metal-organic compounds
A heterometallic polymeric complex: [Cu2(N3)2(medpt)2{Ni(CN)4}]n [medpt is bis(3-aminopropyl)methylamine]†
aDepartment of Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India, bDepartment of Chemistry, Heriot Watt University, Edinburgh EH14 4AS, Scotland, and cDepartment of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India
*Correspondence e-mail: mostafa@juphys.ernet.in
The structure of the title compound, catena-poly[[di-μ-azido-κ4N1:N1-bis[[bis(3-aminopropyl)methylamine-κ3N]copper(II)]]-μ-cyano-[dicyanonickel(II)]-μ-cyano], [Cu2(N3)2(medpt)2{Ni(CN)4}]n [medpt is bis(3-aminopropyl)methylamine, C7H19N2] or [Cu2Ni(CN)4(N3)2(C7H19N3)2]n, is a one-dimensional heterometallic covalent chain where Ni(CN)42− functions as a molecular ion bridge. The Ni atom sits on the centre of inversion. The chain undergoes hydrogen-bonding interactions, forming a three-dimensional supramolecular network.
Comment
There are currently several successful examples of self-assembly towards the construction of cyano-bridged complexes, in which cyanometallate anions, e.g. Ag(CN)2−, Cu(CN)32−, Au(CN)4−, M(CN)42− (M is NiII, PtII and CdII) and M(CN)63− (M is CrIII, FeIII, etc.) (Iwamoto, 1996; Bowmaker et al., 1998; Chesnut & Zubieta, 1998; Falvello & Tomas, 1999; Mondal et al., 2000; Du et al., 2000; Niel et al., 2001; Shorrock et al., 2003; Colacio et al., 2003), behave as bridging moieties to build a multidimensional structure with a second coordination centre, and the resulting complexes demonstrate unique magnetic, host–guest and other properties.
One of the most prominent characteristics of CN− is its ability to act as either a terminal or a bridging ligand. When it acts as a bridging ligand between metal atoms, it usually gives rise to polymeric compounds with a one-, two- or three-dimensional network and often containing guest solvent molecules and/or a complementary ligand. Usually, the second coordination centres are transition metal ions, since σπ back-bonding stabilizes the resulting complex (Muga et al., 1997). The rigidity and stability of such frameworks allow for shape- and size-selective inclusion of organic solvents, water molecules, aromatic etc., to fill up the void space, thus stabilizing the Maji et al. (2001) reported a novel porous framework, [{Cu2(medpt)2Ni(CN)4}(ClO4)2]·2.5H2O, where all the CN groups of the Ni(CN)42− anion are involved in bridging. This compound retains single crystallinity upon removal of guest water molecules and the dehydrated species selectively binds organic molecules.
With regard to the Hoffman-type and analogous inclusion compounds, the Hoffman–en-type network [Cd(en)Ni(CN)4]·2G (en is ethylenediamine; G is C4H4N, C4H4S or C6H6) has a host structure similar to that of the Hoffman-type network [Cd(NH3)2Ni(CN)4]·2G (G is C4H5N, C4H4S, C6H6 or PhNH2) (Iwamoto et al., 1974). Similar behaviour was reported for [Ni(en)2Ni(CN)4]·2.5H2O (Černák et al., 1990), where the role of the water molecules was interpreted using a molecular mechanics investigation. Yuge & Iwamoto (1994) reported phenol and aniline as guest molecules accommodated among [M(en)2Ni(CN)4]n chains (M is Ni, Cu, Zn or Cd). Moreover, the azide ligand has been used extensively to design molecular-based magnets displaying a huge structural variety, spanning dinuclear, tetranuclear, cubane, and one-, two- and three-dimensional compounds (Ribas et al., 1999). During our ongoing research on mixed bridging ligands, we synthesized the title compound, (I), and this paper reports the synthesis and of this novel one-dimensional heterometallic polymeric complex, [Cu2(medpt)2(N3)2Ni(CN)4]n [medpt is bis(3-aminopropyl)methylamine].
The present X-ray crystal-structure determination reveals that (I) is a one-dimensional heterometallic chain (Fig. 1). In the chain, each pseudo-octahedral CuII centre is linked to another CuII centre by a double end-on bridging azide ligand, and these dimeric units are linked alternately by the trans cyanide group of a square-planar Ni(CN)42− dianion to form a one-dimensional heterometallic chain along the c axis. The NiII atom sits on the inversion centre.
All donor N atoms of the triamine (atoms N5, N6 and N7) and one N atom (N1) from the μ-(1,1)-bridging azide ligand form the equatorial plane, where the Cu1—N bond lengths are in the range 2.006 (4)–2.130 (4) Å. The trans axial sites of both CuII centres are occupied by atom N8 of a cyanide group of the Ni(CN)42− anion [Cu1—N8 = 2.223 (4) Å] and another N atom [N1i; symmetry code: (i) 1 − x, 2 − y, 1 − z] from the end-on bridging azide ligand, with a long Cu1—N bond distance [3.013 (4) Å]. Similarly long Cu—N(azide) distances are also observed in several other systems (Goher et al., 1998; Mautner & Goher, 1994). The Cu1⋯Cu1 and Cu1⋯Ni1 distances are 3.987 and 5.103 Å, respectively. At the CuII centre, both six-membered chelate rings formed by the medpt ligand possess chair conformations.
When these heterometallic chains line up in the bc plane, bifurcated hydrogen bonds (Table 2) from atom N3 join the parallel chains, resulting in a two-dimensional sheet (Fig. 2) with graph-set motif R21(8). The H atoms bound to atoms N6 and N5 are also involved in a bifurcated hydrogen-bonding system with the terminal cyano atom N9. This hydrogen-bonding motif, with graph set R42(8), joins the two-dimensional sheets from above and below to form a three-dimensional supramolecular array (Fig. 3).
Experimental
A methanol solution (5 ml) of medpt (2 mmol, 0.290 g) was added dropwise to an aqueous solution (10 ml) of Cu(ClO4)2·6H2O (2 mmol, 0.741 g). To the resulting deep-blue solution, K2[Ni(CN)4]·2H2O (1 mmol, 0.276 g) dissolved in water (5 ml) was added. Instantaneously, a crystalline sky-blue complex separated out and was treated with an aqueous solution (5 ml) of NaN3 (1 mmol, 0.065 g), resulting in a deep-green solution. This was filtered and the filtrate was kept in a CaCl2 desiccator (yield: 60%). Found: C 32.46, H 5.64, N 33.52, Cu 19.56%; calculated for C18H38Cu2N16Ni: C 32.51, H 5.76, N 33.71, Cu 19.11%. Spectroscopic data, IR (ν, cm−1): 3178, 3270, 3300 (N—H), 2859, 2929, 2893, 2963 (CH2), 2117, 2137 (N3), 2036 (CN).
Crystal data
|
Data collection
Refinement
|
|
H atoms bonded to C and N atoms were placed in geometrically calculated positions, with C—H distances in the range 0.97–0.99 Å and N—H distances of 0.90 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C,N) [1.5Ueq(C) for the methyl H atoms].
Data collection: XSCANS (Bruker, 1999); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).
Supporting information
10.1107/S0108270104007152/sk1710sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270104007152/sk1710Isup2.hkl
A methanolic solution (5 ml) of medpt (2 mmol, 0.290 g) was added dropwise to an aqueous solution (10 ml) of Cu(ClO4)2·6H2O (2 mmol, 0.741 g). To the resulting deep-blue solution, K2[Ni(CN)4]·2H2O (1 mmol, 0.276 g) dissolved in water (5 ml) was added. Instantaneously, a crystalline sky-blue complex separated out, which was treated with an aqueous solution (5 ml) of NaN3 (1 mmol, 0.065 g), resulting in a deep-green solution. This was filtered and the filtrate was kept in a CaCl2 desiccator. Yield: 60%. Found: C 32.46, H 5.64, N 33.52, Cu 19.56%; calculated for C18H38Cu2NiN16: C 32.51, H 5.76, N 33.71%. Spectroscopic data: IR (ν, cm−1): 3178, 3270, 3300 (N—H), 2859, 2929, 2893, 2963 (CH2), 2117, 2137 (N3), 2036 (CN).
H atoms bonded to C atoms were placed in geometrically calculated positions, with C—H distances in the range 0.97–0.99 Å Please check added text, and refined as riding, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for the methyl H atoms]. H atoms bound to N atoms?
Data collection: XSCANS (Bruker, 1999); cell
XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) −x, 2 − y, −z.] | |
Fig. 2. The formation of two-dimensional sheets in the bc plane via bifurcated hydrogen bonds joining the chains through atom N3 of the bridging azido ligand. | |
Fig. 3. The supramolecular three-dimensional continuum formed by joining the two-dimensional sheets through bifurcated hydrogen bonds generated from the pendant N9 atom of the CN ligand. |
[Cu2Ni(CN)4(N3)2(C7H19N3)2] | F(000) = 688 |
Mr = 664.43 | Dx = 1.608 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 38 reflections |
a = 7.4094 (9) Å | θ = 2.8–20.0° |
b = 14.5472 (16) Å | µ = 2.26 mm−1 |
c = 12.8512 (19) Å | T = 160 K |
β = 97.757 (11)° | Plate, green |
V = 1372.5 (3) Å3 | 0.38 × 0.18 × 0.08 mm |
Z = 2 |
Bruker P4 diffractometer | 1791 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.037 |
Graphite monochromator | θmax = 25.0°, θmin = 2.1° |
ω scans | h = −8→1 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→17 |
Tmin = 0.595, Tmax = 0.835 | l = −15→15 |
3235 measured reflections | 3 standard reflections every 97 reflections |
2404 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0464P)2 + 3.3185P] where P = (Fo2 + 2Fc2)/3 |
2404 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
[Cu2Ni(CN)4(N3)2(C7H19N3)2] | V = 1372.5 (3) Å3 |
Mr = 664.43 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.4094 (9) Å | µ = 2.26 mm−1 |
b = 14.5472 (16) Å | T = 160 K |
c = 12.8512 (19) Å | 0.38 × 0.18 × 0.08 mm |
β = 97.757 (11)° |
Bruker P4 diffractometer | 1791 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.037 |
Tmin = 0.595, Tmax = 0.835 | 3 standard reflections every 97 reflections |
3235 measured reflections | intensity decay: none |
2404 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.64 e Å−3 |
2404 reflections | Δρmin = −0.72 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.43217 (6) | 0.99616 (3) | 0.34460 (4) | 0.01568 (17) | |
N1 | 0.3096 (5) | 1.0570 (3) | 0.4633 (3) | 0.0260 (9) | |
N2 | 0.1533 (5) | 1.0811 (3) | 0.4520 (3) | 0.0205 (8) | |
N3 | 0.0026 (5) | 1.1055 (3) | 0.4455 (3) | 0.0291 (9) | |
N5 | 0.3363 (5) | 0.8764 (3) | 0.3917 (3) | 0.0216 (8) | |
H5A | 0.4213 | 0.8538 | 0.4418 | 0.026* | |
H5B | 0.2380 | 0.8896 | 0.4231 | 0.026* | |
N6 | 0.5784 (5) | 1.1121 (2) | 0.3399 (3) | 0.0195 (8) | |
H6A | 0.5268 | 1.1559 | 0.3756 | 0.023* | |
H6B | 0.6907 | 1.1017 | 0.3742 | 0.023* | |
N7 | 0.5887 (5) | 0.9311 (2) | 0.2383 (3) | 0.0176 (8) | |
C1 | 0.2837 (6) | 0.8011 (3) | 0.3173 (4) | 0.0272 (11) | |
H1A | 0.1803 | 0.8211 | 0.2653 | 0.033* | |
H1B | 0.2436 | 0.7475 | 0.3556 | 0.033* | |
C2 | 0.4425 (7) | 0.7738 (3) | 0.2610 (4) | 0.0310 (11) | |
H2A | 0.4092 | 0.7173 | 0.2199 | 0.037* | |
H2B | 0.5479 | 0.7588 | 0.3142 | 0.037* | |
C3 | 0.5005 (7) | 0.8468 (3) | 0.1874 (4) | 0.0271 (11) | |
H3A | 0.5846 | 0.8189 | 0.1451 | 0.032* | |
H3B | 0.3938 | 0.8657 | 0.1401 | 0.032* | |
C4 | 0.7695 (6) | 0.9054 (3) | 0.2953 (4) | 0.0249 (10) | |
H4A | 0.8420 | 0.8754 | 0.2467 | 0.037* | |
H4B | 0.7530 | 0.8630 | 0.3525 | 0.037* | |
H4C | 0.8327 | 0.9608 | 0.3243 | 0.037* | |
C5 | 0.6174 (6) | 0.9924 (3) | 0.1480 (3) | 0.0211 (9) | |
H5C | 0.4974 | 1.0044 | 0.1062 | 0.025* | |
H5D | 0.6921 | 0.9586 | 0.1023 | 0.025* | |
C6 | 0.7088 (6) | 1.0845 (3) | 0.1766 (4) | 0.0252 (11) | |
H6C | 0.8273 | 1.0731 | 0.2203 | 0.030* | |
H6D | 0.7339 | 1.1152 | 0.1113 | 0.030* | |
C7 | 0.5975 (7) | 1.1485 (3) | 0.2352 (4) | 0.0258 (11) | |
H7A | 0.6573 | 1.2094 | 0.2426 | 0.031* | |
H7B | 0.4752 | 1.1566 | 0.1946 | 0.031* | |
Ni1 | 0.0000 | 1.0000 | 0.0000 | 0.0149 (2) | |
C8 | 0.1286 (6) | 1.0183 (3) | 0.1337 (3) | 0.0163 (9) | |
C9 | 0.0012 (6) | 0.8734 (3) | 0.0260 (3) | 0.0199 (10) | |
N8 | 0.2088 (5) | 1.0268 (3) | 0.2157 (3) | 0.0229 (9) | |
N9 | 0.0029 (6) | 0.7950 (3) | 0.0431 (4) | 0.0317 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0149 (3) | 0.0135 (3) | 0.0195 (3) | −0.0014 (2) | 0.00556 (19) | −0.0023 (2) |
N1 | 0.017 (2) | 0.031 (2) | 0.032 (2) | −0.0036 (18) | 0.0095 (17) | −0.0108 (19) |
N2 | 0.024 (2) | 0.0160 (18) | 0.023 (2) | −0.0029 (16) | 0.0077 (15) | −0.0043 (16) |
N3 | 0.023 (2) | 0.028 (2) | 0.037 (2) | 0.0065 (17) | 0.0046 (17) | 0.001 (2) |
N5 | 0.0216 (19) | 0.0207 (19) | 0.023 (2) | −0.0041 (16) | 0.0069 (15) | 0.0043 (17) |
N6 | 0.0191 (19) | 0.0145 (18) | 0.025 (2) | −0.0023 (15) | 0.0043 (15) | −0.0035 (16) |
N7 | 0.0189 (18) | 0.0112 (17) | 0.0230 (19) | 0.0020 (14) | 0.0043 (15) | −0.0029 (15) |
C1 | 0.024 (2) | 0.018 (2) | 0.038 (3) | −0.0068 (19) | −0.001 (2) | 0.001 (2) |
C2 | 0.032 (3) | 0.016 (2) | 0.045 (3) | −0.004 (2) | 0.003 (2) | −0.006 (2) |
C3 | 0.033 (3) | 0.021 (2) | 0.027 (2) | −0.002 (2) | 0.002 (2) | −0.010 (2) |
C4 | 0.024 (2) | 0.022 (2) | 0.029 (2) | 0.0070 (19) | 0.0042 (19) | 0.000 (2) |
C5 | 0.022 (2) | 0.023 (2) | 0.019 (2) | 0.0033 (19) | 0.0084 (17) | 0.001 (2) |
C6 | 0.023 (2) | 0.023 (2) | 0.032 (3) | −0.0020 (19) | 0.014 (2) | 0.005 (2) |
C7 | 0.029 (3) | 0.014 (2) | 0.036 (3) | 0.0020 (19) | 0.012 (2) | 0.005 (2) |
Ni1 | 0.0156 (4) | 0.0120 (4) | 0.0175 (4) | 0.0005 (3) | 0.0035 (3) | −0.0001 (3) |
C8 | 0.017 (2) | 0.012 (2) | 0.021 (2) | 0.0011 (16) | 0.0061 (17) | −0.0001 (17) |
C9 | 0.020 (2) | 0.020 (2) | 0.021 (2) | −0.0027 (18) | 0.0065 (19) | −0.0001 (18) |
N8 | 0.0184 (19) | 0.022 (2) | 0.029 (2) | 0.0021 (15) | 0.0046 (17) | −0.0023 (17) |
N9 | 0.040 (2) | 0.020 (2) | 0.035 (2) | −0.0052 (18) | 0.0035 (19) | 0.0040 (19) |
Cu1—N5 | 2.006 (4) | C1—H1A | 0.99 |
Cu1—N6 | 2.009 (4) | C1—H1B | 0.99 |
Cu1—N1 | 2.075 (4) | C2—H2A | 0.99 |
Cu1—N7 | 2.130 (3) | C2—H2B | 0.99 |
Cu1—N8 | 2.222 (4) | C3—H3A | 0.97 |
Cu1—N1i | 3.013 (4) | C3—H3B | 0.97 |
N1—N2 | 1.200 (5) | C4—H4A | 0.98 |
N2—N3 | 1.164 (5) | C4—H4B | 0.98 |
N5—C1 | 1.470 (6) | C4—H4C | 0.98 |
N6—C7 | 1.470 (6) | C5—H5C | 0.99 |
N7—C4 | 1.485 (6) | C5—H5D | 0.99 |
N7—C3 | 1.498 (6) | C6—H6C | 0.99 |
N7—C5 | 1.500 (5) | C6—H6D | 0.99 |
C1—C2 | 1.516 (7) | C7—H7A | 0.99 |
C2—C3 | 1.522 (7) | C7—H7B | 0.99 |
C5—C6 | 1.524 (6) | Ni1—C8ii | 1.868 (4) |
C6—C7 | 1.511 (6) | Ni1—C8 | 1.868 (4) |
N5—H5A | 0.90 | Ni1—C9ii | 1.871 (5) |
N5—H5B | 0.90 | Ni1—C9 | 1.871 (5) |
N6—H6B | 0.90 | C8—N8 | 1.145 (6) |
N6—H6A | 0.90 | C9—N9 | 1.162 (6) |
N5—Cu1—N6 | 162.23 (16) | N5—C1—H1B | 109.55 |
N5—Cu1—N1 | 86.62 (15) | C2—C1—H1A | 109.56 |
N6—Cu1—N1 | 87.43 (15) | C2—C1—H1B | 109.63 |
N5—Cu1—N7 | 93.06 (14) | H1A—C1—H1B | 108.09 |
N6—Cu1—N7 | 90.63 (14) | C1—C2—H2A | 108.58 |
N1—Cu1—N7 | 172.35 (15) | C1—C2—H2B | 108.60 |
N5—Cu1—N8 | 98.08 (15) | C3—C2—H2A | 108.58 |
N6—Cu1—N8 | 99.19 (15) | C3—C2—H2B | 108.68 |
N1—Cu1—N8 | 96.12 (15) | H2A—C2—H2B | 107.57 |
N7—Cu1—N8 | 91.50 (14) | N7—C3—H3A | 108.18 |
N2—N1—Cu1 | 123.2 (3) | N7—C3—H3B | 108.20 |
N1—Cu1—N1i | 78.45 (13) | C2—C3—H3A | 108.25 |
N1i—Cu1—N5 | 75.01 (14) | C2—C3—H3B | 108.22 |
N1i—Cu1—N6 | 87.41 (13) | H3A—C3—H3B | 107.37 |
N1i—Cu1—N7 | 94.07 (13) | N7—C4—H4A | 109.47 |
N1i—Cu1—N8 | 171.33 (13) | N7—C4—H4B | 109.45 |
Cu1—N1—N2 | 123.1 (3) | N7—C4—H4C | 109.48 |
Cu1—N1—Cu1i | 101.55 (14) | H4A—C4—H4B | 109.42 |
Cu1i—N1—N2 | 132.1 (3) | H4A—C4—H4C | 109.50 |
N3—N2—N1 | 177.1 (5) | H4B—C4—H4C | 109.51 |
C1—N5—Cu1 | 121.6 (3) | N7—C5—H5C | 108.27 |
C7—N6—Cu1 | 116.6 (3) | N7—C5—H5D | 108.20 |
C4—N7—C3 | 108.7 (3) | C6—C5—H5C | 108.25 |
C4—N7—C5 | 108.6 (3) | C6—C5—H5D | 108.29 |
C3—N7—C5 | 104.4 (3) | H5C—C5—H5D | 107.37 |
C4—N7—Cu1 | 109.2 (3) | C5—C6—H6C | 108.71 |
C3—N7—Cu1 | 113.6 (3) | C5—C6—H6D | 108.69 |
C5—N7—Cu1 | 112.3 (3) | C7—C6—H6C | 108.81 |
N5—C1—C2 | 110.6 (4) | C7—C6—H6D | 108.79 |
C1—C2—C3 | 114.5 (4) | H6C—C6—H6D | 107.61 |
N7—C3—C2 | 116.4 (4) | N6—C7—H7A | 109.37 |
N7—C5—C6 | 116.1 (4) | N6—C7—H7B | 109.32 |
C7—C6—C5 | 114.0 (4) | C6—C7—H7A | 109.41 |
N6—C7—C6 | 111.2 (4) | C6—C7—H7B | 109.46 |
C1—N5—H5A | 106.94 | H7A—C7—H7B | 108.08 |
Cu1—N5—H5A | 106.92 | C8ii—Ni1—C8 | 180.000 (1) |
Cu1—N5—H5B | 106.92 | C8ii—Ni1—C9ii | 89.23 (18) |
C1—N5—H5B | 106.91 | C8—Ni1—C9ii | 90.77 (18) |
H5A—N5—H5B | 106.73 | C8ii—Ni1—C9 | 90.77 (18) |
C7—N6—H6A | 108.15 | C8—Ni1—C9 | 89.23 (18) |
Cu1—N6—H6A | 108.12 | C9ii—Ni1—C9 | 180.000 (1) |
Cu1—N6—H6B | 108.10 | N8—C8—Ni1 | 177.9 (4) |
C7—N6—H6B | 108.17 | N9—C9—Ni1 | 179.3 (4) |
H6A—N6—H6B | 107.31 | C8—N8—Cu1 | 155.0 (3) |
N5—C1—H1A | 109.44 | ||
N5—Cu1—N1—N2 | −86.3 (4) | N6—Cu1—N7—C5 | −44.6 (3) |
N6—Cu1—N1—N2 | 110.4 (4) | N8—Cu1—N7—C5 | 54.6 (3) |
N8—Cu1—N1—N2 | 11.4 (4) | Cu1—N5—C1—C2 | 57.5 (5) |
N6—Cu1—N5—C1 | −141.2 (4) | N5—C1—C2—C3 | −66.9 (5) |
N1—Cu1—N5—C1 | 148.1 (3) | C4—N7—C3—C2 | 68.4 (5) |
N7—Cu1—N5—C1 | −39.5 (3) | C5—N7—C3—C2 | −175.9 (4) |
N8—Cu1—N5—C1 | 52.4 (3) | Cu1—N7—C3—C2 | −53.4 (5) |
N5—Cu1—N6—C7 | 153.3 (4) | C1—C2—C3—N7 | 69.4 (6) |
N1—Cu1—N6—C7 | −136.2 (3) | C4—N7—C5—C6 | −63.5 (5) |
N7—Cu1—N6—C7 | 51.2 (3) | C3—N7—C5—C6 | −179.3 (4) |
N8—Cu1—N6—C7 | −40.4 (3) | Cu1—N7—C5—C6 | 57.3 (4) |
N5—Cu1—N7—C4 | −86.8 (3) | N7—C5—C6—C7 | −65.3 (5) |
N6—Cu1—N7—C4 | 75.8 (3) | Cu1—N6—C7—C6 | −66.6 (4) |
N8—Cu1—N7—C4 | 175.0 (3) | C5—C6—C7—N6 | 66.7 (5) |
N5—Cu1—N7—C3 | 34.7 (3) | N5—Cu1—N8—C8 | −75.6 (9) |
N6—Cu1—N7—C3 | −162.7 (3) | N6—Cu1—N8—C8 | 108.6 (8) |
N8—Cu1—N7—C3 | −63.5 (3) | N1—Cu1—N8—C8 | −163.0 (8) |
N5—Cu1—N7—C5 | 152.8 (3) | N7—Cu1—N8—C8 | 17.7 (9) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···N9iii | 0.90 | 2.56 | 3.298 (6) | 140 |
N5—H5B···N3iv | 0.90 | 2.62 | 3.489 (5) | 163 |
N6—H6A···N9v | 0.90 | 2.30 | 3.154 (6) | 158 |
N6—H6B···N3vi | 0.90 | 2.37 | 3.252 (5) | 167 |
Symmetry codes: (iii) x+1/2, −y+3/2, z+1/2; (iv) −x, −y+2, −z+1; (v) −x+1/2, y+1/2, −z+1/2; (vi) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Ni(CN)4(N3)2(C7H19N3)2] |
Mr | 664.43 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 160 |
a, b, c (Å) | 7.4094 (9), 14.5472 (16), 12.8512 (19) |
β (°) | 97.757 (11) |
V (Å3) | 1372.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.26 |
Crystal size (mm) | 0.38 × 0.18 × 0.08 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.595, 0.835 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3235, 2404, 1791 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.115, 1.04 |
No. of reflections | 2404 |
No. of parameters | 169 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.72 |
Computer programs: XSCANS (Bruker, 1999), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).
Cu1—N5 | 2.006 (4) | Cu1—N8 | 2.222 (4) |
Cu1—N6 | 2.009 (4) | Cu1—N1i | 3.013 (4) |
Cu1—N1 | 2.075 (4) | Ni1—C8 | 1.868 (4) |
Cu1—N7 | 2.130 (3) | Ni1—C9 | 1.871 (5) |
N5—Cu1—N6 | 162.23 (16) | N1i—Cu1—N8 | 171.33 (13) |
N5—Cu1—N1 | 86.62 (15) | Cu1—N1—Cu1i | 101.55 (14) |
N6—Cu1—N1 | 87.43 (15) | N3—N2—N1 | 177.1 (5) |
N5—Cu1—N7 | 93.06 (14) | C1—N5—Cu1 | 121.6 (3) |
N6—Cu1—N7 | 90.63 (14) | C7—N6—Cu1 | 116.6 (3) |
N1—Cu1—N7 | 172.35 (15) | C4—N7—Cu1 | 109.2 (3) |
N5—Cu1—N8 | 98.08 (15) | C3—N7—Cu1 | 113.6 (3) |
N6—Cu1—N8 | 99.19 (15) | C5—N7—Cu1 | 112.3 (3) |
N1—Cu1—N8 | 96.12 (15) | C8ii—Ni1—C9ii | 89.23 (18) |
N7—Cu1—N8 | 91.50 (14) | C8—Ni1—C9ii | 90.77 (18) |
N2—N1—Cu1 | 123.2 (3) | C8ii—Ni1—C9 | 90.77 (18) |
N1—Cu1—N1i | 78.45 (13) | C8—Ni1—C9 | 89.23 (18) |
N1i—Cu1—N5 | 75.01 (14) | N8—C8—Ni1 | 177.9 (4) |
N1i—Cu1—N6 | 87.41 (13) | N9—C9—Ni1 | 179.3 (4) |
N1i—Cu1—N7 | 94.07 (13) | C8—N8—Cu1 | 155.0 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···N9iii | 0.90 | 2.56 | 3.298 (6) | 140 |
N5—H5B···N3iv | 0.90 | 2.62 | 3.489 (5) | 163 |
N6—H6A···N9v | 0.90 | 2.30 | 3.154 (6) | 158 |
N6—H6B···N3vi | 0.90 | 2.37 | 3.252 (5) | 167 |
Symmetry codes: (iii) x+1/2, −y+3/2, z+1/2; (iv) −x, −y+2, −z+1; (v) −x+1/2, y+1/2, −z+1/2; (vi) x+1, y, z. |
Footnotes
†Contribution No. IND44.
Acknowledgements
The authors thank the Department of Physics, Jadavpur University, and CSIR (New Delhi), India, for financial support. They also thank Professor N. Ray Chaudhuri, IACS, India, for various scientific discussions.
References
Bowmaker, G. A., Kennedy, B. J. & Reid, J. C. (1998). Inorg. Chem. 37, 3968–3974. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1999). XSCANS. Release 2.31. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Černák, J., Chomic, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107. CSD CrossRef Web of Science IUCr Journals Google Scholar
Chesnut, D. J. & Zubieta, J. (1998). Chem. Commun. pp. 1707–1708. Web of Science CSD CrossRef Google Scholar
Colacio, E., Dominguez-Vera, J. M., Lloret, F., Rodriguez, A. & Stoeckli-Evans, H. (2003). Inorg. Chem. 42, 6962–6964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Du, B., Meyers, E. A. & Shore, S. G. (2000). Inorg. Chem. 39, 4639–4645. Web of Science CSD CrossRef CAS Google Scholar
Falvello, L. R. & Tomas, M. (1999). Chem. Commun. pp. 273–274. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Goher, M. A. S., Escuer, A., Morsy, A. M. A. Y. & Mautner, F. A. (1998). Polyhedron, 17, 4265–4273. Web of Science CSD CrossRef CAS Google Scholar
Iwamoto, T. (1996). Supramolecular Chemistry in Cyanometallate Systems, in Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, ch. 19. Oxford: Pergamon. Google Scholar
Iwamoto, T., Miyoshi, T. & Sasaki, Y. (1974). Acta Cryst. B30, 292–295. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Maji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Ray Chaudhuri, N. (2001). Chem. Commun. pp. 1368–1369. Web of Science CSD CrossRef Google Scholar
Mautner, F. A. & Goher, M. A. S. (1994). Polyhedron, 13, 2141–2147. CSD CrossRef CAS Web of Science Google Scholar
Mondal, N., Saha, M. K., Bag, B., Mitra, S., Gramlich, V., Ribas, J. & El Fallah, M. S. (2000). J. Chem. Soc. Dalton Trans. pp. 1601–1604. Web of Science CSD CrossRef Google Scholar
Muga, I., Gutierrez-Zorrila, J. M., Luque, A., Roman, P. & Lloret, F. (1997). Inorg. Chem. 36, 743–745. CSD CrossRef CAS Web of Science Google Scholar
Niel, V., Martinez-Agudo, J. M., Munoz, M. C., Gasper, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839. Web of Science CSD CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193, 1027–1068. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shorrock, C. J., Jong, H. & Leznoff, D. B. (2003). Inorg. Chem. 42, 3917–3924. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuge, H. & Iwamoto, T. (1994). J. Chem. Soc. Dalton Trans. pp. 1237–1242. CSD CrossRef Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
There are currently several successful examples of self-assembly towards the construction of cyano-bridged complexes, in which cyanometallate anions, e.g. Ag(CN)2−, Cu(CN)32−, Au(CN)4−, M(CN)42− [M is NiII, PtII and CdII] and M(CN)63− [M is CrIII, FeIII, etc.] (Iwamoto, 1996; Bowmaker et al., 1998; Chesnut & Zubieta, 1998; Falvello & Tomas, 1999; Mondal et al., 2000; Du et al., 2000; Niel et al., 2001; Shorrock et al., 2003; Colacio et al., 2003) behave as bridging moieties to build a multidimensional structure with a second coordination centre, and the resulting complexes demonstrate unique magnetic, host–guest and other properties.
One of the most prominent characteristics of CN− is its ability to act either as a terminal or as a bridging ligand. When it acts as a bridging ligand between metal atoms, it usually gives rise to polymeric compounds with a one-, two- or three-dimensional network and often containing guest solvent molecules and/or a complementary ligand. Usually, the second coordination centres are transition metal ions, since σ → π back-bonding stabilizes the resulting complex (Muga et al., 1997). The rigidity and stability of such frameworks allow for shape- and size-selective inclusion of organic solvents, water molecules, aromatic amines, etc., to fill up the void space, thus stabilizing the crystal structure. Maji et al. (2001) reported a novel porous framework, [{Cu2(medpt)2Ni(CN)4}(ClO4)2]·2.5H2O, where all the CN groups of the Ni(CN)42− anion are involved in bridging. This compound retains single crystallinity upon removal of guest water molecules and the dehydrated species selectively binds organic molecules.
With regard to the Hoffman-type and analogous inclusion compounds, the Hoffman-en type network, [Cd(en)Ni(CN)4]·2 G (G is C4H4N, C4H4S or C6H6) has a host structure similar to that of the Hoffman-type network, [Cd(NH3)2Ni(CN)4]·2 G (G is C4H5N, C4H4S, C6H6 or PhNH2) (Iwamoto et al., 1974). Similar behaviour was reported for [Ni(en)2Ni(CN)4]·2.5H2O (Cernak et al., 1990), where the role of the water molecules was interpreted using a molecular mechanics investigation. Yuge & Iwamoto (1994) reported phenol and aniline as guest molecules accommodated among [M(en)2Ni(CN)4]n chains (M is Ni, Cu, Zn or Cd). Moreover, the azido ligand has been extensively used to design molecular-based magnets displaying a huge structural variety, spanning dinuclear, tetranuclear, cubane, and one-, two- and three-dimensional compounds (Ribas et al., 1999). During our ongoing research on mixed bridging ligands, we synthesized the title compound, (I), and this paper reports the synthesis and crystal structure of this novel one-dimensional heterometallic polymeric complex, [Cu2(medpt)2(N3)2Ni(CN)4]n (medpt is bis(3-aminopropyl)methylamine). \sch
The present X-ray crystal-structure determination reveals that (I) is a one-dimensional heterometallic chain (Fig. 1). In the chain, each pseudo-octahedral CuII centre is linked to another CuII centre by a double end-on bridging azide ligand, and these dimeric units are linked alternately by the trans cyanide group of a square-planar Ni(CN)42− dianion to form a one-dimensional heterometallic chain along the c axis. The NiII atom sits on the inversion centre.
All donor N atoms of the triamine (atoms N5, N6 and N7) and one N atom (N1) from the µ-(1,1)-bridging azide ligand form the equatorial plane, where the Cu1—N bond lengths are in the range 2.006 (4)–2.130 (4) Å. The trans axial sites of both CuII centres are occupied by atom N8 of a cyanide group of the Ni(CN)42− anion [Cu1—N8 2.223 (4) Å] and another N atom [N1i; symmetry code: (i) 1 − x, 2 − y, 1 − z] from the end-on bridging azide ligand, with a long Cu1—N bond distance [3.013 (4) Å]. Such long Cu—N(azide) distances are also observed in several other systems (Goher et al., 1998; Mautner & Goher, 1994). The Cu1—Cu1 and Cu1—Ni1 distances are 3.987 and 5.103 Å, respectively. At the CuII centre, both six-membered chelate rings formed by the medpt ligand possess chair conformations.
When these heterometallic chains line up in the bc plane, bifurcated hydrogen bonds (Table 2) from atom N3 join the parallel chains, resulting in a two-dimensional sheet (Fig. 2) with graph-set motif R21(8). The H atoms bound to atoms N6 and N5 are also involved in a bifurcated hydrogen-bonding system with the terminal cyano atom N9. This hydrogen-bonding motif, with graph set R42(8), joins the two-dimensional sheets from above and below to form a three-dimensional supramolecular array (Fig. 3).