organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

N,N′-Propyl­ene­di­oxy­bis­(2,4,6-tri­methyl­benzene­sulfon­amide): mol­ecules of unexpected conformation form a mol­ecular ladder built from two independent N—H⋯O=S hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói, Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 8 March 2004; accepted 15 March 2004; online 9 April 2004)

Molecules of the title compound, C21H30N2O6S2, adopt a skeletal conformation which does not possess even approximate internal symmetry. The mol­ecules are linked by two N—H⋯O=S hydrogen bonds [H⋯O = 1.97 Å (×2), N⋯O = 2.865 (2) and 2.864 (2) Å, and N—H⋯O = 160 and 159°] into molecular ladders, alternatively described as chains of edge-fused [R_2^2](20) rings.

Comment

Terminally disubstituted bis­[(2,4,6-tri­methyl­benzene­sulfon­yl)­amino­oxy]­alkanes are useful intermediates for the synthesis of oxa­aza-macrocycles (Kuksa et al., 1999[Kuksa, V., Marshall, C., Wardell, S. M. S. V. & Kong Thoo Lin, P. (1999). Synthesis, pp. 1034-1038.]), and we report here

[Scheme 1]
the mol­ecular and supra­mol­ecular structure of the title compound, (I[link]), as a typical example of this class of intermediate.

Molecules of (I[link]) (Fig. 1[link]) could, in principle, adopt a conformation having symmetry as high as C2v (mm2); in the event, the mol­ecules lie in general positions in space group P[\overline 1] (Z′ = 1) and the molecular conformation precludes even approximate internal symmetry. Several of the corresponding pairs of torsion angles (Table 1[link]) for the two halves of the mol­ecule, from atom C2 to ring C11–C16 and from atom C2 to ring C21–C26, have similar values, but the conformations of

[Scheme 2]
the non-H atoms about the O1—C1 and O2—C3 bonds are antiperiplanar and synclinal, respectively, while those around the C1—C2 and C3—C2 bonds are synclinal and antiperiplanar, respectively, so that the mol­ecule as a whole has only C1 symmetry (Fig. 1[link]). Both of the S—N—O—C torsion angles appear to be determined by the mutual repulsion of the lone pairs of electrons on the N and O atoms, while each of the two aryl rings is approximately orthogonal to the adjacent CSN fragment. The conformational behaviour of the central fragment of the mol­ecule between atoms S1 and S2 is unexpected and, at present, unexplained; given the orthogonality of the lone-pair orbitals on the adjacent N and O atoms, conformations having either Cs (m) or C2 (2) symmetry might have been expected.

The bond lengths within the SO2NOC fragments are typical of those observed in sulfonylhydroxyl­amines, such as PhSO2NHOH and PhSO2NHOSO2Ph (Scholz et al., 1989[Scholz, J. N., Engel, P. S., Glidewell, C. & Whitmire, K. H. (1989). Tetrahedron, 45, 7685-7708.]). In the aryl rings, the Cn1—Cn2 and Cn1—Cn6 bonds (n = 1 or 2), adjacent to the sulfonyl substituents, have distances in the range 1.410 (2)–1.414 (2) Å, significantly longer than the other bonds in these rings, for which the distances lie in the range 1.382 (3)–1.399 (2) Å (mean 1.389 Å; Table 1[link]). These values indicate some contribution to the overall molecular–electronic structure of charge-separated forms, such as (Ia[link])–(Ic[link]).

Molecules of (I[link]) are linked by pairs of inequivalent N—H⋯O=S hydrogen bonds (Table 2[link]). Amine atoms N1 and N2 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to atom O11 in the mol­ecule at (−1 + x, y, z) and to atom O21 in the mol­ecule at (1 + x, y, z), so generating by translation a pair of independent and antiparallel C(4) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chains. This C(4) motif is characteristic of the supramolecular aggregation in sulfon­amides, sulfonyl­hydrazines and sulfonylhydroxyl­amines (Vorontsova, 1966[Vorontsova, L. G. (1966). Zh. Strukt. Khim. 7, 280-283.]; Cotton & Stokeley, 1970[Cotton, F. A. & Stokeley, P. F. (1970). J. Am. Chem. Soc. 92, 294-302.]; Klug, 1970[Klug, H. P. (1970). Acta Cryst. B26, 1268-1275.]; Brink & Mattes, 1986[Brink, K. & Mattes, R. (1986). Acta Cryst. C42, 319-322.]; Scholz et al., 1989[Scholz, J. N., Engel, P. S., Glidewell, C. & Whitmire, K. H. (1989). Tetrahedron, 45, 7685-7708.]; Lightfoot et al., 1993[Lightfoot, P., Tremayne, M., Glidewell, C., Harris, K. D. M. & Bruce, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1625-1630.]; Tremayne et al., 1999[Tremayne, M., MacLean, E. J., Tang, C. C. & Glidewell, C. (1999). Acta Cryst. B55, 1068-1074.], 2002[Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823-834.]).

The combination of the two C(4) motifs generates a chain of edge-fused [R_2^2](20) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings running parallel to the [100] direction (Fig. 2[link]). This chain may alternatively be regarded as a molecular ladder in which the two C(4) chains provide the uprights and the sequence of atoms in the mol­ecule running from N1 to N2 forms a rung of the ladder. This chain, or ladder, lies in the domain −0.06 < z < 0.64, and a second such ladder, related to the first by inversion, lies in the domain 0.36 < z < 1.06. However, there are no direction-specific interactions between adjacent ladders. In particular, there are neither C—H⋯O nor C—H⋯π(arene) hydrogen bonds and no aromatic ππ stacking interactions; it seems probable that participation by the ring components in any of these interactions is precluded by the presence of the methyl substituents. The two shortest intermolecular H⋯O contacts both involve one the CH2 groups in the central bridge, where the acidity of the C—H bonds is expected to be low. Since both have H⋯O distances above 2.55 Å, i.e. not significantly less than the sum of the van der Waals radii, these contacts are not regarded as structurally significant.

[Figure 1]
Figure 1
A view of the mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I[link]), showing the formation of a chain of edge-fused [R_2^2](20) rings along [100]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, y, z) and (1 + x, y, z), respectively.

Experimental

The title compound was prepared from 1,3-di­bromo­propane by means of successive reactions with (i) N-hydroxy­phthal­imide/di­methyl­form­amide, (ii) HCl/acetic acid and (iii) 2,4,6-tri­methyl­benzene­sulfonyl chloride/pyridine (Kuksa et al., 1999[Kuksa, V., Marshall, C., Wardell, S. M. S. V. & Kong Thoo Lin, P. (1999). Synthesis, pp. 1034-1038.]). After recrystallization from toluene, the compound had a melting point of 433–435 K. Crystals suitable for single-crystal X-ray diffraction were selected directly from the recrystallized sample.

Crystal data
  • C21H30N2O6S2

  • Mr = 470.59

  • Triclinic, [P\overline 1]

  • a = 5.1689 (1) Å

  • b = 14.3184 (3) Å

  • c = 16.1506 (4) Å

  • α = 98.121 (1)°

  • β = 97.963 (1)°

  • γ = 99.033 (1)°

  • V = 1152.75 (4) Å3

  • Z = 2

  • Dx = 1.356 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5176 reflections

  • θ = 3.4–27.5°

  • μ = 0.27 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.20 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (DENZO–SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.954, Tmax = 0.989

  • 17 653 measured reflections

  • 5176 independent reflections

  • 4173 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.5°

  • h = −6 → 6

  • k = −18 → 18

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.02

  • 5176 reflections

  • 286 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3916P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—O11 1.4312 (12)
S1—O12 1.4263 (13)
S1—N1 1.6608 (14)
S1—C11 1.7799 (16)
O1—N1 1.4270 (17)
O1—C1 1.4448 (19)
C11—C12 1.414 (2)
C11—C16 1.413 (2)
C12—C13 1.399 (2)
C13—C14 1.386 (2)
C14—C15 1.384 (3)
C15—C16 1.391 (2)
S2—O21 1.4307 (13)
S2—O22 1.4266 (13)
S2—N2 1.6653 (14)
S2—C21 1.7747 (17)
O2—N2 1.4284 (17)
O2—C3 1.442 (2)
C21—C22 1.410 (2)
C21—C26 1.413 (2)
C22—C23 1.389 (3)
C23—C24 1.385 (3)
C24—C25 1.382 (3)
C25—C26 1.396 (3)
C12—C11—S1—N1 90.86 (13)
C11—S1—N1—O1 −56.25 (11)
S1—N1—O1—C1 −114.34 (11)
N1—O1—C1—C2 176.00 (12)
O1—C1—C2—C3 59.76 (18)
C22—C21—S2—N2 −83.82 (14)
C21—S2—N2—O2 −59.15 (11)
S2—N2—O2—C3 −126.22 (11)
N2—O2—C3—C2 −80.35 (16)
O2—C3—C2—C1 −174.31 (13)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11i 0.94 1.97 2.865 (2) 160
N2—H2⋯O21ii 0.93 1.97 2.864 (2) 159
Symmetry codes: (i) x-1,y,z; (ii) 1+x,y,z.

Crystals of (I[link]) are triclinic, and space group P[\overline 1] was selected and confirmed by the subsequent structure analysis. All H atoms were located from difference maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) and 0.99 Å (CH2). H atoms bonded to N atoms were allowed to ride at the positions identified from difference maps, giving N—H distances of 0.93 and 0.94 Å.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Terminally disubstituted bis[(2,4,6-trimethylbenzenesulfonyl)aminooxy]alkanes are useful intermediates for the synthesis of oxaazamacrocycles (Kuksa et al., 1999), and we report here the molecular and supramolecular structure of the title compound, (I), as a typical example of this class of intermediate.

Molecules of (I) (Fig. 1) could, in principle, adopt a conformation having symmetry as high as C2v (mm2); in the event, the molecules lie in general positions in space group P1 (Z' = 1) and the molecular conformation precludes even approximate internal symmetry. Several of the corresponding pairs of torsion angles (Table 1) for the two halves of the molecule, from atom C2 to ring C11–C16 and from atom C2 to ring C21–C26, have rather similar values, but the conformations of the non-H atoms about the O1—C1 and O2—C3 bonds are antiperiplanar and synclinal, respectively, while those around the C1—C2 and C3—C2 bonds are synclinal and antiperiplanar, respectively, so that the molecule as a whole has only C1 symmetry (Fig. 1). Both of the S—N—O—C torsion angles appear to be determined by the mutual repulsion of the lone pairs of electrons on atoms N and O, while each of the two aryl rings is approximately orthogonal to the adjacent CSN fragment. The conformational behaviour of the central fragment of the molecule between atoms S1 and S2 is unexpected and, at present, unexplained; given the orthogonality of the lone-pair orbitals on the adjacent N and O atoms, conformations having either Cs (m) or C2 (2) symmetry might have been expected.

The bond lengths within the SO2NOC fragments are typical of those observed in sulfonyl hydroxylamines such as PhSO2NHOH and PhSO2NHOSO2Ph (Scholz et al., 1989). In the aryl rings, the Cn1—Cn2 and Cn1—Cn6 bonds (n= 1 or 2), adjacent to the sulfonyl substituents, have distances in the range 1.410 (2)–1.414 (2) Å, significantly longer than all of the remaining bonds in these rings, for which the distances lie in the range 1.382 (3)–1.399 (2) Å [mean 1.389 Å; Table 1]. These values indicate some contribution to the overall molecular–electronic structure of charge-separated forms such as (Ia)–(Ic).

Molecules of (I) are linked by pairs of inequivalent N—H···O=S hydrogen bonds (Table 2). Amino atoms N1 and N2 in the molecule at (x, y, z) act as hydrogen-bond donors, respectively, to atom O11 in the molecule at (−1 + x, y, z) and to atom O21 in the molecule at (1 + x, y, z), so generating by translation a pair of independent and antiparallel C(4) (Bernstein et al., 1995) chains. This C(4) motif is characteristic of the supramolecular aggregation in sulfonamides, sulfonyl hydrazines and sulfonyl hydroxylamines (Vorontsova, 1966; Cotton & Stokeley, 1970; Klug, 1970; Brink & Mattes, 1986; Scholz et al., 1989; Lightfoot et al., 1993; Tremayne et al., 1999, 2002).

The combination of the two C(4) motifs generates a chain of edge-fused R22(20) (Bernstein et al., 1995) rings running parallel to the [100] direction (Fig. 2). This chain may alternatively be regarded as a molecular ladder in which the two C(4) chains provide the uprights, and where the sequence of atoms in the molecule running from N1 to N2 forms a rung of the ladder. This chain, or ladder, lies in the domain −0.06 < z < 0.64, and a second such ladder, related to the first by inversion, lies in the domain 0.36 < z < 1.06. However, there are no direction-specific interactions between adjacent ladders. In particular, there are neither C—H···O nor C—H···π(arene) hydrogen bonds and no aromatic ππ stacking interactions; it seems probable that participation by the ring components in any of these interactions is precluded by the presence of the methyl substituents. The two shortest intermolecular H···O contacts both involve one the CH2 groups in the central bridge, where the acidity of the C—H bonds is expected to be low. Since both have H···O distances above 2.55 Å, i.e. not significantly less than the sum of the van der Waals radii, these contacts are not regarded as structurally significant.

Experimental top

The title compound was prepared from 1,3-dibromopropane by means of successive reactions with (i) N-hydroxyphthalimide/dimethylformamide, (ii) HCl/acetic acid and (iii) 2,4,6-trimethylbenzenesulfonyl chloride/pyridine (Kuksa et al., 1999). After recrystallization from toluene, the compound had a melting point of 433–435 K. Crystals suitable for single-crystal X-ray diffraction were selected directly from the recrystallized sample.

Refinement top

Crystals of (I) are triclinic, and space group P1 was selected and confirmed by the subsequent structure analysis. All H atoms were located from difference maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) and 0.99 Å (CH2). H atoms bonded to N atoms were allowed to ride at the positions identified from difference maps, giving N—H distances of 0.93 and 0.94 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a chain of edge-fused R22(20) rings along [100]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, y, z) and (1 + x, y, z), respectively.
1,3-Bis[(2,4,6-trimethylbenzenesulfonyl)aminooxy]propane top
Crystal data top
C21H30N2O6S2Z = 2
Mr = 470.59F(000) = 500
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Melting point: 434 K
a = 5.1689 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3184 (3) ÅCell parameters from 5176 reflections
c = 16.1506 (4) Åθ = 3.4–27.5°
α = 98.121 (1)°µ = 0.27 mm1
β = 97.963 (1)°T = 120 K
γ = 99.033 (1)°Plate, colourless
V = 1152.75 (4) Å30.20 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
5176 independent reflections
Radiation source: frotating anode4173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.954, Tmax = 0.989k = 1818
17653 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3916P]
where P = (Fo2 + 2Fc2)/3
5176 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C21H30N2O6S2γ = 99.033 (1)°
Mr = 470.59V = 1152.75 (4) Å3
Triclinic, P1Z = 2
a = 5.1689 (1) ÅMo Kα radiation
b = 14.3184 (3) ŵ = 0.27 mm1
c = 16.1506 (4) ÅT = 120 K
α = 98.121 (1)°0.20 × 0.10 × 0.04 mm
β = 97.963 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5176 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
4173 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.989Rint = 0.048
17653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
5176 reflectionsΔρmin = 0.48 e Å3
286 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85265 (7)0.33140 (3)0.37549 (3)0.02281 (12)
S20.02530 (8)0.19875 (3)0.03182 (3)0.02635 (12)
O10.5459 (2)0.19945 (8)0.27042 (7)0.0224 (2)
O20.2761 (2)0.08003 (8)0.14769 (7)0.0269 (3)
O111.0708 (2)0.30210 (9)0.33938 (8)0.0292 (3)
O120.8622 (2)0.43108 (8)0.40360 (8)0.0324 (3)
O210.2415 (2)0.15825 (11)0.05907 (9)0.0392 (3)
O220.0360 (2)0.22995 (10)0.05667 (7)0.0360 (3)
N10.5919 (3)0.30065 (9)0.29826 (8)0.0225 (3)
N20.2397 (3)0.11135 (10)0.05820 (8)0.0247 (3)
C10.5935 (3)0.18220 (13)0.18398 (10)0.0282 (4)
C20.5625 (3)0.07488 (12)0.15877 (11)0.0270 (4)
C30.2883 (3)0.02237 (12)0.16410 (11)0.0270 (4)
C110.7853 (3)0.26306 (11)0.45642 (10)0.0212 (3)
C120.8647 (3)0.17290 (12)0.45564 (10)0.0240 (3)
C130.7896 (3)0.11977 (13)0.51748 (11)0.0287 (4)
C140.6440 (4)0.15177 (13)0.57808 (10)0.0296 (4)
C150.5731 (4)0.24092 (12)0.57715 (10)0.0286 (4)
C160.6368 (3)0.29795 (11)0.51732 (10)0.0238 (3)
C171.0236 (4)0.12821 (13)0.39445 (11)0.0299 (4)
C180.5638 (5)0.09204 (15)0.64319 (12)0.0419 (5)
C190.5406 (4)0.39231 (12)0.52293 (11)0.0310 (4)
C210.0403 (3)0.29131 (12)0.08973 (10)0.0249 (3)
C220.1885 (4)0.35811 (12)0.05656 (11)0.0321 (4)
C230.2503 (5)0.42710 (14)0.10469 (13)0.0443 (5)
C240.1755 (5)0.43231 (14)0.18327 (12)0.0419 (5)
C250.0322 (4)0.36523 (14)0.21412 (11)0.0373 (4)
C260.0385 (3)0.29359 (13)0.16987 (11)0.0300 (4)
C270.2894 (5)0.36079 (15)0.02729 (13)0.0464 (5)
C280.2533 (7)0.50753 (18)0.23351 (16)0.0668 (8)
C290.1947 (4)0.22545 (17)0.21237 (13)0.0433 (5)
H10.44060.31530.31930.027*
H20.38770.13750.04640.030*
H1A0.77480.21390.18000.034*
H1B0.46400.20770.14620.034*
H2A0.69670.05110.19630.032*
H2B0.59700.06030.10000.032*
H3A0.24560.04140.22130.032*
H3B0.15470.04060.12220.032*
H130.84080.05890.51800.034*
H150.47670.26420.61920.034*
H17A1.20780.16250.40710.045*
H17B0.94680.13220.33640.045*
H17C1.01960.06080.40010.045*
H18A0.65640.12370.69970.063*
H18B0.61130.02860.63030.063*
H18C0.37160.08510.64190.063*
H19A0.41660.39480.56360.047*
H19B0.45020.39860.46700.047*
H19C0.69240.44500.54180.047*
H230.34860.47290.08270.053*
H250.02070.36800.26790.045*
H27A0.40790.40770.03180.070*
H27B0.38680.29720.03030.070*
H27C0.13870.37920.07390.070*
H28A0.43990.48840.26030.100*
H28B0.22930.56910.19550.100*
H28C0.14140.51390.27740.100*
H29A0.37940.23960.18330.065*
H29B0.11640.15930.20950.065*
H29C0.18980.23330.27180.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (2)0.0245 (2)0.0277 (2)0.00084 (15)0.00399 (16)0.00824 (16)
S20.0164 (2)0.0394 (3)0.0247 (2)0.00694 (16)0.00293 (16)0.00866 (17)
O10.0223 (6)0.0233 (6)0.0225 (5)0.0024 (4)0.0057 (4)0.0071 (4)
O20.0317 (6)0.0275 (6)0.0232 (6)0.0057 (5)0.0061 (5)0.0071 (5)
O110.0163 (6)0.0384 (7)0.0363 (7)0.0043 (5)0.0084 (5)0.0140 (5)
O120.0338 (7)0.0221 (6)0.0398 (7)0.0018 (5)0.0064 (6)0.0069 (5)
O210.0194 (6)0.0598 (9)0.0445 (8)0.0175 (6)0.0086 (6)0.0140 (7)
O220.0296 (7)0.0542 (8)0.0236 (6)0.0075 (6)0.0001 (5)0.0083 (6)
N10.0175 (6)0.0231 (7)0.0282 (7)0.0048 (5)0.0032 (5)0.0079 (5)
N20.0226 (7)0.0312 (8)0.0232 (7)0.0082 (6)0.0062 (6)0.0080 (6)
C10.0280 (9)0.0358 (10)0.0204 (8)0.0007 (7)0.0061 (7)0.0082 (7)
C20.0217 (8)0.0345 (9)0.0256 (8)0.0043 (7)0.0074 (7)0.0056 (7)
C30.0254 (9)0.0267 (9)0.0309 (9)0.0058 (7)0.0089 (7)0.0066 (7)
C110.0169 (7)0.0231 (8)0.0220 (7)0.0006 (6)0.0001 (6)0.0047 (6)
C120.0201 (8)0.0289 (9)0.0234 (8)0.0055 (6)0.0010 (6)0.0069 (7)
C130.0336 (9)0.0286 (9)0.0264 (8)0.0107 (7)0.0038 (7)0.0086 (7)
C140.0360 (10)0.0311 (9)0.0213 (8)0.0041 (7)0.0043 (7)0.0058 (7)
C150.0339 (9)0.0293 (9)0.0222 (8)0.0036 (7)0.0086 (7)0.0011 (7)
C160.0210 (8)0.0231 (8)0.0245 (8)0.0017 (6)0.0005 (6)0.0002 (6)
C170.0284 (9)0.0339 (10)0.0324 (9)0.0134 (7)0.0079 (7)0.0110 (7)
C180.0621 (14)0.0389 (11)0.0285 (9)0.0089 (9)0.0148 (9)0.0117 (8)
C190.0336 (10)0.0263 (9)0.0329 (9)0.0064 (7)0.0080 (8)0.0008 (7)
C210.0201 (8)0.0289 (9)0.0237 (8)0.0014 (6)0.0029 (6)0.0051 (7)
C220.0427 (11)0.0248 (9)0.0295 (9)0.0035 (7)0.0112 (8)0.0044 (7)
C230.0697 (15)0.0264 (10)0.0416 (11)0.0142 (9)0.0174 (10)0.0080 (8)
C240.0606 (13)0.0281 (10)0.0342 (10)0.0016 (9)0.0044 (9)0.0104 (8)
C250.0429 (11)0.0418 (11)0.0233 (8)0.0081 (8)0.0068 (8)0.0083 (8)
C260.0236 (9)0.0385 (10)0.0259 (8)0.0033 (7)0.0074 (7)0.0048 (7)
C270.0748 (15)0.0362 (11)0.0399 (11)0.0238 (10)0.0303 (11)0.0100 (9)
C280.112 (2)0.0425 (14)0.0492 (14)0.0148 (14)0.0094 (14)0.0236 (11)
C290.0369 (11)0.0634 (14)0.0341 (10)0.0101 (9)0.0190 (9)0.0096 (9)
Geometric parameters (Å, º) top
S1—O111.4312 (12)C2—H2B0.99
S1—O121.4263 (13)C3—H3A0.99
S1—N11.6608 (14)C3—H3B0.99
S1—C111.7799 (16)C12—C171.507 (2)
O1—N11.4270 (17)C13—H130.95
O1—C11.4448 (19)C14—C181.508 (2)
C11—C121.414 (2)C15—H150.95
C11—C161.413 (2)C16—C191.506 (2)
C12—C131.399 (2)C17—H17A0.98
C13—C141.386 (2)C17—H17B0.98
C14—C151.384 (3)C17—H17C0.98
C15—C161.391 (2)C18—H18A0.98
S2—O211.4307 (13)C18—H18B0.98
S2—O221.4266 (13)C18—H18C0.98
S2—N21.6653 (14)C19—H19A0.98
S2—C211.7747 (17)C19—H19B0.98
O2—N21.4284 (17)C19—H19C0.98
O2—C31.442 (2)C22—C271.515 (3)
C21—C221.410 (2)C23—H230.95
C21—C261.413 (2)C24—C281.508 (3)
C22—C231.389 (3)C25—H250.95
C23—C241.385 (3)C26—C291.512 (3)
C24—C251.382 (3)C27—H27A0.98
C25—C261.396 (3)C27—H27B0.98
N1—H10.9362C27—H27C0.98
N2—H20.9337C28—H28A0.98
C1—C21.510 (2)C28—H28B0.98
C1—H1A0.99C28—H28C0.98
C1—H1B0.99C29—H29A0.98
C2—C31.516 (2)C29—H29B0.98
C2—H2A0.99C29—H29C0.98
O12—S1—O11118.68 (7)C11—C16—C19125.32 (15)
O12—S1—N1104.25 (7)C12—C17—H17A109.5
O11—S1—N1105.68 (7)C12—C17—H17B109.5
O12—S1—C11111.31 (8)H17A—C17—H17B109.5
O11—S1—C11109.01 (7)C12—C17—H17C109.5
N1—S1—C11107.09 (7)H17A—C17—H17C109.5
O22—S2—O21118.47 (8)H17B—C17—H17C109.5
O22—S2—N2104.20 (7)C14—C18—H18A109.5
O21—S2—N2105.91 (8)C14—C18—H18B109.5
O22—S2—C21110.46 (8)H18A—C18—H18B109.5
O21—S2—C21110.03 (8)C14—C18—H18C109.5
N2—S2—C21106.92 (7)H18A—C18—H18C109.5
N1—O1—C1108.14 (11)H18B—C18—H18C109.5
N2—O2—C3108.95 (11)C16—C19—H19A109.5
O1—N1—S1109.42 (9)C16—C19—H19B109.5
O1—N1—H1107.3H19A—C19—H19B109.5
S1—N1—H1109.3C16—C19—H19C109.5
O2—N2—S2107.96 (9)H19A—C19—H19C109.5
O2—N2—H2107.5H19B—C19—H19C109.5
S2—N2—H2107.8C22—C21—C26121.03 (16)
O1—C1—C2106.71 (13)C22—C21—S2118.36 (12)
O1—C1—H1A110.4C26—C21—S2120.46 (14)
C2—C1—H1A110.4C23—C22—C21117.73 (16)
O1—C1—H1B110.4C23—C22—C27116.74 (17)
C2—C1—H1B110.4C21—C22—C27125.53 (16)
H1A—C1—H1B108.6C24—C23—C22123.11 (19)
C1—C2—C3112.71 (14)C24—C23—H23118.4
C1—C2—H2A109.0C22—C23—H23118.4
C3—C2—H2A109.0C25—C24—C23117.59 (18)
C1—C2—H2B109.0C25—C24—C28121.6 (2)
C3—C2—H2B109.0C23—C24—C28120.8 (2)
H2A—C2—H2B107.8C24—C25—C26123.00 (17)
O2—C3—C2110.72 (13)C24—C25—H25118.5
O2—C3—H3A109.5C26—C25—H25118.5
C2—C3—H3A109.5C25—C26—C21117.53 (17)
O2—C3—H3B109.5C25—C26—C29116.59 (16)
C2—C3—H3B109.5C21—C26—C29125.88 (17)
H3A—C3—H3B108.1C22—C27—H27A109.5
C16—C11—C12121.29 (14)C22—C27—H27B109.5
C16—C11—S1118.59 (12)H27A—C27—H27B109.5
C12—C11—S1119.99 (12)C22—C27—H27C109.5
C13—C12—C11117.20 (15)H27A—C27—H27C109.5
C13—C12—C17116.56 (15)H27B—C27—H27C109.5
C11—C12—C17126.25 (15)C24—C28—H28A109.5
C14—C13—C12123.03 (16)C24—C28—H28B109.5
C14—C13—H13118.5H28A—C28—H28B109.5
C12—C13—H13118.5C24—C28—H28C109.5
C15—C14—C13117.85 (16)H28A—C28—H28C109.5
C15—C14—C18120.55 (16)H28B—C28—H28C109.5
C13—C14—C18121.59 (17)C26—C29—H29A109.5
C14—C15—C16122.87 (16)C26—C29—H29B109.5
C14—C15—H15118.6H29A—C29—H29B109.5
C16—C15—H15118.6C26—C29—H29C109.5
C15—C16—C11117.74 (15)H29A—C29—H29C109.5
C15—C16—C19116.94 (15)H29B—C29—H29C109.5
C12—C11—S1—N190.86 (13)C18—C14—C15—C16178.50 (17)
C11—S1—N1—O156.25 (11)C14—C15—C16—C111.4 (3)
S1—N1—O1—C1114.34 (11)C14—C15—C16—C19178.56 (16)
N1—O1—C1—C2176.00 (12)C12—C11—C16—C150.6 (2)
O1—C1—C2—C359.76 (18)S1—C11—C16—C15176.39 (12)
C22—C21—S2—N283.82 (14)C12—C11—C16—C19179.36 (15)
C21—S2—N2—O259.15 (11)S1—C11—C16—C193.5 (2)
S2—N2—O2—C3126.22 (11)O22—S2—C21—C2228.96 (16)
N2—O2—C3—C280.35 (16)O21—S2—C21—C22161.60 (13)
O2—C3—C2—C1174.31 (13)O22—S2—C21—C26155.40 (13)
O12—S1—N1—O1174.30 (9)O21—S2—C21—C2622.75 (16)
O11—S1—N1—O159.86 (10)N2—S2—C21—C2691.82 (14)
O22—S2—N2—O2176.15 (9)C26—C21—C22—C231.1 (3)
O21—S2—N2—O258.17 (11)S2—C21—C22—C23176.68 (15)
O12—S1—C11—C1628.30 (15)C26—C21—C22—C27178.34 (18)
O11—S1—C11—C16161.08 (12)S2—C21—C22—C272.7 (3)
N1—S1—C11—C1685.04 (13)C21—C22—C23—C240.6 (3)
O12—S1—C11—C12155.80 (12)C27—C22—C23—C24178.8 (2)
O11—S1—C11—C1223.03 (15)C22—C23—C24—C250.1 (3)
C16—C11—C12—C130.2 (2)C22—C23—C24—C28178.7 (2)
S1—C11—C12—C13175.63 (12)C23—C24—C25—C260.1 (3)
C16—C11—C12—C17179.76 (15)C28—C24—C25—C26178.7 (2)
S1—C11—C12—C174.5 (2)C24—C25—C26—C210.5 (3)
C11—C12—C13—C140.1 (2)C24—C25—C26—C29179.80 (18)
C17—C12—C13—C14179.80 (16)C22—C21—C26—C251.0 (2)
C12—C13—C14—C150.6 (3)S2—C21—C26—C25176.53 (13)
C12—C13—C14—C18179.27 (17)C22—C21—C26—C29179.33 (17)
C13—C14—C15—C161.4 (3)S2—C21—C26—C293.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.941.972.865 (2)160
N2—H2···O21ii0.931.972.864 (2)159
C1—H1A···O22iii0.992.573.337 (2)134
C1—H1B···O22iv0.992.563.518 (2)163
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H30N2O6S2
Mr470.59
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.1689 (1), 14.3184 (3), 16.1506 (4)
α, β, γ (°)98.121 (1), 97.963 (1), 99.033 (1)
V3)1152.75 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.954, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
17653, 5176, 4173
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.02
No. of reflections5176
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.48

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
S1—O111.4312 (12)S2—O211.4307 (13)
S1—O121.4263 (13)S2—O221.4266 (13)
S1—N11.6608 (14)S2—N21.6653 (14)
S1—C111.7799 (16)S2—C211.7747 (17)
O1—N11.4270 (17)O2—N21.4284 (17)
O1—C11.4448 (19)O2—C31.442 (2)
C11—C121.414 (2)C21—C221.410 (2)
C11—C161.413 (2)C21—C261.413 (2)
C12—C131.399 (2)C22—C231.389 (3)
C13—C141.386 (2)C23—C241.385 (3)
C14—C151.384 (3)C24—C251.382 (3)
C15—C161.391 (2)C25—C261.396 (3)
C12—C11—S1—N190.86 (13)C22—C21—S2—N283.82 (14)
C11—S1—N1—O156.25 (11)C21—S2—N2—O259.15 (11)
S1—N1—O1—C1114.34 (11)S2—N2—O2—C3126.22 (11)
N1—O1—C1—C2176.00 (12)N2—O2—C3—C280.35 (16)
O1—C1—C2—C359.76 (18)O2—C3—C2—C1174.31 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.941.972.865 (2)160
N2—H2···O21ii0.931.972.864 (2)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Footnotes

Postal address: School of Engineering, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. SMSVW, MVDRS and PFP thank CNPq for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrink, K. & Mattes, R. (1986). Acta Cryst. C42, 319–322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCotton, F. A. & Stokeley, P. F. (1970). J. Am. Chem. Soc. 92, 294–302.  CSD CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKlug, H. P. (1970). Acta Cryst. B26, 1268–1275.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKuksa, V., Marshall, C., Wardell, S. M. S. V. & Kong Thoo Lin, P. (1999). Synthesis, pp. 1034–1038.  CSD CrossRef Google Scholar
First citationLightfoot, P., Tremayne, M., Glidewell, C., Harris, K. D. M. & Bruce, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1625–1630.  CSD CrossRef Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationScholz, J. N., Engel, P. S., Glidewell, C. & Whitmire, K. H. (1989). Tetrahedron, 45, 7685–7708.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTremayne, M., MacLean, E. J., Tang, C. C. & Glidewell, C. (1999). Acta Cryst. B55, 1068–1074.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823–834.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVorontsova, L. G. (1966). Zh. Strukt. Khim. 7, 280–283.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds