organic compounds
Two oxazane macrocycles
aSchool of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland, and bSchool of Life Sciences, The Robert Gordon University, St zAndrews Street, Aberdeen AB25 1HG, Scotland
*Correspondence e-mail: p.j.cox@rgu.ac.uk
The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane tetrahydrochloride, C12H32N4O44+·4Cl−, adopts an endo conformation, while the 18-membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetraazacyclooctadecane tetrahydrochloride, C10H28N4O44+·4Cl−, lies about an inversion centre and adopts a symmetrical conformation. In the crystal structures of both compounds, the cations and chloride anions are linked by N—H⋯Cl hydrogen bonds into planar sheets of molecules; the sheets are linked into three-dimensional networks via C—H⋯Cl hydrogen bonds.
Comment
Heteromacrocyclic systems have for a long time generated great interest in the scientific community because of their huge range of applications. For example, several 1,4,7,10-tetraazacyclododecane (cyclen) derivatives have been used as models for protein–metal binding sites in biological systems (Kimura, 1993; Kimura et al., 1997; Kimura & Koike, 1998). Other cyclic polyamine systems have also been designed and synthesized in order to demonstrate that these systems can act as molecular catalysts capable of effecting reactions on anion substrates, for example, the phosphoryl transfer that plays an essential role in the energetics of all living organisms (Hosseini & Lehn, 1986, 1987). Furthermore, other tetraazamacrocyclic ligands, such as the cyclen, cyclam and bicyclam ligands, have been shown to exhibit antitumour and anti-HIV activity (Inoue & Kimura, 1994, 1996; Kong Thoo Lin et al., 2000). Other areas where macrocyclic systems could have useful applications are in diagnostic and sensor technologies. The free bases of the cation macrocycles described in this work have been used in the assembly of ion-selective electrodes for nitrate detection (Application No./Patent No. 02730426.0-2204-GB0202292). The formation of the tetrahydrochloride salts of the free bases results in protonation of all the N atoms in the macrocycle, thus forming (I) and (II), whose structures are described here.
The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane tetrahydrochloride, (I) (Fig. 1a), adopts an endo conformation, as shown in Fig. 1(b). The C—O—N—C, O—N—C—C and C—C—C—N torsion angles (Table 1) are all essentially trans, while the O—N—C—C and O—C—C—C torsion angles are mostly gauche, except for O7—N6—C5—C4, which has a value of 87.14 (14)°. The N2⋯N12 separation across this cation ring is 4.870 (2) Å, whereas the O7⋯O17 separation is 6.377 (2) Å. A related crystallographic study of diaqua(1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane-N,N′,N′′,N′′′)nickel(II) dichloride has been performed (Kuksa et al., 2002); in this structure, the metal complex has crystallographically imposed 2/m symmetry.
The 18-membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetraazacyclooctadecane tetrahydrochloride, (II) (Fig. 2), lies about an inversion centre [chosen for convenience as that at (, , )] and has a symmetrical conformation. The C—O—N—C torsion angles are essentially trans, while the N—C—C—N, O—C—C—C and O—N—C—C torsion angles are gauche; one of the two N—O—C—C angles is gauche and the other is trans (Table 2). In this macrocycle, the shortest transannular contact, O1⋯O1′, is 3.423 (2) Å, whereas the C3⋯C3′ distance is 6.560 (2) Å. An example of an 18-membered oxazane macrocyle with no crystallographically imposed symmetry is found in N,N′-dipyridylbisaza-18-crown-6 (Junk & Smith, 2002).
In both (I) and (II), the cations and anions are linked into sheets via N—H⋯Cl hydrogen bonds. In (I), all eight independent N—H bonds take part in N—H⋯Cl hydrogen bonds (Table 3), which serve to generate sheets in the (001) plane, as shown in Fig. 3, by simple translations in the a and b directions; these sheets, which lie approximately in the domain 0 < z < 0.5, are then linked to inversion-related Cl− ions by C—H⋯Cl interactions (Table 3), generating a three-dimensional network. In (II), because of the inversion centre, there are only four independent N—H bonds and, as in (I), these all form N—H⋯Cl hydrogen bonds (Table 4), generating sheets in the (100) plane by a combination of inversions and b and c translations, as shown in Fig. 4; these sheets lie in the domain 0 > x > 1. The observed conformation is stabilized by an intramolecular N5—H5B⋯O1 hydrogen bond; there are also C—H⋯Cl interactions within the sheets (Table 4). The sheets are linked into a three-dimensional network by sets of C3—H3A⋯Cl1(1 + x, y, z) interactions.
Experimental
The title oxazane macrocycle systems were synthesized according to previously published methods (Kuksa et al., 1999). For (I), 1H NMR (CDCl3): δ 1.50–1.90 (m, 8H, 4 × CH2), 2.96 (t, 8H, 4 × CH2N), 3.75 (t, 8H, 4 × CH2O), 5.64 (br, s, 4H, 4 × ONH); 13C NMR (CDCl3): δ 25.4, 28.5, 50.8, 71.1; HRMS–FAB: calculated for [MH]+ C12H28N4O4: 293.21; found: 293.2197. For (II), 1H NMR (CDCl3): δ 1.85 (pentet, 4H, 2 × CH2), 3.15 (doublet, 8H, 4 × CH2N), 3.85 (t, 8H, 4 × CH2O), 6.00 (br, s, 4H, 4 × ONH); 13C NMR (CDCl3): δ 28.5, 50.8, 71.1; HRMS–FAB: calculated for [MH]+ C10H24N4O4: 265.18; found: 265.1877. The tetrahydrochloride salts were prepared by dissolving the free bases in ethanol and adding a few drops of concentrated HCl. The precipitates were filtered off, dried and recrystallized from ethanol–water to give colourless crystals.
Compound (I)
Crystal data
|
Data collection
Refinement
|
|
Compound (II)
Crystal data
|
Data collection
|
Refinement
|
|
|
All H atoms were resolved clearly in difference maps and were subsequently allowed for as riding atoms using SHELXL97 (Sheldrick, 1997) defaults, with N—H distances of 0.92 Å, C—H distances of 0.99 Å and Uiso values of 1.2Ueq of the attached atom.
For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999);program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S0108270104006687/fg1742sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270104006687/fg1742Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270104006687/fg1742IIsup3.hkl
The oxazane macrocycle systems were synthesized according to previously published methods (Kuksa et al., 1999). For (I), 1H NMR (CDCl3): δ 1.50–1.90 (m, 8H, 4xCH2), 2.96 (t, 8H, 4xCH2N), 3.75 (t, 8H, 4xCH2O), 5.64 (br, s, 4H, 4xONH); 13C NMR (CDCl3): δ 25.4, 28.5, 50.8, 71.1. HRMS–FAB: calculated for [MH]+ C12H28N4O4: 293.21; found: 293.2197. For (II), 1H NMR (CDCl3): δ 1.85 (pentet, 4H, 2xCH2), 3.15 (doublet, 8H, 4xCH2N), 3.85 (t, 8H, 4xCH2O), 6.00 (br, s, 4H, 4xONH); 13C NMR (CDCl3): δ 28.5, 50.8, 71.1. HRMS–FAB: calculated for [MH]+ C10H24N4O4: 265.18; found: 265.1877. The tetrachloride salts were prepared by disssolving the free bases in ethanol, followed by the addition of a few drops of concentrated HCl. The precipitates were filtered off, dried and recrystallized from ethanol/water to give colourless crystals.
All H atoms were clearly resolved in difference maps and were subsequently allowed for as riding atoms using SHELXL97 (Sheldrick, 1997) defaults, with N—H distances of 0.92, C—H distances of 0.99 Å and Uiso values of 1.2Ueq of the attached atom.
For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell
DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999). | Fig. 1a. The atomic arrangement in the cation of the (I). Displacement ellipsoids are shown at the 50% probability level. Fig. 1 b. A view showing the endo conformation of the cation macrocycle of (I). Fig. 2. The atomic arrangement in the cation of (II). Displacement ellipsoids are shown at the 50% probability level. Atoms marked with a prime are at the equivalent position (1 − x,1 − y,1 − z). Fig. 3. A view of the sheet of cations linked by N—H···Cl hydrogen bonds in (I). Atoms Cl3* and Cl4# are at the equivalent positions (1 + x,y,z) and (x,y − 1,z), respectively. Fig. 4. A view of the sheet of cations linked by N—H···Cl hydrogen bonds in (II). Atoms Cl* and Cl2# are at the equivalent positions (1 − x,-y,1 − z) and (x,y,z − 1), respectively. |
C12H32N4O44+·4Cl− | Z = 2 |
Mr = 438.22 | F(000) = 464 |
Triclinic, P1 | Dx = 1.343 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1948 (2) Å | Cell parameters from 13890 reflections |
b = 9.8341 (2) Å | θ = 2.9–27.5° |
c = 12.2985 (3) Å | µ = 0.57 mm−1 |
α = 83.145 (1)° | T = 120 K |
β = 82.933 (1)° | Block, colourless |
γ = 80.865 (1)° | 0.1 × 0.1 × 0.1 mm |
V = 1083.95 (4) Å3 |
Nonius KappaCCD area detector diffractometer | 4134 reflections with I > 2σ(I) |
ϕ and ω scans to fill Ewald sphere | Rint = 0.051 |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | θmax = 27.5°, θmin = 3.0° |
Tmin = 0.860, Tmax = 0.945 | h = −11→11 |
17127 measured reflections | k = −12→12 |
4892 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2746P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4892 reflections | Δρmax = 0.37 e Å−3 |
218 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0031 (13) |
C12H32N4O44+·4Cl− | γ = 80.865 (1)° |
Mr = 438.22 | V = 1083.95 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.1948 (2) Å | Mo Kα radiation |
b = 9.8341 (2) Å | µ = 0.57 mm−1 |
c = 12.2985 (3) Å | T = 120 K |
α = 83.145 (1)° | 0.1 × 0.1 × 0.1 mm |
β = 82.933 (1)° |
Nonius KappaCCD area detector diffractometer | 4892 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 4134 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.945 | Rint = 0.051 |
17127 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.37 e Å−3 |
4892 reflections | Δρmin = −0.28 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.78182 (4) | 0.29749 (4) | 0.02612 (3) | 0.01915 (10) | |
Cl2 | 0.64696 (4) | 0.19188 (4) | 0.52487 (3) | 0.01962 (10) | |
Cl3 | 0.11847 (4) | 0.30594 (4) | 0.54479 (3) | 0.02089 (10) | |
Cl4 | 0.73572 (4) | 0.81739 (4) | −0.05541 (3) | 0.01895 (10) | |
O1 | 0.99254 (12) | 0.16537 (10) | 0.29883 (8) | 0.0203 (2) | |
N2 | 0.92211 (14) | 0.25611 (12) | 0.37742 (10) | 0.0165 (3) | |
H2A | 0.9901 | 0.2741 | 0.4208 | 0.020* | |
H2B | 0.8494 | 0.2160 | 0.4221 | 0.020* | |
C3 | 0.85642 (16) | 0.38629 (15) | 0.31712 (12) | 0.0171 (3) | |
H3A | 0.8151 | 0.4540 | 0.3704 | 0.020* | |
H3B | 0.7740 | 0.3676 | 0.2790 | 0.020* | |
C4 | 0.96970 (17) | 0.44816 (15) | 0.23322 (13) | 0.0191 (3) | |
H4A | 1.0071 | 0.3823 | 0.1778 | 0.023* | |
H4B | 1.0546 | 0.4620 | 0.2709 | 0.023* | |
C5 | 0.90526 (17) | 0.58581 (15) | 0.17511 (13) | 0.0186 (3) | |
H5A | 0.8783 | 0.6546 | 0.2295 | 0.022* | |
H5B | 0.9819 | 0.6194 | 0.1191 | 0.022* | |
N6 | 0.77188 (13) | 0.57604 (13) | 0.12039 (10) | 0.0168 (3) | |
H6A | 0.7628 | 0.6427 | 0.0614 | 0.020* | |
H6B | 0.7800 | 0.4905 | 0.0951 | 0.020* | |
O7 | 0.64545 (11) | 0.59624 (11) | 0.20007 (8) | 0.0188 (2) | |
C8 | 0.51149 (17) | 0.58962 (16) | 0.15037 (12) | 0.0191 (3) | |
H8A | 0.5142 | 0.4970 | 0.1255 | 0.023* | |
H8B | 0.5008 | 0.6602 | 0.0862 | 0.023* | |
C9 | 0.38482 (17) | 0.61760 (15) | 0.23943 (13) | 0.0202 (3) | |
H9A | 0.2903 | 0.6216 | 0.2075 | 0.024* | |
H9B | 0.3867 | 0.7096 | 0.2639 | 0.024* | |
C10 | 0.38792 (18) | 0.51090 (15) | 0.33918 (13) | 0.0203 (3) | |
H10A | 0.4806 | 0.5054 | 0.3739 | 0.024* | |
H10B | 0.3026 | 0.5346 | 0.3944 | 0.024* | |
O11 | 0.37975 (12) | 0.38171 (10) | 0.29722 (8) | 0.0210 (2) | |
N12 | 0.38989 (14) | 0.26899 (12) | 0.38137 (10) | 0.0175 (3) | |
H12A | 0.3055 | 0.2751 | 0.4302 | 0.021* | |
H12B | 0.4699 | 0.2694 | 0.4194 | 0.021* | |
C13 | 0.40765 (16) | 0.14083 (15) | 0.32589 (12) | 0.0182 (3) | |
H13A | 0.3290 | 0.1470 | 0.2766 | 0.022* | |
H13B | 0.3992 | 0.0601 | 0.3814 | 0.022* | |
C14 | 0.55825 (18) | 0.12326 (17) | 0.25980 (14) | 0.0240 (3) | |
H14A | 0.5710 | 0.2108 | 0.2133 | 0.029* | |
H14B | 0.6356 | 0.1055 | 0.3112 | 0.029* | |
C15 | 0.58077 (16) | 0.00686 (16) | 0.18701 (13) | 0.0190 (3) | |
H15A | 0.5706 | −0.0819 | 0.2324 | 0.023* | |
H15B | 0.5051 | 0.0236 | 0.1343 | 0.023* | |
N16 | 0.73087 (13) | −0.00011 (13) | 0.12633 (10) | 0.0171 (3) | |
H16A | 0.7394 | −0.0554 | 0.0699 | 0.020* | |
H16B | 0.7485 | 0.0869 | 0.0968 | 0.020* | |
O17 | 0.83421 (11) | −0.05667 (10) | 0.20308 (8) | 0.0182 (2) | |
C18 | 0.98322 (16) | −0.03550 (15) | 0.15841 (12) | 0.0180 (3) | |
H18A | 0.9842 | 0.0607 | 0.1240 | 0.022* | |
H18B | 1.0227 | −0.0998 | 0.1021 | 0.022* | |
C19 | 1.07496 (16) | −0.06390 (15) | 0.25513 (12) | 0.0178 (3) | |
H19A | 1.0800 | −0.1629 | 0.2835 | 0.021* | |
H19B | 1.1771 | −0.0461 | 0.2292 | 0.021* | |
C20 | 1.01366 (17) | 0.02342 (15) | 0.34797 (12) | 0.0174 (3) | |
H20A | 0.9183 | −0.0035 | 0.3833 | 0.021* | |
H20B | 1.0840 | 0.0115 | 0.4044 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0233 (2) | 0.01433 (18) | 0.01929 (19) | −0.00213 (14) | −0.00157 (14) | −0.00128 (15) |
Cl2 | 0.02013 (19) | 0.02069 (19) | 0.01824 (19) | −0.00444 (14) | −0.00278 (14) | −0.00006 (15) |
Cl3 | 0.0207 (2) | 0.0268 (2) | 0.01643 (19) | −0.00656 (15) | −0.00062 (14) | −0.00458 (16) |
Cl4 | 0.0264 (2) | 0.01640 (18) | 0.01435 (18) | −0.00346 (14) | −0.00417 (14) | −0.00019 (14) |
O1 | 0.0312 (6) | 0.0130 (5) | 0.0143 (5) | 0.0003 (4) | 0.0019 (4) | −0.0007 (4) |
N2 | 0.0190 (6) | 0.0169 (6) | 0.0136 (6) | −0.0023 (5) | −0.0016 (5) | −0.0021 (5) |
C3 | 0.0176 (7) | 0.0145 (7) | 0.0182 (7) | −0.0010 (6) | −0.0028 (6) | 0.0009 (6) |
C4 | 0.0185 (8) | 0.0175 (7) | 0.0209 (8) | −0.0033 (6) | −0.0022 (6) | 0.0007 (6) |
C5 | 0.0200 (8) | 0.0161 (7) | 0.0199 (8) | −0.0055 (6) | −0.0008 (6) | −0.0006 (6) |
N6 | 0.0202 (7) | 0.0148 (6) | 0.0140 (6) | −0.0015 (5) | 0.0007 (5) | −0.0004 (5) |
O7 | 0.0166 (5) | 0.0241 (6) | 0.0149 (5) | −0.0013 (4) | 0.0001 (4) | −0.0025 (5) |
C8 | 0.0193 (8) | 0.0202 (7) | 0.0179 (7) | −0.0029 (6) | −0.0049 (6) | 0.0005 (6) |
C9 | 0.0207 (8) | 0.0166 (7) | 0.0220 (8) | −0.0006 (6) | −0.0020 (6) | −0.0006 (6) |
C10 | 0.0244 (8) | 0.0173 (7) | 0.0193 (8) | −0.0032 (6) | 0.0004 (6) | −0.0048 (6) |
O11 | 0.0328 (6) | 0.0155 (5) | 0.0151 (5) | −0.0048 (4) | −0.0043 (5) | 0.0009 (4) |
N12 | 0.0185 (6) | 0.0196 (6) | 0.0139 (6) | −0.0038 (5) | −0.0005 (5) | 0.0009 (5) |
C13 | 0.0206 (8) | 0.0155 (7) | 0.0185 (7) | −0.0041 (6) | −0.0015 (6) | −0.0001 (6) |
C14 | 0.0227 (8) | 0.0245 (8) | 0.0264 (8) | −0.0066 (7) | 0.0015 (7) | −0.0089 (7) |
C15 | 0.0180 (8) | 0.0188 (7) | 0.0217 (8) | −0.0029 (6) | −0.0050 (6) | −0.0044 (6) |
N16 | 0.0215 (7) | 0.0139 (6) | 0.0159 (6) | −0.0004 (5) | −0.0051 (5) | −0.0016 (5) |
O17 | 0.0169 (5) | 0.0201 (5) | 0.0168 (5) | −0.0021 (4) | −0.0047 (4) | 0.0032 (4) |
C18 | 0.0185 (8) | 0.0173 (7) | 0.0175 (7) | −0.0032 (6) | 0.0020 (6) | −0.0016 (6) |
C19 | 0.0172 (7) | 0.0156 (7) | 0.0191 (8) | −0.0003 (6) | −0.0016 (6) | 0.0011 (6) |
C20 | 0.0208 (8) | 0.0139 (7) | 0.0168 (7) | −0.0020 (6) | −0.0041 (6) | 0.0035 (6) |
O1—N2 | 1.4206 (15) | C10—H10B | 0.99 |
O1—C20 | 1.4467 (17) | O11—N12 | 1.4233 (16) |
N2—C3 | 1.4805 (18) | N12—C13 | 1.4809 (19) |
N2—H2A | 0.92 | N12—H12A | 0.92 |
N2—H2B | 0.92 | N12—H12B | 0.92 |
C3—C4 | 1.519 (2) | C13—C14 | 1.513 (2) |
C3—H3A | 0.99 | C13—H13A | 0.99 |
C3—H3B | 0.99 | C13—H13B | 0.99 |
C4—C5 | 1.521 (2) | C14—C15 | 1.509 (2) |
C4—H4A | 0.99 | C14—H14A | 0.99 |
C4—H4B | 0.99 | C14—H14B | 0.99 |
C5—N6 | 1.4907 (19) | C15—N16 | 1.4816 (19) |
C5—H5A | 0.99 | C15—H15A | 0.99 |
C5—H5B | 0.99 | C15—H15B | 0.99 |
N6—O7 | 1.4296 (15) | N16—O17 | 1.4250 (15) |
N6—H6A | 0.92 | N16—H16A | 0.92 |
N6—H6B | 0.92 | N16—H16B | 0.92 |
O7—C8 | 1.4544 (18) | O17—C18 | 1.4492 (18) |
C8—C9 | 1.513 (2) | C18—C19 | 1.516 (2) |
C8—H8A | 0.99 | C18—H18A | 0.99 |
C8—H8B | 0.99 | C18—H18B | 0.99 |
C9—C10 | 1.516 (2) | C19—C20 | 1.510 (2) |
C9—H9A | 0.99 | C19—H19A | 0.99 |
C9—H9B | 0.99 | C19—H19B | 0.99 |
C10—O11 | 1.4430 (18) | C20—H20A | 0.99 |
C10—H10A | 0.99 | C20—H20B | 0.99 |
N2—O1—C20 | 111.05 (10) | N12—O11—C10 | 111.65 (10) |
O1—N2—C3 | 108.16 (10) | O11—N12—C13 | 106.72 (10) |
O1—N2—H2A | 110.1 | O11—N12—H12A | 110.4 |
C3—N2—H2A | 110.1 | C13—N12—H12A | 110.4 |
O1—N2—H2B | 110.1 | O11—N12—H12B | 110.4 |
C3—N2—H2B | 110.1 | C13—N12—H12B | 110.4 |
H2A—N2—H2B | 108.4 | H12A—N12—H12B | 108.6 |
N2—C3—C4 | 111.89 (12) | N12—C13—C14 | 108.76 (12) |
N2—C3—H3A | 109.2 | N12—C13—H13A | 109.9 |
C4—C3—H3A | 109.2 | C14—C13—H13A | 109.9 |
N2—C3—H3B | 109.2 | N12—C13—H13B | 109.9 |
C4—C3—H3B | 109.2 | C14—C13—H13B | 109.9 |
H3A—C3—H3B | 107.9 | H13A—C13—H13B | 108.3 |
C3—C4—C5 | 112.27 (12) | C15—C14—C13 | 113.52 (13) |
C3—C4—H4A | 109.1 | C15—C14—H14A | 108.9 |
C5—C4—H4A | 109.1 | C13—C14—H14A | 108.9 |
C3—C4—H4B | 109.1 | C15—C14—H14B | 108.9 |
C5—C4—H4B | 109.1 | C13—C14—H14B | 108.9 |
H4A—C4—H4B | 107.9 | H14A—C14—H14B | 107.7 |
N6—C5—C4 | 112.82 (12) | N16—C15—C14 | 108.72 (12) |
N6—C5—H5A | 109.0 | N16—C15—H15A | 109.9 |
C4—C5—H5A | 109.0 | C14—C15—H15A | 109.9 |
N6—C5—H5B | 109.0 | N16—C15—H15B | 109.9 |
C4—C5—H5B | 109.0 | C14—C15—H15B | 109.9 |
H5A—C5—H5B | 107.8 | H15A—C15—H15B | 108.3 |
O7—N6—C5 | 107.69 (10) | O17—N16—C15 | 107.30 (11) |
O7—N6—H6A | 110.2 | O17—N16—H16A | 110.3 |
C5—N6—H6A | 110.2 | C15—N16—H16A | 110.3 |
O7—N6—H6B | 110.2 | O17—N16—H16B | 110.3 |
C5—N6—H6B | 110.2 | C15—N16—H16B | 110.3 |
H6A—N6—H6B | 108.5 | H16A—N16—H16B | 108.5 |
N6—O7—C8 | 109.96 (10) | N16—O17—C18 | 110.78 (10) |
O7—C8—C9 | 105.78 (12) | O17—C18—C19 | 105.92 (11) |
O7—C8—H8A | 110.6 | O17—C18—H18A | 110.6 |
C9—C8—H8A | 110.6 | C19—C18—H18A | 110.6 |
O7—C8—H8B | 110.6 | O17—C18—H18B | 110.6 |
C9—C8—H8B | 110.6 | C19—C18—H18B | 110.6 |
H8A—C8—H8B | 108.7 | H18A—C18—H18B | 108.7 |
C8—C9—C10 | 114.42 (13) | C20—C19—C18 | 113.23 (12) |
C8—C9—H9A | 108.7 | C20—C19—H19A | 108.9 |
C10—C9—H9A | 108.7 | C18—C19—H19A | 108.9 |
C8—C9—H9B | 108.7 | C20—C19—H19B | 108.9 |
C10—C9—H9B | 108.7 | C18—C19—H19B | 108.9 |
H9A—C9—H9B | 107.6 | H19A—C19—H19B | 107.7 |
O11—C10—C9 | 105.11 (12) | O1—C20—C19 | 106.20 (11) |
O11—C10—H10A | 110.7 | O1—C20—H20A | 110.5 |
C9—C10—H10A | 110.7 | C19—C20—H20A | 110.5 |
O11—C10—H10B | 110.7 | O1—C20—H20B | 110.5 |
C9—C10—H10B | 110.7 | C19—C20—H20B | 110.5 |
H10A—C10—H10B | 108.8 | H20A—C20—H20B | 108.7 |
C20—O1—N2—C3 | −160.12 (11) | C10—O11—N12—C13 | −169.99 (11) |
O1—N2—C3—C4 | −53.62 (15) | O11—N12—C13—C14 | 68.59 (14) |
N2—C3—C4—C5 | −176.99 (12) | N12—C13—C14—C15 | −171.99 (13) |
C3—C4—C5—N6 | −56.12 (17) | C13—C14—C15—N16 | 179.77 (12) |
C4—C5—N6—O7 | 87.14 (14) | C14—C15—N16—O17 | 73.33 (14) |
C5—N6—O7—C8 | 179.20 (11) | C15—N16—O17—C18 | −165.74 (11) |
N6—O7—C8—C9 | −177.85 (11) | N16—O17—C18—C19 | 165.42 (10) |
O7—C8—C9—C10 | −62.88 (16) | O17—C18—C19—C20 | −55.81 (15) |
C8—C9—C10—O11 | −60.32 (16) | N2—O1—C20—C19 | 174.63 (11) |
C9—C10—O11—N12 | 176.75 (11) | C18—C19—C20—O1 | −52.01 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl3i | 0.92 | 2.12 | 3.0287 (12) | 170 |
N2—H2B···Cl2 | 0.92 | 2.15 | 3.0321 (13) | 161 |
N6—H6A···Cl4 | 0.92 | 2.11 | 3.0199 (13) | 171 |
N6—H6B···Cl1 | 0.92 | 2.17 | 3.0836 (13) | 175 |
N12—H12A···Cl3 | 0.92 | 2.09 | 3.0086 (13) | 175 |
N12—H12B···Cl2 | 0.92 | 2.19 | 3.0683 (13) | 159 |
N16—H16A···Cl4ii | 0.92 | 2.10 | 3.0210 (13) | 174 |
N16—H16B···Cl1 | 0.92 | 2.20 | 3.1202 (13) | 178 |
C5—H5B···Cl1iii | 0.99 | 2.80 | 3.7866 (16) | 175 |
C13—H13A···Cl4iv | 0.99 | 2.82 | 3.6814 (15) | 145 |
C13—H13B···Cl2v | 0.99 | 2.68 | 3.6315 (15) | 161 |
C15—H15B···Cl4iv | 0.99 | 2.71 | 3.6013 (15) | 150 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) −x+2, −y+1, −z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z+1. |
C10H28N4O44+·4Cl− | Z = 1 |
Mr = 410.16 | F(000) = 216 |
Triclinic, P1 | Dx = 1.436 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6921 (2) Å | Cell parameters from 3448 reflections |
b = 8.3920 (2) Å | θ = 2.9–27.5° |
c = 8.6696 (3) Å | µ = 0.64 mm−1 |
α = 67.409 (2)° | T = 120 K |
β = 68.128 (2)° | Plate, colourless |
γ = 88.967 (2)° | 0.16 × 0.08 × 0.03 mm |
V = 474.37 (3) Å3 |
Nonius KappaCCD area detector diffractometer | 1798 reflections with I > 2σ(I) |
ϕ and ω scans to fill Ewald sphere | Rint = 0.048 |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | θmax = 27.5°, θmin = 3.0° |
Tmin = 0.941, Tmax = 0.980 | h = −9→9 |
6137 measured reflections | k = −10→10 |
2090 independent reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0262P)2 + 0.1427P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2090 reflections | Δρmax = 0.31 e Å−3 |
101 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.019 (4) |
C10H28N4O44+·4Cl− | γ = 88.967 (2)° |
Mr = 410.16 | V = 474.37 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.6921 (2) Å | Mo Kα radiation |
b = 8.3920 (2) Å | µ = 0.64 mm−1 |
c = 8.6696 (3) Å | T = 120 K |
α = 67.409 (2)° | 0.16 × 0.08 × 0.03 mm |
β = 68.128 (2)° |
Nonius KappaCCD area detector diffractometer | 2090 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 1798 reflections with I > 2σ(I) |
Tmin = 0.941, Tmax = 0.980 | Rint = 0.048 |
6137 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
2090 reflections | Δρmin = −0.26 e Å−3 |
101 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.32480 (5) | 0.15909 (5) | 0.36436 (5) | 0.01571 (13) | |
Cl2 | 0.84740 (5) | 0.26379 (5) | 0.87007 (5) | 0.01947 (14) | |
O1 | 0.54871 (14) | 0.29156 (14) | 0.58324 (14) | 0.0143 (3) | |
N2 | 0.70790 (17) | 0.21150 (16) | 0.60752 (17) | 0.0123 (3) | |
H2A | 0.6895 | 0.0952 | 0.6308 | 0.015* | |
H2B | 0.7236 | 0.2206 | 0.7041 | 0.015* | |
C3 | 0.8764 (2) | 0.3029 (2) | 0.4382 (2) | 0.0145 (3) | |
H3A | 0.9912 | 0.2701 | 0.4616 | 0.017* | |
H3B | 0.8798 | 0.4302 | 0.4033 | 0.017* | |
C4 | 0.8817 (2) | 0.2629 (2) | 0.2805 (2) | 0.0151 (3) | |
H4A | 1.0095 | 0.3075 | 0.1816 | 0.018* | |
H4B | 0.8609 | 0.1347 | 0.3210 | 0.018* | |
N5 | 0.73925 (18) | 0.33915 (16) | 0.20681 (17) | 0.0127 (3) | |
H5A | 0.7546 | 0.3175 | 0.1065 | 0.015* | |
H5B | 0.6189 | 0.2908 | 0.2932 | 0.015* | |
O6 | 0.76719 (14) | 0.52168 (13) | 0.15796 (14) | 0.0135 (2) | |
C7 | 0.6143 (2) | 0.6011 (2) | 0.1116 (2) | 0.0136 (3) | |
H7A | 0.4899 | 0.5393 | 0.2097 | 0.016* | |
H7B | 0.6200 | 0.5973 | −0.0029 | 0.016* | |
C8 | 0.6429 (2) | 0.7871 (2) | 0.0894 (2) | 0.0139 (3) | |
H8A | 0.5483 | 0.8502 | 0.0472 | 0.017* | |
H8B | 0.7701 | 0.8441 | −0.0060 | 0.017* | |
C9 | 0.6255 (2) | 0.8042 (2) | 0.2626 (2) | 0.0158 (3) | |
H9A | 0.7345 | 0.7610 | 0.2924 | 0.019* | |
H9B | 0.6314 | 0.9291 | 0.2409 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0148 (2) | 0.0153 (2) | 0.0167 (2) | 0.00085 (15) | −0.00585 (17) | −0.00649 (16) |
Cl2 | 0.0181 (2) | 0.0280 (3) | 0.0153 (2) | −0.00110 (17) | −0.00643 (17) | −0.01186 (18) |
O1 | 0.0106 (5) | 0.0201 (6) | 0.0128 (5) | 0.0053 (4) | −0.0053 (4) | −0.0068 (5) |
N2 | 0.0123 (6) | 0.0146 (7) | 0.0123 (6) | 0.0044 (5) | −0.0062 (5) | −0.0066 (5) |
C3 | 0.0103 (7) | 0.0175 (8) | 0.0135 (8) | 0.0012 (6) | −0.0039 (6) | −0.0048 (6) |
C4 | 0.0154 (8) | 0.0165 (8) | 0.0121 (7) | 0.0054 (6) | −0.0043 (6) | −0.0056 (6) |
N5 | 0.0147 (6) | 0.0113 (7) | 0.0116 (6) | −0.0002 (5) | −0.0043 (5) | −0.0050 (5) |
O6 | 0.0144 (5) | 0.0099 (5) | 0.0181 (6) | 0.0015 (4) | −0.0084 (5) | −0.0055 (4) |
C7 | 0.0138 (8) | 0.0163 (8) | 0.0137 (7) | 0.0033 (6) | −0.0082 (7) | −0.0065 (6) |
C8 | 0.0134 (8) | 0.0139 (8) | 0.0125 (7) | 0.0020 (6) | −0.0037 (6) | −0.0050 (6) |
C9 | 0.0110 (7) | 0.0189 (8) | 0.0180 (8) | 0.0008 (6) | −0.0027 (7) | −0.0107 (7) |
O1—N2 | 1.4314 (15) | N5—H5A | 0.92 |
O1—C9i | 1.4518 (18) | N5—H5B | 0.92 |
N2—C3 | 1.4752 (19) | O6—C7 | 1.4516 (17) |
N2—H2A | 0.92 | C7—C8 | 1.508 (2) |
N2—H2B | 0.92 | C7—H7A | 0.99 |
C3—C4 | 1.514 (2) | C7—H7B | 0.99 |
C3—H3A | 0.99 | C8—C9 | 1.519 (2) |
C3—H3B | 0.99 | C8—H8A | 0.99 |
C4—N5 | 1.4836 (19) | C8—H8B | 0.99 |
C4—H4A | 0.99 | C9—H9A | 0.99 |
C4—H4B | 0.99 | C9—H9B | 0.99 |
N5—O6 | 1.4204 (15) | ||
N2—O1—C9i | 110.47 (10) | O6—N5—H5B | 110.2 |
O1—N2—C3 | 107.54 (11) | C4—N5—H5B | 110.2 |
O1—N2—H2A | 110.2 | H5A—N5—H5B | 108.5 |
C3—N2—H2A | 110.2 | N5—O6—C7 | 110.34 (10) |
O1—N2—H2B | 110.2 | O6—C7—C8 | 105.61 (12) |
C3—N2—H2B | 110.2 | O6—C7—H7A | 110.6 |
H2A—N2—H2B | 108.5 | C8—C7—H7A | 110.6 |
N2—C3—C4 | 113.76 (12) | O6—C7—H7B | 110.6 |
N2—C3—H3A | 108.8 | C8—C7—H7B | 110.6 |
C4—C3—H3A | 108.8 | H7A—C7—H7B | 108.7 |
N2—C3—H3B | 108.8 | C7—C8—C9 | 113.82 (13) |
C4—C3—H3B | 108.8 | C7—C8—H8A | 108.8 |
H3A—C3—H3B | 107.7 | C9—C8—H8A | 108.8 |
N5—C4—C3 | 114.03 (12) | C7—C8—H8B | 108.8 |
N5—C4—H4A | 108.7 | C9—C8—H8B | 108.8 |
C3—C4—H4A | 108.7 | H8A—C8—H8B | 107.7 |
N5—C4—H4B | 108.7 | O1i—C9—C8 | 113.05 (12) |
C3—C4—H4B | 108.7 | O1i—C9—H9A | 109.0 |
H4A—C4—H4B | 107.6 | C8—C9—H9A | 109.0 |
O6—N5—C4 | 107.37 (11) | O1i—C9—H9B | 109.0 |
O6—N5—H5A | 110.2 | C8—C9—H9B | 109.0 |
C4—N5—H5A | 110.2 | H9A—C9—H9B | 107.8 |
C8i—C9i—O1—N2 | 69.50 (17) | C4—N5—O6—C7 | −171.03 (11) |
C9i—O1—N2—C3 | 173.78 (11) | N5—O6—C7—C8 | 171.92 (11) |
O1—N2—C3—C4 | −72.23 (15) | O6—C7—C8—C9 | −63.37 (15) |
N2—C3—C4—N5 | 70.57 (17) | C7—C8—C9—O1i | −52.29 (17) |
C3—C4—N5—O6 | 55.80 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1ii | 0.92 | 2.12 | 3.0323 (13) | 170 |
N2—H2B···Cl2 | 0.92 | 2.13 | 3.0214 (13) | 163 |
N5—H5A···Cl2iii | 0.92 | 2.13 | 3.0340 (13) | 168 |
N5—H5B···Cl1 | 0.92 | 2.29 | 3.1074 (13) | 148 |
N5—H5B···O1 | 0.92 | 2.37 | 2.9007 (16) | 117 |
C3—H3A···Cl1iv | 0.99 | 2.66 | 3.5445 (15) | 149 |
C4—H4B···Cl1ii | 0.99 | 2.76 | 3.5673 (16) | 139 |
C4—H4A···O6v | 0.99 | 2.60 | 3.5012 (19) | 152 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, y, z−1; (iv) x+1, y, z; (v) −x+2, −y+1, −z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C12H32N4O44+·4Cl− | C10H28N4O44+·4Cl− |
Mr | 438.22 | 410.16 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 9.1948 (2), 9.8341 (2), 12.2985 (3) | 7.6921 (2), 8.3920 (2), 8.6696 (3) |
α, β, γ (°) | 83.145 (1), 82.933 (1), 80.865 (1) | 67.409 (2), 68.128 (2), 88.967 (2) |
V (Å3) | 1083.95 (4) | 474.37 (3) |
Z | 2 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.57 | 0.64 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 | 0.16 × 0.08 × 0.03 |
Data collection | ||
Diffractometer | Nonius KappaCCD area detector diffractometer | Nonius KappaCCD area detector diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1997) | Multi-scan (SORTAV; Blessing, 1997) |
Tmin, Tmax | 0.860, 0.945 | 0.941, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17127, 4892, 4134 | 6137, 2090, 1798 |
Rint | 0.051 | 0.048 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.079, 1.05 | 0.030, 0.075, 1.05 |
No. of reflections | 4892 | 2090 |
No. of parameters | 218 | 101 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.28 | 0.31, −0.26 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SIR97 (Altomare et al.,1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
C20—O1—N2—C3 | −160.12 (11) | C10—O11—N12—C13 | −169.99 (11) |
O1—N2—C3—C4 | −53.62 (15) | O11—N12—C13—C14 | 68.59 (14) |
N2—C3—C4—C5 | −176.99 (12) | N12—C13—C14—C15 | −171.99 (13) |
C3—C4—C5—N6 | −56.12 (17) | C13—C14—C15—N16 | 179.77 (12) |
C4—C5—N6—O7 | 87.14 (14) | C14—C15—N16—O17 | 73.33 (14) |
C5—N6—O7—C8 | 179.20 (11) | C15—N16—O17—C18 | −165.74 (11) |
N6—O7—C8—C9 | −177.85 (11) | N16—O17—C18—C19 | 165.42 (10) |
O7—C8—C9—C10 | −62.88 (16) | O17—C18—C19—C20 | −55.81 (15) |
C8—C9—C10—O11 | −60.32 (16) | N2—O1—C20—C19 | 174.63 (11) |
C9—C10—O11—N12 | 176.75 (11) | C18—C19—C20—O1 | −52.01 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl3i | 0.92 | 2.12 | 3.0287 (12) | 170 |
N2—H2B···Cl2 | 0.92 | 2.15 | 3.0321 (13) | 161 |
N6—H6A···Cl4 | 0.92 | 2.11 | 3.0199 (13) | 171 |
N6—H6B···Cl1 | 0.92 | 2.17 | 3.0836 (13) | 175 |
N12—H12A···Cl3 | 0.92 | 2.09 | 3.0086 (13) | 175 |
N12—H12B···Cl2 | 0.92 | 2.19 | 3.0683 (13) | 159 |
N16—H16A···Cl4ii | 0.92 | 2.10 | 3.0210 (13) | 174 |
N16—H16B···Cl1 | 0.92 | 2.20 | 3.1202 (13) | 178 |
C5—H5B···Cl1iii | 0.99 | 2.80 | 3.7866 (16) | 175 |
C13—H13A···Cl4iv | 0.99 | 2.82 | 3.6814 (15) | 145 |
C13—H13B···Cl2v | 0.99 | 2.68 | 3.6315 (15) | 161 |
C15—H15B···Cl4iv | 0.99 | 2.71 | 3.6013 (15) | 150 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) −x+2, −y+1, −z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z+1. |
C8i—C9i—O1—N2 | 69.50 (17) | C4—N5—O6—C7 | −171.03 (11) |
C9i—O1—N2—C3 | 173.78 (11) | N5—O6—C7—C8 | 171.92 (11) |
O1—N2—C3—C4 | −72.23 (15) | O6—C7—C8—C9 | −63.37 (15) |
N2—C3—C4—N5 | 70.57 (17) | C7—C8—C9—O1i | −52.29 (17) |
C3—C4—N5—O6 | 55.80 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1ii | 0.92 | 2.12 | 3.0323 (13) | 170 |
N2—H2B···Cl2 | 0.92 | 2.13 | 3.0214 (13) | 163 |
N5—H5A···Cl2iii | 0.92 | 2.13 | 3.0340 (13) | 168 |
N5—H5B···Cl1 | 0.92 | 2.29 | 3.1074 (13) | 148 |
N5—H5B···O1 | 0.92 | 2.37 | 2.9007 (16) | 117 |
C3—H3A···Cl1iv | 0.99 | 2.66 | 3.5445 (15) | 149 |
C4—H4B···Cl1ii | 0.99 | 2.76 | 3.5673 (16) | 139 |
C4—H4A···O6v | 0.99 | 2.60 | 3.5012 (19) | 152 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, y, z−1; (iv) x+1, y, z; (v) −x+2, −y+1, −z. |
Acknowledgements
The authors thank the EPSRC for use of the National Crystallographic Service, Southampton University, England (X-ray data collection), and the National
Service Centre, University of Wales, Swansea (mass spectral analysis).References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–429. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hosseini, M. W. & Lehn, J. M. (1986). Helv. Chim. Acta, 69, 587–603. CrossRef CAS Web of Science Google Scholar
Hosseini, M. W. & Lehn, J. M. (1987). J. Am. Chem. Soc. 109, 7047–7058. CrossRef CAS Web of Science Google Scholar
Inoue, Y. & Kimura, E. (1994). Biol. Pharm. Bull. 17, 243–250. PubMed Web of Science Google Scholar
Inoue, Y. & Kimura, E. (1996). Biol. Pharm. Bull. 19, 456–458. PubMed Web of Science Google Scholar
Junk, P. C. & Smith, M. K. (2002). Inorg. Chem. Commun. 5, 1082–1085. Web of Science CSD CrossRef CAS Google Scholar
Kimura, E. (1993). Pure Appl. Chem. 65, 355–359. CrossRef CAS Web of Science Google Scholar
Kimura, E. & Koike, T. (1998). Chem. Commun. pp. 1495–1500. Web of Science CrossRef Google Scholar
Kimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bonding, 89, 1–28. CrossRef CAS Google Scholar
Kong, D., Meng, L., Ding, J., Xie, Y. & Huang, X. (2000). Polyhedron, 19, 217–223. Web of Science CSD CrossRef CAS Google Scholar
Kuksa, V. A., Marshall, C., Wardell, S. M. S. V. & Kong Thoo Lin, P. (1999). Synthesis, 6, 1034–1038. CSD CrossRef Google Scholar
Kuksa, V. A., Wardell, S. M. S. V. & Kong Thoo Lin, P. (2002). Inorg. Chem. Commun. 3, 267–270. CSD CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Heteromacrocyclic systems have for a long time generated great interest in the scientific community because of their huge range of applications. For example, several 1,4,7,10-tetraazacyclododecane (cyclen) derivatives were used as models for protein–metal binding sites in biological systems (Kimura, 1993; Kimura & Koike, 1998; Kimura et al., 1997). Other cyclic polyamine systems have also been designed and synthesized, in order to demonstrate that these systems can act as molecular catalysts capable of effecting reactions on anion substrates, for example, the phosphoryl transfer that play an essential role in the energetics of all living organisms (Hosseini & Lehn, 1986; Hosseini & Lehn, 1987). Furthermore, other tetraazamacrocyclic ligands, such as the cyclen, cyclam and bicyclam ligands, have been shown to exhibit antitumour and anti-HIV activity (Kong et al., 2000; Inoue & Kimura, 1994; Inoue & Kimura, 1996). Other areas where macrocyclic systems could have useful applications are in diagnostic and sensor technologies. The free bases of the cation macrocycles described in this work were used in the assembly of ion-selective electrodes for nitrate detection (Application No./Patent No. 02730426.0–2204-GB0202292). The formation of the tetrahydrochloride salts of the free bases results in protonation of all the N atoms in the macrocycle, thus forming the (I) and (II), whose structures are described here.
The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane tetrahydrochloride, (I) (Fig. 1a), adopts an endo conformation, as shown in Fig. 1(b). All the C—O—N—C, O—N—C—C and C—C—C—N torsion angles (Table 1) are essentially trans, while the O—N—C—C and O—C—C—C torsion angles are mostly gauche, except for O7—N6—C5—C4, which has a value of 87.14 (14)°. The N2···N12 separation across this cation ring is 4.870 (2) Å, whereas the O7···O17 separation is 6.377 (2) Å. A related crystallographic study of diaqua(1,7,11,17-tetraoxa- 2,6,12,16-tetraazacycloeicosane-N,N',N'',N''')nickel (II) dichloride has been performed (Kuksa et al., 2002); in this structure, the metal complex has crystallographically imposed 2/m symmetry.
The 18-membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetraazacyclooctadecane tetrahydrochloride, (II) (Fig. 2), lies about an inversion centre [chosen for convenience as that at (1/2,0.5, 1/2)] and has a symmetrical conformation. The C—O—N—C torsion angles are essentially trans, while the N—C—C—N, O—C—C—C and O—N—C—C torsion angles are gauche; one of the two N—O—C—C angles is gauche and the other is trans (Table 2). In this macrocycle, the shortest transannular contact, O1···O1', is 3.423 (2) Å, whereas C3···C3' is 6.560 (2) Å. An example of an 18-membered oxazane macrocyle with no crystallographically imposed symmetry is found with N,N'-dipyridyl-bis-aza-18-crown-6 (Junk & Smith, 2002).
In both (I) and (II), the cations and anions are linked into sheets via N—H···Cl hydrogen bonds. In (I), all eight independent N—H bonds take part in N—H···Cl hydrogen bonds (Table 3), which serve to generate sheets in the (001) plane, as shown in Fig. 3, by simple translations in the a and b directions; these sheets, which lie approximately in the domain 0 < z < 1/2, are then linked to inversion-related Cl− ions by C—H···Cl interactions (Table 3), generating a three-dimensional network. In (II), because of the inversion centre, there are only four independent N—H bonds and, as in (I), these all form N—H···Cl hydrogen bonds (Table 4), generating sheets in the (001) plane, which lie in the domain 0 > z > 1, by a combination of inversions and a and b translations, as shown in Fig. 4. The observed conformation is stablized by an intramolecular N5—H5B···O1 hydrogen bond; there are also C—H···Cl interactions within the sheets (Table 4). The sheets are linked into a three-dimensional network by sets of C3—H3A····Cl1(1 + x,y,z) interactions.