organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(R)-2,3,4,5-Tetra­hydro-2,2,4-tri­methyl-1,5-benzo­thia­zepine and rac-5-benzoyl-2,3,4,5-tetra­hydro-2,2,4-tri­methyl-1,5-benzo­thia­zepine: chains built from N—H⋯S and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 12 March 2004; accepted 23 March 2004; online 21 April 2004)

Molecules of (R)-2,3,4,5-tetra­hydro-2,2,4-tri­methyl-1,5-benzo­thia­zepine, C12H17NS, are linked into spiral C(5) chains by a single N—H⋯S hydrogen bond, while mol­ecules of rac-5-benzoyl-2,3,4,5-tetra­hydro-2,2,4-tri­methyl-1,5-benzo­thiazepine, C19H21NOS, are linked into zigzag chains by a C—H⋯π(arene) hydrogen bond.

Comment

We report here the molecular and supramolecular structures of two tri­methylbenzo­thia­zepines, (I[link]) and (II[link]), and we compare them with the N-nitro­so analogue, (III[link]), whose structure has been reported recently (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 605-606.]). These compounds are of interest because their molecular constitutions have some resemblance to that of the calcium antagonist drug diltiazem [(2S,3S)-3-acetoxy-5-(di­methylamino­ethyl)-2-(4-methoxy­phenyl)-2,3-di­hydro-1,5-benzo­thiazepin-4(5H)-one, (IV[link])] and its 2R,3R enantiomer (Kojić-Prodić et al., 1984[Kojić-Prodić, B., Ruz˘ić-Toros˘, Z., S˘unjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916-925.]).

Compounds (I[link]) and (II[link]) (Figs. 1[link] and 2[link]) both contain a stereogenic centre at atom C4, so giving rise to the possibility of R and S enantiomers. In (I[link]), which crystallizes in the chiral space group P21, the crystal ex­amined contained the R enantiomer only. By contrast, (II[link]) crystallizes as a racemic mixture in space group Pna21; the reference mol­ecule in (II[link]) was selected as having the R configuration. Compound (III[link]) also crystallizes as a racemate, in space group C2/c (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 605-606.]), with the reference mol­ecule again selected as the R enantiomer.

[Scheme 1]

In the thia­zepine rings of each of (I[link])–(III[link]), the C11—C10—S1—C2 and C10—C11—N5—C4 torsion angles (Table 1[link]) have similar magnitudes with opposite signs, as do the S1—C2—C3—C4 and N5—C4—C3—C2 angles, indicative of approximate pseudo-mirror symmetry for these portions of the ring, making due allowance for the differing atom types and bond distances. However, the magnitudes of the final pair of torsion angles, C10—S1—C2—C3 and C1—N5—C4—C3, differ markedly, although they still have opposite signs. Accordingly, it is not possible to describe any of these ring conformations in terms of a single primitive form (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). In (I[link]), the thia­zepine conformation is a mixture of boat, chair and twist-chair forms; in (II[link]), the boat form is dominant, with a small contribution from the twist-chair form; and in (III[link]), the conformation is best described as intermediate between boat and twist-boat. The bond lengths and angles in (I[link]) and (II[link]) show no unusual features.

The only direction-specific interaction between the mol­ecules of (I[link]) (Fig. 1[link]) is an N—H⋯S hydrogen bond (Table 1[link]). Although the N⋯S distance is greater than the sum (3.3 Å) of the conventional van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), an analysis (Allen et al., 1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696-701.]) of hydrogen bonds having two-coordinate sulfur as the acceptor, using data retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), indicated mean H⋯S, N⋯S and N—H⋯S parameters in such bonds, where S is bonded to two C atoms, of 2.74 (2) Å, 3.58 (3) Å and 145 (3)°, respectively. Accordingly, the N—H⋯S interaction in (I[link]) appears to be typical of such hydrogen bonds. The status of N—H⋯S hydrogen bonds remains uncertain. While Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, p. 226. Oxford University Press.]) regard sulfur as a conventional hydrogen-bond acceptor, Allen et al. (1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696-701.]) concluded that two-coordinate sulfur is a poor hydrogen-bond acceptor and that only in di­alkyl sulfides lacking any other potential acceptors are X—H⋯S hydrogen bonds (X = N or O) likely to be significant contributors to molecular aggregation. Against that view, we note that in tri­phenyl­methane­sulfen­amide, Ph3SNH2, the mol­ecules are linked into centrosymmetric R22(6) dimers by paired N—H⋯S hydrogen bonds (Glidewell & Ferguson, 1994[Glidewell, C. & Ferguson, G. (1994). Acta Cryst. C50, 1362-1366.]). The action of the N—H⋯S hydrogen bond in (I[link]), where atom N5 in the mol­ecule at (x, y, z) acts as a donor to atom S1 in the mol­ecule at (1 − x, −[1 \over 2] + y, z), is to link the mol­ecules into a spiral C(5) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction and generated by the 21 screw axis along ([1 \over 2], y, 0) (Fig. 3[link]).

In (II[link]), the mol­ecules are linked by a single C—H⋯π(arene) hydrogen bond (Table 2[link]). Atom C8 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the C51–C56 acyl ring in the mol­ecule at (−[1 \over 2] + x, [3 \over 2] − y, z), so forming a zigzag [100] chain generated by the a-glide plane at y = [3 \over 4] (Fig. 4[link]). Two chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

In contrast to the N—H⋯S and C—H⋯π(arene) hydrogen bonds in (I[link]) and (II[link]), respectively, the structure of (III[link]) (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 605-606.]) contains no hydrogen bonds or direction-specific interactions of any kind between the mol­ecules.

[Figure 1]
Figure 1
The R enantiomer of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The R enantiomer of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of a C(5) chain along [010]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, −[1 \over 2] + y, z), (x, −1 + y, z), (1 − x, [1 \over 2] + y, z) and (x, 1 + y, z), respectively.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (II[link]), showing the formation of a C—H⋯π(arene) chain along [100]. For clarity, H atoms that are not involved in the motif shown have been omitted.

Experimental

Compound (I[link]) was synthesized by reducing 2,3-di­hydro-2,2,4-tri­methyl-1,5-benzodiazepine with sodium borohydride in methanol at 273 K (Hsing et al., 1966[Hsing, C.-I., Chin, S. & Li, C.-P. (1966). Hua Hsueh Hsueh Pao, 32, 247-251; Chem. Abstr. (1967), 66, 28751g.]). Compound (II[link]) was prepared by benzoyl­ation of (I[link]) with benzoyl chloride and triethyl­amine in dry benzene under reflux conditions. Analysis for (II[link]) found: C 73.3, H 6.9, N 4.3%; C19H21NOS requires: C 73.3, H 6.8, N 4.5%. Crystals of (I[link]) and (II[link]) suitable for single-crystal X-ray diffraction were grown from solutions in light petroleum [m.p. 358–361 K for (I[link]) and 383–386 K for (II[link])].

Compound (I)[link]

Crystal data
  • C12H17NS

  • Mr = 207.34

  • Monoclinic, P21

  • a = 7.2644 (4) Å

  • b = 7.8657 (3) Å

  • c = 10.1522 (5) Å

  • β = 103.190 (2)°

  • V = 564.79 (5) Å3

  • Z = 2

  • Dx = 1.219 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2550 reflections

  • θ = 3.1–27.4°

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.38 × 0.18 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.922, Tmax = 0.980

  • 8535 measured reflections

  • 2550 independent reflections

  • 2422 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.4°

  • h = −9 → 9

  • k = −10 → 10

  • l = −13 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.06

  • 2550 reflections

  • 130 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0361P)2 + 0.0718P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1163 Friedel pairs

  • Flack parameter = −0.03 (6)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯S1i 0.95 2.75 3.5556 (13) 144
Symmetry code: (i) [1-x,y-{\script{1\over 2}},-z].

Compound (II)[link]

Crystal data
  • C19H21NOS

  • Mr = 311.43

  • Orthorhombic, Pna21

  • a = 16.1757 (2) Å

  • b = 12.5444 (3) Å

  • c = 8.2147 (2) Å

  • V = 1666.88 (6) Å3

  • Z = 4

  • Dx = 1.241 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3762 reflections

  • θ = 3.0–27.5°

  • μ = 0.20 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.30 × 0.08 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.866, Tmax = 0.983

  • 19 245 measured reflections

  • 3762 independent reflections

  • 3605 reflections with I > 2σ(I)

  • Rint = 0.064

  • θmax = 27.5°

  • h = −20 → 19

  • k = −16 → 16

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.26

  • 3762 reflections

  • 203 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0742P)2 + 0.2569P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.84 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.145 (9)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1719 Friedel pairs

  • Flack parameter = 0.01 (9)

Table 3
Hydrogen-bonding geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C51–C56 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg1i 0.95 2.88 3.674 (2) 142
Symmetry code: (i) [x-{\script{1\over 2}},{\script{3\over 2}}-y,z].

Table 1
Selected torsion angles (°) for compounds (I[link])–(III[link])

    (I) (II) (III)
S1—C10—C11—N5   −6.53 (19) 7.4 (3) 5.7 (5)
C11—C10—S1—C2   62.97 (13) −69.29 (18) −60.4 (4)
C10—C11—N5—C4   −69.68 (18) 74.6 (2) 75.1 (4)
S1—C2—C3—C4   63.33 (14) 60.3 (2) 65.2 (5)
N5—C4—C3—C2   −67.82 (17) −62.3 (2) −60.2 (5)
C10—S1—C2—C3   −70.33 (13) 24.40 (17) 15.7 (3)
C11—N5—C4—C3   90.42 (16) −36.1 (2) −39.6 (5)

For (I[link]), the systematic absences permitted P21 and P21/m as possible space groups; P21 was selected and confirmed by the subsequent structure analysis. For (II[link]), the systematic absences permitted Pna21 and Pnam (= Pnma) as possible space groups; Pna21 was selected and confirmed by the subsequent structure analysis. All H atoms bonded to C atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH). The H atom bonded to the N atom in (I[link]) was located from a difference map and then allowed to ride at the N—H distance (0.95 Å) deduced from the map. The absolute configuration in (I[link]) and the correct orientation of the structure with respect to the polar axis (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]) in (II[link]) were both established from the values [−0.03 (6) and 0.01 (9), respectively] of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter.

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the molecular and supramolecular structures of two trimethyl benzothiazepines, (I) and (II), and we compare them with the N-nitroso analogue, (III), whose structure has recently been reported (Laavanya et al., 2002). These compounds are of interest as their molecular constitutions have some resemblance to that of the calcium antagonist drug diltiazem [(2S,3S)-3-acetoxy-5-(dimethylaminoethyl)-2-(4-methoxyphenyl)- 2,3-dihydro-1,5-benzothiazepine-4(5H)-one (IV)] and its (2R,3R) enantiomer (Kojić-Prodić et al., 1984).

Compounds (I) and (II) (Figs. 1 and 2) both contain a stereogenic centre at atom C4, so giving rise to the possibility of R and S enantiomers. In (I), which crystallizes in the chiral space group P21, the crystal examined contained the R enantiomer only. By contrast, (II) crystallizes as a racemic mixture in space group Pna21; the reference molecule in (II) was selected as having the R configuration. Compound (III) also crystallizes as a racemate, in space group C2/c (Laavanya et al., 2002), with the reference molecule again selected as the R enantiomer.

In the thiazepine rings of each of (I)-(III), the C11—C10—S1—C2 and C10—C11—N5—C4 pair of torsion angles, and the S1—C2—C3—C4 and N5—C4—C3—C2 angles, have similar magnitudes with opposite signs, indicative of approximate pseudo-mirror symmetry for these portions of the ring, making due allowance for the differing atom types and bond distances. However, the magnitudes of the final pair of torsion angles, C10—S1—C2—C3 and C1—N5—C4—C3 differ markedly, although they still have opposite signs. Accordingly, it is not possible to describe any of these ring conformations in terms of a single primitive form (Evans & Boeyens, 1989). In (I), the thiazepine conformation is a mixture of boat, chair and twist-chair forms; in (II), the boat form is dominant, with a small contribution from the twist-chair form; and in (III), the conformation is best described as intermediate between boat and twist-boat. The bond lengths and angles in (I) and (II) show no unusual features.

The only direction-specific interaction between the molecules of (I) (Fig. 1) is the N—H···S hydrogen bond (Table 2). Although the N···S distance is greater than the sum (3.3 Å) of the conventional van der Waals radii (Bondi, 1964), an analysis (Allen et al., 1997) of hydrogen bonds having two-coordinate S as the acceptor, using data retrieved from the Cambridge Structural Database (Allen, 2002), indicated mean H···S, N···S and N—H···S parameters in such bonds, where S is bonded to two C atoms, of 2.74 (2) Å, 3.58 (3) Å and 145 (3)°, respectively. Accordingly, the N—H···S interaction in (I) appears to be typical of such hydrogen bonds. The status of N—H···S hydrogen bonds remains uncertain. While Desiraju & Steiner (1999) regard S as a conventional hydrogen-bond acceptor, Allen et al. (1997) concluded that two-coordinate S is a poor hydrogen-bond acceptor and that only in dialkyl sulfides lacking any other potential acceptors are X—H···S hydrogen bonds (X = N or O) likely to be significant contributors to molecular aggregation. Against that view, we note that in triphenylmethanesulfenamide, Ph3SNH2, the molecules are linked into centrosymmetric R22(6) dimers by paired N—H···S hydrogen bonds (Glidewell & Ferguson, 1994). The action of the N—H···S hydrogen bond in (I), where atom N5 in the molecule at (x, y, z) acts as a donor to atom S1 in the molecule at (1 − x, −0.5 + y, z), is to link the molecules into a spiral C(5) (Bernstein et al., 1995) chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 0) (Fig. 3).

In (II), the molecules are linked by a single C—H···π(arene) hydrogen bond (Table 3). Atom C8 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the C51—C56 acyl ring in the molecule at (−0.5 + x, 1.5 − y, z), so forming a zigzag [100] chain generated by the a-glide plane at y = 0.75 (Fig. 4). Two chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

In contrast to the N—H···S and C—H···π(arene) hydrogen bonds in (I) and (II), respectively, the structure of (III) (Laavanya et al., 2002) contains no hydrogen bonds or direction-specific interactions of any kind between the molecules.

Experimental top

Compound (I) was synthesized by reducing 2,3-dihydro-2,2',4-trimethyl-1,5-benzodiazepine with sodium borohydride in methanol at 273 K (Hsing et al., 1966). Compound (II) was prepared by benzoylation of (I) with benzoyl chloride and triethylamine in dry benzene under reflux conditions. Analysis for (II) found: C 73.3, H 6.9, N 4.3%; C19H21NOS requires: C 73.3, H 6.8, N 4.5%. Crystals of (I) and (II) suitable for single-crystal X-ray diffraction were grown from solutions in light petroleum. M.p. (I) 358–361 K, (II) 383–386 K. Cg1 is the centroid of ring C51–C56.

Refinement top

For (I), the systematic absences permitted P21 and P21/m as possible space groups; P21 was selected and confirmed by the subsequent structure analysis. For (II), the systematic absences permitted Pna21 and Pnam (=Pnma) as possible space groups; Pna21 was selected and confirmed by the subsequent structure analysis. All H atoms bonded to C were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH). The H atom bonded to the N atom was located from a difference map and then allowed to ride at the N—H distance (0.95 Å) deduced from the map. The absolute configuration in (I) and the correct orientation of the structure with respect to the polar axis (Jones, 1986) in (II) were both established from the values, −0.03 (6) and 0.01 (9), respectively, of the Flack (1983) parameter.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The R enantiomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The R enantiomer of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a C(5) chain along [010]. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign () or an ampersand (&) are at the symmetry positions (1 − x, −0.5 + y, z), (x, −1 + y, z), (1 − x, 0.5 + y, z) and (x, 1 + y, z), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a C—H···π(arene) chain along [100]. For clarity, H atoms that are not involved in the motif shown have been omitted.
(I) (R)-2,3,4,5-Tetrahydro-2,2,4-trimethyl-1,5-benzothiazepine top
Crystal data top
C12H17NSF(000) = 224
Mr = 207.34Dx = 1.219 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2550 reflections
a = 7.2644 (4) Åθ = 3.1–27.4°
b = 7.8657 (3) ŵ = 0.25 mm1
c = 10.1522 (5) ÅT = 120 K
β = 103.190 (2)°Plate, colourless
V = 564.79 (5) Å30.38 × 0.18 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2550 independent reflections
Radiation source: rotating anode2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 99
Tmin = 0.922, Tmax = 0.980k = 1010
8535 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.0718P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2550 reflectionsΔρmax = 0.15 e Å3
130 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1163 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C12H17NSV = 564.79 (5) Å3
Mr = 207.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.2644 (4) ŵ = 0.25 mm1
b = 7.8657 (3) ÅT = 120 K
c = 10.1522 (5) Å0.38 × 0.18 × 0.08 mm
β = 103.190 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2422 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.980Rint = 0.039
8535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.20 e Å3
2550 reflectionsAbsolute structure: Flack (1983), 1163 Friedel pairs
130 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65175 (4)0.59519 (4)0.23697 (3)0.01927 (10)
N50.46296 (17)0.27383 (17)0.09340 (12)0.0199 (3)
C20.41383 (19)0.6000 (2)0.27237 (13)0.0200 (3)
C30.2687 (2)0.5047 (2)0.16415 (15)0.0220 (3)
C40.2946 (2)0.3147 (2)0.14725 (15)0.0211 (3)
C60.71740 (19)0.0847 (2)0.20656 (14)0.0217 (3)
C70.8880 (2)0.05871 (19)0.29864 (16)0.0246 (4)
C80.9793 (2)0.1924 (2)0.37585 (16)0.0237 (3)
C90.8985 (2)0.3531 (2)0.35941 (15)0.0209 (3)
C100.7285 (2)0.38228 (18)0.26592 (15)0.0180 (3)
C110.6348 (2)0.24709 (19)0.18887 (14)0.0180 (3)
C210.3609 (2)0.7895 (2)0.26204 (16)0.0285 (4)
C220.4233 (2)0.5345 (2)0.41487 (16)0.0268 (3)
C410.1203 (2)0.2441 (2)0.04820 (16)0.0264 (4)
H3A0.14270.52230.18390.026*
H3B0.26600.55960.07600.026*
H40.30730.25770.23690.025*
H50.43970.18120.03220.024*
H60.65570.00830.15490.026*
H70.94280.05150.30890.030*
H81.09580.17410.43930.028*
H90.96000.44480.41280.025*
H21A0.23660.80480.28280.043*
H21B0.35650.82990.17010.043*
H21C0.45570.85450.32670.043*
H22A0.29820.54380.43530.040*
H22B0.51440.60240.47990.040*
H22C0.46330.41530.42110.040*
H41A0.11000.29600.04090.040*
H41B0.00680.27050.08110.040*
H41C0.13260.12060.04100.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01718 (17)0.01833 (16)0.02206 (17)0.00159 (16)0.00397 (12)0.00181 (16)
N50.0164 (6)0.0241 (7)0.0182 (6)0.0013 (5)0.0015 (5)0.0052 (5)
C20.0178 (6)0.0225 (7)0.0206 (6)0.0007 (8)0.0058 (5)0.0010 (7)
C30.0163 (7)0.0290 (9)0.0203 (8)0.0009 (6)0.0034 (6)0.0004 (6)
C40.0154 (7)0.0270 (8)0.0210 (7)0.0036 (6)0.0040 (6)0.0008 (6)
C60.0215 (7)0.0210 (7)0.0238 (7)0.0020 (7)0.0077 (5)0.0010 (7)
C70.0245 (8)0.0242 (10)0.0273 (8)0.0054 (6)0.0104 (6)0.0038 (6)
C80.0168 (7)0.0319 (9)0.0220 (8)0.0035 (7)0.0038 (6)0.0065 (6)
C90.0172 (7)0.0269 (8)0.0182 (7)0.0023 (6)0.0031 (6)0.0014 (6)
C100.0161 (7)0.0200 (8)0.0192 (7)0.0005 (6)0.0066 (6)0.0011 (6)
C110.0167 (7)0.0224 (8)0.0155 (7)0.0001 (6)0.0048 (5)0.0006 (6)
C210.0267 (9)0.0256 (9)0.0337 (9)0.0066 (7)0.0078 (7)0.0018 (7)
C220.0266 (8)0.0336 (8)0.0211 (8)0.0016 (7)0.0076 (6)0.0009 (6)
C410.0192 (8)0.0354 (10)0.0236 (8)0.0067 (7)0.0023 (6)0.0041 (7)
Geometric parameters (Å, º) top
S1—C101.7682 (15)C4—H41.00
S1—C21.8443 (13)C41—H41A0.98
C2—C221.522 (2)C41—H41B0.98
C2—C31.534 (2)C41—H41C0.98
C2—C211.537 (3)N5—C111.4107 (18)
C21—H21A0.98N5—H50.9475
C21—H21B0.98C6—C71.387 (2)
C21—H21C0.98C6—C111.406 (2)
C22—H22A0.98C6—H60.95
C22—H22B0.98C7—C81.386 (2)
C22—H22C0.98C7—H70.95
C3—C41.521 (2)C8—C91.388 (2)
C3—H3A0.99C8—H80.95
C3—H3B0.99C9—C101.394 (2)
C4—N51.4842 (19)C9—H90.95
C4—C411.530 (2)C10—C111.401 (2)
C10—S1—C2105.12 (8)C3—C4—H4109.0
C22—C2—C3112.96 (14)C41—C4—H4109.0
C22—C2—C21110.43 (13)C4—C41—H41A109.5
C3—C2—C21107.72 (12)C4—C41—H41B109.5
C22—C2—S1109.71 (10)H41A—C41—H41B109.5
C3—C2—S1111.85 (10)C4—C41—H41C109.5
C21—C2—S1103.76 (11)H41A—C41—H41C109.5
C2—C21—H21A109.5H41B—C41—H41C109.5
C2—C21—H21B109.5C11—N5—C4116.98 (11)
H21A—C21—H21B109.5C11—N5—H5109.5
C2—C21—H21C109.5C4—N5—H5111.7
H21A—C21—H21C109.5C7—C6—C11120.64 (15)
H21B—C21—H21C109.5C7—C6—H6119.7
C2—C22—H22A109.5C11—C6—H6119.7
C2—C22—H22B109.5C8—C7—C6120.54 (14)
H22A—C22—H22B109.5C8—C7—H7119.7
C2—C22—H22C109.5C6—C7—H7119.7
H22A—C22—H22C109.5C7—C8—C9119.22 (14)
H22B—C22—H22C109.5C7—C8—H8120.4
C4—C3—C2118.57 (14)C9—C8—H8120.4
C4—C3—H3A107.7C8—C9—C10121.10 (14)
C2—C3—H3A107.7C8—C9—H9119.4
C4—C3—H3B107.7C10—C9—H9119.4
C2—C3—H3B107.7C9—C10—C11119.80 (14)
H3A—C3—H3B107.1C9—C10—S1117.76 (11)
N5—C4—C3112.83 (13)C11—C10—S1122.12 (11)
N5—C4—C41107.88 (12)C10—C11—C6118.68 (13)
C3—C4—C41108.99 (13)C10—C11—N5120.75 (13)
N5—C4—H4109.0C6—C11—N5120.55 (13)
C10—S1—C2—C2255.83 (14)C8—C9—C10—C111.3 (2)
C10—S1—C2—C370.33 (13)C8—C9—C10—S1172.23 (12)
C10—S1—C2—C21173.84 (10)C2—S1—C10—C9123.64 (12)
C22—C2—C3—C461.03 (18)C2—S1—C10—C1162.97 (13)
C21—C2—C3—C4176.73 (13)C9—C10—C11—C61.1 (2)
S1—C2—C3—C463.33 (16)S1—C10—C11—C6172.19 (11)
C2—C3—C4—N567.82 (17)C9—C10—C11—N5179.79 (13)
C2—C3—C4—C41172.36 (12)S1—C10—C11—N56.53 (19)
C3—C4—N5—C1190.42 (16)C7—C6—C11—C100.1 (2)
C41—C4—N5—C11149.12 (13)C7—C6—C11—N5178.84 (13)
C11—C6—C7—C80.6 (2)C4—N5—C11—C1069.68 (18)
C6—C7—C8—C90.4 (2)C4—N5—C11—C6111.62 (15)
C7—C8—C9—C100.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···S1i0.952.753.5556 (13)144
Symmetry code: (i) x+1, y1/2, z.
(II) rac-5-benzoyl-2,3,4,5-tetrahydro-2,2,4-trimethyl-1,5-benzothiazepine top
Crystal data top
C19H21NOSF(000) = 664
Mr = 311.43Dx = 1.241 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3762 reflections
a = 16.1757 (2) Åθ = 3.0–27.5°
b = 12.5444 (3) ŵ = 0.20 mm1
c = 8.2147 (2) ÅT = 120 K
V = 1666.88 (6) Å3Block, colourless
Z = 40.30 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3762 independent reflections
Radiation source: rotating anode3605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 2019
Tmin = 0.866, Tmax = 0.983k = 1616
19245 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.2569P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max = 0.001
S = 1.26Δρmax = 0.63 e Å3
3762 reflectionsΔρmin = 0.84 e Å3
203 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.145 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1719 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (9)
Crystal data top
C19H21NOSV = 1666.88 (6) Å3
Mr = 311.43Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.1757 (2) ŵ = 0.20 mm1
b = 12.5444 (3) ÅT = 120 K
c = 8.2147 (2) Å0.30 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3605 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.983Rint = 0.064
19245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.63 e Å3
S = 1.26Δρmin = 0.84 e Å3
3762 reflectionsAbsolute structure: Flack (1983), 1719 Friedel pairs
203 parametersAbsolute structure parameter: 0.01 (9)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35861 (3)1.00783 (4)0.65275 (8)0.02546 (17)
O50.46969 (10)0.75387 (13)1.0173 (2)0.0321 (4)
N50.36028 (10)0.84474 (14)0.9163 (2)0.0194 (4)
C20.36814 (13)1.09036 (17)0.8392 (3)0.0224 (4)
C30.33323 (12)1.03476 (16)0.9894 (3)0.0216 (4)
C40.37080 (13)0.92861 (16)1.0427 (2)0.0202 (4)
C60.22101 (13)0.77625 (18)0.8617 (3)0.0251 (4)
C70.14577 (13)0.7840 (2)0.7786 (3)0.0310 (5)
C80.13534 (13)0.86172 (19)0.6599 (4)0.0326 (5)
C90.19989 (14)0.93082 (18)0.6213 (3)0.0295 (5)
C100.27479 (13)0.92396 (16)0.7038 (3)0.0232 (4)
C110.28502 (12)0.84576 (16)0.8245 (3)0.0208 (4)
C210.31840 (18)1.19232 (19)0.8090 (3)0.0367 (5)
C220.45944 (15)1.1166 (2)0.8593 (3)0.0367 (6)
C410.33211 (15)0.89267 (19)1.2033 (3)0.0285 (5)
C510.40869 (12)0.68026 (16)0.7812 (3)0.0219 (4)
C520.39837 (12)0.70733 (18)0.6177 (3)0.0252 (4)
C530.39977 (13)0.6278 (2)0.4995 (3)0.0311 (5)
C540.41053 (14)0.5217 (2)0.5445 (3)0.0330 (6)
C550.42120 (15)0.49529 (18)0.7042 (4)0.0323 (6)
C560.42168 (13)0.57368 (17)0.8238 (3)0.0270 (5)
C570.41511 (12)0.76167 (17)0.9146 (3)0.0222 (4)
H21A0.31821.23590.90790.055*
H21B0.26151.17360.77990.055*
H21C0.34371.23260.71970.055*
H22A0.49111.05040.87000.055*
H22B0.46721.16020.95710.055*
H22C0.47881.15610.76380.055*
H3A0.27351.02290.97040.026*
H3B0.33801.08491.08210.026*
H40.43130.93951.06090.024*
H41A0.35510.82341.23460.043*
H41B0.27210.88631.19000.043*
H41C0.34430.94521.28820.043*
H520.39040.77970.58710.030*
H530.39340.64600.38790.037*
H540.41040.46760.46370.040*
H550.42840.42270.73390.039*
H560.43080.55480.93440.032*
H60.22830.72350.94350.030*
H70.10190.73630.80330.037*
H80.08390.86780.60470.039*
H90.19270.98280.53840.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0344 (3)0.0239 (3)0.0181 (3)0.00135 (18)0.0035 (2)0.0022 (2)
C20.0268 (10)0.0204 (9)0.0198 (10)0.0012 (7)0.0027 (7)0.0023 (8)
C210.0580 (15)0.0251 (11)0.0271 (11)0.0094 (10)0.0062 (11)0.0014 (9)
C220.0277 (12)0.0530 (16)0.0294 (12)0.0157 (10)0.0022 (9)0.0086 (11)
C30.0221 (9)0.0242 (10)0.0185 (9)0.0011 (8)0.0001 (8)0.0036 (8)
C40.0215 (9)0.0218 (10)0.0173 (9)0.0021 (7)0.0010 (7)0.0040 (8)
C410.0334 (12)0.0332 (12)0.0189 (9)0.0050 (9)0.0022 (8)0.0007 (9)
N50.0204 (9)0.0202 (9)0.0175 (8)0.0005 (6)0.0019 (6)0.0019 (7)
C570.0216 (9)0.0253 (10)0.0198 (9)0.0004 (7)0.0014 (8)0.0002 (8)
O50.0296 (8)0.0369 (9)0.0297 (9)0.0088 (6)0.0107 (7)0.0051 (7)
C510.0150 (9)0.0235 (10)0.0274 (11)0.0011 (7)0.0002 (7)0.0018 (8)
C520.0228 (10)0.0276 (10)0.0251 (11)0.0041 (8)0.0012 (8)0.0024 (8)
C530.0260 (10)0.0410 (13)0.0263 (11)0.0049 (9)0.0034 (9)0.0077 (10)
C540.0233 (10)0.0325 (12)0.0432 (15)0.0025 (9)0.0016 (9)0.0182 (11)
C550.0246 (11)0.0205 (10)0.0518 (17)0.0021 (7)0.0048 (10)0.0030 (10)
C560.0209 (10)0.0276 (11)0.0323 (11)0.0011 (8)0.0042 (8)0.0041 (9)
C60.0230 (10)0.0265 (10)0.0259 (10)0.0012 (8)0.0040 (8)0.0067 (8)
C70.0216 (11)0.0340 (12)0.0374 (13)0.0022 (8)0.0020 (8)0.0150 (10)
C80.0216 (10)0.0403 (12)0.0359 (12)0.0078 (8)0.0084 (9)0.0180 (12)
C90.0323 (11)0.0309 (11)0.0253 (11)0.0094 (8)0.0090 (8)0.0076 (9)
C100.0256 (10)0.0228 (10)0.0211 (9)0.0034 (7)0.0026 (8)0.0065 (8)
C110.0187 (9)0.0221 (9)0.0215 (9)0.0019 (7)0.0007 (7)0.0050 (8)
Geometric parameters (Å, º) top
S1—C101.767 (2)C57—C511.501 (3)
S1—C21.855 (2)C51—C521.396 (3)
C2—C221.522 (3)C51—C561.398 (3)
C2—C31.526 (3)C52—C531.392 (3)
C2—C211.531 (3)C52—H520.95
C21—H21A0.98C53—C541.392 (4)
C21—H21B0.98C53—H530.95
C21—H21C0.98C54—C551.364 (4)
C22—H22A0.98C54—H540.95
C22—H22B0.98C55—C561.390 (4)
C22—H22C0.98C55—H550.95
C3—C41.528 (3)C56—H560.95
C3—H3A0.99C6—C111.388 (3)
C3—H3B0.99C6—C71.399 (3)
C4—N51.488 (3)C6—H60.95
C4—C411.528 (3)C7—C81.390 (4)
C4—H41.00C7—H70.95
C41—H41A0.98C8—C91.393 (4)
C41—H41B0.98C8—H80.95
C41—H41C0.98C9—C101.391 (3)
N5—C571.369 (3)C9—H90.95
N5—C111.432 (2)C10—C111.404 (3)
C57—O51.225 (3)
C10—S1—C2101.53 (10)O5—C57—N5121.39 (19)
C22—C2—C3111.73 (17)O5—C57—C51119.87 (18)
C22—C2—C21110.3 (2)N5—C57—C51118.72 (18)
C3—C2—C21108.58 (18)C52—C51—C56119.5 (2)
C22—C2—S1106.91 (16)C52—C51—C57123.04 (19)
C3—C2—S1112.46 (14)C56—C51—C57117.2 (2)
C21—C2—S1106.76 (15)C53—C52—C51119.7 (2)
C2—C21—H21A109.5C53—C52—H52120.2
C2—C21—H21B109.5C51—C52—H52120.2
H21A—C21—H21B109.5C52—C53—C54120.1 (2)
C2—C21—H21C109.5C52—C53—H53119.9
H21A—C21—H21C109.5C54—C53—H53119.9
H21B—C21—H21C109.5C55—C54—C53120.3 (2)
C2—C22—H22A109.5C55—C54—H54119.9
C2—C22—H22B109.5C53—C54—H54119.9
H22A—C22—H22B109.5C54—C55—C56120.6 (2)
C2—C22—H22C109.5C54—C55—H55119.7
H22A—C22—H22C109.5C56—C55—H55119.7
H22B—C22—H22C109.5C55—C56—C51119.9 (2)
C2—C3—C4118.88 (17)C55—C56—H56120.1
C2—C3—H3A107.6C51—C56—H56120.1
C4—C3—H3A107.6C11—C6—C7119.9 (2)
C2—C3—H3B107.6C11—C6—H6120.1
C4—C3—H3B107.6C7—C6—H6120.1
H3A—C3—H3B107.0C8—C7—C6119.8 (2)
N5—C4—C41110.31 (17)C8—C7—H7120.1
N5—C4—C3111.75 (16)C6—C7—H7120.1
C41—C4—C3109.98 (18)C7—C8—C9120.3 (2)
N5—C4—H4108.2C7—C8—H8119.8
C41—C4—H4108.2C9—C8—H8119.8
C3—C4—H4108.2C10—C9—C8120.2 (2)
C4—C41—H41A109.5C10—C9—H9119.9
C4—C41—H41B109.5C8—C9—H9119.9
H41A—C41—H41B109.5C9—C10—C11119.3 (2)
C4—C41—H41C109.5C9—C10—S1121.06 (18)
H41A—C41—H41C109.5C11—C10—S1119.55 (15)
H41B—C41—H41C109.5C6—C11—C10120.43 (18)
C57—N5—C11123.53 (17)C6—C11—N5120.84 (19)
C57—N5—C4118.12 (17)C10—C11—N5118.56 (18)
C11—N5—C4117.28 (16)
C10—S1—C2—C22147.38 (16)C52—C53—C54—C551.2 (4)
C10—S1—C2—C324.40 (17)C53—C54—C55—C560.2 (4)
C10—S1—C2—C2194.59 (17)C54—C55—C56—C511.9 (3)
C22—C2—C3—C460.0 (3)C52—C51—C56—C552.3 (3)
C21—C2—C3—C4178.19 (18)C57—C51—C56—C55176.37 (19)
S1—C2—C3—C460.3 (2)C11—C6—C7—C80.4 (3)
C2—C3—C4—N562.3 (2)C6—C7—C8—C91.0 (3)
C2—C3—C4—C41174.84 (17)C7—C8—C9—C101.3 (3)
C41—C4—N5—C5782.1 (2)C8—C9—C10—C110.9 (3)
C3—C4—N5—C57155.24 (18)C8—C9—C10—S1177.97 (17)
C41—C4—N5—C1186.5 (2)C2—S1—C10—C9113.68 (18)
C3—C4—N5—C1136.1 (2)C2—S1—C10—C1169.29 (18)
C11—N5—C57—O5165.3 (2)C7—C6—C11—C100.0 (3)
C4—N5—C57—O52.6 (3)C7—C6—C11—N5175.18 (19)
C11—N5—C57—C5116.1 (3)C9—C10—C11—C60.3 (3)
C4—N5—C57—C51176.06 (17)S1—C10—C11—C6177.36 (16)
O5—C57—C51—C52133.1 (2)C9—C10—C11—N5175.56 (18)
N5—C57—C51—C5245.5 (3)S1—C10—C11—N57.4 (3)
O5—C57—C51—C5640.7 (3)C57—N5—C11—C667.3 (3)
N5—C57—C51—C56140.68 (19)C4—N5—C11—C6100.6 (2)
C56—C51—C52—C531.1 (3)C57—N5—C11—C10117.4 (2)
C57—C51—C52—C53174.71 (19)C4—N5—C11—C1074.6 (2)
C51—C52—C53—C540.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.952.883.674 (2)142
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H17NSC19H21NOS
Mr207.34311.43
Crystal system, space groupMonoclinic, P21Orthorhombic, Pna21
Temperature (K)120120
a, b, c (Å)7.2644 (4), 7.8657 (3), 10.1522 (5)16.1757 (2), 12.5444 (3), 8.2147 (2)
α, β, γ (°)90, 103.190 (2), 9090, 90, 90
V3)564.79 (5)1666.88 (6)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.250.20
Crystal size (mm)0.38 × 0.18 × 0.080.30 × 0.08 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.922, 0.9800.866, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8535, 2550, 2422 19245, 3762, 3605
Rint0.0390.064
(sin θ/λ)max1)0.6480.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.06 0.045, 0.130, 1.26
No. of reflections25503762
No. of parameters130203
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.200.63, 0.84
Absolute structureFlack (1983), 1163 Friedel pairsFlack (1983), 1719 Friedel pairs
Absolute structure parameter0.03 (6)0.01 (9)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5···S1i0.952.753.5556 (13)144
Symmetry code: (i) x+1, y1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.952.883.674 (2)142
Symmetry code: (i) x1/2, y+3/2, z.
Selected torsional (°) for compounds (I) - (III) top
Parameter(I)(II)(III)
S1-C10-C11-N5-6.53 (19)7.4 (3)5.7 (5)
C11-C10-S1-C262.97 (13)-69.29 (18)-60.4 (4)
C10-C11-N5-C4-69.68 (18)74.6 (2)75.1 (4)
S1-C2-C3-C463.33 (14)60.3 (2)65.2 (5)
N5-C4-C3-C2-67.82 (17)-62.3 (2)-60.2 (5)
C10-S1-C2-C3-70.33 (13)24.40 (17)15.7 (3)
C11-N5-C4-C390.42 (16)-36.1 (2)-39.6 (5)
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696–701.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, p. 226. Oxford University Press.  Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C. & Ferguson, G. (1994). Acta Cryst. C50, 1362–1366.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHsing, C.-I., Chin, S. & Li, C.-P. (1966). Hua Hsueh Hsueh Pao, 32, 247–251; Chem. Abstr. (1967), 66, 28751g.  Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKojić-Prodić, B., Ruz˘ić-Toros˘, Z., S˘unjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916–925.  CSD CrossRef Web of Science Google Scholar
First citationLaavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 605–606.  CAS Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds