metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

μ-Ethane-1,2-diyl­bis­­(di­phenyl­phos­phine oxide)-κ2O:O′-bis­­[di­benzyl­di­chloro­tin(IV)]: a centrosymmetric complex containing trigonal-bipyram­idal tin(IV), linked into chains of rings by C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 February 2004; accepted 19 February 2004; online 11 March 2004)

The title compound, [Sn2Cl4(C7H7)4(C26H24O2P2)], (I[link]), was isolated from the reaction of 1,2-bis­(di­phenyl­phosphino)­ethane with di­benzyl­tin(IV) dichloride in the presence of air. The mol­ecules of (I[link]) lie across centres of inversion in space group C2/c and contain five-coordinate Sn atoms. The mol­ecules are linked into chains of rings by a single C—­H⋯π(arene) hydrogen bond.

Comment

The interaction of chelating bisphosphines with tin(IV) halides has been the subject of several investigations. Reaction of both simple phosphines and 1,2-bis­(di­phenyl­phosphino)­ethane, Ph2PCH2CH2PPh2, with SnX4 (X = Cl or Br) gave products characterized on the basis of spectral data only as 1:1 adducts containing six-coordinate tin (Reutov et al., 1988[Reutov, O. A., Petrosyan, V. S., Yashina, N. S. & Gefel, E. I. (1988). J. Organomet. Chem. 341, C31-C34.]). On the other hand, the reaction of the same bisphosphine with Me2SnCl2 in the presence of air gave a 1:1 adduct characterized by X-ray diffraction as a continuous-chain polymer containing the oxidized ligand Ph2P(O)CH2CH2P(O)Ph2 bridging pairs of six-coordinate Sn atoms (Pettinari et al., 2001[Pettinari, C., Marchetti, F., Cingolani, A., Pettinari, R., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 312, 125-132.]). The analogous product from Ph2SnCl2 was assigned a similar structure, but in the absence of air, no reaction was observed with R2SnCl2 (R = Me or Ph). We have now investigated the reaction of 1,2-bis­(di­phenyl­phosphino)­ethane with di­benzyl­tin(IV) dichloride, (PhCH2)2SnCl2, and report here the molecular and supramolecular structure of the product, (I[link]), a 2:1 complex containing the oxidized ligand Ph2P(O)CH2CH2P(O)Ph2 bridging pairs of five-coordinate Sn atoms. The oxidation of the bisphosphine can be readily diagnosed both from the IR absorption characteristics of P=O bonds and from the 31P NMR spectrum.

[Scheme 1]

Complex (I[link]) is centrosymmetric; it lies across a centre of inversion in space group C2/c, chosen for the sake of convenience as that at ([1 \over 2], [1 \over 2], [1 \over 2]). Accordingly, the P—C—C—P fragment of the phosphine oxide ligand has a trans-planar conformation. The five-coordinate Sn atom has a trigonal-bipyramidal configuration, with the O atom and one of the chloro ligands (Cl1) in axial sites, and the other chloro ligand and the two benzyl ligands in equatorial sites (Fig. 1[link]); the interbond angles are close to idealized values (Table 1[link]). The axial Sn—Cl bond is longer than the equatorial Sn—Cl bond by ∼0.12 Å, and the P—O—Sn fragment is nearly linear. The remaining bond lengths and angles show no unusual values.

The complexes are linked by a single C—H⋯π(arene) hydrogen bond (Table 2[link]), in which the same benzyl group provides both the donor and the acceptor. Benzyl atom C3 in the reference complex centred at ([1 \over 2], [1 \over 2], [1 \over 2]) acts as a hydrogen-bond donor, via atom H3A, to the C31–C36 ring at (1 − x, y, [1 \over 2] − z), which forms part of the complex centred at ([1 \over 2], [1 \over 2], 0). Propagation of this interaction by the space group then generates a chain of rings running parallel to the [001] direction (Fig. 2[link]).

Since no coordination of unoxidized bisphosphine was observed in the absence of air by Pettinari et al. (2001[Pettinari, C., Marchetti, F., Cingolani, A., Pettinari, R., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 312, 125-132.]), it seems probable that the bulk of the oxidation occurs before the formation of the final product; however, the detailed mechanism of this process remains unknown.

[Figure 1]
Figure 1
A view of complex (I[link]), showing the atom-labelling scheme. Atoms labelled with the suffix `A' are at the symmetry position (1 − x, 1 − y, 1 − z). Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, H atoms have been omitted.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I[link]), showing the formation of a chain of rings along the [001] direction. For clarity, H atoms other than those bonded to the C atom involved in the motif shown have been omitted.

Experimental

For the synthesis of (I[link]), a dilute solution of di­benzyl­tin(IV) chloride [prepared according to Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.])] in chloro­form was added dropwise to an equimolar quantity of 1,2-bis­(di­phenyl­phosphino)­ethane, also in chloro­form solution, and the mixture was stirred overnight. After removal of the solvent in vacuo, a pale yellow solid was obtained; vapour diffusion of light petroleum into a solution of this solid in benzene gave colourless crystals of (I[link]) suitable for single-crystal X-ray diffraction (m.p. 445–447 K). IR (KBr disk): 1191 and 1153 cm−1 [ν(P=O)]; 1H NMR (CDCl3): δ 2.26 (br, 4H, 2 × CH2P), 2.93 (s with Sn satellites, 2JSn–H = 93.6 Hz, 8H, 4 × CH2Ph), 6.85–6.98 (m, 20H, 4 × Ph), 7.18–7.55 (m, 20H, 4 × Ph); 31P NMR (CDCl3): δ 38.7; 119Sn NMR (CDCl3): δ −137.5.

Crystal data
  • [Sn2Cl4(C7H7)4(C26H24O2P2)]

  • Mr = 1174.12

  • Monoclinic, C2/c

  • a = 15.0100 (5) Å

  • b = 14.7055 (6) Å

  • c = 22.6909 (6) Å

  • β = 91.571 (2)°

  • V = 5006.7 (3) Å3

  • Z = 4

  • Dx = 1.558 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5716 reflections

  • θ = 3.2–27.5°

  • μ = 1.32 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.20 × 0.07 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.731, Tmax = 0.940

  • 31 842 measured reflections

  • 5716 independent reflections

  • 3778 reflections with I > 2σ(I)

  • Rint = 0.082

  • θmax = 27.5°

  • h = −19 → 19

  • k = −18 → 19

  • l = −29 → 29

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.083

  • S = 0.96

  • 5716 reflections

  • 289 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0368P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—Cl1 2.4788 (10)
Sn1—Cl2 2.3597 (8)
Sn1—O1 2.242 (2)
Sn1—C3 2.132 (3)
Sn1—C4 2.137 (4)
P1—O1 1.467 (3)
Cl2—Sn1—C3 116.68 (9)
Cl2—Sn1—C4 114.37 (9)
C3—Sn1—C4 128.0 (2)
O1—Sn1—Cl1 175.87 (6)
P1—O1—Sn1 164.8 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.99 2.67 3.466 (3) 137
Symmetry code: (i) [1-x,y,{\script{1\over 2}}-z].

Crystals of (I[link]) are monoclinic and the systematic absences permitted C2/c and Cc as possible space groups; C2/c was selected and confirmed by the subsequent analysis. All H atoms were located from difference maps and treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The interaction of chelating bisphosphines with tin(IV) halides has been the subject of several investigations. Reaction of both simple phosphines and 1,2-bis(diphenylphosphino)ethane Ph2PCH2CH2PPh2, with SnX4 (X = Cl or Br) gave products characterized on the basis of spectral data only as 1:1 adducts containing six-coordinate tin (Reutov et al., 1988). On the other hand, the reaction of the same bisphosphine with Me2SnCl2 in the presence of air gave a 1:1 adduct characterized by X-ray diffraction as a continuous chain polymer containing the oxidized ligand Ph2P(O)CH2CH2P(O)Ph2 bridging pairs of six-coordinate Sn atoms (Pettinari et al., 2001). The analogous product from Ph2SnCl2 was assigned a similar structure, but in the absence of air, no reaction was observed with R2SnCl2 (R = Me or Ph). We have now investigated the reaction of 1,2-bis(diphenylphosphino)ethane with dibenzyltin(IV) dichloride, (PhCH2)2SnCl2, and we report here the molecular and supramolecular structure of the product, (I), a 2:1 complex containing the oxidized ligand Ph2P(O)CH2CH2P(O)Ph2 bridging pairs of five-coordinate Sn atoms. The oxidation of the bisphosphine can be readily diagnosed both from the IR absorptions characteristics of P=O bonds and from the 31P NMR spectrum.

Complex (I) is centrosymmetric; it lies across a centre of inversion in space group C2/c, chosen for the sake of convenience as that at (1/2, 1/2, 1/2). Accordingly, the P—C—C—P fragment of the phosphine oxide ligand has a trans planar conformation, The five-coordinate Sn atom has a trigonal bipyramidal configuration, with the O atom and one of the chloro ligands (Cl1) in axial sites, and the other chloro ligand and the two benzyl ligands in equatorial sites (Fig. 1), and with interbond angles close to idealized values (Table 1). The axial Sn—Cl bond is longer than the equatorial Sn—Cl bond by ca 0.12 Å, and the P—O—Sn fragment is nearly linear. The remaining bond lengths and angles show no unusual values.

The complexes are linked by a single C—H···π(arene) hydrogen bond (Table 2), in which the same benzyl group provides both donor and acceptor. Benzylic atom C3 in the reference complex centred at (1/2, 1/2, 1/2) acts as a hydrogen-bond donor, via H3A, to the C31–C36 ring at (1 − x, y, 0.5 − z), which forms part of the complex centred at (1/2, 1/2, 0). Propagation of this interaction by the space group then generates a molecular ladder running parallel to the [001] direction (Fig. 2).

Since no coordination of unoxidized bisphosphine was observed in the absence of air by Pettinari et al. (2001), it seems probable that the bulk of the oxidation occurs before the formation of the final product; however, the detailed mechanism of this process remains unknown.

Experimental top

For the synthesis of (I), a dilute solution of dibenzyltin(IV) chloride (prepared according to Sisido et al., 1961) in chloroform was added dropwise to an equimolar quantity of 1,2-bis(diphenylphosphino)ethane, also in chloroform solution, and the mixture was stirred overnight. After removal of the solvent in vacuo, a pale yellow solid was obtained; vapour diffusion of light petroleum into a solution of this solid in benzene gave colourless crystals of (I) suitable for single-crystal X-ray diffraction. M. p. 445–447 K. IR (KBr disk): 1191 and 1153 cm−1 [ν(P=O)]; 1H NMR (CDCl3): δ 2.26 (br, 4H, 2 x –CH2—P), 2.93 (s with Sn satellites, 2JSn—H = 93.6 Hz, 8H, 4 x –CH2—Ph), 6.85–6.98 (m, 20H, 4 x Ph), 7.18–7.55 (m, 20H, 4 x Ph); 31P NMR (CDCl3): δ 38.7; 119Sn NMR (CDCl3): δ −137.5.

Refinement top

Crystals of (I) are monoclinic and the systematic absences permitted C2/c and Cc as possible space groups; C2/c was selected and confirmed by the subsequent analysis. All H atoms were located from difference maps, and then treated as riding atoms with C—H distances of 0.95 (aromatic) or 0.99 Å (C—H2). Cg1 is the centroid of the C31–C36 ring

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing the atom-labelling scheme. Atoms labelled with the suffix 'A' are at the symmetry position (1 − x, 1 − y, 1 − z). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a molecular ladder along the [001] direction. For the sake of clarity, H atoms other than those bonded to the C atom involved in the motif shown have been omitted.
µ-ethane-1,2-diylbis(diphenylphosphine oxide)-κ2O:O'- bis[dibenzyldichlorotin(IV)] top
Crystal data top
C54H52Cl4O2P2Sn2F(000) = 2360
Mr = 1174.12Dx = 1.558 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5716 reflections
a = 15.0100 (5) Åθ = 3.2–27.5°
b = 14.7055 (6) ŵ = 1.32 mm1
c = 22.6909 (6) ÅT = 120 K
β = 91.571 (2)°Needle, colourless
V = 5006.7 (3) Å30.20 × 0.07 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5716 independent reflections
Radiation source: rotating anode3778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995; Blessing, 1997)
h = 1919
Tmin = 0.731, Tmax = 0.940k = 1819
31842 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
5716 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C54H52Cl4O2P2Sn2V = 5006.7 (3) Å3
Mr = 1174.12Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.0100 (5) ŵ = 1.32 mm1
b = 14.7055 (6) ÅT = 120 K
c = 22.6909 (6) Å0.20 × 0.07 × 0.05 mm
β = 91.571 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5716 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995; Blessing, 1997)
3778 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.940Rint = 0.082
31842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.96Δρmax = 1.20 e Å3
5716 reflectionsΔρmin = 0.68 e Å3
289 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.341728 (15)0.293892 (16)0.383758 (9)0.02403 (9)
Cl10.33173 (7)0.14724 (6)0.33012 (4)0.0418 (3)
Cl20.42566 (6)0.22832 (6)0.46228 (4)0.0326 (2)
O10.35524 (16)0.42107 (17)0.43776 (10)0.0373 (6)
P10.36645 (6)0.51543 (6)0.45765 (4)0.0251 (2)
C10.4573 (2)0.5223 (3)0.51083 (13)0.0270 (8)
C30.4150 (2)0.3585 (2)0.31629 (13)0.0249 (8)
C40.2017 (2)0.3007 (3)0.39790 (16)0.0346 (9)
C110.3876 (2)0.5926 (2)0.39847 (13)0.0231 (8)
C120.4530 (2)0.6587 (2)0.40075 (14)0.0271 (8)
C130.4649 (2)0.7158 (2)0.35356 (16)0.0360 (9)
C140.4101 (3)0.7076 (3)0.30358 (16)0.0388 (10)
C150.3448 (2)0.6430 (3)0.30059 (15)0.0325 (9)
C160.3326 (2)0.5854 (2)0.34792 (13)0.0273 (8)
C210.2677 (2)0.5538 (2)0.49210 (13)0.0238 (8)
C220.2253 (2)0.4961 (3)0.53128 (14)0.0304 (9)
C230.1449 (2)0.5203 (3)0.55530 (15)0.0329 (9)
C240.1073 (2)0.6027 (3)0.53999 (15)0.0338 (9)
C250.1478 (2)0.6601 (3)0.50128 (15)0.0330 (9)
C260.2280 (2)0.6368 (2)0.47775 (14)0.0285 (9)
C310.5138 (2)0.3634 (2)0.32797 (13)0.0241 (8)
C320.5592 (3)0.4455 (3)0.32751 (14)0.0329 (9)
C330.6520 (3)0.4470 (3)0.33559 (15)0.0464 (12)
C340.6977 (3)0.3671 (4)0.34417 (16)0.0520 (13)
C350.6536 (3)0.2859 (3)0.34459 (16)0.0496 (12)
C360.5626 (3)0.2838 (3)0.33685 (14)0.0370 (10)
C410.1612 (2)0.3801 (2)0.36526 (15)0.0280 (8)
C420.1166 (2)0.4476 (3)0.39409 (15)0.0310 (9)
C430.0811 (2)0.5212 (3)0.36405 (16)0.0370 (10)
C440.0902 (3)0.5291 (3)0.30359 (17)0.0392 (10)
C450.1346 (2)0.4621 (3)0.27407 (16)0.0368 (10)
C460.1706 (2)0.3881 (2)0.30399 (15)0.0316 (9)
H1A0.46950.58700.51990.032*
H1B0.43960.49220.54770.032*
H120.49010.66470.43510.032*
H130.51040.76070.35520.043*
H140.41810.74730.27110.047*
H150.30780.63760.26610.039*
H160.28670.54090.34610.033*
H220.25190.43940.54160.037*
H230.11620.48080.58190.040*
H240.05240.62000.55650.041*
H250.12020.71620.49070.040*
H260.25650.67740.45170.034*
H3A0.40380.32520.27890.030*
H3B0.39190.42100.31080.030*
H320.52740.50080.32170.039*
H330.68330.50310.33510.056*
H340.76060.36830.34990.062*
H350.68600.23090.35020.060*
H360.53240.22700.33760.044*
H4A0.17290.24370.38410.042*
H4B0.19120.30720.44060.042*
H420.11000.44340.43550.037*
H430.05010.56680.38490.044*
H440.06610.58010.28290.047*
H450.14060.46660.23260.044*
H460.20170.34270.28310.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02342 (15)0.02919 (16)0.01947 (13)0.00203 (12)0.00056 (9)0.00214 (11)
Cl10.0565 (7)0.0328 (6)0.0358 (5)0.0057 (5)0.0067 (5)0.0017 (4)
Cl20.0317 (5)0.0416 (6)0.0240 (4)0.0010 (4)0.0048 (4)0.0073 (4)
O10.0389 (16)0.0397 (17)0.0333 (14)0.0020 (13)0.0023 (12)0.0014 (12)
P10.0216 (5)0.0295 (6)0.0242 (5)0.0032 (4)0.0006 (4)0.0039 (4)
C10.023 (2)0.038 (2)0.0196 (18)0.0079 (16)0.0006 (14)0.0030 (15)
C30.026 (2)0.028 (2)0.0203 (17)0.0022 (16)0.0035 (14)0.0017 (15)
C40.022 (2)0.042 (3)0.039 (2)0.0033 (18)0.0026 (16)0.0067 (19)
C110.0193 (19)0.029 (2)0.0214 (17)0.0044 (16)0.0009 (14)0.0000 (15)
C120.020 (2)0.035 (2)0.0262 (19)0.0009 (17)0.0020 (15)0.0020 (17)
C130.027 (2)0.033 (2)0.049 (2)0.0029 (18)0.0087 (18)0.0105 (19)
C140.035 (2)0.047 (3)0.035 (2)0.009 (2)0.0098 (18)0.0193 (19)
C150.030 (2)0.044 (3)0.0234 (19)0.0088 (19)0.0019 (16)0.0022 (17)
C160.027 (2)0.030 (2)0.0243 (19)0.0032 (17)0.0029 (15)0.0020 (16)
C210.021 (2)0.027 (2)0.0227 (18)0.0007 (16)0.0051 (15)0.0016 (16)
C220.031 (2)0.032 (2)0.029 (2)0.0022 (18)0.0005 (16)0.0032 (17)
C230.029 (2)0.042 (3)0.028 (2)0.0062 (19)0.0078 (16)0.0014 (17)
C240.028 (2)0.039 (3)0.035 (2)0.0017 (19)0.0047 (17)0.0071 (18)
C250.028 (2)0.028 (2)0.043 (2)0.0065 (18)0.0040 (18)0.0001 (18)
C260.028 (2)0.027 (2)0.0308 (19)0.0023 (17)0.0015 (16)0.0034 (16)
C310.026 (2)0.035 (2)0.0111 (16)0.0010 (17)0.0051 (13)0.0024 (15)
C320.040 (3)0.036 (2)0.0240 (19)0.0034 (19)0.0099 (16)0.0060 (17)
C330.045 (3)0.067 (3)0.028 (2)0.024 (3)0.0080 (19)0.012 (2)
C340.025 (2)0.102 (4)0.029 (2)0.000 (3)0.0006 (18)0.000 (2)
C350.038 (3)0.077 (4)0.035 (2)0.020 (3)0.0069 (19)0.015 (2)
C360.036 (2)0.047 (3)0.028 (2)0.003 (2)0.0071 (17)0.0093 (18)
C410.0166 (19)0.032 (2)0.036 (2)0.0080 (17)0.0035 (15)0.0041 (17)
C420.018 (2)0.047 (3)0.0279 (19)0.0054 (18)0.0004 (15)0.0001 (18)
C430.026 (2)0.038 (3)0.046 (2)0.0015 (18)0.0027 (18)0.0093 (19)
C440.035 (2)0.036 (3)0.046 (3)0.0023 (19)0.0114 (19)0.000 (2)
C450.038 (2)0.043 (3)0.029 (2)0.005 (2)0.0091 (18)0.0003 (19)
C460.028 (2)0.033 (2)0.033 (2)0.0047 (18)0.0026 (16)0.0043 (17)
Geometric parameters (Å, º) top
Sn1—Cl12.4788 (10)C25—C261.374 (5)
Sn1—Cl22.3597 (8)C25—H250.95
Sn1—O12.242 (2)C26—H260.95
Sn1—C32.132 (3)C3—C311.501 (5)
Sn1—C42.137 (4)C3—H3A0.99
P1—O11.467 (3)C3—H3B0.99
P1—C211.787 (3)C31—C321.388 (5)
P1—C111.793 (3)C31—C361.393 (5)
P1—C11.799 (3)C32—C331.400 (5)
C1—C1i1.533 (6)C32—H320.95
C1—H1A0.99C33—C341.371 (6)
C1—H1B0.99C33—H330.95
C11—C121.381 (5)C34—C351.365 (6)
C11—C161.399 (4)C34—H340.95
C12—C131.377 (5)C35—C361.374 (5)
C12—H120.95C35—H350.95
C13—C141.388 (5)C36—H360.95
C13—H130.95C4—C411.502 (5)
C14—C151.366 (5)C4—H4A0.99
C14—H140.95C4—H4B0.99
C15—C161.384 (5)C41—C421.373 (5)
C15—H150.95C41—C461.406 (5)
C16—H160.95C42—C431.378 (5)
C21—C261.393 (5)C42—H420.95
C21—C221.396 (5)C43—C441.387 (5)
C22—C231.384 (5)C43—H430.95
C22—H220.95C44—C451.374 (5)
C23—C241.377 (5)C44—H440.95
C23—H230.95C45—C461.385 (5)
C24—C251.372 (5)C45—H450.95
C24—H240.95C46—H460.95
Cl2—Sn1—C3116.68 (9)C24—C25—H25119.9
Cl2—Sn1—C4114.37 (9)C26—C25—H25119.9
C3—Sn1—C4128.0 (2)C25—C26—C21120.0 (3)
C3—Sn1—O188.87 (11)C25—C26—H26120.0
C4—Sn1—O187.32 (12)C21—C26—H26120.0
O1—Sn1—Cl283.67 (6)C31—C3—Sn1114.9 (2)
C3—Sn1—Cl193.46 (9)C31—C3—H3A108.5
C4—Sn1—Cl193.90 (11)Sn1—C3—H3A108.5
O1—Sn1—Cl1175.87 (6)C31—C3—H3B108.5
Cl2—Sn1—Cl192.24 (3)Sn1—C3—H3B108.5
P1—O1—Sn1164.8 (2)H3A—C3—H3B107.5
O1—P1—C21110.10 (16)C32—C31—C36118.4 (3)
O1—P1—C11112.91 (14)C32—C31—C3121.6 (3)
C21—P1—C11107.10 (15)C36—C31—C3119.9 (3)
O1—P1—C1109.74 (16)C31—C32—C33120.0 (4)
C21—P1—C1108.17 (15)C31—C32—H32120.0
C11—P1—C1108.68 (16)C33—C32—H32120.0
C1i—C1—P1112.7 (3)C34—C33—C32119.8 (4)
C1i—C1—H1A109.0C34—C33—H33120.1
P1—C1—H1A109.0C32—C33—H33120.1
C1i—C1—H1B109.0C35—C34—C33120.6 (4)
P1—C1—H1B109.0C35—C34—H34119.7
H1A—C1—H1B107.8C33—C34—H34119.7
C12—C11—C16119.1 (3)C34—C35—C36120.0 (4)
C12—C11—P1123.9 (2)C34—C35—H35120.0
C16—C11—P1117.0 (3)C36—C35—H35120.0
C13—C12—C11120.5 (3)C35—C36—C31121.1 (4)
C13—C12—H12119.7C35—C36—H36119.4
C11—C12—H12119.7C31—C36—H36119.4
C12—C13—C14119.7 (3)C41—C4—Sn1110.4 (2)
C12—C13—H13120.1C41—C4—H4A109.6
C14—C13—H13120.1Sn1—C4—H4A109.6
C15—C14—C13120.6 (3)C41—C4—H4B109.6
C15—C14—H14119.7Sn1—C4—H4B109.6
C13—C14—H14119.7H4A—C4—H4B108.1
C14—C15—C16119.8 (3)C42—C41—C46118.3 (3)
C14—C15—H15120.1C42—C41—C4121.5 (3)
C16—C15—H15120.1C46—C41—C4120.2 (3)
C15—C16—C11120.2 (3)C41—C42—C43121.2 (3)
C15—C16—H16119.9C41—C42—H42119.4
C11—C16—H16119.9C43—C42—H42119.4
C26—C21—C22118.9 (3)C42—C43—C44120.5 (4)
C26—C21—P1121.9 (3)C42—C43—H43119.7
C22—C21—P1119.0 (3)C44—C43—H43119.7
C23—C22—C21120.8 (3)C45—C44—C43119.0 (4)
C23—C22—H22119.6C45—C44—H44120.5
C21—C22—H22119.6C43—C44—H44120.5
C24—C23—C22118.9 (4)C44—C45—C46120.8 (4)
C24—C23—H23120.5C44—C45—H45119.6
C22—C23—H23120.5C46—C45—H45119.6
C25—C24—C23121.1 (4)C45—C46—C41120.1 (4)
C25—C24—H24119.4C45—C46—H46119.9
C23—C24—H24119.4C41—C46—H46119.9
C24—C25—C26120.2 (3)
C3—Sn1—O1—P125.1 (6)C23—C24—C25—C261.1 (5)
C4—Sn1—O1—P1103.1 (6)C24—C25—C26—C211.4 (5)
Cl2—Sn1—O1—P1142.1 (6)C22—C21—C26—C251.1 (5)
Sn1—O1—P1—C21115.7 (6)P1—C21—C26—C25174.1 (3)
Sn1—O1—P1—C113.9 (7)C4—Sn1—C3—C31162.8 (2)
Sn1—O1—P1—C1125.3 (6)O1—Sn1—C3—C3177.1 (2)
O1—P1—C1—C1i51.2 (4)Cl2—Sn1—C3—C315.2 (3)
C21—P1—C1—C1i171.4 (3)Cl1—Sn1—C3—C3199.5 (2)
C11—P1—C1—C1i72.7 (4)Sn1—C3—C31—C32124.3 (3)
O1—P1—C11—C12134.4 (3)Sn1—C3—C31—C3658.7 (4)
C21—P1—C11—C12104.2 (3)C36—C31—C32—C330.3 (5)
C1—P1—C11—C1212.4 (3)C3—C31—C32—C33176.7 (3)
O1—P1—C11—C1647.0 (3)C31—C32—C33—C340.3 (5)
C21—P1—C11—C1674.4 (3)C32—C33—C34—C350.4 (6)
C1—P1—C11—C16169.0 (3)C33—C34—C35—C360.5 (6)
C16—C11—C12—C131.0 (5)C34—C35—C36—C310.6 (6)
P1—C11—C12—C13179.6 (3)C32—C31—C36—C350.5 (5)
C11—C12—C13—C140.7 (5)C3—C31—C36—C35176.6 (3)
C12—C13—C14—C150.4 (6)C3—Sn1—C4—C4117.3 (3)
C13—C14—C15—C160.4 (6)O1—Sn1—C4—C4169.1 (2)
C14—C15—C16—C110.7 (5)Cl2—Sn1—C4—C41151.0 (2)
C12—C11—C16—C151.1 (5)Cl1—Sn1—C4—C41114.8 (2)
P1—C11—C16—C15179.7 (3)Sn1—C4—C41—C42121.6 (3)
O1—P1—C21—C26131.7 (3)Sn1—C4—C41—C4656.7 (4)
C11—P1—C21—C268.6 (3)C46—C41—C42—C430.4 (5)
C1—P1—C21—C26108.3 (3)C4—C41—C42—C43178.7 (3)
O1—P1—C21—C2243.4 (3)C41—C42—C43—C440.4 (5)
C11—P1—C21—C22166.5 (3)C42—C43—C44—C450.5 (6)
C1—P1—C21—C2276.5 (3)C43—C44—C45—C460.7 (6)
C26—C21—C22—C230.4 (5)C44—C45—C46—C410.7 (5)
P1—C21—C22—C23174.9 (3)C42—C41—C46—C450.6 (5)
C21—C22—C23—C240.1 (5)C4—C41—C46—C45178.9 (3)
C22—C23—C24—C250.5 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1ii0.992.673.466 (3)137
Symmetry code: (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC54H52Cl4O2P2Sn2
Mr1174.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)15.0100 (5), 14.7055 (6), 22.6909 (6)
β (°) 91.571 (2)
V3)5006.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.20 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995; Blessing, 1997)
Tmin, Tmax0.731, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
31842, 5716, 3778
Rint0.082
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.083, 0.96
No. of reflections5716
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.68

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
Sn1—Cl12.4788 (10)Sn1—C32.132 (3)
Sn1—Cl22.3597 (8)Sn1—C42.137 (4)
Sn1—O12.242 (2)P1—O11.467 (3)
Cl2—Sn1—C3116.68 (9)O1—Sn1—Cl1175.87 (6)
Cl2—Sn1—C4114.37 (9)P1—O1—Sn1164.8 (2)
C3—Sn1—C4128.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.992.673.466 (3)137
Symmetry code: (i) x+1, y, z+1/2.
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPettinari, C., Marchetti, F., Cingolani, A., Pettinari, R., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 312, 125–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationReutov, O. A., Petrosyan, V. S., Yashina, N. S. & Gefel, E. I. (1988). J. Organomet. Chem. 341, C31–C34.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds