organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Two ox­aza­ne macrocycles

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland, and bSchool of Life Sciences, The Robert Gordon University, St zAndrews Street, Aberdeen AB25 1HG, Scotland
*Correspondence e-mail: p.j.cox@rgu.ac.uk

(Received 25 February 2004; accepted 22 March 2004; online 9 April 2004)

The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane tetrahydrochloride, C12H32N4O44+·4Cl, adopts an endo conformation, while the 18-membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetraaza­cyclo­octa­decane tetrahy­drochloride, C10H28N4O44+·4Cl, lies about an inversion centre and adopts a symmetrical conformation. In the crystal structures of both compounds, the cations and chloride anions are linked by N—H⋯Cl hydrogen bonds into planar sheets of mol­ecules; the sheets are linked into three-dimensional networks via C—H⋯Cl hydrogen bonds.

Comment

Heteromacrocyclic systems have for a long time generated great interest in the scientific community because of their huge range of applications. For example, several 1,4,7,10-tetra­aza­cyclo­do­decane (cyclen) derivatives have been used as models for protein–metal binding sites in biological systems (Kimura, 1993[Kimura, E. (1993). Pure Appl. Chem. 65, 355-359.]; Kimura et al., 1997[Kimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bonding, 89, 1-28.]; Kimura & Koike, 1998[Kimura, E. & Koike, T. (1998). Chem. Commun. pp. 1495-1500.]). Other cyclic poly­amine systems have also been designed and synthesized in order to demonstrate that these systems can act as mol­ecular catalysts capable of effecting reactions on anion substrates, for example, the phospho­ryl transfer that plays an essential role in the energetics of all living organisms (Hosseini & Lehn, 1986[Hosseini, M. W. & Lehn, J. M. (1986). Helv. Chim. Acta, 69, 587-603.], 1987[Hosseini, M. W. & Lehn, J. M. (1987). J. Am. Chem. Soc. 109, 7047-7058.]). Furthermore, other tetra­aza­macrocyclic ligands, such as the cyclen, cyclam and bicyclam ligands, have been shown to exhibit antitumour and anti-HIV activity (Inoue & Kimura, 1994[Inoue, Y. & Kimura, E. (1994). Biol. Pharm. Bull. 17, 243-250.], 1996[Inoue, Y. & Kimura, E. (1996). Biol. Pharm. Bull. 19, 456-458.]; Kong Thoo Lin et al., 2000[Kong, D., Meng, L., Ding, J., Xie, Y. & Huang, X. (2000). Polyhedron, 19, 217-223.]). Other areas where macrocyclic systems could have useful applications are in diagnostic and sensor technologies. The free bases of the cation macrocycles described in this work have been used in the assembly of ion-selective electrodes for nitrate detection (Application No./Patent No. 02730426.0-2204-GB0202292). The formation of the tetra­hydro­chloride salts of the free bases results in protonation of all the N atoms in the macrocycle, thus forming (I[link]) and (II[link]), whose structures are described here.

The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetra­aza­cyclo­ei­cosane tetrahydrochloride, (I[link]) (Fig. 1[link]a), adopts an endo conformation, as shown in Fig. 1[link](b). The C—O—N—C, O—N—C—C and C—C—C—N torsion angles (Table 1[link]) are all essentially trans, while the O—N—C—C and O—C—C—C torsion angles are mostly gauche, except for O7—N6—C5—C4, which has a value of 87.14 (14)°. The N2⋯N12 separation across this cation ring is 4.870 (2) Å, whereas the O7⋯O17 separation is 6.377 (2) Å. A related crystallographic study of di­aqua(1,7,11,17-tetraoxa-2,6,12,16-tetra­aza­cyclo­ei­cosane-N,N′,N′′,N′′′)­nickel(II[link]) dichloride has been performed (Kuksa et al., 2002[Kuksa, V. A., Wardell, S. M. S. V. & Kong Thoo Lin, P. (2002). Inorg. Chem. Commun. 3, 267-270.]); in this structure, the metal complex has crystallographically imposed 2/m symmetry.

[Scheme 1]

The 18-membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetra­aza­cyclo­octa­decane tetrahydrochloride, (II[link]) (Fig. 2[link]), lies about an inversion centre [chosen for convenience as that at ([1 \over 2], [1 \over 2], [1 \over 2])] and has a symmetrical conformation. The C—O—N—C torsion angles are essentially trans, while the N—C—C—N, O—C—C—C and O—N—C—C torsion angles are gauche; one of the two N—O—C—C angles is gauche and the other is trans (Table 2[link]). In this macrocycle, the shortest transannular contact, O1⋯O1′, is 3.423 (2) Å, whereas the C3⋯C3′ distance is 6.560 (2) Å. An example of an 18-membered ox­azane macrocyle with no crystallographically imposed symmetry is found in N,N′-dipyridylbisaza-18-crown-6 (Junk & Smith, 2002[Junk, P. C. & Smith, M. K. (2002). Inorg. Chem. Commun. 5, 1082-1085.]).

In both (I[link]) and (II[link]), the cations and anions are linked into sheets via N—H⋯Cl hydrogen bonds. In (I[link]), all eight independent N—H bonds take part in N—H⋯Cl hydrogen bonds (Table 3[link]), which serve to generate sheets in the (001) plane, as shown in Fig. 3[link], by simple translations in the a and b directions; these sheets, which lie approximately in the domain 0 < z < 0.5, are then linked to inversion-related Cl ions by C—H⋯Cl interactions (Table 3[link]), generating a three-dimensional network. In (II[link]), because of the inversion centre, there are only four independent N—H bonds and, as in (I[link]), these all form N—H⋯Cl hydrogen bonds (Table 4[link]), generating sheets in the (100) plane by a combination of inversions and b and c translations, as shown in Fig. 4[link]; these sheets lie in the domain 0 > x > 1. The observed conformation is stabilized by an intramolecular N5—H5B⋯O1 hydrogen bond; there are also C—H⋯Cl interactions within the sheets (Table 4[link]). The sheets are linked into a three-dimensional network by sets of C3—H3A⋯Cl1(1 + x, y, z) interactions.

[Figure 1]
Figure 1
(a) The atomic arrangement in the cation of (I[link]). Displacement ellipsoids are shown at the 50% probability level. (b) A view showing the endo conformation of the cation macrocycle of (I[link]).
[Figure 2]
Figure 2
The atomic arrangement in the cation of (II[link]). Displacement ellipsoids are shown at the 50% probability level. Atoms marked with a prime are at the equivalent position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A view of the sheet of cations linked by N—H⋯Cl hydrogen bonds in (I[link]). Atoms Cl3* and Cl4# are at the equivalent positions (1 + x, y, z) and (x, y − 1, z), respectively.
[Figure 4]
Figure 4
A view of the sheet of cations linked by N—H⋯Cl hydrogen bonds in (II[link]). Atoms Cl1* and Cl2# are at the equivalent positions (1 − x, −y, 1 − z) and (x, y, z − 1), respectively.

Experimental

The title ox­azane macrocycle systems were synthesized according to previously published methods (Kuksa et al., 1999[Kuksa, V. A., Marshall, C., Wardell, S. M. S. V. & Kong Thoo Lin, P. (1999). Synthesis, 6, 1034-1038.]). For (I[link]), 1H NMR (CDCl3): δ 1.50–1.90 (m, 8H, 4 × CH2), 2.96 (t, 8H, 4 × CH2N), 3.75 (t, 8H, 4 × CH2O), 5.64 (br, s, 4H, 4 × ONH); 13C NMR (CDCl3): δ 25.4, 28.5, 50.8, 71.1; HRMS–FAB: calculated for [MH]+ C12H28N4O4: 293.21; found: 293.2197. For (II[link]), 1H NMR (CDCl3): δ 1.85 (pentet, 4H, 2 × CH2), 3.15 (doublet, 8H, 4 × CH2N), 3.85 (t, 8H, 4 × CH2O), 6.00 (br, s, 4H, 4 × ONH); 13C NMR (CDCl3): δ 28.5, 50.8, 71.1; HRMS–FAB: calculated for [MH]+ C10H24N4O4: 265.18; found: 265.1877. The tetrahydrochloride salts were prepared by dissolving the free bases in ethanol and adding a few drops of concentrated HCl. The precipitates were filtered off, dried and recrystallized from ethanol–water to give colourless crystals.

Compound (I)[link]

Crystal data
  • C12H32N4O44+·4Cl

  • Mr = 438.22

  • Triclinic, [P\overline 1]

  • a = 9.1948 (2) Å

  • b = 9.8341 (2) Å

  • c = 12.2985 (3) Å

  • α = 83.145 (1)°

  • β = 82.933 (1)°

  • γ = 80.865 (1)°

  • V = 1083.95 (4) Å3

  • Z = 2

  • Dx = 1.343 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 13 890 reflections

  • θ = 2.9–27.5°

  • μ = 0.57 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans to fill Ewald sphere

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-429.]) Tmin = 0.860, Tmax = 0.945

  • 17 127 measured reflections

  • 4892 independent reflections

  • 4134 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

  • h = −11 → 11

  • k = −12 → 12

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.05

  • 4892 reflections

  • 218 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2746P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0031 (13)

Table 1
Selected torsion angles (°) for (I)[link]

C20—O1—N2—C3 −160.12 (11)
O1—N2—C3—C4 −53.62 (15)
N2—C3—C4—C5 −176.99 (12)
C3—C4—C5—N6 −56.12 (17)
C4—C5—N6—O7 87.14 (14)
C5—N6—O7—C8 179.20 (11)
N6—O7—C8—C9 −177.85 (11)
O7—C8—C9—C10 −62.88 (16)
C8—C9—C10—O11 −60.32 (16)
C9—C10—O11—N12 176.75 (11)
C10—O11—N12—C13 −169.99 (11)
O11—N12—C13—C14 68.59 (14)
N12—C13—C14—C15 −171.99 (13)
C13—C14—C15—N16 179.77 (12)
C14—C15—N16—O17 73.33 (14)
C15—N16—O17—C18 −165.74 (11)
N16—O17—C18—C19 165.42 (10)
O17—C18—C19—C20 −55.81 (15)
N2—O1—C20—C19 174.63 (11)
C18—C19—C20—O1 −52.01 (16)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl3i 0.92 2.12 3.0287 (12) 170
N2—H2B⋯Cl2 0.92 2.15 3.0321 (13) 161
N6—H6A⋯Cl4 0.92 2.11 3.0199 (13) 171
N6—H6B⋯Cl1 0.92 2.17 3.0836 (13) 175
N12—H12A⋯Cl3 0.92 2.09 3.0086 (13) 175
N12—H12B⋯Cl2 0.92 2.19 3.0683 (13) 159
N16—H16A⋯Cl4ii 0.92 2.10 3.0210 (13) 174
N16—H16B⋯Cl1 0.92 2.20 3.1202 (13) 178
C5—H5B⋯Cl1iii 0.99 2.80 3.7866 (16) 175
C13—H13A⋯Cl4iv 0.99 2.82 3.6814 (15) 145
C13—H13B⋯Cl2v 0.99 2.68 3.6315 (15) 161
C15—H15B⋯Cl4iv 0.99 2.71 3.6013 (15) 150
Symmetry codes: (i) 1+x,y,z; (ii) x,y-1,z; (iii) 2-x,1-y,-z; (iv) 1-x,1-y,-z; (v) 1-x,-y,1-z.

Compound (II)[link]

Crystal data
  • C10H28N4O44+·4Cl

  • Mr = 410.16

  • Triclinic, [P\overline 1]

  • a = 7.6921 (2) Å

  • b = 8.3920 (2) Å

  • c = 8.6696 (3) Å

  • α = 67.409 (2)°

  • β = 68.128 (2)°

  • γ = 88.967 (2)°

  • V = 474.37 (3) Å3

  • Z = 1

  • Dx = 1.436 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3448 reflections

  • θ = 2.9–27.5°

  • μ = 0.64 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.16 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans to fill Ewald sphere

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-429.]) Tmin = 0.941, Tmax = 0.980

  • 6137 measured reflections

  • 2090 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.5°

  • h = −9 → 9

  • k = −10 → 10

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R(F) = 0.030

  • wR(F2) = 0.075

  • S = 1.05

  • 2090 reflections

  • 101 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0262P)2 + 0.1427P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.019 (4)

Table 3
Selected torsion angles (°) for (II)[link]

C8vi—C9vi—O1—N2 69.50 (17)
C9vi—O1—N2—C3 173.78 (11)
O1—N2—C3—C4 −72.23 (15)
N2—C3—C4—N5 70.57 (17)
C3—C4—N5—O6 55.80 (15)
C4—N5—O6—C7 −171.03 (11)
N5—O6—C7—C8 171.92 (11)
O6—C7—C8—C9 −63.37 (15)
C7—C8—C9—O1i −52.29 (17)
Symmetry code: (vi) 1-x,1-y,1-z.

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1v 0.92 2.12 3.0323 (13) 170
N2—H2B⋯Cl2 0.92 2.13 3.0214 (13) 163
N5—H5A⋯Cl2vii 0.92 2.13 3.0340 (13) 168
N5—H5B⋯Cl1 0.92 2.29 3.1074 (13) 148
N5—H5B⋯O1 0.92 2.37 2.9007 (16) 117
C3—H3A⋯Cl1i 0.99 2.66 3.5445 (15) 149
C4—H4B⋯Cl1v 0.99 2.76 3.5673 (16) 139
C4—H4A⋯O6iii 0.99 2.60 3.5012 (19) 152
Symmetry codes: (i) 1+x,y,z; (iii) 2-x,1-y,-z; (v) 1-x,-y,1-z; (vii) x,y,z-1.

All H atoms were resolved clearly in difference maps and were subsequently allowed for as riding atoms using SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]) defaults, with N—H distances of 0.92 Å, C—H distances of 0.99 Å and Uiso values of 1.2Ueq of the attached atom.

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]);program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heteromacrocyclic systems have for a long time generated great interest in the scientific community because of their huge range of applications. For example, several 1,4,7,10-tetraazacyclododecane (cyclen) derivatives were used as models for protein–metal binding sites in biological systems (Kimura, 1993; Kimura & Koike, 1998; Kimura et al., 1997). Other cyclic polyamine systems have also been designed and synthesized, in order to demonstrate that these systems can act as molecular catalysts capable of effecting reactions on anion substrates, for example, the phosphoryl transfer that play an essential role in the energetics of all living organisms (Hosseini & Lehn, 1986; Hosseini & Lehn, 1987). Furthermore, other tetraazamacrocyclic ligands, such as the cyclen, cyclam and bicyclam ligands, have been shown to exhibit antitumour and anti-HIV activity (Kong et al., 2000; Inoue & Kimura, 1994; Inoue & Kimura, 1996). Other areas where macrocyclic systems could have useful applications are in diagnostic and sensor technologies. The free bases of the cation macrocycles described in this work were used in the assembly of ion-selective electrodes for nitrate detection (Application No./Patent No. 02730426.0–2204-GB0202292). The formation of the tetrahydrochloride salts of the free bases results in protonation of all the N atoms in the macrocycle, thus forming the (I) and (II), whose structures are described here.

The 20-membered ring in 1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane tetrahydrochloride, (I) (Fig. 1a), adopts an endo conformation, as shown in Fig. 1(b). All the C—O—N—C, O—N—C—C and C—C—C—N torsion angles (Table 1) are essentially trans, while the O—N—C—C and O—C—C—C torsion angles are mostly gauche, except for O7—N6—C5—C4, which has a value of 87.14 (14)°. The N2···N12 separation across this cation ring is 4.870 (2) Å, whereas the O7···O17 separation is 6.377 (2) Å. A related crystallographic study of diaqua(1,7,11,17-tetraoxa- 2,6,12,16-tetraazacycloeicosane-N,N',N'',N''')nickel (II) dichloride has been performed (Kuksa et al., 2002); in this structure, the metal complex has crystallographically imposed 2/m symmetry.

The 18-membered ring in 1,6,10,15-tetraoxa-2,5,11,14-tetraazacyclooctadecane tetrahydrochloride, (II) (Fig. 2), lies about an inversion centre [chosen for convenience as that at (1/2,0.5, 1/2)] and has a symmetrical conformation. The C—O—N—C torsion angles are essentially trans, while the N—C—C—N, O—C—C—C and O—N—C—C torsion angles are gauche; one of the two N—O—C—C angles is gauche and the other is trans (Table 2). In this macrocycle, the shortest transannular contact, O1···O1', is 3.423 (2) Å, whereas C3···C3' is 6.560 (2) Å. An example of an 18-membered oxazane macrocyle with no crystallographically imposed symmetry is found with N,N'-dipyridyl-bis-aza-18-crown-6 (Junk & Smith, 2002).

In both (I) and (II), the cations and anions are linked into sheets via N—H···Cl hydrogen bonds. In (I), all eight independent N—H bonds take part in N—H···Cl hydrogen bonds (Table 3), which serve to generate sheets in the (001) plane, as shown in Fig. 3, by simple translations in the a and b directions; these sheets, which lie approximately in the domain 0 < z < 1/2, are then linked to inversion-related Cl ions by C—H···Cl interactions (Table 3), generating a three-dimensional network. In (II), because of the inversion centre, there are only four independent N—H bonds and, as in (I), these all form N—H···Cl hydrogen bonds (Table 4), generating sheets in the (001) plane, which lie in the domain 0 > z > 1, by a combination of inversions and a and b translations, as shown in Fig. 4. The observed conformation is stablized by an intramolecular N5—H5B···O1 hydrogen bond; there are also C—H···Cl interactions within the sheets (Table 4). The sheets are linked into a three-dimensional network by sets of C3—H3A····Cl1(1 + x,y,z) interactions.

Experimental top

The oxazane macrocycle systems were synthesized according to previously published methods (Kuksa et al., 1999). For (I), 1H NMR (CDCl3): δ 1.50–1.90 (m, 8H, 4xCH2), 2.96 (t, 8H, 4xCH2N), 3.75 (t, 8H, 4xCH2O), 5.64 (br, s, 4H, 4xONH); 13C NMR (CDCl3): δ 25.4, 28.5, 50.8, 71.1. HRMS–FAB: calculated for [MH]+ C12H28N4O4: 293.21; found: 293.2197. For (II), 1H NMR (CDCl3): δ 1.85 (pentet, 4H, 2xCH2), 3.15 (doublet, 8H, 4xCH2N), 3.85 (t, 8H, 4xCH2O), 6.00 (br, s, 4H, 4xONH); 13C NMR (CDCl3): δ 28.5, 50.8, 71.1. HRMS–FAB: calculated for [MH]+ C10H24N4O4: 265.18; found: 265.1877. The tetrachloride salts were prepared by disssolving the free bases in ethanol, followed by the addition of a few drops of concentrated HCl. The precipitates were filtered off, dried and recrystallized from ethanol/water to give colourless crystals.

Refinement top

All H atoms were clearly resolved in difference maps and were subsequently allowed for as riding atoms using SHELXL97 (Sheldrick, 1997) defaults, with N—H distances of 0.92, C—H distances of 0.99 Å and Uiso values of 1.2Ueq of the attached atom.

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
Fig. 1a. The atomic arrangement in the cation of the (I). Displacement ellipsoids are shown at the 50% probability level.

Fig. 1 b. A view showing the endo conformation of the cation macrocycle of (I).

Fig. 2. The atomic arrangement in the cation of (II). Displacement ellipsoids are shown at the 50% probability level. Atoms marked with a prime are at the equivalent position (1 − x,1 − y,1 − z).

Fig. 3. A view of the sheet of cations linked by N—H···Cl hydrogen bonds in (I). Atoms Cl3* and Cl4# are at the equivalent positions (1 + x,y,z) and (x,y − 1,z), respectively.

Fig. 4. A view of the sheet of cations linked by N—H···Cl hydrogen bonds in (II). Atoms Cl* and Cl2# are at the equivalent positions (1 − x,-y,1 − z) and (x,y,z − 1), respectively.
(I) top
Crystal data top
C12H32N4O44+·4ClZ = 2
Mr = 438.22F(000) = 464
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1948 (2) ÅCell parameters from 13890 reflections
b = 9.8341 (2) Åθ = 2.9–27.5°
c = 12.2985 (3) ŵ = 0.57 mm1
α = 83.145 (1)°T = 120 K
β = 82.933 (1)°Block, colourless
γ = 80.865 (1)°0.1 × 0.1 × 0.1 mm
V = 1083.95 (4) Å3
Data collection top
Nonius KappaCCD area detector
diffractometer
4134 reflections with I > 2σ(I)
ϕ and ω scans to fill Ewald sphereRint = 0.051
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.860, Tmax = 0.945h = 1111
17127 measured reflectionsk = 1212
4892 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2746P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4892 reflectionsΔρmax = 0.37 e Å3
218 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (13)
Crystal data top
C12H32N4O44+·4Clγ = 80.865 (1)°
Mr = 438.22V = 1083.95 (4) Å3
Triclinic, P1Z = 2
a = 9.1948 (2) ÅMo Kα radiation
b = 9.8341 (2) ŵ = 0.57 mm1
c = 12.2985 (3) ÅT = 120 K
α = 83.145 (1)°0.1 × 0.1 × 0.1 mm
β = 82.933 (1)°
Data collection top
Nonius KappaCCD area detector
diffractometer
4892 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4134 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.945Rint = 0.051
17127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4892 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78182 (4)0.29749 (4)0.02612 (3)0.01915 (10)
Cl20.64696 (4)0.19188 (4)0.52487 (3)0.01962 (10)
Cl30.11847 (4)0.30594 (4)0.54479 (3)0.02089 (10)
Cl40.73572 (4)0.81739 (4)0.05541 (3)0.01895 (10)
O10.99254 (12)0.16537 (10)0.29883 (8)0.0203 (2)
N20.92211 (14)0.25611 (12)0.37742 (10)0.0165 (3)
H2A0.99010.27410.42080.020*
H2B0.84940.21600.42210.020*
C30.85642 (16)0.38629 (15)0.31712 (12)0.0171 (3)
H3A0.81510.45400.37040.020*
H3B0.77400.36760.27900.020*
C40.96970 (17)0.44816 (15)0.23322 (13)0.0191 (3)
H4A1.00710.38230.17780.023*
H4B1.05460.46200.27090.023*
C50.90526 (17)0.58581 (15)0.17511 (13)0.0186 (3)
H5A0.87830.65460.22950.022*
H5B0.98190.61940.11910.022*
N60.77188 (13)0.57604 (13)0.12039 (10)0.0168 (3)
H6A0.76280.64270.06140.020*
H6B0.78000.49050.09510.020*
O70.64545 (11)0.59624 (11)0.20007 (8)0.0188 (2)
C80.51149 (17)0.58962 (16)0.15037 (12)0.0191 (3)
H8A0.51420.49700.12550.023*
H8B0.50080.66020.08620.023*
C90.38482 (17)0.61760 (15)0.23943 (13)0.0202 (3)
H9A0.29030.62160.20750.024*
H9B0.38670.70960.26390.024*
C100.38792 (18)0.51090 (15)0.33918 (13)0.0203 (3)
H10A0.48060.50540.37390.024*
H10B0.30260.53460.39440.024*
O110.37975 (12)0.38171 (10)0.29722 (8)0.0210 (2)
N120.38989 (14)0.26899 (12)0.38137 (10)0.0175 (3)
H12A0.30550.27510.43020.021*
H12B0.46990.26940.41940.021*
C130.40765 (16)0.14083 (15)0.32589 (12)0.0182 (3)
H13A0.32900.14700.27660.022*
H13B0.39920.06010.38140.022*
C140.55825 (18)0.12326 (17)0.25980 (14)0.0240 (3)
H14A0.57100.21080.21330.029*
H14B0.63560.10550.31120.029*
C150.58077 (16)0.00686 (16)0.18701 (13)0.0190 (3)
H15A0.57060.08190.23240.023*
H15B0.50510.02360.13430.023*
N160.73087 (13)0.00011 (13)0.12633 (10)0.0171 (3)
H16A0.73940.05540.06990.020*
H16B0.74850.08690.09680.020*
O170.83421 (11)0.05667 (10)0.20308 (8)0.0182 (2)
C180.98322 (16)0.03550 (15)0.15841 (12)0.0180 (3)
H18A0.98420.06070.12400.022*
H18B1.02270.09980.10210.022*
C191.07496 (16)0.06390 (15)0.25513 (12)0.0178 (3)
H19A1.08000.16290.28350.021*
H19B1.17710.04610.22920.021*
C201.01366 (17)0.02342 (15)0.34797 (12)0.0174 (3)
H20A0.91830.00350.38330.021*
H20B1.08400.01150.40440.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0233 (2)0.01433 (18)0.01929 (19)0.00213 (14)0.00157 (14)0.00128 (15)
Cl20.02013 (19)0.02069 (19)0.01824 (19)0.00444 (14)0.00278 (14)0.00006 (15)
Cl30.0207 (2)0.0268 (2)0.01643 (19)0.00656 (15)0.00062 (14)0.00458 (16)
Cl40.0264 (2)0.01640 (18)0.01435 (18)0.00346 (14)0.00417 (14)0.00019 (14)
O10.0312 (6)0.0130 (5)0.0143 (5)0.0003 (4)0.0019 (4)0.0007 (4)
N20.0190 (6)0.0169 (6)0.0136 (6)0.0023 (5)0.0016 (5)0.0021 (5)
C30.0176 (7)0.0145 (7)0.0182 (7)0.0010 (6)0.0028 (6)0.0009 (6)
C40.0185 (8)0.0175 (7)0.0209 (8)0.0033 (6)0.0022 (6)0.0007 (6)
C50.0200 (8)0.0161 (7)0.0199 (8)0.0055 (6)0.0008 (6)0.0006 (6)
N60.0202 (7)0.0148 (6)0.0140 (6)0.0015 (5)0.0007 (5)0.0004 (5)
O70.0166 (5)0.0241 (6)0.0149 (5)0.0013 (4)0.0001 (4)0.0025 (5)
C80.0193 (8)0.0202 (7)0.0179 (7)0.0029 (6)0.0049 (6)0.0005 (6)
C90.0207 (8)0.0166 (7)0.0220 (8)0.0006 (6)0.0020 (6)0.0006 (6)
C100.0244 (8)0.0173 (7)0.0193 (8)0.0032 (6)0.0004 (6)0.0048 (6)
O110.0328 (6)0.0155 (5)0.0151 (5)0.0048 (4)0.0043 (5)0.0009 (4)
N120.0185 (6)0.0196 (6)0.0139 (6)0.0038 (5)0.0005 (5)0.0009 (5)
C130.0206 (8)0.0155 (7)0.0185 (7)0.0041 (6)0.0015 (6)0.0001 (6)
C140.0227 (8)0.0245 (8)0.0264 (8)0.0066 (7)0.0015 (7)0.0089 (7)
C150.0180 (8)0.0188 (7)0.0217 (8)0.0029 (6)0.0050 (6)0.0044 (6)
N160.0215 (7)0.0139 (6)0.0159 (6)0.0004 (5)0.0051 (5)0.0016 (5)
O170.0169 (5)0.0201 (5)0.0168 (5)0.0021 (4)0.0047 (4)0.0032 (4)
C180.0185 (8)0.0173 (7)0.0175 (7)0.0032 (6)0.0020 (6)0.0016 (6)
C190.0172 (7)0.0156 (7)0.0191 (8)0.0003 (6)0.0016 (6)0.0011 (6)
C200.0208 (8)0.0139 (7)0.0168 (7)0.0020 (6)0.0041 (6)0.0035 (6)
Geometric parameters (Å, º) top
O1—N21.4206 (15)C10—H10B0.99
O1—C201.4467 (17)O11—N121.4233 (16)
N2—C31.4805 (18)N12—C131.4809 (19)
N2—H2A0.92N12—H12A0.92
N2—H2B0.92N12—H12B0.92
C3—C41.519 (2)C13—C141.513 (2)
C3—H3A0.99C13—H13A0.99
C3—H3B0.99C13—H13B0.99
C4—C51.521 (2)C14—C151.509 (2)
C4—H4A0.99C14—H14A0.99
C4—H4B0.99C14—H14B0.99
C5—N61.4907 (19)C15—N161.4816 (19)
C5—H5A0.99C15—H15A0.99
C5—H5B0.99C15—H15B0.99
N6—O71.4296 (15)N16—O171.4250 (15)
N6—H6A0.92N16—H16A0.92
N6—H6B0.92N16—H16B0.92
O7—C81.4544 (18)O17—C181.4492 (18)
C8—C91.513 (2)C18—C191.516 (2)
C8—H8A0.99C18—H18A0.99
C8—H8B0.99C18—H18B0.99
C9—C101.516 (2)C19—C201.510 (2)
C9—H9A0.99C19—H19A0.99
C9—H9B0.99C19—H19B0.99
C10—O111.4430 (18)C20—H20A0.99
C10—H10A0.99C20—H20B0.99
N2—O1—C20111.05 (10)N12—O11—C10111.65 (10)
O1—N2—C3108.16 (10)O11—N12—C13106.72 (10)
O1—N2—H2A110.1O11—N12—H12A110.4
C3—N2—H2A110.1C13—N12—H12A110.4
O1—N2—H2B110.1O11—N12—H12B110.4
C3—N2—H2B110.1C13—N12—H12B110.4
H2A—N2—H2B108.4H12A—N12—H12B108.6
N2—C3—C4111.89 (12)N12—C13—C14108.76 (12)
N2—C3—H3A109.2N12—C13—H13A109.9
C4—C3—H3A109.2C14—C13—H13A109.9
N2—C3—H3B109.2N12—C13—H13B109.9
C4—C3—H3B109.2C14—C13—H13B109.9
H3A—C3—H3B107.9H13A—C13—H13B108.3
C3—C4—C5112.27 (12)C15—C14—C13113.52 (13)
C3—C4—H4A109.1C15—C14—H14A108.9
C5—C4—H4A109.1C13—C14—H14A108.9
C3—C4—H4B109.1C15—C14—H14B108.9
C5—C4—H4B109.1C13—C14—H14B108.9
H4A—C4—H4B107.9H14A—C14—H14B107.7
N6—C5—C4112.82 (12)N16—C15—C14108.72 (12)
N6—C5—H5A109.0N16—C15—H15A109.9
C4—C5—H5A109.0C14—C15—H15A109.9
N6—C5—H5B109.0N16—C15—H15B109.9
C4—C5—H5B109.0C14—C15—H15B109.9
H5A—C5—H5B107.8H15A—C15—H15B108.3
O7—N6—C5107.69 (10)O17—N16—C15107.30 (11)
O7—N6—H6A110.2O17—N16—H16A110.3
C5—N6—H6A110.2C15—N16—H16A110.3
O7—N6—H6B110.2O17—N16—H16B110.3
C5—N6—H6B110.2C15—N16—H16B110.3
H6A—N6—H6B108.5H16A—N16—H16B108.5
N6—O7—C8109.96 (10)N16—O17—C18110.78 (10)
O7—C8—C9105.78 (12)O17—C18—C19105.92 (11)
O7—C8—H8A110.6O17—C18—H18A110.6
C9—C8—H8A110.6C19—C18—H18A110.6
O7—C8—H8B110.6O17—C18—H18B110.6
C9—C8—H8B110.6C19—C18—H18B110.6
H8A—C8—H8B108.7H18A—C18—H18B108.7
C8—C9—C10114.42 (13)C20—C19—C18113.23 (12)
C8—C9—H9A108.7C20—C19—H19A108.9
C10—C9—H9A108.7C18—C19—H19A108.9
C8—C9—H9B108.7C20—C19—H19B108.9
C10—C9—H9B108.7C18—C19—H19B108.9
H9A—C9—H9B107.6H19A—C19—H19B107.7
O11—C10—C9105.11 (12)O1—C20—C19106.20 (11)
O11—C10—H10A110.7O1—C20—H20A110.5
C9—C10—H10A110.7C19—C20—H20A110.5
O11—C10—H10B110.7O1—C20—H20B110.5
C9—C10—H10B110.7C19—C20—H20B110.5
H10A—C10—H10B108.8H20A—C20—H20B108.7
C20—O1—N2—C3160.12 (11)C10—O11—N12—C13169.99 (11)
O1—N2—C3—C453.62 (15)O11—N12—C13—C1468.59 (14)
N2—C3—C4—C5176.99 (12)N12—C13—C14—C15171.99 (13)
C3—C4—C5—N656.12 (17)C13—C14—C15—N16179.77 (12)
C4—C5—N6—O787.14 (14)C14—C15—N16—O1773.33 (14)
C5—N6—O7—C8179.20 (11)C15—N16—O17—C18165.74 (11)
N6—O7—C8—C9177.85 (11)N16—O17—C18—C19165.42 (10)
O7—C8—C9—C1062.88 (16)O17—C18—C19—C2055.81 (15)
C8—C9—C10—O1160.32 (16)N2—O1—C20—C19174.63 (11)
C9—C10—O11—N12176.75 (11)C18—C19—C20—O152.01 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl3i0.922.123.0287 (12)170
N2—H2B···Cl20.922.153.0321 (13)161
N6—H6A···Cl40.922.113.0199 (13)171
N6—H6B···Cl10.922.173.0836 (13)175
N12—H12A···Cl30.922.093.0086 (13)175
N12—H12B···Cl20.922.193.0683 (13)159
N16—H16A···Cl4ii0.922.103.0210 (13)174
N16—H16B···Cl10.922.203.1202 (13)178
C5—H5B···Cl1iii0.992.803.7866 (16)175
C13—H13A···Cl4iv0.992.823.6814 (15)145
C13—H13B···Cl2v0.992.683.6315 (15)161
C15—H15B···Cl4iv0.992.713.6013 (15)150
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z+1.
(II) top
Crystal data top
C10H28N4O44+·4ClZ = 1
Mr = 410.16F(000) = 216
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6921 (2) ÅCell parameters from 3448 reflections
b = 8.3920 (2) Åθ = 2.9–27.5°
c = 8.6696 (3) ŵ = 0.64 mm1
α = 67.409 (2)°T = 120 K
β = 68.128 (2)°Plate, colourless
γ = 88.967 (2)°0.16 × 0.08 × 0.03 mm
V = 474.37 (3) Å3
Data collection top
Nonius KappaCCD area detector
diffractometer
1798 reflections with I > 2σ(I)
ϕ and ω scans to fill Ewald sphereRint = 0.048
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.941, Tmax = 0.980h = 99
6137 measured reflectionsk = 1010
2090 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.1427P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2090 reflectionsΔρmax = 0.31 e Å3
101 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (4)
Crystal data top
C10H28N4O44+·4Clγ = 88.967 (2)°
Mr = 410.16V = 474.37 (3) Å3
Triclinic, P1Z = 1
a = 7.6921 (2) ÅMo Kα radiation
b = 8.3920 (2) ŵ = 0.64 mm1
c = 8.6696 (3) ÅT = 120 K
α = 67.409 (2)°0.16 × 0.08 × 0.03 mm
β = 68.128 (2)°
Data collection top
Nonius KappaCCD area detector
diffractometer
2090 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1798 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.980Rint = 0.048
6137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2090 reflectionsΔρmin = 0.26 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32480 (5)0.15909 (5)0.36436 (5)0.01571 (13)
Cl20.84740 (5)0.26379 (5)0.87007 (5)0.01947 (14)
O10.54871 (14)0.29156 (14)0.58324 (14)0.0143 (3)
N20.70790 (17)0.21150 (16)0.60752 (17)0.0123 (3)
H2A0.68950.09520.63080.015*
H2B0.72360.22060.70410.015*
C30.8764 (2)0.3029 (2)0.4382 (2)0.0145 (3)
H3A0.99120.27010.46160.017*
H3B0.87980.43020.40330.017*
C40.8817 (2)0.2629 (2)0.2805 (2)0.0151 (3)
H4A1.00950.30750.18160.018*
H4B0.86090.13470.32100.018*
N50.73925 (18)0.33915 (16)0.20681 (17)0.0127 (3)
H5A0.75460.31750.10650.015*
H5B0.61890.29080.29320.015*
O60.76719 (14)0.52168 (13)0.15796 (14)0.0135 (2)
C70.6143 (2)0.6011 (2)0.1116 (2)0.0136 (3)
H7A0.48990.53930.20970.016*
H7B0.62000.59730.00290.016*
C80.6429 (2)0.7871 (2)0.0894 (2)0.0139 (3)
H8A0.54830.85020.04720.017*
H8B0.77010.84410.00600.017*
C90.6255 (2)0.8042 (2)0.2626 (2)0.0158 (3)
H9A0.73450.76100.29240.019*
H9B0.63140.92910.24090.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0148 (2)0.0153 (2)0.0167 (2)0.00085 (15)0.00585 (17)0.00649 (16)
Cl20.0181 (2)0.0280 (3)0.0153 (2)0.00110 (17)0.00643 (17)0.01186 (18)
O10.0106 (5)0.0201 (6)0.0128 (5)0.0053 (4)0.0053 (4)0.0068 (5)
N20.0123 (6)0.0146 (7)0.0123 (6)0.0044 (5)0.0062 (5)0.0066 (5)
C30.0103 (7)0.0175 (8)0.0135 (8)0.0012 (6)0.0039 (6)0.0048 (6)
C40.0154 (8)0.0165 (8)0.0121 (7)0.0054 (6)0.0043 (6)0.0056 (6)
N50.0147 (6)0.0113 (7)0.0116 (6)0.0002 (5)0.0043 (5)0.0050 (5)
O60.0144 (5)0.0099 (5)0.0181 (6)0.0015 (4)0.0084 (5)0.0055 (4)
C70.0138 (8)0.0163 (8)0.0137 (7)0.0033 (6)0.0082 (7)0.0065 (6)
C80.0134 (8)0.0139 (8)0.0125 (7)0.0020 (6)0.0037 (6)0.0050 (6)
C90.0110 (7)0.0189 (8)0.0180 (8)0.0008 (6)0.0027 (7)0.0107 (7)
Geometric parameters (Å, º) top
O1—N21.4314 (15)N5—H5A0.92
O1—C9i1.4518 (18)N5—H5B0.92
N2—C31.4752 (19)O6—C71.4516 (17)
N2—H2A0.92C7—C81.508 (2)
N2—H2B0.92C7—H7A0.99
C3—C41.514 (2)C7—H7B0.99
C3—H3A0.99C8—C91.519 (2)
C3—H3B0.99C8—H8A0.99
C4—N51.4836 (19)C8—H8B0.99
C4—H4A0.99C9—H9A0.99
C4—H4B0.99C9—H9B0.99
N5—O61.4204 (15)
N2—O1—C9i110.47 (10)O6—N5—H5B110.2
O1—N2—C3107.54 (11)C4—N5—H5B110.2
O1—N2—H2A110.2H5A—N5—H5B108.5
C3—N2—H2A110.2N5—O6—C7110.34 (10)
O1—N2—H2B110.2O6—C7—C8105.61 (12)
C3—N2—H2B110.2O6—C7—H7A110.6
H2A—N2—H2B108.5C8—C7—H7A110.6
N2—C3—C4113.76 (12)O6—C7—H7B110.6
N2—C3—H3A108.8C8—C7—H7B110.6
C4—C3—H3A108.8H7A—C7—H7B108.7
N2—C3—H3B108.8C7—C8—C9113.82 (13)
C4—C3—H3B108.8C7—C8—H8A108.8
H3A—C3—H3B107.7C9—C8—H8A108.8
N5—C4—C3114.03 (12)C7—C8—H8B108.8
N5—C4—H4A108.7C9—C8—H8B108.8
C3—C4—H4A108.7H8A—C8—H8B107.7
N5—C4—H4B108.7O1i—C9—C8113.05 (12)
C3—C4—H4B108.7O1i—C9—H9A109.0
H4A—C4—H4B107.6C8—C9—H9A109.0
O6—N5—C4107.37 (11)O1i—C9—H9B109.0
O6—N5—H5A110.2C8—C9—H9B109.0
C4—N5—H5A110.2H9A—C9—H9B107.8
C8i—C9i—O1—N269.50 (17)C4—N5—O6—C7171.03 (11)
C9i—O1—N2—C3173.78 (11)N5—O6—C7—C8171.92 (11)
O1—N2—C3—C472.23 (15)O6—C7—C8—C963.37 (15)
N2—C3—C4—N570.57 (17)C7—C8—C9—O1i52.29 (17)
C3—C4—N5—O655.80 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1ii0.922.123.0323 (13)170
N2—H2B···Cl20.922.133.0214 (13)163
N5—H5A···Cl2iii0.922.133.0340 (13)168
N5—H5B···Cl10.922.293.1074 (13)148
N5—H5B···O10.922.372.9007 (16)117
C3—H3A···Cl1iv0.992.663.5445 (15)149
C4—H4B···Cl1ii0.992.763.5673 (16)139
C4—H4A···O6v0.992.603.5012 (19)152
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y, z; (v) x+2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H32N4O44+·4ClC10H28N4O44+·4Cl
Mr438.22410.16
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)9.1948 (2), 9.8341 (2), 12.2985 (3)7.6921 (2), 8.3920 (2), 8.6696 (3)
α, β, γ (°)83.145 (1), 82.933 (1), 80.865 (1)67.409 (2), 68.128 (2), 88.967 (2)
V3)1083.95 (4)474.37 (3)
Z21
Radiation typeMo KαMo Kα
µ (mm1)0.570.64
Crystal size (mm)0.1 × 0.1 × 0.10.16 × 0.08 × 0.03
Data collection
DiffractometerNonius KappaCCD area detector
diffractometer
Nonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.860, 0.9450.941, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
17127, 4892, 4134 6137, 2090, 1798
Rint0.0510.048
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.05 0.030, 0.075, 1.05
No. of reflections48922090
No. of parameters218101
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.280.31, 0.26

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SIR97 (Altomare et al.,1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected torsion angles (º) for (I) top
C20—O1—N2—C3160.12 (11)C10—O11—N12—C13169.99 (11)
O1—N2—C3—C453.62 (15)O11—N12—C13—C1468.59 (14)
N2—C3—C4—C5176.99 (12)N12—C13—C14—C15171.99 (13)
C3—C4—C5—N656.12 (17)C13—C14—C15—N16179.77 (12)
C4—C5—N6—O787.14 (14)C14—C15—N16—O1773.33 (14)
C5—N6—O7—C8179.20 (11)C15—N16—O17—C18165.74 (11)
N6—O7—C8—C9177.85 (11)N16—O17—C18—C19165.42 (10)
O7—C8—C9—C1062.88 (16)O17—C18—C19—C2055.81 (15)
C8—C9—C10—O1160.32 (16)N2—O1—C20—C19174.63 (11)
C9—C10—O11—N12176.75 (11)C18—C19—C20—O152.01 (16)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl3i0.922.123.0287 (12)170
N2—H2B···Cl20.922.153.0321 (13)161
N6—H6A···Cl40.922.113.0199 (13)171
N6—H6B···Cl10.922.173.0836 (13)175
N12—H12A···Cl30.922.093.0086 (13)175
N12—H12B···Cl20.922.193.0683 (13)159
N16—H16A···Cl4ii0.922.103.0210 (13)174
N16—H16B···Cl10.922.203.1202 (13)178
C5—H5B···Cl1iii0.992.803.7866 (16)175
C13—H13A···Cl4iv0.992.823.6814 (15)145
C13—H13B···Cl2v0.992.683.6315 (15)161
C15—H15B···Cl4iv0.992.713.6013 (15)150
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z+1.
Selected torsion angles (º) for (II) top
C8i—C9i—O1—N269.50 (17)C4—N5—O6—C7171.03 (11)
C9i—O1—N2—C3173.78 (11)N5—O6—C7—C8171.92 (11)
O1—N2—C3—C472.23 (15)O6—C7—C8—C963.37 (15)
N2—C3—C4—N570.57 (17)C7—C8—C9—O1i52.29 (17)
C3—C4—N5—O655.80 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1ii0.922.123.0323 (13)170
N2—H2B···Cl20.922.133.0214 (13)163
N5—H5A···Cl2iii0.922.133.0340 (13)168
N5—H5B···Cl10.922.293.1074 (13)148
N5—H5B···O10.922.372.9007 (16)117
C3—H3A···Cl1iv0.992.663.5445 (15)149
C4—H4B···Cl1ii0.992.763.5673 (16)139
C4—H4A···O6v0.992.603.5012 (19)152
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y, z; (v) x+2, y+1, z.
 

Acknowledgements

The authors thank the EPSRC for use of the National Crystallographic Service, Southampton University, England (X-ray data collection), and the National Mass Spectrometry Service Centre, University of Wales, Swansea (mass spectral analysis).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–429.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHosseini, M. W. & Lehn, J. M. (1986). Helv. Chim. Acta, 69, 587–603.  CrossRef CAS Web of Science Google Scholar
First citationHosseini, M. W. & Lehn, J. M. (1987). J. Am. Chem. Soc. 109, 7047–7058.  CrossRef CAS Web of Science Google Scholar
First citationInoue, Y. & Kimura, E. (1994). Biol. Pharm. Bull. 17, 243–250.  PubMed Web of Science Google Scholar
First citationInoue, Y. & Kimura, E. (1996). Biol. Pharm. Bull. 19, 456–458.  PubMed Web of Science Google Scholar
First citationJunk, P. C. & Smith, M. K. (2002). Inorg. Chem. Commun. 5, 1082–1085.  Web of Science CSD CrossRef CAS Google Scholar
First citationKimura, E. (1993). Pure Appl. Chem. 65, 355–359.  CrossRef CAS Web of Science Google Scholar
First citationKimura, E. & Koike, T. (1998). Chem. Commun. pp. 1495–1500.  Web of Science CrossRef Google Scholar
First citationKimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bonding, 89, 1–28.  CrossRef CAS Google Scholar
First citationKong, D., Meng, L., Ding, J., Xie, Y. & Huang, X. (2000). Polyhedron, 19, 217–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuksa, V. A., Marshall, C., Wardell, S. M. S. V. & Kong Thoo Lin, P. (1999). Synthesis, 6, 1034–1038.  CSD CrossRef Google Scholar
First citationKuksa, V. A., Wardell, S. M. S. V. & Kong Thoo Lin, P. (2002). Inorg. Chem. Commun. 3, 267–270.  CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds