addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(–)-(1R,2S,2′R,5R)-2-(1-Hydro­xyprop-2-yl)-5-methyl­cyclo­hexanol. Corrigendum

aFachbereich Chemie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
*Correspondence e-mail: uch002@uxp1.hrz.uni-dortmund.de

(Received 13 March 2000; accepted 2 April 2000)

The crystal structure of the title compound, C10H20O2, was published [Körner et al. (2000[Körner, F., Schürmann, M., Preut, H. & Kreiser, W. (2000). Acta Cryst. C56, 74-75.]). Acta Cryst. C56, 74–75] with an erroneous position for an hydroxy H atom. This has now been corrected and leads to a more sensible hydrogen-bonding scheme.

1. Comment

In the original publication of the crystal structure of the title compound (Körner et al., 2000[Körner, F., Schürmann, M., Preut, H. & Kreiser, W. (2000). Acta Cryst. C56, 74-75.]), an erroneous position for a hydroxyl H atom was reported, which was detected with PLATON (Spek, 2000[Spek, A. L. (2000). PLATON. Utrecht University, The Netherlands.]). A new refinement with merged Friedel data (the original analysis was carried out with an unmerged data set), the correct location for the hydroxy H1 atom and the additional introduction of an extinction correction, led to significant improvement in the structural results. Details of the correct hydrogen-bonding scheme are given in Table 1[link]. Molecules are joined in a hydrogen-bonded chain running in the b-axis direction.

2. Experimental

2.1.1. Crystal data
  • C10H20O2

  • Mr = 172.26

  • Monoclinic, P21

  • a = 8.5710 (7) Å

  • b = 6.4665 (3) Å

  • c = 9.8502 (8) Å

  • β = 106.783 (3)°

  • V = 522.69 (6) Å3

  • Z = 2

  • Dx = 1.095 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6694 reflections

  • θ = 3.73–25.76°

  • μ = 0.074 mm−1

  • T = 291 (1) K

  • Needle, colourless

  • 0.30 × 0.08 × 0.05 mm

2.1.2. Data collection
  • Nonius KappaCCD diffractometer

  • Method: 360 frames via ω rotation (Δω = 1°) and two times 60 s per frame

  • 6694 measured reflections

  • 1065 independent reflections

  • 761 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 25.76°

  • h = −10 → 10

  • k = −7 → 7

  • l = −11 → 11

2.1.3. Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.081

  • S = 1.012

  • 1065 reflections

  • 114 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0457P)2 + 0.0006P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.10 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.060 (13)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1′i 0.82 1.84 2.660 (2) 174
O1′—H1′⋯O1ii 0.82 1.90 2.712 (2) 173
Symmetry codes: (i) x, 1 + y, z; (ii) [1-x,y-{\script{1\over 2}},1-z].

H atoms were treated as riding with distances and displacement parameters set as follows: O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), Csp—H = 0.98 Å and Uiso(H) = 1.2Ueq(C), Csp2—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), and Csp3—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Data collection: KappaCCD Software (Nonius, 1998[Nonius (1998). KappaCCD Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1996[Otwinowski, Z. & Minor, W. (1996). Methods Enzymol. 276, 307-326.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the original publication of the crystal structure of the title compound (Körner et al., 2000), an erroneous position for a hydroxyl H atom was reported, which was detected with PLATON (Spek, 2000). A new refinement with merged Friedel data (the original analysis was carried out with an unmerged data set), the correct location for the hydroxy H1 atom and the additional introduction of an extinction correction, led to significant improvement in the structural results. Details of the correct hydrogen-bonding scheme are in Table 1. Molecules are joined in a hydrogen-bond chain running in the b axis direction.

Experimental top

No Further Text

Refinement top

H atoms were treated as riding with distances and displacement parameters set as follows: O—H 0.82 Å and Uiso(H) = 1.5Ueq(O), Csp—H 0.98 Å and Uiso(H) = 1.2Ueq(C), Csp2—H 0.97 Å and Uiso(H) = 1.2Ueq(C), and Csp3—H 0.96 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: Nonius KappaCCD Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

(-)-(1R,2S,2'R,5R)-2-(1-Hydroxyprop-2-yl)-5-methylcyclohexanol top
Crystal data top
C10H20O2F(000) = 192
Mr = 172.26Dx = 1.095 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 8.5710 (7) ÅCell parameters from 6694 reflections
b = 6.4665 (3) Åθ = 3.7–25.8°
c = 9.8502 (8) ŵ = 0.07 mm1
β = 106.783 (3)°T = 291 K
V = 522.69 (6) Å3Needle, colourless
Z = 20.30 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
761 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.8°, θmin = 3.7°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 1010
360 frames via ω–rotation (Δω = 1°) and two times 60 s per frame scansk = 77
6694 measured reflectionsl = 1111
1065 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.081Calculated w = 1/[σ2(Fo2) + (0.0457P)2 + 0.0006P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1065 reflectionsΔρmax = 0.08 e Å3
114 parametersΔρmin = 0.10 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.060 (13)
Crystal data top
C10H20O2V = 522.69 (6) Å3
Mr = 172.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.5710 (7) ŵ = 0.07 mm1
b = 6.4665 (3) ÅT = 291 K
c = 9.8502 (8) Å0.30 × 0.08 × 0.05 mm
β = 106.783 (3)°
Data collection top
Nonius KappaCCD
diffractometer
761 reflections with I > 2σ(I)
6694 measured reflectionsRint = 0.022
1065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.01Δρmax = 0.08 e Å3
1065 reflectionsΔρmin = 0.10 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40833 (18)0.3316 (2)0.35093 (19)0.0553 (5)
H10.42300.45670.36050.083*
O1'0.4694 (2)0.2645 (2)0.37048 (18)0.0678 (6)
H1'0.51290.22970.45280.102*
C10.2434 (2)0.2922 (3)0.2694 (2)0.0450 (6)
H1A0.22380.36140.17750.054*
C1'0.4989 (3)0.1110 (4)0.2770 (3)0.0592 (6)
H1'10.57020.16720.22560.071*
H1'20.55340.00650.33180.071*
C20.2225 (3)0.0607 (3)0.2438 (2)0.0446 (6)
H20.24110.00480.33680.053*
C2'0.3418 (3)0.0403 (3)0.1730 (2)0.0502 (6)
H2'0.28770.16500.12540.060*
C30.0450 (3)0.0174 (4)0.1604 (2)0.0609 (7)
H3A0.02360.07650.06630.073*
H3B0.02920.13090.14990.073*
C3'0.3791 (3)0.0932 (4)0.0584 (3)0.0681 (8)
H3'10.44090.21210.10140.102*
H3'20.27890.13730.00790.102*
H3'30.44100.01400.00960.102*
C40.0768 (3)0.1050 (4)0.2310 (3)0.0659 (8)
H4A0.18640.08050.17040.079*
H4B0.06510.03340.31990.079*
C50.0529 (3)0.3352 (4)0.2594 (3)0.0601 (7)
H50.07460.40550.16770.072*
C5A0.1712 (3)0.4215 (6)0.3354 (3)0.0899 (10)
H5A10.28120.39470.27950.135*
H5A20.15510.56800.34810.135*
H5A30.15160.35610.42630.135*
C60.1243 (3)0.3769 (4)0.3423 (2)0.0553 (6)
H6A0.14060.52490.35480.066*
H6B0.14650.31490.43560.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0504 (10)0.0389 (8)0.0707 (11)0.0058 (7)0.0085 (8)0.0043 (7)
O1'0.0800 (13)0.0374 (9)0.0742 (12)0.0061 (8)0.0038 (10)0.0021 (8)
C10.0415 (13)0.0419 (13)0.0489 (13)0.0007 (10)0.0087 (11)0.0020 (10)
C1'0.0589 (16)0.0423 (13)0.0765 (16)0.0006 (11)0.0199 (13)0.0046 (12)
C20.0465 (14)0.0391 (13)0.0463 (12)0.0045 (10)0.0105 (11)0.0007 (10)
C2'0.0532 (15)0.0404 (13)0.0562 (14)0.0031 (10)0.0145 (12)0.0073 (10)
C30.0564 (17)0.0560 (14)0.0681 (16)0.0105 (12)0.0146 (14)0.0116 (13)
C3'0.0762 (18)0.0692 (18)0.0643 (16)0.0017 (13)0.0288 (14)0.0007 (13)
C40.0457 (15)0.0751 (18)0.0748 (17)0.0080 (12)0.0142 (13)0.0043 (14)
C50.0526 (15)0.0684 (17)0.0587 (15)0.0093 (13)0.0153 (12)0.0021 (13)
C5A0.063 (2)0.112 (3)0.098 (2)0.0151 (17)0.0303 (17)0.014 (2)
C60.0590 (15)0.0466 (14)0.0590 (14)0.0036 (11)0.0150 (12)0.0039 (11)
Geometric parameters (Å, º) top
O1—C11.433 (3)C3—H3A0.9700
O1—H10.8200C3—H3B0.9700
O1'—C1'1.425 (3)C3'—H3'10.9600
O1'—H1'0.8200C3'—H3'20.9600
C1—C61.510 (3)C3'—H3'30.9600
C1—C21.520 (3)C4—C51.517 (4)
C1—H1A0.9800C4—H4A0.9700
C1'—C2'1.508 (3)C4—H4B0.9700
C1'—H1'10.9700C5—C61.527 (3)
C1'—H1'20.9700C5—C5A1.529 (3)
C2—C31.532 (3)C5—H50.9800
C2—C2'1.539 (3)C5A—H5A10.9600
C2—H20.9800C5A—H5A20.9600
C2'—C3'1.527 (3)C5A—H5A30.9600
C2'—H2'0.9800C6—H6A0.9700
C3—C41.521 (3)C6—H6B0.9700
C1—O1—H1109.5H3A—C3—H3B107.8
C1'—O1'—H1'109.5C2'—C3'—H3'1109.5
O1—C1—C6111.23 (18)C2'—C3'—H3'2109.5
O1—C1—C2108.52 (16)H3'1—C3'—H3'2109.5
C6—C1—C2111.91 (19)C2'—C3'—H3'3109.5
O1—C1—H1A108.4H3'1—C3'—H3'3109.5
C6—C1—H1A108.4H3'2—C3'—H3'3109.5
C2—C1—H1A108.4C5—C4—C3112.1 (2)
O1'—C1'—C2'111.09 (18)C5—C4—H4A109.2
O1'—C1'—H1'1109.4C3—C4—H4A109.2
C2'—C1'—H1'1109.4C5—C4—H4B109.2
O1'—C1'—H1'2109.4C3—C4—H4B109.2
C2'—C1'—H1'2109.4H4A—C4—H4B107.9
H1'1—C1'—H1'2108.0C4—C5—C6109.4 (2)
C1—C2—C3108.66 (19)C4—C5—C5A112.0 (3)
C1—C2—C2'115.59 (19)C6—C5—C5A111.8 (2)
C3—C2—C2'111.53 (17)C4—C5—H5107.8
C1—C2—H2106.9C6—C5—H5107.8
C3—C2—H2106.9C5A—C5—H5107.8
C2'—C2—H2106.9C5—C5A—H5A1109.5
C1'—C2'—C3'109.70 (19)C5—C5A—H5A2109.5
C1'—C2'—C2113.63 (18)H5A1—C5A—H5A2109.5
C3'—C2'—C2113.79 (19)C5—C5A—H5A3109.5
C1'—C2'—H2'106.4H5A1—C5A—H5A3109.5
C3'—C2'—H2'106.4H5A2—C5A—H5A3109.5
C2—C2'—H2'106.4C1—C6—C5112.73 (18)
C4—C3—C2113.2 (2)C1—C6—H6A109.0
C4—C3—H3A108.9C5—C6—H6A109.0
C2—C3—H3A108.9C1—C6—H6B109.0
C4—C3—H3B108.9C5—C6—H6B109.0
C2—C3—H3B108.9H6A—C6—H6B107.8
O1—C1—C2—C3178.33 (17)C1—C2—C3—C454.5 (3)
C6—C1—C2—C355.2 (2)C2'—C2—C3—C4177.0 (2)
O1—C1—C2—C2'55.4 (2)C2—C3—C4—C555.2 (3)
C6—C1—C2—C2'178.56 (18)C3—C4—C5—C653.2 (3)
O1'—C1'—C2'—C3'169.72 (18)C3—C4—C5—C5A177.8 (2)
O1'—C1'—C2'—C261.7 (2)O1—C1—C6—C5179.2 (2)
C1—C2—C2'—C1'88.2 (2)C2—C1—C6—C557.6 (2)
C3—C2—C2'—C1'147.1 (2)C4—C5—C6—C155.1 (3)
C1—C2—C2'—C3'38.3 (3)C5A—C5—C6—C1179.8 (2)
C3—C2—C2'—C3'86.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.821.842.660 (2)174
O1—H1···O1ii0.821.902.712 (2)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H20O2
Mr172.26
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)8.5710 (7), 6.4665 (3), 9.8502 (8)
β (°) 106.783 (3)
V3)522.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.08 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6694, 1065, 761
Rint0.022
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.081, 1.01
No. of reflections1065
No. of parameters114
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.10

Computer programs: Nonius KappaCCD Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1'i0.821.842.660 (2)174
O1'—H1'···O1ii0.821.902.712 (2)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1.
 

References

First citationKörner, F., Schürmann, M., Preut, H. & Kreiser, W. (2000). Acta Cryst. C56, 74–75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). KappaCCD Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1996). Methods Enzymol. 276, 307–326.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2000). PLATON. Utrecht University, The Netherlands.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds