1—H1c10b-1 | 0.9600 (1) |
O1b-2—C2b-2 | 1.3263 (1) | C10b-2—H1c10b-2 | 0.9600 (1) |
O2a-1—C2a-1 | 1.1988 (1) | C11a-1—C12a-1 | 1.4984 (1) |
O2a-2—C2a-2 | 1.1934 (1) | C11a-2—C12a-2 | 1.4983 (1) |
O2b-1—C2b-1 | 1.2055 (1) | C11b-1—C12b-1 | 1.4967 (1) |
O2b-2—C2b-2 | 1.2059 (1) | C11b-2—C12b-2 | 1.5077 (1) |
O3a-1—C11a-1 | 1.2393 (1) | C12a-1—C13a-1 | 1.3875 (1) |
O3a-2—C11a-2 | 1.2361 (1) | C12a-1—C17a-1 | 1.3875 (1) |
O3b-1—C11b-1 | 1.2398 (1) | C12a-2—C13a-2 | 1.3825 (1) |
O3b-2—C11b-2 | 1.2301 (1) | C12a-2—C17a-2 | 1.3838 (1) |
N1a-1—C3a-1 | 1.4539 (1) | C12b-1—C13b-1 | 1.3743 (1) |
N1a-1—C11a-1 | 1.3309 (1) | C12b-1—C17b-1 | 1.3868 (1) |
N1a-1—H1n1a-1 | 0.9143 (1) | C12b-2—C13b-2 | 1.3710 (1) |
N1a-2—C3a-2 | 1.4566 (1) | C12b-2—C17b-2iii | 1.3833 (1) |
N1a-2—C11a-2 | 1.3335 (1) | C13a-1—C14a-1 | 1.3859 (1) |
N1a-2—H1n1a-2 | 0.9234 (1) | C13a-1—H1c13a-1 | 0.9600 (1) |
N1b-1—C3b-1 | 1.4526 (1) | C13a-2—C14a-2 | 1.3814 (1) |
N1b-1—C11b-1 | 1.3198 (1) | C13a-2—H1c13a-2 | 0.9600 (1) |
N1b-1—H1n1b-1 | 0.9177 (1) | C13b-1—C14b-1 | 1.3873 (1) |
N1b-2—C3b-2ii | 1.4525 (1) | C13b-1—H1c13b-1 | 0.9600 (1) |
N1b-2—C11b-2ii | 1.3287 (1) | C13b-2—C14b-2 | 1.3865 (1) |
N1b-2—H1n1b-2 | 0.9143 (1) | C13b-2—H1c13b-2 | 0.9600 (1) |
C1a-1—H1c1a-1 | 0.9600 (1) | C14a-1—C15a-1 | 1.3959 (1) |
C1a-1—H2c1a-1 | 0.9600 (1) | C14a-1—H1c14a-1 | 0.9600 (1) |
C1a-1—H3c1a-1 | 0.9600 (1) | C14a-2—C15a-2 | 1.3880 (1) |
C1a-2—H1c1a-2 | 0.9600 (1) | C14a-2—H1c14a-2 | 0.9600 (1) |
C1a-2—H2c1a-2 | 0.9601 (1) | C14b-1—C15b-1 | 1.3861 (1) |
C1a-2—H3c1a-2 | 0.9600 (1) | C14b-1—H1c14b-1 | 0.9600 (1) |
C1b-1—H1c1b-1 | 0.9600 (1) | C14b-2—C15b-2 | 1.3921 (1) |
C1b-1—H2c1b-1 | 0.9600 (1) | C14b-2—H1c14b-2 | 0.9600 (1) |
C1b-1—H3c1b-1 | 0.9600 (1) | C15a-1—C16a-1 | 1.4039 (1) |
C1b-2—H1c1b-2 | 0.9600 (1) | C15a-1—C18a-1 | 1.4764 (1) |
C1b-2—H2c1b-2 | 0.9600 (1) | C15a-2—C16a-2 | 1.3841 (1) |
C1b-2—H3c1b-2 | 0.9600 (1) | C15a-2—C18a-2 | 1.4914 (1) |
C2a-1—C3a-1 | 1.5189 (1) | C15b-1—C16b-1 | 1.3833 (1) |
C2a-2—C3a-2 | 1.5196 (1) | C15b-1—C18b-1 | 1.4969 (1) |
C2b-1—C3b-1 | 1.5197 (1) | C15b-2—C16b-2iii | 1.3771 (1) |
C2b-2—C3b-2 | 1.5179 (1) | C15b-2—C18b-2 | 1.4987 (1) |
C3a-1—C4a-1 | 1.5421 (1) | C16a-1—C17a-1 | 1.3860 (1) |
C3a-1—H1c3a-1 | 0.9600 (1) | C16a-1—H1c16a-1i | 0.9600 (1) |
C3a-2—C4a-2 | 1.5446 (1) | C16a-2—C17a-2 | 1.3929 (1) |
C3a-2—H1c3a-2 | 0.9600 (1) | C16a-2—H1c16a-2 | 0.9600 (1) |
C3b-1—C4b-1 | 1.5554 (1) | C16b-1—C17b-1 | 1.3763 (1) |
C3b-1—H1c3b-1 | 0.9600 (1) | C16b-1—H1c16b-1 | 0.9600 (1) |
C3b-2—C4b-2 | 1.5565 (1) | C16b-2—C17b-2 | 1.3904 (1) |
C3b-2—H1c3b-2iii | 0.9600 (1) | C16b-2—H1c16b-2 | 0.9600 (1) |
C4a-1—C5a-1 | 1.5042 (1) | C17a-1—H1c17a-1 | 0.9600 (1) |
C4a-1—H1c4a-1 | 0.9600 (1) | C17a-2—H1c17a-2 | 0.9600 (1) |
C4a-1—H2c4a-1 | 0.9599 (1) | C17b-1—H1c17b-1 | 0.9600 (1) |
C4a-2—C5a-2 | 1.5093 (1) | C17b-2—H1c17b-2 | 0.9600 (1) |
C4a-2—H1c4a-2 | 0.9600 (1) | C18a-1—C19a-1 | 1.3897 (1) |
C4a-2—H2c4a-2 | 0.9601 (1) | C18a-1—C23a-1 | 1.3929 (1) |
C4b-1—C5b-1 | 1.5061 (1) | C18a-2—C19a-2 | 1.3990 (1) |
C4b-1—H1c4b-1 | 0.9600 (1) | C18a-2—C23a-2i | 1.4042 (1) |
C4b-1—H2c4b-1 | 0.9600 (1) | C18b-1—C19b-1 | 1.3936 (1) |
C4b-2—C5b-2 | 1.5105 (1) | C18b-1—C23b-1 | 1.3994 (1) |
C4b-2—H1c4b-2 | 0.9600 (1) | C18b-2—C19b-2 | 1.3913 (1) |
C4b-2—H2c4b-2 | 0.9600 (1) | C18b-2—C23b-2iii | 1.3919 (1) |
C5a-1—C6a-1 | 1.3847 (1) | C19a-1—C20a-1 | 1.3827 (1) |
C5a-1—C10a-1 | 1.4037 (1) | C19a-1—H1c19a-1 | 0.9600 (1) |
C5a-2—C6a-2 | 1.3885 (1) | C19a-2—C20a-2 | 1.3812 (1) |
C5a-2—C10a-2 | 1.3900 (1) | C19a-2—H1c19a-2 | 0.9600 (1) |
C5b-1—C6b-1 | 1.3923 (1) | C19b-1—C20b-1 | 1.3922 (1) |
C5b-1—C10b-1i | 1.3920 (1) | C19b-1—H1c19b-1 | 0.9600 (1) |
C5b-2—C6b-2 | 1.3967 (1) | C19b-2—C20b-2 | 1.3783 (1) |
C5b-2—C10b-2iv | 1.3953 (1) | C19b-2—H1c19b-2 | 0.9600 (1) |
C6a-1—C7a-1 | 1.3826 (1) | C20a-1—C21a-1 | 1.3863 (1) |
C6a-1—H1c6a-1 | 0.9600 (1) | C20a-1—H1c20a-1 | 0.9600 (1) |
C6a-2—C7a-2 | 1.3843 (1) | C20a-2—C21a-2 | 1.3917 (1) |
C6a-2—H1c6a-2 | 0.9600 (1) | C20a-2—H1c20a-2 | 0.9600 (1) |
C6b-1—C7b-1i | 1.3843 (1) | C20b-1—C21b-1 | 1.3754 (1) |
C6b-1—H1c6b-1 | 0.9600 (1) | C20b-1—H1c20b-1 | 0.9600 (1) |
C6b-2—C7b-2i | 1.3764 (1) | C20b-2—C21b-2iii | 1.3838 (1) |
C6b-2—H1c6b-2 | 0.9600 (1) | C20b-2—H1c20b-2 | 0.9600 (1) |
C7a-1—C8a-1 | 1.3934 (1) | C21a-1—C22a-1i | 1.3813 (1) |
C7a-1—H1c7a-1 | 0.9600 (1) | C21a-1—H1c21a-1i | 0.9600 (1) |
C7a-2—C8a-2 | 1.3961 (1) | C21a-2—C22a-2i | 1.3712 (1) |
C7a-2—H1c7a-2 | 0.9600 (1) | C21a-2—H1c21a-2i | 0.9601 (1) |
C7b-1—C8b-1 | 1.3798 (1) | C21b-1—C22b-1 | 1.3754 (1) |
C7b-1—H1c7b-1 | 0.9600 (1) | C21b-1—H1c21b-1 | 0.9600 (1) |
C7b-2—C8b-2iii | 1.3786 (1) | C21b-2—C22b-2 | 1.3715 (1) |
C7b-2—H1c7b-2 | 0.9600 (1) | C21b-2—H1c21b-2 | 0.9600 (1) |
C8a-1—C9a-1 | 1.3856 (1) | C22a-1—C23a-1v | 1.3817 (1) |
C8a-1—H1c8a-1 | 0.9600 (1) | C22a-1—H1c22a-1 | 0.9600 (1) |
C8a-2—C9a-2 | 1.3792 (1) | C22a-2—C23a-2 | 1.3867 (1) |
C8a-2—H1c8a-2 | 0.9600 (1) | C22a-2—H1c22a-2 | 0.9600 (1) |
C8b-1—C9b-1 | 1.3972 (1) | C22b-1—C23b-1 | 1.3737 (1) |
C8b-1—H1c8b-1 | 0.9599 (1) | C22b-1—H1c22b-1 | 0.9600 (1) |
C8b-2—C9b-2 | 1.3911 (1) | C22b-2—C23b-2 | 1.3889 (1) |
C8b-2—H1c8b-2 | 0.9600 (1) | C22b-2—H1c22b-2 | 0.9600 (1) |
C9a-1—C10a-1 | 1.3863 (1) | C23a-1—H1c23a-1i | 0.9600 (1) |
C9a-1—H1c9a-1 | 0.9600 (1) | C23a-2—H1c23a-2 | 0.9600 (1) |
C9a-2—C10a-2 | 1.3918 (1) | C23b-1—H1c23b-1 | 0.9600 (1) |
C9a-2—H1c9a-2 | 0.9600 (1) | C23b-2—H1c23b-2 | 0.9600 (1) |
C1a-1i—O1a-1—C2a-1 | 115.5571 (17) | C5a-2—C10a-2—H1c10a-2 | 119.541 (2) |
C1a-2i—O1a-2—C2a-2 | 115.4634 (17) | C9a-2—C10a-2—H1c10a-2 | 119.5413 (19) |
C1b-1—O1b-1—C2b-1 | 114.5492 (19) | C5b-1v—C10b-1—C9b-1 | 121.054 (2) |
C1b-2—O1b-2—C2b-2 | 114.4180 (19) | C5b-1v—C10b-1—H1c10b-1 | 119.473 (2) |
C3a-1—N1a-1—C11a-1 | 121.995 (2) | C9b-1—C10b-1—H1c10b-1 | 119.4725 (17) |
C3a-1—N1a-1—H1n1a-1 | 112.993 (3) | C5b-2vi—C10b-2—C9b-2 | 121.098 (2) |
C11a-1—N1a-1—H1n1a-1 | 120.904 (2) | C5b-2vi—C10b-2—H1c10b-2 | 119.451 (2) |
C3a-2—N1a-2—C11a-2 | 122.707 (2) | C9b-2—C10b-2—H1c10b-2 | 119.4511 (17) |
C3a-2—N1a-2—H1n1a-2 | 112.457 (3) | O3a-1—C11a-1—N1a-1 | 123.557 (2) |
C11a-2—N1a-2—H1n1a-2 | 123.513 (2) | O3a-1—C11a-1—C12a-1 | 120.344 (3) |
C3b-1—N1b-1—C11b-1 | 121.496 (3) | N1a-1—C11a-1—C12a-1 | 116.089 (3) |
C3b-1—N1b-1—H1n1b-1 | 117.457 (3) | O3a-2—C11a-2—N1a-2 | 123.347 (2) |
C11b-1—N1b-1—H1n1b-1 | 120.984 (2) | O3a-2—C11a-2—C12a-2 | 120.815 (3) |
C3b-2ii—N1b-2—C11b-2ii | 120.443 (3) | N1a-2—C11a-2—C12a-2 | 115.827 (3) |
C3b-2ii—N1b-2—H1n1b-2 | 117.240 (3) | O3b-1—C11b-1—N1b-1 | 122.009 (2) |
C11b-2ii—N1b-2—H1n1b-2 | 122.198 (2) | O3b-1—C11b-1—C12b-1 | 120.798 (3) |
O1a-1v—C1a-1—H1c1a-1 | 109.4666 (19) | N1b-1—C11b-1—C12b-1 | 117.183 (3) |
O1a-1v—C1a-1—H2c1a-1 | 109.4709 (19) | O3b-2—C11b-2—N1b-2iii | 122.666 (2) |
O1a-1v—C1a-1—H3c1a-1 | 109.470 (2) | O3b-2—C11b-2—C12b-2 | 120.670 (3) |
H1c1a-1—C1a-1—H2c1a-1 | 109.4760 (8) | N1b-2iii—C11b-2—C12b-2 | 116.660 (3) |
H1c1a-1—C1a-1—H3c1a-1 | 109.4692 (9) | C11a-1—C12a-1—C13a-1 | 118.545 (2) |
H2c1a-1—C1a-1—H3c1a-1 | 109.475 (3) | C11a-1—C12a-1—C17a-1 | 122.6925 (19) |
O1a-2v—C1a-2—H1c1a-2 | 109.4754 (19) | C13a-1—C12a-1—C17a-1 | 118.7599 (19) |
O1a-2v—C1a-2—H2c1a-2 | 109.4722 (19) | C11a-2—C12a-2—C13a-2 | 117.823 (2) |
O1a-2v—C1a-2—H3c1a-2 | 109.472 (2) | C11a-2—C12a-2—C17a-2 | 123.933 (2) |
H1c1a-2—C1a-2—H2c1a-2 | 109.4669 (8) | C13a-2—C12a-2—C17a-2 | 118.229 (2) |
H1c1a-2—C1a-2—H3c1a-2 | 109.4732 (9) | C11b-1—C12b-1—C13b-1 | 118.516 (2) |
H2c1a-2—C1a-2—H3c1a-2 | 109.468 (3) | C11b-1—C12b-1—C17b-1 | 123.035 (2) |
O1b-1—C1b-1—H1c1b-1 | 109.470 (2) | C13b-1—C12b-1—C17b-1 | 118.4445 (19) |
O1b-1—C1b-1—H2c1b-1 | 109.4726 (19) | C11b-2—C12b-2—C13b-2 | 118.168 (2) |
O1b-1—C1b-1—H3c1b-1 | 109.4704 (19) | C11b-2—C12b-2—C17b-2iii | 123.111 (2) |
H1c1b-1—C1b-1—H2c1b-1 | 109.4716 (9) | C13b-2—C12b-2—C17b-2iii | 118.694 (2) |
H1c1b-1—C1b-1—H3c1b-1 | 109.4701 (10) | C12a-1—C13a-1—C14a-1 | 120.420 (2) |
H2c1b-1—C1b-1—H3c1b-1 | 109.472 (3) | C12a-1—C13a-1—H1c13a-1 | 119.7925 (19) |
O1b-2—C1b-2—H1c1b-2 | 109.470 (2) | C14a-1—C13a-1—H1c13a-1 | 119.788 (2) |
O1b-2—C1b-2—H2c1b-2 | 109.4703 (19) | C12a-2—C13a-2—C14a-2 | 120.579 (2) |
O1b-2—C1b-2—H3c1b-2 | 109.4716 (19) | C12a-2—C13a-2—H1c13a-2 | 119.710 (2) |
H1c1b-2—C1b-2—H2c1b-2 | 109.4728 (9) | C14a-2—C13a-2—H1c13a-2 | 119.711 (2) |
H1c1b-2—C1b-2—H3c1b-2 | 109.4709 (10) | C12b-1—C13b-1—C14b-1 | 121.099 (2) |
H2c1b-2—C1b-2—H3c1b-2 | 109.472 (3) | C12b-1—C13b-1—H1c13b-1 | 119.4538 (19) |
O1a-1—C2a-1—O2a-1 | 123.3494 (1) | C14b-1—C13b-1—H1c13b-1 | 119.447 (2) |
O1a-1—C2a-1—C3a-1 | 112.9495 (17) | C12b-2—C13b-2—C14b-2 | 121.210 (2) |
O2a-1—C2a-1—C3a-1 | 123.6704 (18) | C12b-2—C13b-2—H1c13b-2 | 119.394 (2) |
O1a-2—C2a-2—O2a-2 | 124.1537 (2) | C14b-2—C13b-2—H1c13b-2 | 119.396 (2) |
O1a-2—C2a-2—C3a-2 | 112.4815 (17) | C13a-1—C14a-1—C15a-1 | 121.5932 (19) |
O2a-2—C2a-2—C3a-2 | 123.3520 (19) | C13a-1—C14a-1—H1c14a-1 | 119.203 (2) |
O1b-1—C2b-1—O2b-1 | 124.09 | C15a-1—C14a-1—H1c14a-1 | 119.2036 (19) |
O1b-1—C2b-1—C3b-1 | 112.6403 (19) | C13a-2—C14a-2—C15a-2 | 121.873 (2) |
O2b-1—C2b-1—C3b-1 | 123.2516 (18) | C13a-2—C14a-2—H1c14a-2 | 119.062 (2) |
O1b-2—C2b-2—O2b-2 | 124.29 | C15a-2—C14a-2—H1c14a-2 | 119.064 (2) |
O1b-2—C2b-2—C3b-2 | 112.4791 (19) | C13b-1—C14b-1—C15b-1 | 121.366 (2) |
O2b-2—C2b-2—C3b-2 | 123.1901 (18) | C13b-1—C14b-1—H1c14b-1 | 119.314 (2) |
N1a-1—C3a-1—C2a-1 | 111.018 (2) | C15b-1—C14b-1—H1c14b-1 | 119.3206 (19) |
N1a-1—C3a-1—C4a-1 | 111.7145 (13) | C13b-2—C14b-2—C15b-2 | 120.979 (2) |
N1a-1—C3a-1—H1c3a-1 | 107.347 (3) | C13b-2—C14b-2—H1c14b-2 | 119.512 (2) |
C2a-1—C3a-1—C4a-1 | 110.9325 (19) | C15b-2—C14b-2—H1c14b-2 | 119.509 (2) |
C2a-1—C3a-1—H1c3a-1 | 108.190 (2) | C14a-1—C15a-1—C16a-1 | 117.3464 (19) |
C4a-1—C3a-1—H1c3a-1 | 107.4408 (9) | C14a-1—C15a-1—C18a-1 | 121.1133 (19) |
N1a-2—C3a-2—C2a-2 | 111.773 (2) | C16a-1—C15a-1—C18a-1 | 121.533 (2) |
N1a-2—C3a-2—C4a-2 | 111.4350 (13) | C14a-2—C15a-2—C16a-2 | 117.345 (2) |
N1a-2—C3a-2—H1c3a-2 | 107.060 (3) | C14a-2—C15a-2—C18a-2 | 120.968 (2) |
C2a-2—C3a-2—C4a-2 | 111.0949 (18) | C16a-2—C15a-2—C18a-2 | 121.684 (2) |
C2a-2—C3a-2—H1c3a-2 | 107.430 (2) | C14b-1—C15b-1—C16b-1 | 116.2843 (19) |
C4a-2—C3a-2—H1c3a-2 | 107.7979 (8) | C14b-1—C15b-1—C18b-1 | 121.842 (2) |
N1b-1—C3b-1—C2b-1 | 112.456 (2) | C16b-1—C15b-1—C18b-1 | 121.8421 (19) |
N1b-1—C3b-1—C4b-1 | 112.8710 (13) | C14b-2—C15b-2—C16b-2iii | 117.007 (2) |
N1b-1—C3b-1—H1c3b-1 | 104.809 (3) | C14b-2—C15b-2—C18b-2 | 120.576 (2) |
C2b-1—C3b-1—C4b-1 | 109.077 (2) | C16b-2iii—C15b-2—C18b-2 | 122.380 (2) |
C2b-1—C3b-1—H1c3b-1 | 108.941 (2) | C15a-1—C16a-1—C17a-1 | 120.884 (2) |
C4b-1—C3b-1—H1c3b-1 | 108.4857 (11) | C15a-1—C16a-1—H1c16a-1i | 119.5603 (19) |
N1b-2iii—C3b-2—C2b-2 | 112.688 (2) | C17a-1—C16a-1—H1c16a-1i | 119.5552 (19) |
N1b-2iii—C3b-2—C4b-2 | 113.4114 (13) | C15a-2—C16a-2—C17a-2 | 121.034 (2) |
N1b-2iii—C3b-2—H1c3b-2iii | 104.213 (3) | C15a-2—C16a-2—H1c16a-2 | 119.483 (2) |
C2b-2—C3b-2—C4b-2 | 109.045 (2) | C17a-2—C16a-2—H1c16a-2 | 119.483 (2) |
C2b-2—C3b-2—H1c3b-2iii | 109.010 (2) | C15b-1—C16b-1—C17b-1 | 123.1610 (19) |
C4b-2—C3b-2—H1c3b-2iii | 108.2185 (11) | C15b-1—C16b-1—H1c16b-1 | 118.4227 (19) |
C3a-1—C4a-1—C5a-1 | 112.6439 (19) | C17b-1—C16b-1—H1c16b-1 | 118.416 (2) |
C3a-1—C4a-1—H1c4a-1 | 109.4703 (9) | C15b-2ii—C16b-2—C17b-2 | 122.335 (2) |
C3a-1—C4a-1—H2c4a-1 | 109.4739 (13) | C15b-2ii—C16b-2—H1c16b-2 | 118.830 (2) |
C5a-1—C4a-1—H1c4a-1 | 109.468 (2) | C17b-2—C16b-2—H1c16b-2 | 118.834 (2) |
C5a-1—C4a-1—H2c4a-1 | 109.469 (2) | C12a-1—C17a-1—C16a-1 | 120.929 (2) |
H1c4a-1—C4a-1—H2c4a-1 | 106.104 (3) | C12a-1—C17a-1—H1c17a-1 | 119.5354 (19) |
C3a-2—C4a-2—C5a-2 | 113.5559 (19) | C16a-1—C17a-1—H1c17a-1 | 119.535 (2) |
C3a-2—C4a-2—H1c4a-2 | 109.4717 (8) | C12a-2—C17a-2—C16a-2 | 120.925 (2) |
C3a-2—C4a-2—H2c4a-2 | 109.4683 (12) | C12a-2—C17a-2—H1c17a-2 | 119.539 (2) |
C5a-2—C4a-2—H1c4a-2 | 109.475 (2) | C16a-2—C17a-2—H1c17a-2 | 119.536 (2) |
C5a-2—C4a-2—H2c4a-2 | 109.472 (2) | C12b-1—C17b-1—C16b-1 | 119.595 (2) |
H1c4a-2—C4a-2—H2c4a-2 | 105.050 (3) | C12b-1—C17b-1—H1c17b-1 | 120.1985 (19) |
C3b-1—C4b-1—C5b-1 | 114.138 (2) | C16b-1—C17b-1—H1c17b-1 | 120.206 (2) |
C3b-1—C4b-1—H1c4b-1 | 109.4713 (11) | C12b-2ii—C17b-2—C16b-2 | 119.743 (2) |
C3b-1—C4b-1—H2c4b-1 | 109.4700 (15) | C12b-2ii—C17b-2—H1c17b-2 | 120.131 (2) |
C5b-1—C4b-1—H1c4b-1 | 109.471 (2) | C16b-2—C17b-2—H1c17b-2 | 120.126 (2) |
C5b-1—C4b-1—H2c4b-1 | 109.4722 (19) | C15a-1—C18a-1—C19a-1 | 121.855 (2) |
H1c4b-1—C4b-1—H2c4b-1 | 104.363 (3) | C15a-1—C18a-1—C23a-1 | 121.850 (2) |
C3b-2—C4b-2—C5b-2 | 114.277 (2) | C19a-1—C18a-1—C23a-1 | 116.295 (2) |
C3b-2—C4b-2—H1c4b-2 | 109.4715 (11) | C15a-2—C18a-2—C19a-2 | 120.940 (2) |
C3b-2—C4b-2—H2c4b-2 | 109.4729 (15) | C15a-2—C18a-2—C23a-2i | 121.6248 (19) |
C5b-2—C4b-2—H1c4b-2 | 109.470 (2) | C19a-2—C18a-2—C23a-2i | 117.4349 (19) |
C5b-2—C4b-2—H2c4b-2 | 109.4710 (19) | C15b-1—C18b-1—C19b-1 | 120.654 (2) |
H1c4b-2—C4b-2—H2c4b-2 | 104.195 (3) | C15b-1—C18b-1—C23b-1 | 121.693 (2) |
C4a-1—C5a-1—C6a-1 | 120.4522 (18) | C19b-1—C18b-1—C23b-1 | 117.653 (2) |
C4a-1—C5a-1—C10a-1 | 120.940 (2) | C15b-2—C18b-2—C19b-2 | 120.9003 (19) |
C6a-1—C5a-1—C10a-1 | 118.599 (2) | C15b-2—C18b-2—C23b-2iii | 121.669 (2) |
C4a-2—C5a-2—C6a-2 | 120.0749 (19) | C19b-2—C18b-2—C23b-2iii | 117.4222 (19) |
C4a-2—C5a-2—C10a-2 | 121.339 (2) | C18a-1—C19a-1—C20a-1 | 122.583 (2) |
C6a-2—C5a-2—C10a-2 | 118.586 (2) | C18a-1—C19a-1—H1c19a-1 | 118.709 (2) |
C4b-1—C5b-1—C6b-1 | 119.2000 (17) | C20a-1—C19a-1—H1c19a-1 | 118.708 (2) |
C4b-1—C5b-1—C10b-1i | 122.268 (2) | C18a-2—C19a-2—C20a-2 | 121.446 (2) |
C6b-1—C5b-1—C10b-1i | 118.520 (2) | C18a-2—C19a-2—H1c19a-2 | 119.2752 (19) |
C4b-2—C5b-2—C6b-2 | 119.8970 (17) | C20a-2—C19a-2—H1c19a-2 | 119.2792 (19) |
C4b-2—C5b-2—C10b-2iv | 122.107 (2) | C18b-1—C19b-1—C20b-1 | 120.369 (2) |
C6b-2—C5b-2—C10b-2iv | 117.986 (2) | C18b-1—C19b-1—H1c19b-1 | 119.816 (2) |
C5a-1—C6a-1—C7a-1 | 120.5364 (19) | C20b-1—C19b-1—H1c19b-1 | 119.814 (2) |
C5a-1—C6a-1—H1c6a-1 | 119.732 (2) | C18b-2—C19b-2—C20b-2 | 121.4917 (19) |
C7a-1—C6a-1—H1c6a-1 | 119.731 (2) | C18b-2—C19b-2—H1c19b-2 | 119.2560 (19) |
C5a-2—C6a-2—C7a-2 | 120.7703 (18) | C20b-2—C19b-2—H1c19b-2 | 119.252 (2) |
C5a-2—C6a-2—H1c6a-2 | 119.619 (2) | C19a-1—C20a-1—C21a-1 | 119.526 (2) |
C7a-2—C6a-2—H1c6a-2 | 119.611 (2) | C19a-1—C20a-1—H1c20a-1 | 120.237 (2) |
C5b-1—C6b-1—C7b-1i | 120.7397 (17) | C21a-1—C20a-1—H1c20a-1 | 120.237 (2) |
C5b-1—C6b-1—H1c6b-1 | 119.627 (2) | C19a-2—C20a-2—C21a-2 | 120.0995 (19) |
C7b-1i—C6b-1—H1c6b-1 | 119.633 (2) | C19a-2—C20a-2—H1c20a-2 | 119.948 (2) |
C5b-2—C6b-2—C7b-2i | 120.9956 (17) | C21a-2—C20a-2—H1c20a-2 | 119.9525 (19) |
C5b-2—C6b-2—H1c6b-2 | 119.503 (2) | C19b-1—C20b-1—C21b-1 | 121.281 (2) |
C7b-2i—C6b-2—H1c6b-2 | 119.501 (2) | C19b-1—C20b-1—H1c20b-1 | 119.359 (2) |
C6a-1—C7a-1—C8a-1 | 121.068 (2) | C21b-1—C20b-1—H1c20b-1 | 119.360 (2) |
C6a-1—C7a-1—H1c7a-1 | 119.4654 (19) | C19b-2—C20b-2—C21b-2iii | 120.624 (2) |
C8a-1—C7a-1—H1c7a-1 | 119.467 (2) | C19b-2—C20b-2—H1c20b-2 | 119.6901 (19) |
C6a-2—C7a-2—C8a-2 | 120.252 (2) | C21b-2iii—C20b-2—H1c20b-2 | 119.6859 (19) |
C6a-2—C7a-2—H1c7a-2 | 119.8756 (19) | C20a-1—C21a-1—C22a-1i | 119.396 (2) |
C8a-2—C7a-2—H1c7a-2 | 119.872 (2) | C20a-1—C21a-1—H1c21a-1i | 120.302 (2) |
C6b-1v—C7b-1—C8b-1 | 120.400 (2) | C22a-1i—C21a-1—H1c21a-1i | 120.301 (2) |
C6b-1v—C7b-1—H1c7b-1 | 119.7996 (17) | C20a-2—C21a-2—C22a-2i | 119.3616 (19) |
C8b-1—C7b-1—H1c7b-1 | 119.800 (2) | C20a-2—C21a-2—H1c21a-2i | 120.3176 (19) |
C6b-2v—C7b-2—C8b-2iii | 120.447 (2) | C22a-2i—C21a-2—H1c21a-2i | 120.321 (2) |
C6b-2v—C7b-2—H1c7b-2 | 119.7769 (17) | C20b-1—C21b-1—C22b-1 | 118.293 (2) |
C8b-2iii—C7b-2—H1c7b-2 | 119.776 (2) | C20b-1—C21b-1—H1c21b-1 | 120.855 (2) |
C7a-1—C8a-1—C9a-1 | 118.610 (2) | C22b-1—C21b-1—H1c21b-1 | 120.852 (2) |
C7a-1—C8a-1—H1c8a-1 | 120.693 (2) | C20b-2ii—C21b-2—C22b-2 | 118.5023 (19) |
C9a-1—C8a-1—H1c8a-1 | 120.6975 (19) | C20b-2ii—C21b-2—H1c21b-2 | 120.748 (2) |
C7a-2—C8a-2—C9a-2 | 119.352 (2) | C22b-2—C21b-2—H1c21b-2 | 120.7501 (19) |
C7a-2—C8a-2—H1c8a-2 | 120.324 (2) | C21a-1v—C22a-1—C23a-1v | 119.993 (2) |
C9a-2—C8a-2—H1c8a-2 | 120.3242 (19) | C21a-1v—C22a-1—H1c22a-1 | 120.003 (2) |
C7b-1—C8b-1—C9b-1 | 119.656 (2) | C23a-1v—C22a-1—H1c22a-1 | 120.004 (2) |
C7b-1—C8b-1—H1c8b-1 | 120.176 (2) | C21a-2v—C22a-2—C23a-2 | 120.972 (2) |
C9b-1—C8b-1—H1c8b-1 | 120.1676 (17) | C21a-2v—C22a-2—H1c22a-2 | 119.5131 (19) |
C7b-2ii—C8b-2—C9b-2 | 119.716 (2) | C23a-2—C22a-2—H1c22a-2 | 119.5145 (19) |
C7b-2ii—C8b-2—H1c8b-2 | 120.141 (2) | C21b-1—C22b-1—C23b-1 | 121.594 (2) |
C9b-2—C8b-2—H1c8b-2 | 120.1432 (17) | C21b-1—C22b-1—H1c22b-1 | 119.204 (2) |
C8a-1—C9a-1—C10a-1 | 120.6469 (19) | C23b-1—C22b-1—H1c22b-1 | 119.202 (2) |
C8a-1—C9a-1—H1c9a-1 | 119.677 (2) | C21b-2—C22b-2—C23b-2 | 121.254 (2) |
C10a-1—C9a-1—H1c9a-1 | 119.676 (2) | C21b-2—C22b-2—H1c22b-2 | 119.3688 (19) |
C8a-2—C9a-2—C10a-2 | 120.1175 (18) | C23b-2—C22b-2—H1c22b-2 | 119.378 (2) |
C8a-2—C9a-2—H1c9a-2 | 119.942 (2) | C18a-1—C23a-1—C22a-1i | 122.192 (2) |
C10a-2—C9a-2—H1c9a-2 | 119.941 (2) | C18a-1—C23a-1—H1c23a-1i | 118.905 (2) |
C8b-1—C9b-1—C10b-1 | 119.6262 (17) | C22a-1i—C23a-1—H1c23a-1i | 118.903 (2) |
C8b-1—C9b-1—H1c9b-1 | 120.183 (2) | C18a-2v—C23a-2—C22a-2 | 120.6793 (19) |
C10b-1—C9b-1—H1c9b-1 | 120.191 (2) | C18a-2v—C23a-2—H1c23a-2 | 119.6587 (19) |
C8b-2—C9b-2—C10b-2 | 119.7471 (17) | C22a-2—C23a-2—H1c23a-2 | 119.662 (2) |
C8b-2—C9b-2—H1c9b-2 | 120.132 (2) | C18b-1—C23b-1—C22b-1 | 120.802 (2) |
C10b-2—C9b-2—H1c9b-2 | 120.121 (2) | C18b-1—C23b-1—H1c23b-1 | 119.596 (2) |
C5a-1—C10a-1—C9a-1 | 120.514 (2) | C22b-1—C23b-1—H1c23b-1 | 119.602 (2) |
C5a-1—C10a-1—H1c10a-1 | 119.743 (2) | C18b-2ii—C23b-2—C22b-2 | 120.643 (2) |
C9a-1—C10a-1—H1c10a-1 | 119.7425 (19) | C18b-2ii—C23b-2—H1c23b-2 | 119.6810 (19) |
C5a-2—C10a-2—C9a-2 | 120.918 (2) | C22b-2—C23b-2—H1c23b-2 | 119.676 (2) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x+1, y−1, z; (v) x, y+1, z; (vi) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3b-1—H1c3b-1···O2b-2 | 0.96 | 3.00 | 3.9236 | 161.88 |
C4a-1—H1c4a-1···O3a-2ii | 0.96 | 2.77 | 3.4434 | 128.27 |
C4a-1—H1c4a-1···C10a-2ii | 0.96 | 2.98 | 3.7486 | 138.45 |
C4a-2—H1c4a-2···O3a-1 | 0.96 | 2.75 | 3.4260 | 127.83 |
C4a-2—H1c4a-2···C10a-1 | 0.96 | 2.93 | 3.7492 | 144.34 |
C6b-1—H1c6b-1···O3b-1 | 0.96 | 2.88 | 3.5939 | 131.70 |
C6b-2—H1c6b-2···O3b-2 | 0.96 | 2.83 | 3.5523 | 132.43 |
C7a-1—H1c7a-1···C21b-2 | 0.96 | 2.99 | 3.7658 | 139.35 |
C7a-2—H1c7a-2···C21b-1 | 0.96 | 2.97 | 3.7607 | 140.04 |
C7b-2—H1c7b-2···C21a-2v | 0.96 | 2.97 | 3.8098 | 146.59 |
C9a-1—H1c9a-1···C1a-2 | 0.96 | 2.86 | 3.6920 | 145.38 |
C9a-2—H1c9a-2···O1a-1vii | 0.96 | 2.95 | 3.8977 | 168.76 |
C9a-2—H1c9a-2···C1a-1iii | 0.96 | 2.85 | 3.6445 | 141.06 |
C10a-1—H1c10a-1···O2a-2viii | 0.96 | 2.72 | 3.6500 | 162.63 |
C10a-2—H1c10a-2···O2a-1viii | 0.96 | 2.68 | 3.6154 | 163.78 |
C10b-1—H1c10b-1···O2b-2ix | 0.96 | 2.74 | 3.6551 | 158.90 |
C10b-2—H1c10b-2···O2b-1x | 0.96 | 2.73 | 3.6457 | 159.21 |
N1a-1—H1n1a-1···O3a-2ii | 0.91 | 1.97 | 2.8328 | 156.81 |
N1a-2—H1n1a-2···O3a-1 | 0.92 | 1.95 | 2.8255 | 156.64 |
N1b-1—H1n1b-1···O3b-2 | 0.92 | 2.00 | 2.8742 | 158.48 |
N1b-2—H1n1b-2···O3b-1 | 0.91 | 1.98 | 2.8516 | 159.03 |
C13a-1—H1c13a-1···C21b-1 | 0.96 | 2.97 | 3.6499 | 128.46 |
C13b-1—H1c13b-1···C8b-2 | 0.96 | 2.90 | 3.8241 | 161.36 |
C13b-2—H1c13b-2···C8b-1 | 0.96 | 3.00 | 3.9032 | 157.77 |
C14a-1—H1c14a-1···C22b-1 | 0.96 | 2.91 | 3.6389 | 134.03 |
C14a-1—H1c14a-1···C23b-1 | 0.96 | 2.88 | 3.7966 | 161.21 |
C14a-2—H1c14a-2···C23b-2iii | 0.96 | 2.93 | 3.7487 | 144.46 |
C16b-1—H1c16b-1···C19a-2 | 0.96 | 2.95 | 3.8955 | 169.74 |
C16b-1—H1c16b-1···C20a-2 | 0.96 | 2.74 | 3.5551 | 143.47 |
C17a-2—H1c17a-2···O3a-1 | 0.96 | 2.97 | 3.6900 | 132.51 |
C19a-2—H1c19a-2···C15b-2 | 0.96 | 2.97 | 3.6762 | 131.32 |
C19a-2—H1c19a-2···C18b-2 | 0.96 | 2.99 | 3.8803 | 155.54 |
C19b-2—H1c19b-2···C22a-2 | 0.96 | 2.94 | 3.8812 | 168.06 |
C19b-2—H1c19b-2···C23a-2 | 0.96 | 2.80 | 3.5858 | 140.21 |
C20a-1—H1c20a-1···C16b-1 | 0.96 | 2.93 | 3.6124 | 128.84 |
C20a-1—H1c20a-1···C17b-1 | 0.96 | 2.87 | 3.7430 | 151.33 |
C20a-2—H1c20a-2···C16b-2iii | 0.96 | 2.95 | 3.6752 | 133.58 |
C20a-2—H1c20a-2···C17b-2iii | 0.96 | 2.85 | 3.7683 | 160.85 |
C20b-1—H1c20b-1···C16a-1v | 0.96 | 2.99 | 3.9214 | 164.76 |
C22a-2—H1c22a-2···C18b-1 | 0.96 | 2.97 | 3.6792 | 131.58 |
C22b-2—H1c22b-2···C13a-1 | 0.96 | 2.98 | 3.9315 | 169.21 |
C22b-2—H1c22b-2···C14a-1 | 0.96 | 2.79 | 3.5900 | 141.73 |
C23a-1v—H1c23a-1···C20b-2ii | 0.96 | 2.87 | 3.7033 | 146.27 |
C23a-2—H1c23a-2···C19b-1 | 0.96 | 2.96 | 3.6726 | 131.95 |
C23a-2—H1c23a-2···C20b-1 | 0.96 | 2.84 | 3.7513 | 159.42 |
C23b-1—H1c23b-1···C19a-2 | 0.96 | 2.91 | 3.8350 | 162.08 |
C21a-1v—H1c21a-1···C7b-2ii | 0.96 | 2.97 | 3.7140 | 135.14 |
C21a-1v—H1c21a-1···C8b-2 | 0.96 | 2.85 | 3.7122 | 149.51 |
C21a-2v—H1c21a-2···C7b-1 | 0.96 | 2.95 | 3.6875 | 134.39 |
C21a-2v—H1c21a-2···C8b-1 | 0.96 | 2.82 | 3.6760 | 149.45 |
C21b-1—H1c21b-1···C8a-1 | 0.96 | 2.99 | 3.7822 | 141.12 |
C21b-2—H1c21b-2···C8a-2ii | 0.96 | 2.97 | 3.7816 | 142.49 |
C1b-1—H1c1b-1···C5b-1v | 0.96 | 2.95 | 3.8528 | 156.47 |
C1b-1—H1c1b-1···C10b-1 | 0.96 | 2.85 | 3.6200 | 137.59 |
C1b-2—H1c1b-2···C5b-2v | 0.96 | 2.99 | 3.8798 | 155.14 |
C1b-2—H1c1b-2···C10b-2iii | 0.96 | 2.87 | 3.6327 | 137.52 |
Symmetry codes: (ii) x−1, y, z; (iii) x+1, y, z; (v) x, y+1, z; (vii) x+1, y+1, z; (viii) −x+1, y+1/2, −z+1/2; (ix) −x+3/2, y+1/2, −z; (x) −x+1/2, y+1/2, −z. |
Acknowledgements
We thank Professor Sreenivasan Ramakrishnan, Dr Vaclav Petříček, Dr Sitaram Ramakrishnan, Professor Venkataramanan Mahalingam and Dr Saumya Mukherjee for helpful comments and fruitful discussions. We thank the editor and anonymous reviewers for important suggestions. Open access funding enabled and organized by Projekt DEAL.
Funding information
Funding for this research was provided by: Science and Engineering Research Board, Department of Science and Technology (India) (scholarship No. DST-SERB:PDF/2018/002502); Alexander von Humboldt-Stiftung.
References
Alvarez, S. (2013). Dalton Trans. 42, 8617–8636. Web of Science CrossRef CAS PubMed Google Scholar
Bastiansen, O. (1949). Acta Chem. Scand. 3, 408–414. CrossRef CAS Web of Science Google Scholar
Baudour, J. L., Delugeard, Y. & Cailleau, H. (1976). Acta Cryst. B32, 150–154. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Baudour, J.-L., Délugeard, Y. & Rivet, P. (1978). Acta Cryst. B34, 625–628. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Baudour, J. L. & Sanquer, M. (1983). Acta Cryst. B39, 75–84. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Benkert, C. & Heine, V. (1987). Phys. Rev. Lett. 58, 2232–2234. CrossRef PubMed CAS Web of Science Google Scholar
Benkert, C., Heine, V. & Simmons, E. H. (1987). J. Phys. C Solid State Phys. 20, 3337–3354. CrossRef CAS Web of Science Google Scholar
Bree, A. & Edelson, M. (1977). Chem. Phys. Lett. 46, 500–504. CrossRef CAS Web of Science Google Scholar
Bree, A. & Edelson, M. (1978). Chem. Phys. Lett. 55, 319–322. CrossRef CAS Web of Science Google Scholar
Bürkle, M., Viljas, J. K., Vonlanthen, D., Mishchenko, A., Schön, G., Mayor, M., Wandlowski, T. & Pauly, F. (2012). Phys. Rev. B, 85, 075417. Google Scholar
Busing, W. R. (1983). Acta Cryst. A39, 340–347. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cailleau, H., Moussa, F. & Mons, J. (1979). Solid State Commun. 31, 521–524. CrossRef CAS Web of Science Google Scholar
Casalone, G., Mariani, C., Mugnoli, A. & Simonetta, M. (1968). Mol. Phys. 15, 339–348. CrossRef CAS Web of Science Google Scholar
Chapuis, G. (2020). Acta Cryst. B76, 510–511. Web of Science CrossRef IUCr Journals Google Scholar
Charbonneau, G.-P. & Delugeard, Y. (1976). Acta Cryst. B32, 1420–1423. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Charbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586–1588. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Coelho, A. A. (2003). J. Appl. Cryst. 36, 86–95. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coelho, A. A. (2018). J. Appl. Cryst. 51, 210–218. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cranney, M., Comtet, G., Dujardin, G., Kim, J. W., Kampen, T. U., Horn, K., Mamatkulov, M., Stauffer, L. & Sonnet, P. (2007). Phys. Rev. B, 76, 075324. Web of Science CrossRef Google Scholar
Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond. In Structural Chemistry and Biology, 1st ed. Oxford University Press. Google Scholar
Dey, S., Schönleber, A., Mondal, S., Ali, S. I. & van Smaalen, S. (2018). Cryst. Growth Des. 18, 1394–1400. Web of Science CSD CrossRef CAS Google Scholar
Dey, S., Schönleber, A., Mondal, S., Prathapa, S. J., van Smaalen, S. & Larsen, F. K. (2016). Acta Cryst. B72, 372–380. Web of Science CrossRef IUCr Journals Google Scholar
Dey, S., Schönleber, A., van Smaalen, S., Morgenroth, W. & Krebs Larsen, F. (2022). Chem. Eur. J. 28, e202104151. Web of Science PubMed Google Scholar
Ecolivet, C., Sanquer, M., Pellegrin, J. & DeWitte, J. (1983). J. Chem. Phys. 78, 6317–6324. CrossRef CAS Web of Science Google Scholar
Friedman, P. S., Kopelman, R. & Prasad, P. N. (1974). Chem. Phys. Lett. 24, 15–17. CrossRef CAS Web of Science Google Scholar
Hargreaves, A. & Rizvi, S. H. (1962). Acta Cryst. 15, 365–373. CSD CrossRef IUCr Journals Web of Science Google Scholar
Hochstrasser, R. M., McAlpine, R. D. & Whiteman, J. D. (1973). J. Chem. Phys. 58, 5078–5088. CrossRef CAS Web of Science Google Scholar
Ishibashi, Y. (1981). J. Phys. Soc. Jpn, 50, 1255–1258. CrossRef CAS Web of Science Google Scholar
Janner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643–658. CrossRef CAS Web of Science Google Scholar
Janssen, T., Chapuis, G. & de Boissieu, M. (2018). Aperiodic Crystals: from Modulated Phases to Quasicrystals: Structure and Properties, 2nd ed. Oxford University Press. Google Scholar
Jeong, H., Li, H. B., Domulevicz, L. & Hihath, J. (2020). Adv. Funct. Mater. 30, 2000615. Web of Science CrossRef Google Scholar
Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. (2012). Angew. Chem. Int. Ed. 51, 5062–5085. CAS Google Scholar
Khatua, R., Sahoo, S. R., Sharma, S. & Sahu, S. (2020). Synth. Met. 267, 116474. Web of Science CrossRef Google Scholar
Lenstra, A. T. H., Van Alsenoy, C., Verhulst, K. & Geise, H. J. (1994). Acta Cryst. B50, 96–106. CrossRef CAS Web of Science IUCr Journals Google Scholar
Mishchenko, A., Vonlanthen, D., Meded, V., Bürkle, M., Li, C., Pobelov, I. V., Bagrets, A., Viljas, J. K., Pauly, F., Evers, F., Mayor, M. & Wandlowski, T. (2010). Nano Lett. 10, 156–163. Web of Science CrossRef CAS PubMed Google Scholar
Nespolo, M. (2019). Acta Cryst. A75, 551–573. Web of Science CrossRef IUCr Journals Google Scholar
Noohinejad, L., Mondal, S., Ali, S. I., Dey, S., van Smaalen, S. & Schönleber, A. (2015). Acta Cryst. B71, 228–234. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oniwa, K., Kanagasekaran, T., Jin, T., Akhtaruzzaman, M., Yamamoto, Y., Tamura, H., Hamada, I., Shimotani, H., Asao, N., Ikeda, S. & Tanigaki, K. (2013). J. Mater. Chem. C, 1, 4163–4170. Web of Science CSD CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parlinski, K., Schranz, W. & Kabelka, H. (1989). Phys. Rev. B, 39, 488–494. CrossRef CAS Web of Science Google Scholar
Petricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478–483. CrossRef CAS Web of Science IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345–352. Google Scholar
Petříček, V., Dušek, M. & Plášil, J. (2016). Z. Kristallogr. Cryst. Mater. 231, 583–599. Google Scholar
Pinheiro, C. B. & Abakumov, A. M. (2015). IUCrJ, 2, 137–154. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Popelier, P. L. A., Maxwell, P. I., Thacker, J. C. R. & Alkorta, I. (2019). Theor. Chem. Acc. 138, 12. Web of Science CrossRef PubMed Google Scholar
Ramakrishnan, S., Schönleber, A., Hübschle, C. B., Eisele, C., Schaller, A. M., Rekis, T., Bui, N. H. A., Feulner, F., van Smaalen, S., Bag, B., Ramakrishnan, S., Tolkiehn, M. & Paulmann, C. (2019). Phys. Rev. B, 99, 195140. Web of Science CrossRef ICSD Google Scholar
Rekis, T., Schönleber, A., Noohinejad, L., Tolkiehn, M., Paulmann, C. & van Smaalen, S. (2021). Cryst. Growth Des. 21, 2324–2331. Web of Science CSD CrossRef CAS Google Scholar
Rekis, T., Schönleber, A. & van Smaalen, S. (2020). Acta Cryst. B76, 18–27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rice, A. P., Tham, F. S. & Chronister, E. L. (2013). J. Chem. Crystallogr. 43, 14–25. Web of Science CSD CrossRef CAS Google Scholar
Rigaku Oxford Diffraction (2019). CrysAlisPro. Rigaku Corporation, Oxford, UK. Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Saito, K., Atake, T. & Chihara, H. (1985). J. Chem. Thermodyn. 17, 539–548. CrossRef CAS Web of Science Google Scholar
Sasmal, S., Nandi, S. K., Kumar, S. & Haldar, D. (2019a). ChemistrySelect, 4, 11172–11176. Web of Science CSD CrossRef CAS Google Scholar
Sasmal, S., Podder, D., Debnath, M., Nandi, S. K. & Haldar, D. (2019b). ChemistrySelect, 4, 10302–10306. Web of Science CrossRef CAS Google Scholar
Schoenleber, A. (2011). Z. Kristallogr. 226, 499–517. Web of Science CrossRef CAS Google Scholar
Schönleber, A. & Chapuis, G. (2004). Acta Cryst. B60, 108–120. Web of Science CrossRef IUCr Journals Google Scholar
Schönleber, A., Meyer, M. & Chapuis, G. (2001). J. Appl. Cryst. 34, 777–779. Web of Science CrossRef IUCr Journals Google Scholar
Schönleber, A., Pattison, P. & Chapuis, G. (2003). Z. Kristallogr. 218, 507–513. Google Scholar
Smaalen, S. van (2005). Acta Cryst. A61, 51–61. Web of Science CrossRef IUCr Journals Google Scholar
Smaalen, S. van (2012). Incommensurate Crystallography, 1st ed. Oxford University Press. Google Scholar
Smaalen, S. van, Campbell, B. J. & Stokes, H. T. (2013). Acta Cryst. A69, 75–90. Web of Science CrossRef IUCr Journals Google Scholar
Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933. Web of Science CrossRef CAS PubMed Google Scholar
Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45–55. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, H. (1959). Bull. Chem. Soc. Jpn, 32, 1340–1350. CrossRef CAS Web of Science Google Scholar
Trotter, J. (1961). Acta Cryst. 14, 1135–1140. CSD CrossRef IUCr Journals Web of Science Google Scholar
Vonlanthen, D., Mishchenko, A., Elbing, M., Neuburger, M., Wandlowski, T. & Mayor, M. (2009). Angew. Chem. Int. Ed. 48, 8886–8890. Web of Science CSD CrossRef CAS Google Scholar
Wagner, T. & Schönleber, A. (2009). Acta Cryst. B65, 249–268. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wakayama, N. I. (1981). Chem. Phys. Lett. 83, 413–417. CrossRef CAS Web of Science Google Scholar
Wei, J., Liang, B., Duan, R., Cheng, Z., Li, C., Zhou, T., Yi, Y. & Wang, Y. (2016). Angew. Chem. Int. Ed. 55, 15589–15593. Web of Science CSD CrossRef CAS Google Scholar
Wolff, P. M. de (1974). Acta Cryst. A30, 777–785. CrossRef Web of Science IUCr Journals Google Scholar
Yamamura, Y., Saito, K., Ikemoto, I. & Sorai, M. (1998). J. Phys. Condens. Matter, 10, 3359–3366. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.