organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2-Nitro­phen­oxy­acetanilide: a chain of rings generated by C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 3 March 2004; accepted 4 March 2004; online 31 March 2004)

In mol­ecules of the title compound, C14H12N2O4, the conformation is dominated by an intramolecular N—H⋯O hydrogen bond in which one of the nitro O atoms is the acceptor. The mol­ecules are linked by paired C—H⋯O hydrogen bonds [H⋯O = 2.41 Å, C⋯O = 3.2990 (17) Å and C—H⋯O = 156°] into centrosymmetric [R_2^2](14) dimers; these dimers are linked weakly into chains of alternating [R_2^2](14) and [R_4^4](40) rings by a second C—H⋯O hydrogen bond [H⋯O = 2.55 Å, C⋯O = 3.5006 (15) Å and C—H⋯O = 162°].

Comment

The title compound, (I[link]) (Fig. 1[link]), was designed to contain a wide variety of potential donors and acceptors of both hard and soft (Braga et al., 1995[Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, pp. 86-89. Oxford University Press.]) hydrogen bonds. Thus, there are both N—H and C—H bonds to provide potential hydrogen-bond donors, and there are three types of O-atom sites as potential acceptors, namely the ether O, the carbonyl O and the nitro O atoms. In addition, the presence of two independent aryl groups offers the possibility of N—H⋯π(arene) and C—H⋯π(arene) hydrogen bonding, as well as aromatic ππ stacking interactions.

[Scheme 1]

In the event, the only hard hydrogen bond is intramol­ecular, and this appears to be the dominant influence on the overall molecular conformation. Amine atom N2 acts as a donor to nitro atom O11 in a nearly linear N—H⋯O hydrogen bond, so forming an S(9) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In addition, there is a short contact to atom O2, but this contact is probably just an adventitious consequence of the hydrogen bond to atom O11. The consequences of the intramolecular hydrogen bonding are firstly the nearly planar overall conformation (Table 1[link]), with a cisoid O2—C27—C28—N2 fragment, and secondly the unavailability of the NH group for participation in intermolecular hydrogen bonds. The bond angles in the central spacer unit are indicative of the strongly attractive nature of the intramolecular hydrogen bond. The dihedral angle between the nitro group and the adjacent aryl ring is 11.8 (2)°.

The supramolecular aggregation is determined by two C—H⋯O hydrogen bonds, one weaker than the other (Table 2[link]). In the stronger of these two interactions, aromatic atom C3 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O28 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric S(9)[[R_2^2](14)]S(9) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer centred at ([1 \over 2], [1 \over 2], [1 \over 2]) (Fig. 2[link]). These dimers are linked by the longer of the two intermolecular hydrogen bonds; atom C27 in the mol­ecule at (x, y, z) acts as a donor via atom H27A to nitro atom O11 in the mol­ecule at (x, 1 + y, z), so forming by translation a C(7) chain parallel to [010]. Propagation of this hydrogen bond by translation and inversion then generates a complex chain of rings running parallel to the [010] direction, in which [R_2^2](14) rings centred at ([1 \over 2], [1 \over 2] + n, [1 \over 2]) (n = zero or integer) alternate with [R_4^4](40) rings centred at ([1 \over 2], n, [1 \over 2]) (n = zero or integer) (Fig. 3[link]).

There are no direction-specific interactions between adjacent chains; in particular, there are no intermolecular hydrogen bonds involving the NH fragment, nor are there any C—H⋯π(arene) hydrogen bonds or aromatic ππ stacking interactions.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I[link]), showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, the unit-cell box and H atoms bonded to C atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I[link]), showing the formation of a chain of alternating [R_2^2](14) and [R_4^4](40) rings along [010]. For clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted.

Experimental

For the preparation of (I[link]), a suspension of PhNH2 (10 mmol) in cold NaOH solution (20 ml of 1 mol dm−3) was added to 2-nitro­phenoxy­acetyl chloride (10 mmol) (Minton & Stephen, 1922[Minton, T. H. & Stephen, H. (1922). J. Chem. Soc. 121, 1591-1598.]; Holley & Holley, 1952[Holley, R. H. & Holley, A. D. (1952). J. Am. Chem. Soc. 74, 3069-3074.]). The mixture was stirred for 1 h at 273 K and then allowed to reach ambient temperature. The precipitate that formed was collected after 16 h and recrystallized from ethanol, yielding the title compound [m.p. 394–395 K; literature m.p. 395–397 K (Kirk & Cohen, 1972[Kirk, K. L. & Cohen, L. A. (1972). J. Am. Chem. Soc. 94, 8142-8147.])].

Crystal data
  • C14H12N2O4

  • Mr = 272.26

  • Monoclinic, P21/n

  • a = 8.5855 (3) Å

  • b = 6.6129 (2) Å

  • c = 22.0221 (8) Å

  • β = 91.8330 (17)°

  • V = 1249.67 (7) Å3

  • Z = 4

  • Dx = 1.447 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2869 reflections

  • θ = 3.2–27.6°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.951, Tmax = 0.989

  • 5590 measured reflections

  • 2869 independent reflections

  • 2048 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 27.6°

  • h = −11 → 11

  • k = −8 → 8

  • l = −28 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.05

  • 2869 reflections

  • 182 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0301P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.015 (2)

Table 1
Selected geometric parameters (°)

C2—O2—C27 118.86 (9)
O2—C27—C28 108.62 (9)
C27—C28—N2 115.33 (11)
C28—N2—C21 128.99 (11)
O2—C27—C28—N2 −8.14 (15)
C27—C28—N2—C21 −178.80 (12)
C28—N2—C21—C22 9.4 (2)
C28—C27—O2—C2 167.20 (10)
C1—C2—O2—C27 −168.01 (11)
C2—C1—N1—O11 −12.48 (18)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.88 2.07 2.5517 (13) 113
N2—H2⋯O11 0.88 2.55 3.4191 (14) 172
C3—H3⋯O28i 0.95 2.41 3.2990 (17) 156
C27—H27A⋯O11ii 0.99 2.55 3.5006 (15) 162
Symmetry codes: (i) 1-x,1-y,1-z; (ii) x,1+y,z.

Space group P21/n was uniquely assigned from the systematic absences. All H atoms were located from difference maps and treated as riding atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2), and N—H distances of 0.88 Å, and with Uiso(H) values set at 1.2Ueq(C,N).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compound, (I), was designed to contain a wide variety of potential donors and acceptors of both hard and soft (Braga et al., 1995; Desiraju & Steiner, 1999) hydrogen bonds. Thus there are both N—H and C—H bonds to provide potential hydrogen-bond donors, and there are three types of O sites as potential acceptors, namely the ether O, the carbonyl O and the nitro O atoms. In addition, the presence of two independent aryl groups offers the possibility of N—H···π(arene) and C—H···π(arene) hydrogen bonding, as well as aromatic ππ stacking interactions.

In the event, the only hard hydrogen bond is intramolecular, and this appears to be the dominant influence on the overall molecular conformation. Amine atom N2 acts as a donor to nitro atom O11 in a nearly linear N—H···O hydrogen bond, so forming an S(9) motif (Bernstein et al., 1995). In addition, there is a short contact to atom O2, but this contact is probably just an adventitious consequence of the hydrogen bond to atom O11. The consequences of the intramolecular hydrogen bonding are firstly the nearly planar overall conformation (Table 1), with a cisoid O2—C27—C28—N2 fragment, and secondly the unavailability of the NH unit for participation in intermolecular hydrogen bonds. The bond angles in the central spacer unit are indicative of the strongly attractive nature of the intramolecular hydrogen bond. The dihedral angle between the nitro group and the adjacent aryl ring is 11.8 (2) °.

The supramolecular aggregation is determined by two C—H···O hydrogen bonds, one weaker than the other (Table 2). In the stronger of these two interactions, aromatic atom C3 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O28 in the molecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric S(9)[R22(14)]S(9) (Bernstein et al., 1995) dimer centred at (1/2, 1/2, 1/2) (Fig. 2). These dimers are linked by the longer of the two intermolecular hydrogen bonds; atom C27 in the molecule at (x, y, z) acts as a donor, via atom H27A, to nitro atom O11 in the molecule at (x, 1 + y, z), so forming by translation a C(7) chain parallel to [010]. Propagation of this hydrogen bond by translation and inversion then generates a complex chain of rings running parallel to the [010] direction, in which R22(14) rings centred at (1/2, 0.5 + n, 1/2) (n = zero or integer) alternate with R44(40) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 3).

There are no direction-specific interactions between adjacent chains; in particular, there are no intermolecular hydrogen bonds involving the NH fragment, nor are there any C—H···π(arene) hydrogen bonds or aromatic ππ stacking interactions.

Experimental top

For the preparation of (I), a suspension of PhNH2 (10 mmol) in cold NaOH solution (20 ml of 1 mol dm−3) was added to 2-nitrophenoxyacetyl chloride (10 mmol) (Minton & Stephen, 1922; Holley & Holley, 1952). After stirring for 1 h at 273 K, the mixture was allowed to reach ambient temperature, and the precipitate that formed was collected after 16 h. This was recrystallized from ethanol, yielding the title compound [m.p. 394–395 K; literature m.p. 395–397 K (Kirk & Cohen, 1972)].

Refinement top

Space group P21/n was uniquely assigned from the systematic absences. All H atoms were located from difference maps and treated as riding atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2), and N—H distances of 0.88 Å, and with Uiso(H) set at 1.2Ueq(C,N).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded dimer. For clarity, the unit-cell box and H atoms bonded to C atoms but not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a chain of alternating R22(14) and R44(40) rings along [010]. For clarity, H atoms bonded to C atoms but not involved in the motifs shown have been omitted.
2-Nitrophenoxyacetanilide top
Crystal data top
C14H12N2O4F(000) = 568
Mr = 272.26Dx = 1.447 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2869 reflections
a = 8.5855 (3) Åθ = 3.2–27.6°
b = 6.6129 (2) ŵ = 0.11 mm1
c = 22.0221 (8) ÅT = 120 K
β = 91.8330 (17)°Block, colourless
V = 1249.67 (7) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2869 independent reflections
Radiation source: rotating anode2048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1111
Tmin = 0.951, Tmax = 0.989k = 88
5590 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0301P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2869 reflectionsΔρmax = 0.23 e Å3
182 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C14H12N2O4V = 1249.67 (7) Å3
Mr = 272.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5855 (3) ŵ = 0.11 mm1
b = 6.6129 (2) ÅT = 120 K
c = 22.0221 (8) Å0.40 × 0.30 × 0.10 mm
β = 91.8330 (17)°
Data collection top
Nonius KappaCCD
diffractometer
2869 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2048 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.989Rint = 0.028
5590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2869 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.58655 (10)0.07786 (12)0.56272 (4)0.0273 (2)
O110.67330 (11)0.27857 (13)0.59281 (4)0.0352 (3)
O120.67431 (14)0.35883 (16)0.68733 (5)0.0538 (3)
O280.70165 (11)0.33007 (14)0.43088 (4)0.0362 (3)
N10.63677 (13)0.24551 (16)0.64546 (5)0.0317 (3)
N20.77220 (12)0.03034 (16)0.47565 (5)0.0264 (3)
C10.54833 (15)0.06453 (18)0.65985 (6)0.0278 (3)
C20.52726 (14)0.09548 (19)0.61855 (6)0.0249 (3)
C30.44553 (16)0.2652 (2)0.63713 (6)0.0318 (3)
C40.39037 (17)0.2747 (2)0.69490 (7)0.0419 (4)
C50.41105 (19)0.1180 (2)0.73528 (7)0.0461 (4)
C60.48921 (17)0.0531 (2)0.71761 (6)0.0384 (4)
C210.87765 (15)0.05310 (19)0.43475 (6)0.0263 (3)
C220.93602 (15)0.0529 (2)0.38626 (6)0.0316 (3)
C231.04188 (16)0.0409 (2)0.34902 (6)0.0360 (4)
C241.09038 (16)0.2371 (2)0.36001 (6)0.0361 (4)
C251.03025 (15)0.3423 (2)0.40782 (7)0.0352 (3)
C260.92444 (16)0.25263 (19)0.44513 (6)0.0313 (3)
C270.59236 (15)0.25291 (17)0.52486 (6)0.0274 (3)
C280.69471 (15)0.20731 (19)0.47213 (6)0.0270 (3)
H30.42790.37450.60980.038*
H40.33660.39260.70720.050*
H50.37180.12750.77500.055*
H60.50260.16320.74500.046*
H27A0.63530.36880.54840.033*
H27B0.48610.28870.50970.033*
H20.75450.04340.50800.032*
H220.90400.18820.37850.038*
H231.08150.03100.31550.043*
H241.16450.29870.33480.043*
H251.06200.47800.41520.042*
H260.88330.32670.47790.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0359 (5)0.0204 (5)0.0257 (5)0.0026 (4)0.0019 (4)0.0019 (4)
O110.0411 (6)0.0276 (5)0.0366 (6)0.0061 (4)0.0015 (5)0.0029 (4)
O120.0750 (8)0.0382 (6)0.0475 (7)0.0108 (6)0.0064 (6)0.0187 (5)
O280.0390 (6)0.0288 (5)0.0408 (6)0.0015 (4)0.0033 (4)0.0108 (5)
N10.0348 (7)0.0244 (6)0.0354 (7)0.0020 (5)0.0062 (5)0.0035 (5)
N20.0288 (6)0.0223 (6)0.0280 (6)0.0000 (4)0.0011 (5)0.0023 (5)
C10.0285 (7)0.0252 (7)0.0293 (7)0.0029 (5)0.0030 (6)0.0025 (6)
C20.0227 (7)0.0259 (7)0.0258 (7)0.0017 (5)0.0032 (5)0.0034 (5)
C30.0285 (7)0.0281 (7)0.0386 (8)0.0016 (6)0.0010 (6)0.0054 (6)
C40.0350 (8)0.0399 (9)0.0514 (10)0.0030 (7)0.0101 (7)0.0151 (8)
C50.0526 (10)0.0502 (10)0.0362 (9)0.0150 (8)0.0132 (7)0.0132 (8)
C60.0469 (9)0.0397 (8)0.0285 (8)0.0128 (7)0.0002 (6)0.0000 (6)
C210.0230 (7)0.0265 (7)0.0291 (7)0.0027 (5)0.0060 (5)0.0022 (6)
C220.0314 (8)0.0293 (7)0.0338 (8)0.0015 (6)0.0027 (6)0.0008 (6)
C230.0308 (8)0.0424 (9)0.0346 (8)0.0056 (6)0.0001 (6)0.0017 (7)
C240.0277 (7)0.0445 (9)0.0357 (8)0.0001 (6)0.0031 (6)0.0124 (7)
C250.0316 (8)0.0287 (7)0.0447 (9)0.0034 (6)0.0085 (6)0.0068 (6)
C260.0306 (7)0.0270 (7)0.0358 (8)0.0013 (6)0.0046 (6)0.0001 (6)
C270.0319 (7)0.0180 (7)0.0317 (7)0.0004 (5)0.0055 (6)0.0027 (5)
C280.0265 (7)0.0222 (7)0.0318 (7)0.0046 (5)0.0061 (5)0.0029 (6)
Geometric parameters (Å, º) top
C1—C61.3867 (18)C27—H27B0.99
C1—C21.4031 (18)C28—O281.2211 (14)
C1—N11.4577 (17)C28—N21.3472 (16)
C2—O21.3508 (15)N2—C211.4098 (17)
C2—C31.3919 (18)N2—H20.88
C3—C41.373 (2)C21—C221.3844 (18)
C3—H30.95C21—C261.3960 (19)
C4—C51.373 (2)C22—C231.389 (2)
C4—H40.95C22—H220.95
C5—C61.378 (2)C23—C241.382 (2)
C5—H50.95C23—H230.95
C6—H60.95C24—C251.376 (2)
N1—O121.2234 (14)C24—H240.95
N1—O111.2304 (14)C25—C261.3784 (19)
O2—C271.4283 (14)C25—H250.95
C27—C281.5090 (18)C26—H260.95
C27—H27A0.99
C6—C1—C2120.66 (12)C28—C27—H27B110.0
C6—C1—N1116.92 (12)H27A—C27—H27B108.3
C2—C1—N1122.38 (11)O28—C28—N2125.78 (12)
O2—C2—C3123.04 (11)O28—C28—C27118.89 (11)
O2—C2—C1118.71 (11)C27—C28—N2115.33 (11)
C3—C2—C1118.25 (12)C28—N2—C21128.99 (11)
C4—C3—C2120.10 (13)C28—N2—H2115.5
C4—C3—H3120.0C21—N2—H2115.5
C2—C3—H3120.0C22—C21—C26119.69 (12)
C3—C4—C5121.60 (14)C22—C21—N2123.39 (12)
C3—C4—H4119.2C26—C21—N2116.91 (12)
C5—C4—H4119.2C21—C22—C23119.29 (14)
C4—C5—C6119.39 (14)C21—C22—H22120.4
C4—C5—H5120.3C23—C22—H22120.4
C6—C5—H5120.3C24—C23—C22120.97 (14)
C5—C6—C1119.99 (14)C24—C23—H23119.5
C5—C6—H6120.0C22—C23—H23119.5
C1—C6—H6120.0C25—C24—C23119.38 (13)
O12—N1—O11122.18 (11)C25—C24—H24120.3
O12—N1—C1117.75 (12)C23—C24—H24120.3
O11—N1—C1120.07 (10)C24—C25—C26120.60 (14)
C2—O2—C27118.86 (9)C24—C25—H25119.7
O2—C27—C28108.62 (9)C26—C25—H25119.7
O2—C27—H27A110.0C25—C26—C21120.05 (13)
C28—C27—H27A110.0C25—C26—H26120.0
O2—C27—H27B110.0C21—C26—H26120.0
C6—C1—C2—O2179.89 (11)O2—C27—C28—N28.14 (15)
N1—C1—C2—O22.36 (18)O28—C28—N2—C210.8 (2)
C6—C1—C2—C30.08 (19)C27—C28—N2—C21178.80 (12)
N1—C1—C2—C3177.83 (11)C28—N2—C21—C229.4 (2)
O2—C2—C3—C4178.99 (12)C28—C27—O2—C2167.20 (10)
C1—C2—C3—C41.21 (19)C1—C2—O2—C27168.01 (11)
C2—C3—C4—C51.3 (2)C2—C1—N1—O1112.48 (18)
C3—C4—C5—C60.1 (2)C28—N2—C21—C26171.10 (12)
C4—C5—C6—C11.0 (2)C26—C21—C22—C230.70 (19)
C2—C1—C6—C51.1 (2)N2—C21—C22—C23178.77 (12)
N1—C1—C6—C5176.82 (12)C21—C22—C23—C240.5 (2)
C6—C1—N1—O1211.43 (18)C22—C23—C24—C251.4 (2)
C2—C1—N1—O12166.40 (12)C23—C24—C25—C261.0 (2)
C6—C1—N1—O11169.69 (11)C24—C25—C26—C210.2 (2)
C3—C2—O2—C2712.19 (17)C22—C21—C26—C251.07 (19)
O2—C27—C28—O28172.24 (11)N2—C21—C26—C25178.43 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.882.072.5517 (13)113
N2—H2···O110.882.553.4191 (14)172
C3—H3···O28i0.952.413.2990 (17)156
C27—H27A···O11ii0.992.553.5006 (15)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O4
Mr272.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)8.5855 (3), 6.6129 (2), 22.0221 (8)
β (°) 91.8330 (17)
V3)1249.67 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.951, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5590, 2869, 2048
Rint0.028
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.05
No. of reflections2869
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond and torsion angles (º) top
C2—O2—C27118.86 (9)C27—C28—N2115.33 (11)
O2—C27—C28108.62 (9)C28—N2—C21128.99 (11)
O2—C27—C28—N28.14 (15)C28—C27—O2—C2167.20 (10)
C27—C28—N2—C21178.80 (12)C1—C2—O2—C27168.01 (11)
C28—N2—C21—C229.4 (2)C2—C1—N1—O1112.48 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.882.072.5517 (13)113
N2—H2···O110.882.553.4191 (14)172
C3—H3···O28i0.952.413.2990 (17)156
C27—H27A···O11ii0.992.553.5006 (15)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156–3166.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, pp. 86–89. Oxford University Press.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHolley, R. H. & Holley, A. D. (1952). J. Am. Chem. Soc. 74, 3069–3074.  CrossRef CAS Web of Science Google Scholar
First citationKirk, K. L. & Cohen, L. A. (1972). J. Am. Chem. Soc. 94, 8142–8147.  CrossRef CAS Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMinton, T. H. & Stephen, H. (1922). J. Chem. Soc. 121, 1591–1598.  CrossRef CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds