organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(E)-1-(2-Hydro­xy­phenyl)­propan-2-one O-methyl­oxime forms hydrogen-bonded chains of edge-fused R[\bf{_4^4}](16) and R[\bf{_4^4}](24) rings

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 13 February 2004; accepted 17 February 2004; online 11 March 2004)

The title compound, C10H13NO2, crystallizes with Z′ = 2 in space group P[\overline 1]. The mol­ecules are linked by two O—H⋯N hydrogen bonds [H⋯O = 1.97 and 1.98 Å, O⋯N = 2.810 (2) and 2.815 (2) Å, and O—H⋯N = 175 and 174°] and by one C—H⋯O hydrogen bond [H⋯O = 2.50 Å, C⋯O = 3.313 (2) Å and C—H⋯O = 144°] into chains of edge-fused centrosymmetric rings in which [{R_4^4}](16) and [{R_4^4}](24) rings alternate.

Comment

The title compound, (I[link]), was originally prepared as part of a study of the cyclization reactions of phenolic oximes (Forrester et al., 1975[Forrester, A. R., Thomson, R. H. & Woo, S.-O. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 2348-2353.]). Its structure has now been determined in order to establish both the geometry at the oxime group and the nature of the supramolecular interactions.

[Scheme 1]

Compound (I[link]) crystallizes in space group P[\overline 1], with two independent mol­ecules in the asymmetric unit (Fig. 1[link]). Both mol­ecules have the E configuration at the C=N bond. The intramolecular dimensions are very similar in the two mol­ecules, and the bond distances show no unusual features. The angles at the planar C atoms C18 and C28 show considerable variation from 120° (Table 1[link]) and both of the C—N—O angles are substantially less than 120°. As shown by the leading torsion angles, the conformations of the two mol­ecules are very similar.

The mol­ecules of (I[link]) are linked into a chain of edge-fused rings by the combination of two nearly linear O—H⋯N hydrogen bonds and one rather weak C—H⋯O hydrogen bond (Table 2[link]). Within the asymmetric unit, phenolic atom O1 in the type 1 mol­ecule (containing O1, etc.) acts as hydrogen-bond donor to oxime atom N28 in the type 2 mol­ecule (containing O2, etc.) (Fig. 1[link]), and in a similar way, phenolic atom O2 in the type 2 mol­ecule at (x, y, z) acts as hydrogen-bond donor to oxime atom N18 in the type 1 mol­ecule at (x, y, z − 1). The combination of these two hydrogen bonds then generates by translation a C22(14) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction (Fig. 2[link]).

Two such chains, related to one another by inversion, pass through each unit cell, and these two chains are weakly linked by the C—H⋯O hydrogen bond. Aryl atom C23 in the type 2 mol­ecule at (x, y, z) acts as hydrogen-bond donor to phenolic atom O1 in the type 1 mol­ecule at (1 − x, 1 − y, 1 − z), so generating by inversion an [{R_4^4}](16) ring centred at ([{1 \over 2}],[{1 \over 2}],[{1 \over 2}]). Propagation by translation and inversion of the [{R_4^4}](16) motif linking antiparallel C22(14) chains then generates an [001] chain of edge-fused rings, with [{R_4^4}](16) rings centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}] + n) (n = zero or integer) alternating with [{R_4^4}](24) rings centred at ([{1 \over 2}], [{1 \over 2}], n) (n = zero or integer) (Fig. 3[link]).

There are no direction-specific interactions between adjacent chains of rings in (I[link]). In particular, there are neither C—H⋯π(arene) hydrogen bonds nor aromatic ππ stacking interactions present in the structure.

[Figure 1]
Figure 1
The two independent mol­ecules in compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Part of the crystal structure of (I[link]), showing the formation of a C22(14) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, z − 1) and (x, y, 1 + z), respectively.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I[link]), showing the formation of a chain of alternating and edge-fused [{R_4^4}](16) and [{R_4^4}](24) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

The title compound, (I[link]), was prepared (Forrester et al., 1975[Forrester, A. R., Thomson, R. H. & Woo, S.-O. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 2348-2353.]) from 2-hydroxy­phenyl­propanone (Tinsley, 1959[Tinsley, S. W. (1959). J. Org. Chem. 24, 1197-1199.]) and O-methyl­hydroxyl­amine. Crystals of (I[link]) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol (m.p. 350–352 K).

Crystal data
  • C10H13NO2

  • Mr = 179.21

  • Triclinic, [P\overline 1]

  • a = 9.3723 (2) Å

  • b = 9.4254 (2) Å

  • c = 12.3080 (3) Å

  • α = 89.7146 (12)°

  • β = 68.5508 (11)°

  • γ = 77.0903 (10)°

  • V = 982.85 (4) Å3

  • Z = 4

  • Dx = 1.211 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4492 reflections

  • θ = 3.0–27.6°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.20 × 0.20 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.978, Tmax = 0.997

  • 8474 measured reflections

  • 4492 independent reflections

  • 3441 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.6°

  • h = −12 → 12

  • k = −12 → 12

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.09

  • 4492 reflections

  • 240 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0707P)2 + 0.2766P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.034 (6)

Table 1
Selected geometric parameters (Å, °)

O1—C11 1.367 (2)
C18—N18 1.278 (2)
N18—O18 1.422 (2)
O2—C21 1.368 (2)
C28—N28 1.280 (2)
N28—O28 1.420 (2)
C17—C18—N18 116.52 (14)
C17—C18—C19 118.82 (14)
N18—C18—C19 124.62 (15)
C18—N18—O18 111.66 (13)
N18—O18—C20 108.27 (12)
C27—C28—N28 115.95 (13)
C27—C28—C29 119.00 (14)
N28—C28—C29 125.01 (15)
C28—N28—O28 112.21 (12)
N28—O28—C30 107.86 (12)
C11—C12—C17—C18 −117.67 (16)
C17—C18—N18—O18 178.57 (12)
C18—N18—O18—C20 −171.79 (13)
C19—C18—N18—O18 1.0 (2)
C21—C22—C27—C28 −109.88 (16)
C27—C28—N28—O28 179.05 (12)
C28—N28—O28—C30 179.96 (14)
C29—C28—N28—O28 1.4 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N28 0.84 1.98 2.815 (2) 174
O2—H2⋯N18i 0.84 1.97 2.810 (2) 175
C23—H23⋯O1ii 0.95 2.50 3.313 (2) 144
Symmetry codes: (i) x,y,z-1; (ii) 1-x,1-y,1-z.

Crystals of compound (I[link]) are triclinic; space group P[\overline 1] was selected and confirmed by the successful structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and O—H distances of 0.84 Å, and with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compound, (I), was originally prepared as part of a study of the cyclization reactions of phenolic oximes (Forrester et al., 1975). Its structure has now been determined in order to establish both the geometry at the oxime group and the nature of the supramolecular interactions. \sch

Compound (I) crystallizes in space group P1, with two independent molecules in the asymmetric unit (Fig. 1). Both molecules have the (E) configuration at the C N bond; the intramolecular dimensions are very similar in the two molecules, and the bond distances show no unusual features. The angles at the planar C atoms C18 and C28 show considerable variation from 120° (Table 1) and both of the C—N—O angles are substantially less than 120°. As shown by the leading torsion angles, the conformations of the two molecules are very similar.

The molecules of (I) are linked into a chain of edge-fused rings by the combination of two nearly linear O—H···N hydrogen bonds and one rather weak C—H···O hydrogen bond (Table 2). Within the asymmetric unit, phenolic atom O1 in the type 1 molecule (containing O1, etc.) acts as hydrogen-bond donor to oxime atom N28 in the type 2 molecule (containing O2, etc.) (Fig. 1), and in a similar way, phenolic atom O2 in the type 2 molecule at (x, y, z) acts as hydrogen-bond donor to oxime atom N18 in the type 1 molecule at (x, y, z − 1). The combination of these two hydrogen bonds then generates by translation a C22(14) (Bernstein et al., 1995) chain running parallel to the [001] direction (Fig. 2).

Two such chains, related to one another by inversion, pass through each unit cell, and these two chains are weakly linked by the C—H···O hydrogen bond. Aryl atom C23 in the type 2 molecule at (x, y, z) acts as hydrogen-bond donor to phenolic atom O1 in the type 1 molecule at (1 − x, 1 − y, 1 − z), so generating by inversion an R44(16) ring centred at (1/2, 1/2, 1/2). Propagation by translation and inversion of the R44(16) motif linking antiparallel C22(14) chains then generates an [001] chain of edge-fused rings, with R44(16) rings centred at (1/2, 1/2, 1/2 + n) (n = zero or integer) alternating with R44(24) rings centred at (1/2, 1/2, n) (n = zero or integer) (Fig. 3).

There are no direction-specific interactions between adjacent chains of rings in (I). In particular, there are neither C—H···π(arene) hydrogen bonds nor aromatic ππ stacking interactions present in the structure.

Experimental top

Compound (I) was prepared (Forrester et al., 1975) from 2-hydroxyphenylpropanone (Tinsley, 1959) and O-methylhydroxylamine. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol (m.p. 350–352 K).

Refinement top

Crystals of compound (I) are triclinic. Space group P1 was selected, and confirmed by the successful structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and O—H distances of 0.84 Å, and with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(O). Please check added text.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules in compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a C22(14) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y, z − 1) and (x, y, 1 + z), respectively.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a chain of alternating and edge-fused R44(16) and R44(24) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(E)-1-(2-Hydroxyphenyl)propan-2-one O-methyloxime top
Crystal data top
C10H13NO2Z = 4
Mr = 179.21F(000) = 384
Triclinic, P1Dx = 1.211 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3723 (2) ÅCell parameters from 4492 reflections
b = 9.4254 (2) Åθ = 3.0–27.6°
c = 12.3080 (3) ŵ = 0.09 mm1
α = 89.7146 (12)°T = 120 K
β = 68.5508 (11)°Plate, colourless
γ = 77.0903 (10)°0.20 × 0.20 × 0.04 mm
V = 982.85 (4) Å3
Data collection top
Kappa-CCD
diffractometer
4492 independent reflections
Radiation source: rotating anode3441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing 1995, 1997)
h = 1212
Tmin = 0.978, Tmax = 0.997k = 1212
8474 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.2766P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4492 reflectionsΔρmax = 0.32 e Å3
240 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (6)
Crystal data top
C10H13NO2γ = 77.0903 (10)°
Mr = 179.21V = 982.85 (4) Å3
Triclinic, P1Z = 4
a = 9.3723 (2) ÅMo Kα radiation
b = 9.4254 (2) ŵ = 0.09 mm1
c = 12.3080 (3) ÅT = 120 K
α = 89.7146 (12)°0.20 × 0.20 × 0.04 mm
β = 68.5508 (11)°
Data collection top
Kappa-CCD
diffractometer
4492 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995, 1997)
3441 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.997Rint = 0.033
8474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
4492 reflectionsΔρmin = 0.32 e Å3
240 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39534 (15)0.36002 (12)0.57489 (10)0.0303 (3)
O20.55460 (14)0.17204 (13)0.03400 (10)0.0289 (3)
C110.32061 (19)0.26467 (17)0.64453 (13)0.0235 (3)
C120.38170 (19)0.20224 (17)0.72650 (14)0.0242 (3)
C130.3119 (2)0.09933 (19)0.79440 (15)0.0290 (4)
C140.1839 (2)0.0602 (2)0.78326 (16)0.0337 (4)
C150.1214 (2)0.1258 (2)0.70438 (15)0.0320 (4)
C160.1889 (2)0.22874 (18)0.63541 (14)0.0275 (4)
C170.5215 (2)0.24310 (17)0.74141 (15)0.0264 (4)
C180.65818 (19)0.11186 (17)0.71219 (14)0.0234 (3)
C190.7379 (2)0.0466 (2)0.58836 (14)0.0320 (4)
N180.69418 (15)0.06114 (14)0.79775 (12)0.0236 (3)
O180.82216 (13)0.06457 (12)0.76048 (10)0.0292 (3)
C200.8404 (2)0.1266 (2)0.86204 (17)0.0340 (4)
C210.64437 (19)0.24590 (17)0.06690 (14)0.0235 (3)
C220.58684 (19)0.30253 (16)0.18393 (14)0.0235 (3)
C230.6739 (2)0.38166 (18)0.21835 (15)0.0285 (4)
C240.8157 (2)0.40444 (19)0.14040 (17)0.0322 (4)
C250.8737 (2)0.34384 (18)0.02540 (16)0.0312 (4)
C260.7887 (2)0.26469 (18)0.01102 (14)0.0269 (4)
C270.4323 (2)0.28037 (17)0.27188 (14)0.0254 (4)
C280.30726 (19)0.42157 (17)0.30663 (13)0.0236 (3)
C290.2531 (2)0.4943 (2)0.21552 (15)0.0310 (4)
N280.25907 (16)0.47231 (14)0.41354 (12)0.0247 (3)
O280.14343 (14)0.60645 (13)0.43818 (10)0.0302 (3)
C300.0975 (2)0.6536 (2)0.55899 (15)0.0357 (4)
H10.34820.39170.53010.036*
H130.35320.05510.84960.035*
H140.13910.01140.82950.040*
H150.03230.10060.69730.038*
H160.14510.27460.58200.033*
H17A0.55330.32020.68930.032*
H17B0.49100.28240.82330.032*
H19A0.84700.05710.55730.048*
H19B0.68130.09700.54090.048*
H19C0.73770.05730.58570.048*
H20A0.86000.05410.90820.051*
H20B0.92980.21230.83800.051*
H20C0.74390.15610.90960.051*
H20.60090.14180.03710.035*
H230.63530.42130.29740.034*
H240.87230.46070.16530.039*
H250.97190.35670.02840.037*
H260.82920.22310.08960.032*
H27A0.39620.20740.23730.031*
H27B0.44890.24190.34240.031*
H29A0.26260.59580.21460.046*
H29B0.14270.49240.23380.046*
H29C0.31860.44230.13850.046*
H30A0.18880.67170.57270.054*
H30B0.05840.57760.60780.054*
H30C0.01400.74380.57920.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (7)0.0296 (6)0.0294 (6)0.0130 (5)0.0207 (6)0.0091 (5)
O20.0307 (7)0.0358 (7)0.0212 (6)0.0106 (5)0.0091 (5)0.0026 (5)
C110.0275 (8)0.0199 (7)0.0204 (7)0.0023 (6)0.0078 (6)0.0015 (6)
C120.0245 (8)0.0218 (7)0.0239 (8)0.0005 (6)0.0093 (7)0.0022 (6)
C130.0274 (9)0.0313 (9)0.0266 (8)0.0029 (7)0.0104 (7)0.0057 (7)
C140.0271 (9)0.0359 (9)0.0353 (10)0.0095 (8)0.0074 (8)0.0081 (8)
C150.0224 (9)0.0378 (10)0.0333 (9)0.0063 (7)0.0080 (7)0.0023 (8)
C160.0262 (9)0.0303 (8)0.0252 (8)0.0019 (7)0.0112 (7)0.0023 (7)
C170.0315 (9)0.0225 (8)0.0283 (8)0.0047 (7)0.0159 (7)0.0018 (6)
C180.0230 (8)0.0251 (8)0.0246 (8)0.0085 (6)0.0100 (6)0.0020 (6)
C190.0328 (10)0.0369 (10)0.0233 (8)0.0068 (8)0.0081 (7)0.0008 (7)
N180.0212 (7)0.0225 (7)0.0263 (7)0.0023 (5)0.0098 (6)0.0010 (5)
O180.0243 (6)0.0278 (6)0.0315 (6)0.0029 (5)0.0110 (5)0.0013 (5)
C200.0332 (10)0.0317 (9)0.0430 (10)0.0040 (7)0.0230 (8)0.0077 (8)
C210.0263 (8)0.0220 (7)0.0248 (8)0.0047 (6)0.0131 (7)0.0037 (6)
C220.0255 (8)0.0201 (7)0.0241 (8)0.0009 (6)0.0110 (7)0.0017 (6)
C230.0330 (9)0.0240 (8)0.0291 (9)0.0008 (7)0.0156 (7)0.0025 (7)
C240.0295 (9)0.0269 (8)0.0458 (10)0.0060 (7)0.0209 (8)0.0006 (8)
C250.0244 (9)0.0284 (9)0.0402 (10)0.0057 (7)0.0118 (7)0.0077 (7)
C260.0276 (9)0.0262 (8)0.0242 (8)0.0020 (7)0.0093 (7)0.0030 (6)
C270.0306 (9)0.0235 (8)0.0210 (8)0.0057 (7)0.0088 (7)0.0012 (6)
C280.0234 (8)0.0263 (8)0.0219 (8)0.0072 (6)0.0087 (6)0.0031 (6)
C290.0322 (9)0.0362 (9)0.0247 (8)0.0043 (8)0.0133 (7)0.0040 (7)
N280.0241 (7)0.0225 (7)0.0258 (7)0.0022 (5)0.0092 (6)0.0023 (5)
O280.0288 (6)0.0288 (6)0.0269 (6)0.0041 (5)0.0096 (5)0.0005 (5)
C300.0360 (10)0.0335 (9)0.0279 (9)0.0003 (8)0.0057 (8)0.0046 (7)
Geometric parameters (Å, º) top
O1—C111.367 (2)O2—C211.368 (2)
O1—H10.84O2—H20.84
C11—C161.393 (2)C21—C261.392 (2)
C11—C121.399 (2)C21—C221.401 (2)
C12—C131.394 (2)C22—C231.389 (2)
C12—C171.517 (2)C22—C271.516 (2)
C13—C141.383 (2)C23—C241.388 (3)
C13—H130.95C23—H230.95
C14—C151.384 (2)C24—C251.390 (3)
C14—H140.95C24—H240.95
C15—C161.391 (2)C25—C261.387 (2)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C17—C181.503 (2)C27—C281.507 (2)
C17—H17A0.99C27—H27A0.99
C17—H17B0.99C27—H27B0.99
C18—N181.278 (2)C28—N281.280 (2)
C18—C191.494 (2)C28—C291.496 (2)
C19—H19A0.98C29—H29A0.98
C19—H19B0.98C29—H29B0.98
C19—H19C0.98C29—H29C0.98
N18—O181.422 (2)N28—O281.420 (2)
O18—C201.428 (2)O28—C301.431 (2)
C20—H20A0.98C30—H30A0.98
C20—H20B0.98C30—H30B0.98
C20—H20C0.98C30—H30C0.98
C11—O1—H1109.5C21—O2—H2109.5
O1—C11—C16122.20 (14)O2—C21—C26122.37 (14)
O1—C11—C12117.53 (14)O2—C21—C22117.59 (14)
C16—C11—C12120.26 (14)C26—C21—C22120.04 (15)
C13—C12—C11118.40 (14)C23—C22—C21118.52 (15)
C13—C12—C17120.10 (14)C23—C22—C27120.09 (14)
C11—C12—C17121.50 (14)C21—C22—C27121.39 (14)
C14—C13—C12121.51 (15)C24—C23—C22121.78 (16)
C14—C13—H13119.2C24—C23—H23119.1
C12—C13—H13119.2C22—C23—H23119.1
C13—C14—C15119.62 (16)C23—C24—C25119.06 (15)
C13—C14—H14120.2C23—C24—H24120.5
C15—C14—H14120.2C25—C24—H24120.5
C14—C15—C16120.05 (16)C26—C25—C24120.16 (16)
C14—C15—H15120.0C26—C25—H25119.9
C16—C15—H15120.0C24—C25—H25119.9
C15—C16—C11120.09 (15)C25—C26—C21120.38 (16)
C15—C16—H16120.0C25—C26—H26119.8
C11—C16—H16120.0C21—C26—H26119.8
C18—C17—C12110.43 (13)C28—C27—C22111.11 (13)
C18—C17—H17A109.6C28—C27—H27A109.4
C12—C17—H17A109.6C22—C27—H27A109.4
C18—C17—H17B109.6C28—C27—H27B109.4
C12—C17—H17B109.6C22—C27—H27B109.4
H17A—C17—H17B108.1H27A—C27—H27B108.0
C17—C18—N18116.52 (14)C27—C28—N28115.95 (13)
C17—C18—C19118.82 (14)C27—C28—C29119.00 (14)
N18—C18—C19124.62 (15)N28—C28—C29125.01 (15)
C18—C19—H19A109.5C28—C29—H29A109.5
C18—C19—H19B109.5C28—C29—H29B109.5
H19A—C19—H19B109.5H29A—C29—H29B109.5
C18—C19—H19C109.5C28—C29—H29C109.5
H19A—C19—H19C109.5H29A—C29—H29C109.5
H19B—C19—H19C109.5H29B—C29—H29C109.5
C18—N18—O18111.66 (13)C28—N28—O28112.21 (12)
N18—O18—C20108.27 (12)N28—O28—C30107.86 (12)
O18—C20—H20A109.5O28—C30—H30A109.5
O18—C20—H20B109.5O28—C30—H30B109.5
H20A—C20—H20B109.5H30A—C30—H30B109.5
O18—C20—H20C109.5O28—C30—H30C109.5
H20A—C20—H20C109.5H30A—C30—H30C109.5
H20B—C20—H20C109.5H30B—C30—H30C109.5
O1—C11—C12—C13176.92 (14)O2—C21—C22—C23178.10 (13)
C16—C11—C12—C132.8 (2)C26—C21—C22—C232.4 (2)
O1—C11—C12—C172.5 (2)O2—C21—C22—C271.2 (2)
C16—C11—C12—C17177.87 (15)C26—C21—C22—C27178.27 (14)
C11—C12—C13—C140.9 (3)C21—C22—C23—C240.6 (2)
C17—C12—C13—C14179.72 (16)C27—C22—C23—C24179.92 (15)
C12—C13—C14—C151.0 (3)C22—C23—C24—C251.3 (3)
C13—C14—C15—C161.1 (3)C23—C24—C25—C261.5 (2)
C14—C15—C16—C110.8 (3)C24—C25—C26—C210.3 (2)
O1—C11—C16—C15176.94 (15)O2—C21—C26—C25178.22 (14)
C12—C11—C16—C152.7 (2)C22—C21—C26—C252.3 (2)
C13—C12—C17—C1861.69 (19)C23—C22—C27—C2869.43 (18)
C11—C12—C17—C18117.67 (16)C21—C22—C27—C28109.88 (16)
C12—C17—C18—N18110.41 (16)C22—C27—C28—N28114.08 (16)
C12—C17—C18—C1967.29 (18)C22—C27—C28—C2963.76 (18)
C17—C18—N18—O18178.57 (12)C27—C28—N28—O28179.05 (12)
C18—N18—O18—C20171.79 (13)C28—N28—O28—C30179.96 (14)
C19—C18—N18—O181.0 (2)C29—C28—N28—O281.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N280.841.982.815 (2)174
O2—H2···N18i0.841.972.810 (2)175
C23—H23···O1ii0.952.503.313 (2)144
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H13NO2
Mr179.21
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.3723 (2), 9.4254 (2), 12.3080 (3)
α, β, γ (°)89.7146 (12), 68.5508 (11), 77.0903 (10)
V3)982.85 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing 1995, 1997)
Tmin, Tmax0.978, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
8474, 4492, 3441
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.09
No. of reflections4492
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
O1—C111.367 (2)O2—C211.368 (2)
C18—N181.278 (2)C28—N281.280 (2)
N18—O181.422 (2)N28—O281.420 (2)
C17—C18—N18116.52 (14)C27—C28—N28115.95 (13)
C17—C18—C19118.82 (14)C27—C28—C29119.00 (14)
N18—C18—C19124.62 (15)N28—C28—C29125.01 (15)
C18—N18—O18111.66 (13)C28—N28—O28112.21 (12)
N18—O18—C20108.27 (12)N28—O28—C30107.86 (12)
C11—C12—C17—C18117.67 (16)C21—C22—C27—C28109.88 (16)
C17—C18—N18—O18178.57 (12)C27—C28—N28—O28179.05 (12)
C18—N18—O18—C20171.79 (13)C28—N28—O28—C30179.96 (14)
C19—C18—N18—O181.0 (2)C29—C28—N28—O281.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N280.841.982.815 (2)174
O2—H2···N18i0.841.972.810 (2)175
C23—H23···O1ii0.952.503.313 (2)144
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work, and JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationForrester, A. R., Thomson, R. H. & Woo, S.-O. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 2348–2353.  CrossRef Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTinsley, S. W. (1959). J. Org. Chem. 24, 1197–1199.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds