metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A heterometallic polymeric complex: [Cu2(N3)2(medpt)2{Ni(CN)4}]n [medpt is bis­(3-amino­propyl)­methyl­amine]

aDepartment of Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India, bDepartment of Chemistry, Heriot Watt University, Edinburgh EH14 4AS, Scotland, and cDepartment of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India
*Correspondence e-mail: mostafa@juphys.ernet.in

(Received 5 March 2004; accepted 25 March 2004; online 30 April 2004)

The structure of the title compound, catena-poly­[[di-μ-azido-κ4N1:N1-bis­[[bis(3-amino­propyl)­methyl­amine-κ3N]copper(II)]]-μ-cyano-[di­cyano­nickel(II)]-μ-cyano], [Cu2(N3)2(medpt)2{Ni(CN)4}]n [medpt is bis(3-amino­propyl)­methyl­amine, C7H19N2] or [Cu2Ni(CN)4(N3)2(C7H19N3)2]n, is a one-dimensional heterometallic covalent chain where Ni(CN)42− functions as a molecular ion bridge. The Ni atom sits on the centre of inversion. The chain undergoes hydrogen-bonding interactions, forming a three-dimensional supramolecular network.

Comment

There are currently several successful examples of self-assembly towards the construction of cyano-bridged complexes, in which cyano­metallate anions, e.g. Ag(CN)2−, Cu(CN)32−, Au(CN)4, M(CN)42− (M is NiII, PtII and CdII) and M(CN)63− (M is CrIII, FeIII, etc.) (Iwamoto, 1996[Iwamoto, T. (1996). Supramolecular Chemistry in Cyano­metallate Systems, in Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, ch. 19. Oxford: Pergamon.]; Bowmaker et al., 1998[Bowmaker, G. A., Kennedy, B. J. & Reid, J. C. (1998). Inorg. Chem. 37, 3968-3974.]; Chesnut & Zubieta, 1998[Chesnut, D. J. & Zubieta, J. (1998). Chem. Commun. pp. 1707-1708.]; Falvello & Tomas, 1999[Falvello, L. R. & Tomas, M. (1999). Chem. Commun. pp. 273-274.]; Mondal et al., 2000[Mondal, N., Saha, M. K., Bag, B., Mitra, S., Gramlich, V., Ribas, J. & El Fallah, M. S. (2000). J. Chem. Soc. Dalton Trans. pp. 1601-1604.]; Du et al., 2000[Du, B., Meyers, E. A. & Shore, S. G. (2000). Inorg. Chem. 39, 4639-4645.]; Niel et al., 2001[Niel, V., Martinez-Agudo, J. M., Munoz, M. C., Gasper, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838-3839.]; Shorrock et al., 2003[Shorrock, C. J., Jong, H. & Leznoff, D. B. (2003). Inorg. Chem. 42, 3917-3924.]; Colacio et al., 2003[Colacio, E., Dominguez-Vera, J. M., Lloret, F., Rodriguez, A. & Stoeckli-Evans, H. (2003). Inorg. Chem. 42, 6962-6964.]), behave as bridging moieties to build a multidimensional structure with a second coordination centre, and the resulting complexes demonstrate unique magnetic, host–guest and other properties.

One of the most prominent characteristics of CN is its ability to act as either a terminal or a bridging ligand. When it acts as a bridging ligand between metal atoms, it usually gives rise to polymeric compounds with a one-, two- or three-dimensional network and often containing guest solvent mol­ecules and/or a complementary ligand. Usually, the second coordination centres are transition metal ions, since σ[\rightarrow]π back-bonding stabilizes the resulting complex (Muga et al., 1997[Muga, I., Gutierrez-Zorrila, J. M., Luque, A., Roman, P. & Lloret, F. (1997). Inorg. Chem. 36, 743-745.]). The rigidity and stability of such frameworks allow for shape- and size-selective inclusion of organic solvents, water mol­ecules, aromatic amines, etc., to fill up the void space, thus stabilizing the crystal structure. Maji et al. (2001[Maji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Ray Chaudhuri, N. (2001). Chem. Commun. pp. 1368-1369.]) reported a novel porous framework, [{Cu2(medpt)2Ni(CN)4}(ClO4)2]·2.5H2O, where all the CN groups of the Ni(CN)42− anion are involved in bridging. This compound retains single crystallinity upon removal of guest water mol­ecules and the dehydrated species selectively binds organic mol­ecules.

With regard to the Hoffman-type and analogous inclusion compounds, the Hoffman–en-type network [Cd(en)Ni(CN)4]·2G (en is ethylenediamine; G is C4H4N, C4H4S or C6H6) has a host structure similar to that of the Hoffman-type network [Cd(NH3)2Ni(CN)4]·2G (G is C4H5N, C4H4S, C6H6 or PhNH2) (Iwamoto et al., 1974[Iwamoto, T., Miyoshi, T. & Sasaki, Y. (1974). Acta Cryst. B30, 292-295.]). Similar behaviour was reported for [Ni(en)2Ni(CN)4]·2.5H2O (Černák et al., 1990[Černák, J., Chomic, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103-2107.]), where the role of the water mol­ecules was interpreted using a molecular mechanics investigation. Yuge & Iwamoto (1994[Yuge, H. & Iwamoto, T. (1994). J. Chem. Soc. Dalton Trans. pp. 1237-1242.]) reported phenol and aniline as guest mol­ecules accommodated among [M(en)2Ni(CN)4]n chains (M is Ni, Cu, Zn or Cd). Moreover, the azide ligand has been used extensively to design molecular-based magnets displaying a huge structural variety, spanning dinuclear, tetranuclear, cubane, and one-, two- and three-dimensional compounds (Ribas et al., 1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193, 1027-1068.]). During our ongoing research on mixed bridging ligands, we synthesized the title compound, (I[link]), and this paper reports the synthesis and crystal structure of this novel one-dimensional heterometallic polymeric complex, [Cu2(medpt)2(N3)2Ni(CN)4]n [medpt is bis(3-amino­propyl)­methyl­amine].

[Scheme 1]

The present X-ray crystal-structure determination reveals that (I[link]) is a one-dimensional heterometallic chain (Fig. 1[link]). In the chain, each pseudo-octahedral CuII centre is linked to another CuII centre by a double end-on bridging azide ligand, and these dimeric units are linked alternately by the trans cyanide group of a square-planar Ni(CN)42− dianion to form a one-dimensional heterometallic chain along the c axis. The NiII atom sits on the inversion centre.

All donor N atoms of the tri­amine (atoms N5, N6 and N7) and one N atom (N1) from the μ-(1,1)-bridging azide ligand form the equatorial plane, where the Cu1—N bond lengths are in the range 2.006 (4)–2.130 (4) Å. The trans axial sites of both CuII centres are occupied by atom N8 of a cyanide group of the Ni(CN)42− anion [Cu1—N8 = 2.223 (4) Å] and another N atom [N1i; symmetry code: (i) 1 − x, 2 − y, 1 − z] from the end-on bridging azide ligand, with a long Cu1—N bond distance [3.013 (4) Å]. Similarly long Cu—N(azide) distances are also observed in several other systems (Goher et al., 1998[Goher, M. A. S., Escuer, A., Morsy, A. M. A. Y. & Mautner, F. A. (1998). Polyhedron, 17, 4265-4273.]; Mautner & Goher, 1994[Mautner, F. A. & Goher, M. A. S. (1994). Polyhedron, 13, 2141-2147.]). The Cu1⋯Cu1 and Cu1⋯Ni1 distances are 3.987 and 5.103 Å, respectively. At the CuII centre, both six-membered chelate rings formed by the medpt ligand possess chair conformations.

When these heterometallic chains line up in the bc plane, bifurcated hydrogen bonds (Table 2[link]) from atom N3 join the parallel chains, resulting in a two-dimensional sheet (Fig. 2[link]) with graph-set motif R21(8). The H atoms bound to atoms N6 and N5 are also involved in a bifurcated hydrogen-bonding system with the terminal cyano atom N9. This hydrogen-bonding motif, with graph set R42(8), joins the two-dimensional sheets from above and below to form a three-dimensional supramolecular array (Fig. 3[link]).

[Figure 1]
Figure 1
The structure of (I[link]), showing 30% probability displacement ellipsoids. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) −x, 2 − y, −z.]
[Figure 2]
Figure 2
The formation of two-dimensional sheets in the bc plane via bifurcated hydrogen bonds joining the chains through atom N3 of the bridging azide ligand.
[Figure 3]
Figure 3
The supramolecular three-dimensional continuum formed by joining the two-dimensional sheets through bifurcated hydrogen bonds generated from the pendant N9 atom of the CN ligand.

Experimental

A methanol solution (5 ml) of medpt (2 mmol, 0.290 g) was added dropwise to an aqueous solution (10 ml) of Cu(ClO4)2·6H2O (2 mmol, 0.741 g). To the resulting deep-blue solution, K2[Ni(CN)4]·2H2O (1 mmol, 0.276 g) dissolved in water (5 ml) was added. Instantaneously, a crystalline sky-blue complex separated out and was treated with an aqueous solution (5 ml) of NaN3 (1 mmol, 0.065 g), resulting in a deep-green solution. This was filtered and the filtrate was kept in a CaCl2 desiccator (yield: 60%). Found: C 32.46, H 5.64, N 33.52, Cu 19.56%; calculated for C18H38Cu2N16Ni: C 32.51, H 5.76, N 33.71, Cu 19.11%. Spectroscopic data, IR (ν, cm−1): 3178, 3270, 3300 (N—H), 2859, 2929, 2893, 2963 (CH2), 2117, 2137 (N3), 2036 (CN).

Crystal data
  • [Cu2Ni(CN)4(N3)2(C7H19N3)2]

  • Mr = 664.43

  • Monoclinic, P21/n

  • a = 7.4094 (9) Å

  • b = 14.5472 (16) Å

  • c = 12.8512 (19) Å

  • β = 97.757 (11)°

  • V = 1372.5 (3) Å3

  • Z = 2

  • Dx = 1.608 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 38 reflections

  • θ = 2.8–20.0°

  • μ = 2.26 mm−1

  • T = 160 (2) K

  • Plate, green

  • 0.38 × 0.18 × 0.08 mm

Data collection
  • Bruker P4 diffractometer

  • ω scans

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.595, Tmax = 0.835

  • 3235 measured reflections

  • 2404 independent reflections

  • 1791 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 25.0°

  • h = −8 → 1

  • k = −1 → 17

  • l = −15 → 15

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R(F) = 0.043

  • wR(F2) = 0.115

  • S = 1.04

  • 2404 reflections

  • 169 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0464P)2 + 3.3185P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N5 2.006 (4) 
Cu1—N6 2.009 (4)
Cu1—N1 2.075 (4)
Cu1—N7 2.130 (3)
Cu1—N8 2.222 (4)
Cu1—N1i 3.013 (4)
Ni1—C8 1.868 (4)
Ni1—C9 1.871 (5)
N5—Cu1—N6 162.23 (16)
N5—Cu1—N1 86.62 (15)
N6—Cu1—N1 87.43 (15)
N5—Cu1—N7 93.06 (14)
N6—Cu1—N7 90.63 (14)
N1—Cu1—N7 172.35 (15)
N5—Cu1—N8 98.08 (15)
N6—Cu1—N8 99.19 (15)
N1—Cu1—N8 96.12 (15)
N7—Cu1—N8 91.50 (14)
N2—N1—Cu1 123.2 (3)
N1—Cu1—N1i 78.45 (13)
N1i—Cu1—N5 75.01 (14)
N1i—Cu1—N6 87.41 (13)
N1i—Cu1—N7 94.07 (13)
N1i—Cu1—N8 171.33 (13)
Cu1—N1—Cu1i 101.55 (14)
N3—N2—N1 177.1 (5)
C1—N5—Cu1 121.6 (3)
C7—N6—Cu1 116.6 (3)
C4—N7—Cu1 109.2 (3)
C3—N7—Cu1 113.6 (3)
C5—N7—Cu1 112.3 (3)
C8ii—Ni1—C9ii 89.23 (18)
C8—Ni1—C9ii 90.77 (18)
C8ii—Ni1—C9 90.77 (18)
C8—Ni1—C9 89.23 (18)
N8—C8—Ni1 177.9 (4)
N9—C9—Ni1 179.3 (4)
C8—N8—Cu1 155.0 (3)
Symmetry codes: (i) 1-x,2-y,1-z; (ii) -x,2-y,-z.

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N9i 0.90 2.56 3.298 (6) 140
N5—H5B⋯N3ii 0.90 2.62 3.489 (5) 163
N6—H6A⋯N9iii 0.90 2.30 3.154 (6) 158
N6—H6B⋯N3iv 0.90 2.37 3.252 (5) 167
Symmetry codes: (i) [{\script{1\over 2}}+x,{\script{3\over 2}}-y,{\script{1\over 2}}+z]; (ii) -x,2-y,1-z; (iii) [{\script{1\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (iv) 1+x,y,z.

H atoms bonded to C and N atoms were placed in geometrically calculated positions, with C—H distances in the range 0.97–0.99 Å and N—H distances of 0.90 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C,N) [1.5Ueq(C) for the methyl H atoms].

Data collection: XSCANS (Bruker, 1999[Bruker (1999). XSCANS. Release 2.31. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

There are currently several successful examples of self-assembly towards the construction of cyano-bridged complexes, in which cyanometallate anions, e.g. Ag(CN)2−, Cu(CN)32−, Au(CN)4, M(CN)42− [M is NiII, PtII and CdII] and M(CN)63− [M is CrIII, FeIII, etc.] (Iwamoto, 1996; Bowmaker et al., 1998; Chesnut & Zubieta, 1998; Falvello & Tomas, 1999; Mondal et al., 2000; Du et al., 2000; Niel et al., 2001; Shorrock et al., 2003; Colacio et al., 2003) behave as bridging moieties to build a multidimensional structure with a second coordination centre, and the resulting complexes demonstrate unique magnetic, host–guest and other properties.

One of the most prominent characteristics of CN is its ability to act either as a terminal or as a bridging ligand. When it acts as a bridging ligand between metal atoms, it usually gives rise to polymeric compounds with a one-, two- or three-dimensional network and often containing guest solvent molecules and/or a complementary ligand. Usually, the second coordination centres are transition metal ions, since σ π back-bonding stabilizes the resulting complex (Muga et al., 1997). The rigidity and stability of such frameworks allow for shape- and size-selective inclusion of organic solvents, water molecules, aromatic amines, etc., to fill up the void space, thus stabilizing the crystal structure. Maji et al. (2001) reported a novel porous framework, [{Cu2(medpt)2Ni(CN)4}(ClO4)2]·2.5H2O, where all the CN groups of the Ni(CN)42− anion are involved in bridging. This compound retains single crystallinity upon removal of guest water molecules and the dehydrated species selectively binds organic molecules.

With regard to the Hoffman-type and analogous inclusion compounds, the Hoffman-en type network, [Cd(en)Ni(CN)4]·2 G (G is C4H4N, C4H4S or C6H6) has a host structure similar to that of the Hoffman-type network, [Cd(NH3)2Ni(CN)4]·2 G (G is C4H5N, C4H4S, C6H6 or PhNH2) (Iwamoto et al., 1974). Similar behaviour was reported for [Ni(en)2Ni(CN)4]·2.5H2O (Cernak et al., 1990), where the role of the water molecules was interpreted using a molecular mechanics investigation. Yuge & Iwamoto (1994) reported phenol and aniline as guest molecules accommodated among [M(en)2Ni(CN)4]n chains (M is Ni, Cu, Zn or Cd). Moreover, the azido ligand has been extensively used to design molecular-based magnets displaying a huge structural variety, spanning dinuclear, tetranuclear, cubane, and one-, two- and three-dimensional compounds (Ribas et al., 1999). During our ongoing research on mixed bridging ligands, we synthesized the title compound, (I), and this paper reports the synthesis and crystal structure of this novel one-dimensional heterometallic polymeric complex, [Cu2(medpt)2(N3)2Ni(CN)4]n (medpt is bis(3-aminopropyl)methylamine). \sch

The present X-ray crystal-structure determination reveals that (I) is a one-dimensional heterometallic chain (Fig. 1). In the chain, each pseudo-octahedral CuII centre is linked to another CuII centre by a double end-on bridging azide ligand, and these dimeric units are linked alternately by the trans cyanide group of a square-planar Ni(CN)42− dianion to form a one-dimensional heterometallic chain along the c axis. The NiII atom sits on the inversion centre.

All donor N atoms of the triamine (atoms N5, N6 and N7) and one N atom (N1) from the µ-(1,1)-bridging azide ligand form the equatorial plane, where the Cu1—N bond lengths are in the range 2.006 (4)–2.130 (4) Å. The trans axial sites of both CuII centres are occupied by atom N8 of a cyanide group of the Ni(CN)42− anion [Cu1—N8 2.223 (4) Å] and another N atom [N1i; symmetry code: (i) 1 − x, 2 − y, 1 − z] from the end-on bridging azide ligand, with a long Cu1—N bond distance [3.013 (4) Å]. Such long Cu—N(azide) distances are also observed in several other systems (Goher et al., 1998; Mautner & Goher, 1994). The Cu1—Cu1 and Cu1—Ni1 distances are 3.987 and 5.103 Å, respectively. At the CuII centre, both six-membered chelate rings formed by the medpt ligand possess chair conformations.

When these heterometallic chains line up in the bc plane, bifurcated hydrogen bonds (Table 2) from atom N3 join the parallel chains, resulting in a two-dimensional sheet (Fig. 2) with graph-set motif R21(8). The H atoms bound to atoms N6 and N5 are also involved in a bifurcated hydrogen-bonding system with the terminal cyano atom N9. This hydrogen-bonding motif, with graph set R42(8), joins the two-dimensional sheets from above and below to form a three-dimensional supramolecular array (Fig. 3).

Experimental top

A methanolic solution (5 ml) of medpt (2 mmol, 0.290 g) was added dropwise to an aqueous solution (10 ml) of Cu(ClO4)2·6H2O (2 mmol, 0.741 g). To the resulting deep-blue solution, K2[Ni(CN)4]·2H2O (1 mmol, 0.276 g) dissolved in water (5 ml) was added. Instantaneously, a crystalline sky-blue complex separated out, which was treated with an aqueous solution (5 ml) of NaN3 (1 mmol, 0.065 g), resulting in a deep-green solution. This was filtered and the filtrate was kept in a CaCl2 desiccator. Yield: 60%. Found: C 32.46, H 5.64, N 33.52, Cu 19.56%; calculated for C18H38Cu2NiN16: C 32.51, H 5.76, N 33.71%. Spectroscopic data: IR (ν, cm−1): 3178, 3270, 3300 (N—H), 2859, 2929, 2893, 2963 (CH2), 2117, 2137 (N3), 2036 (CN).

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions, with C—H distances in the range 0.97–0.99 Å Please check added text, and refined as riding, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for the methyl H atoms]. H atoms bound to N atoms?

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) −x, 2 − y, −z.]
[Figure 2] Fig. 2. The formation of two-dimensional sheets in the bc plane via bifurcated hydrogen bonds joining the chains through atom N3 of the bridging azido ligand.
[Figure 3] Fig. 3. The supramolecular three-dimensional continuum formed by joining the two-dimensional sheets through bifurcated hydrogen bonds generated from the pendant N9 atom of the CN ligand.
catena-poly[[di-µ-azido-κ4N1:N1-bis[[bis(3-aminopropyl)methylamine- κ3N]copper(II)]]-µ-cyano-[dicyanonickel(II)]-µ-cyano] top
Crystal data top
[Cu2Ni(CN)4(N3)2(C7H19N3)2]F(000) = 688
Mr = 664.43Dx = 1.608 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 38 reflections
a = 7.4094 (9) Åθ = 2.8–20.0°
b = 14.5472 (16) ŵ = 2.26 mm1
c = 12.8512 (19) ÅT = 160 K
β = 97.757 (11)°Plate, green
V = 1372.5 (3) Å30.38 × 0.18 × 0.08 mm
Z = 2
Data collection top
Bruker P4
diffractometer
1791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 81
Absorption correction: ψ scan
(North et al., 1968)
k = 117
Tmin = 0.595, Tmax = 0.835l = 1515
3235 measured reflections3 standard reflections every 97 reflections
2404 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0464P)2 + 3.3185P]
where P = (Fo2 + 2Fc2)/3
2404 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cu2Ni(CN)4(N3)2(C7H19N3)2]V = 1372.5 (3) Å3
Mr = 664.43Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4094 (9) ŵ = 2.26 mm1
b = 14.5472 (16) ÅT = 160 K
c = 12.8512 (19) Å0.38 × 0.18 × 0.08 mm
β = 97.757 (11)°
Data collection top
Bruker P4
diffractometer
1791 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.037
Tmin = 0.595, Tmax = 0.8353 standard reflections every 97 reflections
3235 measured reflections intensity decay: none
2404 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.64 e Å3
2404 reflectionsΔρmin = 0.72 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43217 (6)0.99616 (3)0.34460 (4)0.01568 (17)
N10.3096 (5)1.0570 (3)0.4633 (3)0.0260 (9)
N20.1533 (5)1.0811 (3)0.4520 (3)0.0205 (8)
N30.0026 (5)1.1055 (3)0.4455 (3)0.0291 (9)
N50.3363 (5)0.8764 (3)0.3917 (3)0.0216 (8)
H5A0.42130.85380.44180.026*
H5B0.23800.88960.42310.026*
N60.5784 (5)1.1121 (2)0.3399 (3)0.0195 (8)
H6A0.52681.15590.37560.023*
H6B0.69071.10170.37420.023*
N70.5887 (5)0.9311 (2)0.2383 (3)0.0176 (8)
C10.2837 (6)0.8011 (3)0.3173 (4)0.0272 (11)
H1A0.18030.82110.26530.033*
H1B0.24360.74750.35560.033*
C20.4425 (7)0.7738 (3)0.2610 (4)0.0310 (11)
H2A0.40920.71730.21990.037*
H2B0.54790.75880.31420.037*
C30.5005 (7)0.8468 (3)0.1874 (4)0.0271 (11)
H3A0.58460.81890.14510.032*
H3B0.39380.86570.14010.032*
C40.7695 (6)0.9054 (3)0.2953 (4)0.0249 (10)
H4A0.84200.87540.24670.037*
H4B0.75300.86300.35250.037*
H4C0.83270.96080.32430.037*
C50.6174 (6)0.9924 (3)0.1480 (3)0.0211 (9)
H5C0.49741.00440.10620.025*
H5D0.69210.95860.10230.025*
C60.7088 (6)1.0845 (3)0.1766 (4)0.0252 (11)
H6C0.82731.07310.22030.030*
H6D0.73391.11520.11130.030*
C70.5975 (7)1.1485 (3)0.2352 (4)0.0258 (11)
H7A0.65731.20940.24260.031*
H7B0.47521.15660.19460.031*
Ni10.00001.00000.00000.0149 (2)
C80.1286 (6)1.0183 (3)0.1337 (3)0.0163 (9)
C90.0012 (6)0.8734 (3)0.0260 (3)0.0199 (10)
N80.2088 (5)1.0268 (3)0.2157 (3)0.0229 (9)
N90.0029 (6)0.7950 (3)0.0431 (4)0.0317 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0149 (3)0.0135 (3)0.0195 (3)0.0014 (2)0.00556 (19)0.0023 (2)
N10.017 (2)0.031 (2)0.032 (2)0.0036 (18)0.0095 (17)0.0108 (19)
N20.024 (2)0.0160 (18)0.023 (2)0.0029 (16)0.0077 (15)0.0043 (16)
N30.023 (2)0.028 (2)0.037 (2)0.0065 (17)0.0046 (17)0.001 (2)
N50.0216 (19)0.0207 (19)0.023 (2)0.0041 (16)0.0069 (15)0.0043 (17)
N60.0191 (19)0.0145 (18)0.025 (2)0.0023 (15)0.0043 (15)0.0035 (16)
N70.0189 (18)0.0112 (17)0.0230 (19)0.0020 (14)0.0043 (15)0.0029 (15)
C10.024 (2)0.018 (2)0.038 (3)0.0068 (19)0.001 (2)0.001 (2)
C20.032 (3)0.016 (2)0.045 (3)0.004 (2)0.003 (2)0.006 (2)
C30.033 (3)0.021 (2)0.027 (2)0.002 (2)0.002 (2)0.010 (2)
C40.024 (2)0.022 (2)0.029 (2)0.0070 (19)0.0042 (19)0.000 (2)
C50.022 (2)0.023 (2)0.019 (2)0.0033 (19)0.0084 (17)0.001 (2)
C60.023 (2)0.023 (2)0.032 (3)0.0020 (19)0.014 (2)0.005 (2)
C70.029 (3)0.014 (2)0.036 (3)0.0020 (19)0.012 (2)0.005 (2)
Ni10.0156 (4)0.0120 (4)0.0175 (4)0.0005 (3)0.0035 (3)0.0001 (3)
C80.017 (2)0.012 (2)0.021 (2)0.0011 (16)0.0061 (17)0.0001 (17)
C90.020 (2)0.020 (2)0.021 (2)0.0027 (18)0.0065 (19)0.0001 (18)
N80.0184 (19)0.022 (2)0.029 (2)0.0021 (15)0.0046 (17)0.0023 (17)
N90.040 (2)0.020 (2)0.035 (2)0.0052 (18)0.0035 (19)0.0040 (19)
Geometric parameters (Å, º) top
Cu1—N52.006 (4)C1—H1A0.99
Cu1—N62.009 (4)C1—H1B0.99
Cu1—N12.075 (4)C2—H2A0.99
Cu1—N72.130 (3)C2—H2B0.99
Cu1—N82.222 (4)C3—H3A0.97
Cu1—N1i3.013 (4)C3—H3B0.97
N1—N21.200 (5)C4—H4A0.98
N2—N31.164 (5)C4—H4B0.98
N5—C11.470 (6)C4—H4C0.98
N6—C71.470 (6)C5—H5C0.99
N7—C41.485 (6)C5—H5D0.99
N7—C31.498 (6)C6—H6C0.99
N7—C51.500 (5)C6—H6D0.99
C1—C21.516 (7)C7—H7A0.99
C2—C31.522 (7)C7—H7B0.99
C5—C61.524 (6)Ni1—C8ii1.868 (4)
C6—C71.511 (6)Ni1—C81.868 (4)
N5—H5A0.90Ni1—C9ii1.871 (5)
N5—H5B0.90Ni1—C91.871 (5)
N6—H6B0.90C8—N81.145 (6)
N6—H6A0.90C9—N91.162 (6)
N5—Cu1—N6162.23 (16)N5—C1—H1B109.55
N5—Cu1—N186.62 (15)C2—C1—H1A109.56
N6—Cu1—N187.43 (15)C2—C1—H1B109.63
N5—Cu1—N793.06 (14)H1A—C1—H1B108.09
N6—Cu1—N790.63 (14)C1—C2—H2A108.58
N1—Cu1—N7172.35 (15)C1—C2—H2B108.60
N5—Cu1—N898.08 (15)C3—C2—H2A108.58
N6—Cu1—N899.19 (15)C3—C2—H2B108.68
N1—Cu1—N896.12 (15)H2A—C2—H2B107.57
N7—Cu1—N891.50 (14)N7—C3—H3A108.18
N2—N1—Cu1123.2 (3)N7—C3—H3B108.20
N1—Cu1—N1i78.45 (13)C2—C3—H3A108.25
N1i—Cu1—N575.01 (14)C2—C3—H3B108.22
N1i—Cu1—N687.41 (13)H3A—C3—H3B107.37
N1i—Cu1—N794.07 (13)N7—C4—H4A109.47
N1i—Cu1—N8171.33 (13)N7—C4—H4B109.45
Cu1—N1—N2123.1 (3)N7—C4—H4C109.48
Cu1—N1—Cu1i101.55 (14)H4A—C4—H4B109.42
Cu1i—N1—N2132.1 (3)H4A—C4—H4C109.50
N3—N2—N1177.1 (5)H4B—C4—H4C109.51
C1—N5—Cu1121.6 (3)N7—C5—H5C108.27
C7—N6—Cu1116.6 (3)N7—C5—H5D108.20
C4—N7—C3108.7 (3)C6—C5—H5C108.25
C4—N7—C5108.6 (3)C6—C5—H5D108.29
C3—N7—C5104.4 (3)H5C—C5—H5D107.37
C4—N7—Cu1109.2 (3)C5—C6—H6C108.71
C3—N7—Cu1113.6 (3)C5—C6—H6D108.69
C5—N7—Cu1112.3 (3)C7—C6—H6C108.81
N5—C1—C2110.6 (4)C7—C6—H6D108.79
C1—C2—C3114.5 (4)H6C—C6—H6D107.61
N7—C3—C2116.4 (4)N6—C7—H7A109.37
N7—C5—C6116.1 (4)N6—C7—H7B109.32
C7—C6—C5114.0 (4)C6—C7—H7A109.41
N6—C7—C6111.2 (4)C6—C7—H7B109.46
C1—N5—H5A106.94H7A—C7—H7B108.08
Cu1—N5—H5A106.92C8ii—Ni1—C8180.000 (1)
Cu1—N5—H5B106.92C8ii—Ni1—C9ii89.23 (18)
C1—N5—H5B106.91C8—Ni1—C9ii90.77 (18)
H5A—N5—H5B106.73C8ii—Ni1—C990.77 (18)
C7—N6—H6A108.15C8—Ni1—C989.23 (18)
Cu1—N6—H6A108.12C9ii—Ni1—C9180.000 (1)
Cu1—N6—H6B108.10N8—C8—Ni1177.9 (4)
C7—N6—H6B108.17N9—C9—Ni1179.3 (4)
H6A—N6—H6B107.31C8—N8—Cu1155.0 (3)
N5—C1—H1A109.44
N5—Cu1—N1—N286.3 (4)N6—Cu1—N7—C544.6 (3)
N6—Cu1—N1—N2110.4 (4)N8—Cu1—N7—C554.6 (3)
N8—Cu1—N1—N211.4 (4)Cu1—N5—C1—C257.5 (5)
N6—Cu1—N5—C1141.2 (4)N5—C1—C2—C366.9 (5)
N1—Cu1—N5—C1148.1 (3)C4—N7—C3—C268.4 (5)
N7—Cu1—N5—C139.5 (3)C5—N7—C3—C2175.9 (4)
N8—Cu1—N5—C152.4 (3)Cu1—N7—C3—C253.4 (5)
N5—Cu1—N6—C7153.3 (4)C1—C2—C3—N769.4 (6)
N1—Cu1—N6—C7136.2 (3)C4—N7—C5—C663.5 (5)
N7—Cu1—N6—C751.2 (3)C3—N7—C5—C6179.3 (4)
N8—Cu1—N6—C740.4 (3)Cu1—N7—C5—C657.3 (4)
N5—Cu1—N7—C486.8 (3)N7—C5—C6—C765.3 (5)
N6—Cu1—N7—C475.8 (3)Cu1—N6—C7—C666.6 (4)
N8—Cu1—N7—C4175.0 (3)C5—C6—C7—N666.7 (5)
N5—Cu1—N7—C334.7 (3)N5—Cu1—N8—C875.6 (9)
N6—Cu1—N7—C3162.7 (3)N6—Cu1—N8—C8108.6 (8)
N8—Cu1—N7—C363.5 (3)N1—Cu1—N8—C8163.0 (8)
N5—Cu1—N7—C5152.8 (3)N7—Cu1—N8—C817.7 (9)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N9iii0.902.563.298 (6)140
N5—H5B···N3iv0.902.623.489 (5)163
N6—H6A···N9v0.902.303.154 (6)158
N6—H6B···N3vi0.902.373.252 (5)167
Symmetry codes: (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+2, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Ni(CN)4(N3)2(C7H19N3)2]
Mr664.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)160
a, b, c (Å)7.4094 (9), 14.5472 (16), 12.8512 (19)
β (°) 97.757 (11)
V3)1372.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.38 × 0.18 × 0.08
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.595, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
3235, 2404, 1791
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.04
No. of reflections2404
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.72

Computer programs: XSCANS (Bruker, 1999), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—N52.006 (4)Cu1—N82.222 (4)
Cu1—N62.009 (4)Cu1—N1i3.013 (4)
Cu1—N12.075 (4)Ni1—C81.868 (4)
Cu1—N72.130 (3)Ni1—C91.871 (5)
N5—Cu1—N6162.23 (16)N1i—Cu1—N8171.33 (13)
N5—Cu1—N186.62 (15)Cu1—N1—Cu1i101.55 (14)
N6—Cu1—N187.43 (15)N3—N2—N1177.1 (5)
N5—Cu1—N793.06 (14)C1—N5—Cu1121.6 (3)
N6—Cu1—N790.63 (14)C7—N6—Cu1116.6 (3)
N1—Cu1—N7172.35 (15)C4—N7—Cu1109.2 (3)
N5—Cu1—N898.08 (15)C3—N7—Cu1113.6 (3)
N6—Cu1—N899.19 (15)C5—N7—Cu1112.3 (3)
N1—Cu1—N896.12 (15)C8ii—Ni1—C9ii89.23 (18)
N7—Cu1—N891.50 (14)C8—Ni1—C9ii90.77 (18)
N2—N1—Cu1123.2 (3)C8ii—Ni1—C990.77 (18)
N1—Cu1—N1i78.45 (13)C8—Ni1—C989.23 (18)
N1i—Cu1—N575.01 (14)N8—C8—Ni1177.9 (4)
N1i—Cu1—N687.41 (13)N9—C9—Ni1179.3 (4)
N1i—Cu1—N794.07 (13)C8—N8—Cu1155.0 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N9iii0.902.563.298 (6)140
N5—H5B···N3iv0.902.623.489 (5)163
N6—H6A···N9v0.902.303.154 (6)158
N6—H6B···N3vi0.902.373.252 (5)167
Symmetry codes: (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+2, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z.
 

Footnotes

Contribution No. IND44.

Acknowledgements

The authors thank the Department of Physics, Jadavpur University, and CSIR (New Delhi), India, for financial support. They also thank Professor N. Ray Chaudhuri, IACS, India, for various scientific discussions.

References

First citationBowmaker, G. A., Kennedy, B. J. & Reid, J. C. (1998). Inorg. Chem. 37, 3968–3974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). XSCANS. Release 2.31. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationČernák, J., Chomic, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationChesnut, D. J. & Zubieta, J. (1998). Chem. Commun. pp. 1707–1708.  Web of Science CSD CrossRef Google Scholar
First citationColacio, E., Dominguez-Vera, J. M., Lloret, F., Rodriguez, A. & Stoeckli-Evans, H. (2003). Inorg. Chem. 42, 6962–6964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, B., Meyers, E. A. & Shore, S. G. (2000). Inorg. Chem. 39, 4639–4645.  Web of Science CSD CrossRef CAS Google Scholar
First citationFalvello, L. R. & Tomas, M. (1999). Chem. Commun. pp. 273–274.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoher, M. A. S., Escuer, A., Morsy, A. M. A. Y. & Mautner, F. A. (1998). Polyhedron, 17, 4265–4273.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwamoto, T. (1996). Supramolecular Chemistry in Cyano­metallate Systems, in Comprehensive Supramolecular Chemistry, edited by D. D. MacNicol, F. Toda & R. Bishop, Vol. 6, ch. 19. Oxford: Pergamon.  Google Scholar
First citationIwamoto, T., Miyoshi, T. & Sasaki, Y. (1974). Acta Cryst. B30, 292–295.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMaji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Ray Chaudhuri, N. (2001). Chem. Commun. pp. 1368–1369.  Web of Science CSD CrossRef Google Scholar
First citationMautner, F. A. & Goher, M. A. S. (1994). Polyhedron, 13, 2141–2147.  CSD CrossRef CAS Web of Science Google Scholar
First citationMondal, N., Saha, M. K., Bag, B., Mitra, S., Gramlich, V., Ribas, J. & El Fallah, M. S. (2000). J. Chem. Soc. Dalton Trans. pp. 1601–1604.  Web of Science CSD CrossRef Google Scholar
First citationMuga, I., Gutierrez-Zorrila, J. M., Luque, A., Roman, P. & Lloret, F. (1997). Inorg. Chem. 36, 743–745.  CSD CrossRef CAS Web of Science Google Scholar
First citationNiel, V., Martinez-Agudo, J. M., Munoz, M. C., Gasper, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193, 1027–1068.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShorrock, C. J., Jong, H. & Leznoff, D. B. (2003). Inorg. Chem. 42, 3917–3924.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuge, H. & Iwamoto, T. (1994). J. Chem. Soc. Dalton Trans. pp. 1237–1242.  CSD CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds