metal-organic compounds
{Tris[4-(1H-pyrazol-3-yl)-3-azabut-3-enyl]amine}iron(II) diperchlorate monohydrate
aSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England
*Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk
In the title complex, [Fe(C18H24N10)](ClO4)2·H2O, the complex cation adopts a capped trigonal antiprismatic stereochemistry, with a long Fe–amine interaction [2.7468 (16) Å]. The Fe centre in the is fully high-spin at 100 K. Hydrogen bonding assembles dimeric units, which are then linked by further hydrogen bonding into chains running parallel to the crystallographic a axis.
Comment
We have been interested for some time in the spin-state transitions shown by iron(II) complexes of polydentate pyrazole-containing ligands (Holland et al., 2001; Holland, Barrett et al., 2002; Holland, McAllister et al., 2002; Elhaïk et al., 2003; Money et al., 2003, 2004; Smithson et al., 2003). During this work, we noted that both iron(II) and iron(III) complexes of tris[4-(imidazol-2-yl)-3-aza-3-butenyl]amine, the Schiff base derived from the reaction of tris(2-aminoethyl)amine (tren) with three equivalents of imidazole-2-carbaldehyde, and closely related derivatives exhibit interesting spin-state transitions (Nagasato et al., 2001; Sunatsuki et al., 2001; Ikuta et al., 2003; Yamada et al., 2003; Yukinari et al., 2003). We therefore decided to investigate the iron chemistry of the pyrazole-containing analogue tris[4-(1H-pyrazol-3-yl)-3-aza-3-butenyl]amine. We found that reactions of this ligand with hydrated Fe(ClO4)3 in MeOH yielded a dark-brown precipitate. Some of this material proved soluble on extraction with acetone, giving a dark-orange solution that afforded orange crystals of the title compound, (I), following diffusion of diethyl ether vapour into the mixture. Presumably, partial reduction of the FeIII content of the mixture by the MeOH solvent took place during the reaction. Compound (I) was subsequently synthesized in higher yield by direct treatment of the same ligand with Fe(ClO4)2·6H2O. No complexes of tris[4-(1H-pyrazol-3-yl)-3-aza-3-butenyl]amine have been reported before, although NiII and CoIII complexes of its trimethylated derivative, tris[4-(5-methyl-1H-pyrazol-3-yl)-3-aza-3-butenyl]amine, have been structurally characterized (Paul et al., 2000, 2002).
The coordination geometry about the Fe centre in (I) (Fig. 1) is best described as a capped trigonal antiprism. There are six Fe—N bonds of 2.1563 (16)–2.2547 (16) Å (Table 1) to the imine and pyrazole N-atoms donors, these lengths being typical of a high-spin FeII centre. Amine atom N2 lies at a much longer distance [2.7468 (16) Å] from the metal atom, at a position approximately central above the triangular face formed by atoms N5, N14 and N23. This distance is at the lower end of the range of capping Fe—N distances seen for high-spin FeII complexes of related heptadentate tripodal ligands. As can be seen from Table 3, there is an approximate positive correlation in this class of compound (for the ligands shown in the scheme below) between contraction of this capping Fe—N bond and an opening out of the capped face of the trigonal antiprism, indicated by an increase in the Nimine—Fe—Nimine angles [N5—Fe1—N14, N5—Fe1—N23 and N14—Fe1—N23 in (I)]. However, there is no apparent relation between these structural parameters and whether or not these compounds undergo spin-crossover upon cooling. Although the helical ligand conformation about each Fe atom is chiral, (I) crystallizes as a racemate in the centrosymmetric P21/n.
Two of the three pyrazole NH groups in (I) are hydrogen bonded to two different lattice water molecules, forming N9—H9⋯O40 and N18—H18⋯O40i interactions [symmetry code: (i) 1 − x, 1 − y, 1 − z; Table 2]. The third NH group (N27—H27) hydrogen bonds to atom O31 in one of the two independent ClO4− anions. This same anion accepts a hydrogen bond from water atom H40Aii [symmetry code: (ii) x − 1, y, z]. The other water H atom (H40B) hydrogen bonds to the other ClO4− ion in the The net effect of these interactions is to assemble two formula units into a hydrogen-bonded dimer about the inversion centre at (, , ) (Fig. 2). These dimers are in turn linked into chains running parallel to the crystallographic a direction through the Cl30/O34 anion, which accepts hydrogen bonds from two different dimer moieties.
Experimental
A solution of the tris[4-(1H-pyrazol-3-yl)-3-aza-3-butenyl]amine ligand was prepared by refluxing a mixture of pyrazole-3-carbaldehyde (1.00 g, 10.4 mmol) and tris(2-aminoethyl)amine (0.51 g, 3.47 mmol) in MeOH (100 ml) until all of the solid had dissolved. Fe(ClO4)2·6H2O (1.26 g, 3.47 mmol) was then added to the mixture, yielding a dark-yellow solution. The volume was reduced to ∼10 ml by evaporation, and then an excess of diethyl ether was added to yield a yellow–orange precipitate (yield 1.23 g, 56%). Recrystallization of the crude product from undried acetone gave orange monohydrated crystals, which lost their water of crystallization upon drying in vacuo over P2O5. Analysis found: C 34.0, H 3.9, N 22.2%; calculated for C18H24Cl2FeN10O8: C 34.0, H 3.8, N 22.1%.
Crystal data
|
Refinement
|
|
‡Yang et al. (2001). §This work; the compound does not undergo spin-crossover above 100 K. ¶Morgenstern-Badarau et al. (1998). ††Ikuta et al. (2003). ‡‡Yamada et al. (2003). §§Nagasato et al. (2001). ¶¶Deeney et al. (1998). |
The data set used for the θ = 50°. All H atoms in the complex dication were placed in calculated positions and treated using a riding model, with Csp2—H distances of 0.95 Å, Csp3—H distances of 0.99 Å and N—H distances of 0.88 Å, and all Uiso(H) parameters were fixed at 1.2Ueq(C,N). Water atoms H40A and H40B were located in a difference map and included in the with O—H distances restrained to 0.84 (1) Å and H⋯H distances restrained to 1.37 (1) Å. An antibumping restraint was also applied between atoms H9 and H40A. In the refined water molecule, the O40—H40A distance is 0.854 (19) Å, the O40—H40B distance is 0.84 (2) Å and the H40A—O40—H40B angle is 106.0 (15)°.
is 99.3% complete to 2Data collection: COLLECT (Nonius, 1999); cell DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.
Supporting information
10.1107/S010827010400407X/bm1561sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S010827010400407X/bm1561Isup2.hkl
A solution of the tris-(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine ligand was prepared by refluxing a mixture of pyrazole-3-carbaldehyde (1.00 g, 10.4 mmol) and tris-(2-aminoethyl)amine (0.51 g, 3.47 mmol) in MeOH (100 ml) until all of the solid had dissolved. Fe(ClO4)2·6H2O (1.26 g, 3.47 mmol) was then added to the mixture, yielding a dark-yellow solution. The volume was reduced to ca 10 ml by evaporation, and then an excess of diethyl ether was added to yield a yellow–orange precipitate. Yield 1.23 g, 56%. Recrystallization of the crude product from undried acetone gave orange monohydrated crystals, which lost their water of crystallization upon drying in vacuo over P2O5. Analysis found: C 34.0, H 3.9, N 22.2%; calculated for C18H24Cl2FeN10O8: C 34.0, H 3.8, N 22.1%.
The data set used for the θ = 50°. All H atoms in the complex dication were placed in calculated positions and refined using a riding model, with Csp2—H distances of 0.95, Csp3—H distances of 0.99 Å and N—H distances of 0.88 Å, and all Uiso(H) parameters fixed at 1.2Ueq(C,N). Water atoms H40A and H40B were located in a difference map and allowed to refine with O—H distances restrained to 0.84 (1) Å and H···H distances restrained to 1.37 (1) Å. An antibumping restraint was also applied between atoms H9 and H40A. In the refined water molecule, the O40—H40A distance is 0.854 (19) Å, the O40—H40B distance is 0.84 (2) Å and the H40A—O40—H40B angle is 106.0 (15)°. Table 3. Selected structural parameters for high-spin Fe(II) complexes of the ligands shown in Fig. 3. 'a' is the distance between the Fe and bridgehead N atoms [Fe1—N2 in I]; 'θ' is the average of the three N{imine}—Fe—N{imine} angles; and 'ω' is the average of the three N{heterocycle}—Fe—N{heterocycle} angles.
is 99.3% complete to 2Data collection: COLLECT (Nonius, 1999); cell
DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program. | Fig. 1. The molecular structure of the complex cation in the crystal structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. All C-bound H atoms have been omitted for clarity. Fig. 2. A partial packing diagram of (I), showing the centrosymmetric hydrogen-bonded dimerization of the formula units in the structure. Fig. 3. The ligands referred to in Table 3. ############ Should this be a Scheme? ################################ |
C18H24FeN10·2(ClO4)·H2O | F(000) = 1344 |
Mr = 653.24 | Dx = 1.644 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4086 (1) Å | Cell parameters from 25327 reflections |
b = 22.5317 (4) Å | θ = 1.8–27.5° |
c = 12.7279 (2) Å | µ = 0.84 mm−1 |
β = 101.9858 (6)° | T = 100 K |
V = 2639.38 (7) Å3 | Rectangular prism, yellow |
Z = 4 | 0.33 × 0.23 × 0.20 mm |
Nonius KappaCCD area-detector diffractometer | 6004 independent reflections |
Radiation source: fine-focus sealed tube | 4724 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 1.8° |
Area detector scans | h = −12→12 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −29→29 |
Tmin = 0.769, Tmax = 0.850 | l = −16→16 |
25327 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.047P)2 + 1.086P] where P = (Fo2 + 2Fc2)/3 |
6004 reflections | (Δ/σ)max = 0.001 |
370 parameters | Δρmax = 0.34 e Å−3 |
4 restraints | Δρmin = −0.51 e Å−3 |
C18H24FeN10·2(ClO4)·H2O | V = 2639.38 (7) Å3 |
Mr = 653.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4086 (1) Å | µ = 0.84 mm−1 |
b = 22.5317 (4) Å | T = 100 K |
c = 12.7279 (2) Å | 0.33 × 0.23 × 0.20 mm |
β = 101.9858 (6)° |
Nonius KappaCCD area-detector diffractometer | 6004 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 4724 reflections with I > 2σ(I) |
Tmin = 0.769, Tmax = 0.850 | Rint = 0.066 |
25327 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 4 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.34 e Å−3 |
6004 reflections | Δρmin = −0.51 e Å−3 |
370 parameters |
Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi=0 degree settings 1 degree omega exposures for chi=90 degree settings |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. No disorder was detected during refinement and no restraints were applied. All non-H atoms were refined anisotropically. All H atoms in the complex dication were placed in calculated positions and refined using a riding model. The two water H atoms [H40A and H40B] were located in the difference map and allowed to refine with the restraints O—H = 0.84 (1) Å and H···H = 1.37 (1) Å. An anti-bumping restraint was also applied between H9 and H40A. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.50212 (3) | 0.366591 (12) | 0.25044 (2) | 0.01882 (9) | |
N2 | 0.42530 (18) | 0.26732 (7) | 0.12636 (12) | 0.0219 (4) | |
C3 | 0.4007 (2) | 0.21984 (9) | 0.19870 (15) | 0.0248 (4) | |
H3A | 0.4267 | 0.1812 | 0.1708 | 0.030* | |
H3B | 0.2965 | 0.2186 | 0.2019 | 0.030* | |
C4 | 0.4919 (2) | 0.22993 (9) | 0.31113 (15) | 0.0240 (4) | |
H4A | 0.4648 | 0.2009 | 0.3621 | 0.029* | |
H4B | 0.5963 | 0.2249 | 0.3109 | 0.029* | |
N5 | 0.46352 (18) | 0.29044 (7) | 0.34325 (12) | 0.0209 (4) | |
C6 | 0.4015 (2) | 0.29873 (9) | 0.42240 (15) | 0.0219 (4) | |
H6 | 0.3760 | 0.2662 | 0.4622 | 0.026* | |
C7 | 0.3711 (2) | 0.35947 (9) | 0.44990 (15) | 0.0207 (4) | |
N8 | 0.40373 (18) | 0.40215 (7) | 0.38485 (13) | 0.0206 (4) | |
N9 | 0.36715 (18) | 0.45327 (7) | 0.42674 (13) | 0.0222 (4) | |
H9 | 0.3779 | 0.4885 | 0.3997 | 0.027* | |
C10 | 0.3121 (2) | 0.44404 (9) | 0.51509 (16) | 0.0238 (4) | |
H10 | 0.2786 | 0.4737 | 0.5571 | 0.029* | |
C11 | 0.3131 (2) | 0.38397 (9) | 0.53324 (15) | 0.0228 (4) | |
H11 | 0.2816 | 0.3636 | 0.5896 | 0.027* | |
C12 | 0.5505 (2) | 0.25584 (9) | 0.07622 (16) | 0.0262 (5) | |
H12A | 0.5175 | 0.2345 | 0.0075 | 0.031* | |
H12B | 0.6218 | 0.2304 | 0.1241 | 0.031* | |
C13 | 0.6227 (2) | 0.31409 (9) | 0.05553 (15) | 0.0245 (4) | |
H13A | 0.7098 | 0.3062 | 0.0255 | 0.029* | |
H13B | 0.5543 | 0.3387 | 0.0037 | 0.029* | |
N14 | 0.66354 (18) | 0.34474 (7) | 0.15855 (13) | 0.0216 (4) | |
C15 | 0.7954 (2) | 0.35771 (9) | 0.19791 (16) | 0.0237 (4) | |
H15 | 0.8691 | 0.3523 | 0.1578 | 0.028* | |
C16 | 0.8291 (2) | 0.38135 (9) | 0.30735 (16) | 0.0220 (4) | |
N17 | 0.71804 (18) | 0.38498 (7) | 0.35824 (13) | 0.0216 (4) | |
N18 | 0.77857 (18) | 0.40390 (7) | 0.45793 (13) | 0.0231 (4) | |
H18 | 0.7295 | 0.4103 | 0.5086 | 0.028* | |
C19 | 0.9228 (2) | 0.41179 (9) | 0.47085 (17) | 0.0268 (5) | |
H19 | 0.9871 | 0.4246 | 0.5345 | 0.032* | |
C20 | 0.9602 (2) | 0.39783 (10) | 0.37475 (17) | 0.0269 (5) | |
H20 | 1.0539 | 0.3991 | 0.3580 | 0.032* | |
C21 | 0.2919 (2) | 0.28376 (9) | 0.04891 (16) | 0.0254 (5) | |
H21A | 0.2325 | 0.2479 | 0.0269 | 0.030* | |
H21B | 0.3176 | 0.3013 | −0.0160 | 0.030* | |
C22 | 0.2045 (2) | 0.32831 (9) | 0.09948 (16) | 0.0259 (5) | |
H22A | 0.1180 | 0.3414 | 0.0462 | 0.031* | |
H22B | 0.1714 | 0.3100 | 0.1610 | 0.031* | |
N23 | 0.29967 (18) | 0.37886 (7) | 0.13586 (13) | 0.0219 (4) | |
C24 | 0.2685 (2) | 0.43029 (9) | 0.09623 (16) | 0.0236 (4) | |
H24 | 0.1777 | 0.4382 | 0.0496 | 0.028* | |
C25 | 0.3778 (2) | 0.47649 (9) | 0.12542 (15) | 0.0216 (4) | |
N26 | 0.50237 (18) | 0.46036 (7) | 0.19068 (13) | 0.0218 (4) | |
N27 | 0.58740 (19) | 0.50866 (7) | 0.19898 (13) | 0.0239 (4) | |
H27 | 0.6763 | 0.5103 | 0.2380 | 0.029* | |
C28 | 0.5205 (2) | 0.55426 (9) | 0.14045 (17) | 0.0274 (5) | |
H28 | 0.5604 | 0.5925 | 0.1339 | 0.033* | |
C29 | 0.3841 (2) | 0.53545 (9) | 0.09208 (17) | 0.0282 (5) | |
H29 | 0.3102 | 0.5575 | 0.0462 | 0.034* | |
Cl30 | 0.96490 (6) | 0.53235 (2) | 0.20209 (4) | 0.02860 (13) | |
O31 | 0.87955 (18) | 0.54411 (8) | 0.28247 (13) | 0.0412 (4) | |
O32 | 1.10489 (18) | 0.51063 (8) | 0.25561 (15) | 0.0435 (4) | |
O33 | 0.89253 (18) | 0.48819 (7) | 0.12910 (12) | 0.0345 (4) | |
O34 | 0.9830 (2) | 0.58560 (8) | 0.14540 (15) | 0.0525 (5) | |
Cl35 | 0.50340 (5) | 0.71869 (2) | 0.23985 (4) | 0.02391 (12) | |
O36 | 0.40823 (18) | 0.66807 (7) | 0.23031 (15) | 0.0403 (4) | |
O37 | 0.62998 (17) | 0.70271 (8) | 0.19977 (13) | 0.0378 (4) | |
O38 | 0.5450 (2) | 0.73624 (8) | 0.35028 (12) | 0.0420 (4) | |
O39 | 0.42776 (18) | 0.76658 (7) | 0.17823 (12) | 0.0338 (4) | |
O40 | 0.34003 (17) | 0.57388 (7) | 0.35871 (12) | 0.0265 (3) | |
H40A | 0.260 (2) | 0.5725 (9) | 0.3126 (18) | 0.048 (8)* | |
H40B | 0.391 (3) | 0.5997 (13) | 0.336 (2) | 0.075 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01900 (17) | 0.02036 (16) | 0.01707 (15) | −0.00015 (11) | 0.00369 (11) | 0.00102 (11) |
N2 | 0.0245 (9) | 0.0242 (9) | 0.0168 (8) | −0.0015 (7) | 0.0040 (7) | 0.0002 (7) |
C3 | 0.0328 (12) | 0.0208 (10) | 0.0212 (10) | −0.0048 (9) | 0.0063 (9) | −0.0016 (8) |
C4 | 0.0330 (12) | 0.0191 (10) | 0.0200 (10) | 0.0027 (9) | 0.0056 (9) | −0.0001 (8) |
N5 | 0.0235 (9) | 0.0215 (8) | 0.0169 (8) | 0.0011 (7) | 0.0022 (7) | −0.0005 (6) |
C6 | 0.0250 (10) | 0.0225 (10) | 0.0172 (9) | −0.0027 (8) | 0.0022 (8) | 0.0029 (8) |
C7 | 0.0182 (10) | 0.0247 (10) | 0.0185 (9) | −0.0002 (8) | 0.0023 (8) | 0.0017 (8) |
N8 | 0.0212 (9) | 0.0209 (8) | 0.0196 (8) | 0.0008 (7) | 0.0038 (7) | −0.0008 (7) |
N9 | 0.0237 (9) | 0.0200 (8) | 0.0225 (8) | 0.0006 (7) | 0.0042 (7) | −0.0014 (7) |
C10 | 0.0234 (11) | 0.0267 (11) | 0.0222 (10) | 0.0017 (9) | 0.0065 (8) | −0.0025 (8) |
C11 | 0.0222 (10) | 0.0277 (11) | 0.0187 (9) | 0.0010 (9) | 0.0047 (8) | −0.0002 (8) |
C12 | 0.0336 (12) | 0.0248 (11) | 0.0211 (10) | −0.0022 (9) | 0.0076 (9) | −0.0040 (8) |
C13 | 0.0260 (11) | 0.0292 (11) | 0.0185 (9) | −0.0007 (9) | 0.0052 (8) | −0.0041 (8) |
N14 | 0.0245 (9) | 0.0222 (9) | 0.0181 (8) | 0.0001 (7) | 0.0043 (7) | −0.0003 (6) |
C15 | 0.0235 (11) | 0.0248 (10) | 0.0243 (10) | 0.0010 (9) | 0.0081 (9) | 0.0004 (8) |
C16 | 0.0218 (10) | 0.0218 (10) | 0.0219 (10) | 0.0013 (8) | 0.0031 (8) | 0.0000 (8) |
N17 | 0.0232 (9) | 0.0225 (9) | 0.0181 (8) | −0.0001 (7) | 0.0022 (7) | −0.0022 (7) |
N18 | 0.0260 (9) | 0.0248 (9) | 0.0179 (8) | 0.0024 (7) | 0.0029 (7) | −0.0030 (7) |
C19 | 0.0250 (11) | 0.0280 (11) | 0.0246 (10) | −0.0022 (9) | −0.0010 (8) | −0.0028 (8) |
C20 | 0.0205 (10) | 0.0307 (11) | 0.0288 (11) | 0.0003 (9) | 0.0035 (9) | −0.0021 (9) |
C21 | 0.0265 (11) | 0.0275 (11) | 0.0202 (10) | −0.0064 (9) | 0.0002 (8) | −0.0012 (8) |
C22 | 0.0234 (11) | 0.0289 (11) | 0.0235 (10) | −0.0041 (9) | 0.0005 (8) | 0.0026 (8) |
N23 | 0.0215 (9) | 0.0249 (9) | 0.0190 (8) | −0.0036 (7) | 0.0037 (7) | −0.0010 (7) |
C24 | 0.0217 (10) | 0.0282 (11) | 0.0202 (10) | 0.0028 (9) | 0.0028 (8) | 0.0031 (8) |
C25 | 0.0229 (10) | 0.0233 (10) | 0.0193 (9) | 0.0004 (8) | 0.0058 (8) | 0.0002 (8) |
N26 | 0.0228 (9) | 0.0228 (9) | 0.0200 (8) | −0.0029 (7) | 0.0051 (7) | −0.0005 (7) |
N27 | 0.0234 (9) | 0.0255 (9) | 0.0229 (9) | −0.0044 (7) | 0.0052 (7) | −0.0018 (7) |
C28 | 0.0328 (12) | 0.0211 (10) | 0.0295 (11) | −0.0004 (9) | 0.0093 (9) | 0.0013 (8) |
C29 | 0.0300 (12) | 0.0241 (11) | 0.0296 (11) | 0.0024 (9) | 0.0046 (9) | 0.0024 (9) |
Cl30 | 0.0260 (3) | 0.0301 (3) | 0.0283 (3) | −0.0040 (2) | 0.0023 (2) | −0.0015 (2) |
O31 | 0.0294 (9) | 0.0597 (12) | 0.0342 (9) | −0.0028 (8) | 0.0063 (7) | −0.0178 (8) |
O32 | 0.0253 (9) | 0.0500 (11) | 0.0510 (11) | −0.0012 (8) | −0.0018 (8) | 0.0030 (9) |
O33 | 0.0373 (9) | 0.0349 (9) | 0.0300 (8) | −0.0085 (7) | 0.0042 (7) | −0.0078 (7) |
O34 | 0.0712 (14) | 0.0317 (10) | 0.0505 (11) | −0.0119 (9) | 0.0036 (10) | 0.0095 (8) |
Cl35 | 0.0304 (3) | 0.0218 (2) | 0.0210 (2) | 0.0003 (2) | 0.0089 (2) | −0.00018 (18) |
O36 | 0.0387 (10) | 0.0283 (9) | 0.0586 (11) | −0.0065 (7) | 0.0206 (8) | 0.0012 (8) |
O37 | 0.0300 (9) | 0.0482 (10) | 0.0395 (9) | −0.0008 (8) | 0.0168 (7) | −0.0046 (8) |
O38 | 0.0658 (12) | 0.0397 (10) | 0.0182 (8) | 0.0187 (9) | 0.0033 (8) | −0.0022 (7) |
O39 | 0.0468 (10) | 0.0296 (8) | 0.0234 (8) | 0.0057 (7) | 0.0041 (7) | 0.0062 (6) |
O40 | 0.0264 (8) | 0.0281 (8) | 0.0252 (8) | −0.0032 (7) | 0.0054 (7) | 0.0011 (6) |
Fe1—N2 | 2.7468 (17) | C16—N17 | 1.341 (3) |
Fe1—N5 | 2.1563 (16) | C16—C20 | 1.398 (3) |
Fe1—N8 | 2.2547 (16) | N17—N18 | 1.348 (2) |
Fe1—N14 | 2.1575 (17) | N18—C19 | 1.344 (3) |
Fe1—N17 | 2.2413 (17) | N18—H18 | 0.8800 |
Fe1—N23 | 2.1628 (17) | C19—C20 | 1.377 (3) |
Fe1—N26 | 2.2457 (16) | C19—H19 | 0.9500 |
N2—C3 | 1.461 (2) | C20—H20 | 0.9500 |
N2—C21 | 1.473 (3) | C21—C22 | 1.522 (3) |
N2—C12 | 1.475 (3) | C21—H21A | 0.9900 |
C3—C4 | 1.525 (3) | C21—H21B | 0.9900 |
C3—H3A | 0.9900 | C22—N23 | 1.463 (3) |
C3—H3B | 0.9900 | C22—H22A | 0.9900 |
C4—N5 | 1.464 (2) | C22—H22B | 0.9900 |
C4—H4A | 0.9900 | N23—C24 | 1.273 (3) |
C4—H4B | 0.9900 | C24—C25 | 1.456 (3) |
N5—C6 | 1.278 (3) | C24—H24 | 0.9500 |
C6—C7 | 1.456 (3) | C25—N26 | 1.339 (3) |
C6—H6 | 0.9500 | C25—C29 | 1.400 (3) |
C7—N8 | 1.345 (2) | N26—N27 | 1.342 (2) |
C7—C11 | 1.403 (3) | N27—C28 | 1.346 (3) |
N8—N9 | 1.344 (2) | N27—H27 | 0.8800 |
N9—C10 | 1.349 (3) | C28—C29 | 1.370 (3) |
N9—H9 | 0.8800 | C28—H28 | 0.9500 |
C10—C11 | 1.373 (3) | C29—H29 | 0.9500 |
C10—H10 | 0.9500 | Cl30—O34 | 1.4282 (17) |
C11—H11 | 0.9500 | Cl30—O33 | 1.4332 (15) |
C12—C13 | 1.526 (3) | Cl30—O32 | 1.4372 (17) |
C12—H12A | 0.9900 | Cl30—O31 | 1.4502 (17) |
C12—H12B | 0.9900 | Cl35—O39 | 1.4332 (15) |
C13—N14 | 1.461 (2) | Cl35—O38 | 1.4341 (16) |
C13—H13A | 0.9900 | Cl35—O37 | 1.4355 (16) |
C13—H13B | 0.9900 | Cl35—O36 | 1.4394 (16) |
N14—C15 | 1.272 (3) | O40—H40A | 0.854 (19) |
C15—C16 | 1.463 (3) | O40—H40B | 0.84 (2) |
C15—H15 | 0.9500 | ||
N2—Fe1—N5 | 67.23 (5) | C12—C13—H13B | 110.3 |
N2—Fe1—N8 | 128.69 (5) | H13A—C13—H13B | 108.5 |
N2—Fe1—N14 | 68.49 (6) | C15—N14—C13 | 121.04 (18) |
N2—Fe1—N17 | 126.82 (6) | C15—N14—Fe1 | 118.23 (14) |
N2—Fe1—N23 | 68.08 (6) | C13—N14—Fe1 | 120.70 (13) |
N2—Fe1—N26 | 126.16 (5) | N14—C15—C16 | 117.34 (19) |
N5—Fe1—N8 | 74.02 (6) | N14—C15—H15 | 121.3 |
N5—Fe1—N14 | 109.45 (6) | C16—C15—H15 | 121.3 |
N5—Fe1—N17 | 92.64 (6) | N17—C16—C20 | 111.33 (18) |
N5—Fe1—N23 | 104.25 (6) | N17—C16—C15 | 116.45 (18) |
N5—Fe1—N26 | 161.14 (6) | C20—C16—C15 | 132.05 (19) |
N8—Fe1—N14 | 159.82 (6) | C16—N17—N18 | 104.75 (16) |
N8—Fe1—N17 | 86.13 (6) | C16—N17—Fe1 | 113.02 (12) |
N8—Fe1—N23 | 91.34 (6) | N18—N17—Fe1 | 141.91 (13) |
N8—Fe1—N26 | 87.25 (6) | C19—N18—N17 | 112.05 (17) |
N14—Fe1—N17 | 73.95 (6) | C19—N18—H18 | 124.0 |
N14—Fe1—N23 | 106.51 (6) | N17—N18—H18 | 124.0 |
N14—Fe1—N26 | 88.90 (6) | N18—C19—C20 | 107.36 (18) |
N17—Fe1—N23 | 161.53 (7) | N18—C19—H19 | 126.3 |
N17—Fe1—N26 | 88.21 (6) | C20—C19—H19 | 126.3 |
N23—Fe1—N26 | 73.39 (6) | C19—C20—C16 | 104.49 (19) |
C3—N2—C21 | 112.40 (16) | C19—C20—H20 | 127.8 |
C3—N2—C12 | 112.93 (16) | C16—C20—H20 | 127.8 |
C21—N2—C12 | 113.64 (15) | N2—C21—C22 | 110.05 (16) |
C3—N2—Fe1 | 106.93 (11) | N2—C21—H21A | 109.7 |
C21—N2—Fe1 | 105.42 (12) | C22—C21—H21A | 109.7 |
C12—N2—Fe1 | 104.67 (11) | N2—C21—H21B | 109.7 |
N2—C3—C4 | 110.50 (16) | C22—C21—H21B | 109.7 |
N2—C3—H3A | 109.5 | H21A—C21—H21B | 108.2 |
C4—C3—H3A | 109.5 | N23—C22—C21 | 107.35 (16) |
N2—C3—H3B | 109.5 | N23—C22—H22A | 110.2 |
C4—C3—H3B | 109.5 | C21—C22—H22A | 110.2 |
H3A—C3—H3B | 108.1 | N23—C22—H22B | 110.2 |
N5—C4—C3 | 107.54 (16) | C21—C22—H22B | 110.2 |
N5—C4—H4A | 110.2 | H22A—C22—H22B | 108.5 |
C3—C4—H4A | 110.2 | C24—N23—C22 | 120.48 (17) |
N5—C4—H4B | 110.2 | C24—N23—Fe1 | 118.79 (14) |
C3—C4—H4B | 110.2 | C22—N23—Fe1 | 120.62 (13) |
H4A—C4—H4B | 108.5 | N23—C24—C25 | 117.20 (18) |
C6—N5—C4 | 119.71 (17) | N23—C24—H24 | 121.4 |
C6—N5—Fe1 | 118.15 (13) | C25—C24—H24 | 121.4 |
C4—N5—Fe1 | 121.81 (12) | N26—C25—C29 | 111.04 (18) |
N5—C6—C7 | 118.14 (18) | N26—C25—C24 | 116.44 (17) |
N5—C6—H6 | 120.9 | C29—C25—C24 | 132.33 (19) |
C7—C6—H6 | 120.9 | C25—N26—N27 | 105.05 (16) |
N8—C7—C11 | 111.00 (18) | C25—N26—Fe1 | 113.78 (13) |
N8—C7—C6 | 116.28 (17) | N27—N26—Fe1 | 141.17 (13) |
C11—C7—C6 | 132.72 (19) | N26—N27—C28 | 111.88 (17) |
N9—N8—C7 | 104.99 (15) | N26—N27—H27 | 124.1 |
N9—N8—Fe1 | 141.73 (13) | C28—N27—H27 | 124.1 |
C7—N8—Fe1 | 113.26 (13) | N27—C28—C29 | 107.42 (19) |
N8—N9—C10 | 111.92 (16) | N27—C28—H28 | 126.3 |
N8—N9—H9 | 124.0 | C29—C28—H28 | 126.3 |
C10—N9—H9 | 124.0 | C28—C29—C25 | 104.61 (19) |
N9—C10—C11 | 107.56 (18) | C28—C29—H29 | 127.7 |
N9—C10—H10 | 126.2 | C25—C29—H29 | 127.7 |
C11—C10—H10 | 126.2 | O34—Cl30—O33 | 110.25 (11) |
C10—C11—C7 | 104.53 (18) | O34—Cl30—O32 | 109.39 (12) |
C10—C11—H11 | 127.7 | O33—Cl30—O32 | 109.64 (10) |
C7—C11—H11 | 127.7 | O34—Cl30—O31 | 110.14 (12) |
N2—C12—C13 | 110.35 (17) | O33—Cl30—O31 | 109.02 (10) |
N2—C12—H12A | 109.6 | O32—Cl30—O31 | 108.36 (11) |
C13—C12—H12A | 109.6 | O39—Cl35—O38 | 109.39 (9) |
N2—C12—H12B | 109.6 | O39—Cl35—O37 | 110.41 (10) |
C13—C12—H12B | 109.6 | O38—Cl35—O37 | 109.87 (11) |
H12A—C12—H12B | 108.1 | O39—Cl35—O36 | 108.72 (10) |
N14—C13—C12 | 107.18 (16) | O38—Cl35—O36 | 109.84 (11) |
N14—C13—H13A | 110.3 | O37—Cl35—O36 | 108.59 (10) |
C12—C13—H13A | 110.3 | H40A—O40—H40B | 106.0 (15) |
N14—C13—H13B | 110.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O40 | 0.88 | 2.00 | 2.848 (2) | 160 |
N18—H18···O40i | 0.88 | 1.97 | 2.833 (2) | 168 |
N27—H27···O31 | 0.88 | 2.03 | 2.848 (2) | 155 |
O40—H40A···O32ii | 0.85 (2) | 2.04 (2) | 2.728 (2) | 137 (2) |
O40—H40B···O36 | 0.84 (2) | 2.07 (2) | 2.832 (2) | 149 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C18H24FeN10·2(ClO4)·H2O |
Mr | 653.24 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.4086 (1), 22.5317 (4), 12.7279 (2) |
β (°) | 101.9858 (6) |
V (Å3) | 2639.38 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.33 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.769, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25327, 6004, 4724 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.099, 1.04 |
No. of reflections | 6004 |
No. of parameters | 370 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.51 |
Computer programs: COLLECT (Nonius, 1999), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.
Fe1—N2 | 2.7468 (17) | Fe1—N17 | 2.2413 (17) |
Fe1—N5 | 2.1563 (16) | Fe1—N23 | 2.1628 (17) |
Fe1—N8 | 2.2547 (16) | Fe1—N26 | 2.2457 (16) |
Fe1—N14 | 2.1575 (17) | ||
N2—Fe1—N5 | 67.23 (5) | N8—Fe1—N14 | 159.82 (6) |
N2—Fe1—N8 | 128.69 (5) | N8—Fe1—N17 | 86.13 (6) |
N2—Fe1—N14 | 68.49 (6) | N8—Fe1—N23 | 91.34 (6) |
N2—Fe1—N17 | 126.82 (6) | N8—Fe1—N26 | 87.25 (6) |
N2—Fe1—N23 | 68.08 (6) | N14—Fe1—N17 | 73.95 (6) |
N2—Fe1—N26 | 126.16 (5) | N14—Fe1—N23 | 106.51 (6) |
N5—Fe1—N8 | 74.02 (6) | N14—Fe1—N26 | 88.90 (6) |
N5—Fe1—N14 | 109.45 (6) | N17—Fe1—N23 | 161.53 (7) |
N5—Fe1—N17 | 92.64 (6) | N17—Fe1—N26 | 88.21 (6) |
N5—Fe1—N23 | 104.25 (6) | N23—Fe1—N26 | 73.39 (6) |
N5—Fe1—N26 | 161.14 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O40 | 0.88 | 2.00 | 2.848 (2) | 160 |
N18—H18···O40i | 0.88 | 1.97 | 2.833 (2) | 168 |
N27—H27···O31 | 0.88 | 2.03 | 2.848 (2) | 155 |
O40—H40A···O32ii | 0.854 (19) | 2.04 (2) | 2.728 (2) | 137.1 (16) |
O40—H40B···O36 | 0.84 (2) | 2.07 (2) | 2.832 (2) | 149 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
Compound | a, Å | θ, ° | ω, ° | Spin-crossover |
on cooling? | ||||
[Fe(L1)][ClO4]2a | 2.504 (6) | 112.7 (2) | 86.1 (2) | no |
[Fe(L2)][PF6]2b | 2.724 (4) | 106.6 (3) | 86.6 (3) | n/a |
Ic | 2.7468 (16) | 106.73 (10) | 87.20 (10) | n/a |
[Fe(L4)][PF6]2a | 2.753 (8) | n/a | n/a | yes |
[Fe(L3)][PF6]2d | 3.004 (8) | 100.2 (7) | 98.0 (6) | no |
[{Fe(L5)}2–3H]NO3e | 3.122 (6) | 97.93 (13) | 93.13 (13) | yes |
3.169 (9) | 98.30 (12) | 92.95 (12) | yes | |
[{Fe(L5)}2–3H]PF6f | 3.198 (8) | 97.14 (13) | 94.41 (13) | yes |
3.215 (8) | 97.18 (14) | 94.47 (13) | yes | |
[Fe(L6)][PF6]2g | 3.261 (5) | 96.5 (3) | 97.7 (5) | no |
[Fe(L7)][ClO4]2h | 3.280 (3) | 91.5 (2) | 102.1 (2) | no |
(a) Morgenstern-Badarau et al., 2000. (b) Yang et al., 2001. (c) This work. This compound does not undergo spin-crossover above 100 K. (d) Morgenstern-Badarau et al., 1998. (e) Ikuta et al., 2003. (f) Yamada et al., 2003. (g) Nagasato et al., 2001. (h) Deeney et al., 1998. |
Acknowledgements
The authors acknowledge the Royal Society of London (for University Research Fellowships to MAH), the EPSRC and the University of Leeds.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Deeney, F. A., Harding, C. J., Morgan, G. G., McKee, V., Nelson, J., Teat, S. J. & Clegg, W. (1998). J. Chem. Soc. Dalton Trans. pp. 1837–1844. Web of Science CSD CrossRef Google Scholar
Elhaïk, J., Money, V. A., Barrett, S. A., Kilner, C. A., Radosavljevic Evans, I. & & Halcrow, M. A. (2003). Dalton Trans. pp. 2053–2060. Google Scholar
Holland, J. M., Barrett, S. A., Kilner, C. A. & Halcrow, M. A. (2002). Inorg. Chem. Commun. 5, 328–332. Web of Science CSD CrossRef CAS Google Scholar
Holland, J. M., McAllister, J. A., Kilner, C. A., Thornton-Pett, M., Bridgeman, A. J. & Halcrow, M. A. (2002). J. Chem. Soc. Dalton Trans. pp. 548–554. Web of Science CSD CrossRef Google Scholar
Holland, J. M., McAllister, J. A., Lu, Z., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2001). Chem. Commun. pp. 577–578. Web of Science CSD CrossRef Google Scholar
Ikuta, Y., Ooidemizu, M., Yamahata, Y., Yamada, M., Osa, S., Matsumoto, N., Iijima, S., Sunatsuki, Y., Kojima, M., Dahan, F. & Tuchagues, J.-P. (2003). Inorg. Chem. 42, 7001–7017. Web of Science CSD CrossRef PubMed CAS Google Scholar
McArdle, P. (1995). J. Appl. Cryst. 28, 65. CrossRef IUCr Journals Google Scholar
Money, V. A., Elhaïk, J., Radosavljevic Evans, I., Halcrow, M. A. & Howard, J. A. K. (2004). Dalton Trans. pp. 65–69. Web of Science CSD CrossRef Google Scholar
Money, V. A., Radosavljevic Evans, I., Halcrow, M. A., Goeta, A. E. & Howard, J. A. K. (2003). Chem. Commun. pp. 158–159. Web of Science CSD CrossRef Google Scholar
Morgenstern-Badarau, I., Lambert, F., Deroche, A., Cesario, M., Guilhem, J., Keita, B. & Nadjo, L. (1998). Inorg. Chim. Acta, pp. 234–241, 275–276. Google Scholar
Morgenstern-Badarau, I., Lambert, F., Renault, J.-P., Cesario, M., Marechal, J.-D. & Maseras, F. (2000). Inorg. Chim. Acta, 297, 338–350. Web of Science CSD CrossRef CAS Google Scholar
Nagasato, S., Katsuki, I., Motoda, Y., Sunatsuki, Y., Matsumoto, N. & Kojima, M. (2001). Inorg. Chem. 40, 2534–2540. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Paul, S., Barik, A. K., Butcher, R. J. & Kar, S. K. (2000). Polyhedron, 19, 2661–2666. Web of Science CSD CrossRef CAS Google Scholar
Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Smithson, R. J., Kilner, C. A., Brough, A. R. & Halcrow, M. A. (2003). Polyhedron, 22, 725–733. Web of Science CSD CrossRef CAS Google Scholar
Sunatsuki, Y., Sakata, M., Matsuzaki, S., Matsumoto, N. & Kojima, M. (2001). Chem. Lett. pp. 1254–1255. CSD CrossRef Google Scholar
Yamada, M., Ooidemizu, M., Ikuta, Y., Osa, S., Matsumoto, N., Iijima, S., Kojima, M., Dahan, F. & Tuchagues, J.-P. (2003). Inorg. Chem. 42, 8406–8416. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, S.-P., Tong, Y.-X., Zhu, H.-L., Cao, H., Chen, X.-M. & Ji, L.-N. (2001). Polyhedron, 20, 223–229. Web of Science CSD CrossRef CAS Google Scholar
Yukinari, S., Ikuta, Y., Matsumoto, N., Ohta, H., Kojima, M., Iijima, S., Hayami, S., Maeda, Y., Kaizaki, S., Dahan, F. & Tuchagues, J.-P. (2003). Angew. Chem. Int. Ed. 42, 1614–1618. Web of Science CSD CrossRef Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
We have been interested for some time in the spin-state transitions shown by iron(II) complexes of polydentate pyrazole-containing ligands (Holland et al., 2001; Holland, Barrett et al., 2002; Holland, McAllister et al., 2002; Money et al., 2003; Money et al., 2004; Elhaïk et al., 2003; Smithson et al., 2003). During this work, we noted that both iron(II) and iron(III) complexes of tris-(4-{imidazol-2-yl}-3-aza-3-butenyl)amine, the Schiff base derived from the reaction of tris(2-aminoethyl)amine (tren) with three equivalents of imidazol-2-carbaldehyde, and closely related derivatives exhibit interesting spin-state transitions (Sunatsuki et al., 2001; Nagasato et al., 2001; Ikuta et al., 2003; Yamada et al., 2003; Yukinari et al., 2003). We therefore decided to investigate the iron chemistry of the pyrazole-containing analogue, tris-(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine. We found that reactions of this ligand with hydrated Fe(ClO4)3 in MeOH yielded a dark-brown precipitate. Some of this material proved soluble on extraction with acetone, giving a dark-orange solution that afforded orange crystals of the title compound, (I), following diffusion of diethyl ether vapour into the mixture. Presumably, partial reduction of the FeIII content of the mixture by the MeOH solvent took place during the reaction. Compound (I) was subsequently synthesized in higher yield by direct treatment of the same ligand with Fe(ClO4)2·6H2O. No complexes of tris-(4-{pyrazol-3-yl}-3-aza-3-butenyl)amine have been reported before, although NiII and CoIII complexes of its trimethylated derivative tris-(4-{5-methylpyrazol-3-yl}-3-aza-3-butenyl)amine have been structurally characterized (Paul et al., 2000; Paul et al., 2002).
The coordination geometry about the Fe atom in (I) is best described as a capped trigonal antiprism. There are six Fe—N bonds of 2.1563 (16)–2.2547 (16) Å to the imine and pyrazole N donors, these lengths being typical of a high-spin FeII centre. Amine atom N2 lies at a much longer distance [2.7468 (16) Å] from the metal atom, at a position approximately centrally above the triangular face formed by atoms N5, N14 and N23. This value is at the lower end of the range of capping Fe—N distances seen for high-spin FeII complexes of related heptadentate tripodal ligands (AUTHOR: reference?). As can be seen from Table 3, there is an approximate, positive correlation in this class of compound between contraction of this capping Fe—N bond and an opening out of the capped face of the trigonal antiprism, indicated by an increase in the Nimine—Fe—Nimine angles [N5—Fe1—N14, N5—Fe1—N23 and N14—Fe1—N23 in (I)]. However, there is no apparent relation between these structural parameters and whether or not these compounds undergo spin-crossover upon cooling. Although the helical ligand conformation about each Fe is chiral, (I) crystallizes as a racemate in the centrosymmetric space group P21/n.
Two of the three pyrazole N—H groups in (I) are hydrogen bonded to two different lattice water molecules, forming N9—H9···O40 and N18—H18···O40i interactions [symmetry code: (i) 1 − x, 1 − y, 1 − z]. The third NH group (N27/H27) hydrogen bonds to atom O31 in one of the two independent ClO4− anions. This same anion accepts a hydrogen bond from water atom H40Aii [symmetry code: (ii) −1 + x, y, z]. The other water H atom (H40B) hydrogen bonds to the other ClO4− ion in the asymmetric unit. The net effect of these interactions is to assemble two formula units into a hydrogen-bonded dimer about the inversion centre at (1/2, 1/2, 1/2) (Fig. 2). These dimers are in turn linked into chains running parallel to the crystallographic a direction through the Cl30/O34 anion, which accepts hydrogen bonds from two different dimer moieties.