organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2,3-Bis­[(4-methyl­phenyl)­sulfanyl]-4H-1-benzo­thio­pyran-4-one 1,1-dioxide forms a framework built from C—H⋯O, C—H⋯π(arene) and ππ interactions

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 March 2004; accepted 18 March 2004; online 21 April 2004)

Molecules of the title comound, C23H18O3S3, are linked into sheets by a combination of one C—H⋯O hydrogen bond and two C—H⋯π(arene) hydrogen bonds, and these sheets are weakly linked into a three-dimensional structure by means of a single aromatic ππ stacking interaction.

Comment

1,4-Naphtho­quinone derivatives have been extensively studied as dyes and pigments (Tilak, 1971[Tilak, B. D. (1971). The Chemistry of Synthetic Dyes, edited by K. Venkataraman, Vol. 5. New York: Academic Press.]). Although 4H-1-benzo­thio­pyran-4-one 1,1-dioxide derivatives have not been so well studied, it is known that their absorption spectra exhibit hypsochromic effects compared with the 1,4-naphtho­quinone analogues (Christie et al., 1980[Christie, R. M., Shand, C. A., Thomson, R. H. & Greenhalgh, C. W. (1980). J. Chem. Res. (S), pp. 008-009; J. Chem. Res. (M), pp. 139-155.]; Watanabe et al., 1989[Watanabe, S., Nakazumi, H. & Kitao, T. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 993-998.], 1990[Watanabe, S., Nakazumi, H., Akazi, N., Maeda, K. & Kitao, T. (1990). J. Heterocycl. Chem. 27, 1241-1244.]). The crystal structures of two halogenated derivatives have been investigated as part of a study of non-linear optical materials (Watanabe et al., 1989[Watanabe, S., Nakazumi, H. & Kitao, T. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 993-998.], 1992[Watanabe, S., Nakazumi, H. & Kitao, T. (1992). J. Chem. Res. (S), pp. 212-213; J. Chem. Res. (M), pp. 1616-1641.]). Accordingly, we have now investigated the title non-halogen­ated analogue, (I[link]) (Fig. 1[link]), whose structure exhibits a rich variety of weak direction-specific intermolecular interactions.

The S—C distances in (I[link]) (Table 1[link]) show an unusual pattern. For the sulfone atom S1, formally SVI, the S—C distance involving aryl C atoms is less than those involving alkene C atoms, whereas for the sulfide atoms S2 and S3, formally S−II, the bonds to alkene C atoms are the shorter. Within the heterocyclic ring, there is clear bond fixation with a short C8—C9 bond, while the π-bonding in each of the arene rings is fully delocalized.

The O—S—O bond angle in the sulfone fragment of (I[link]) is significantly larger than the tetrahedral angle, while the opposed C—S—C angle at S1 is correspondingly much smaller than the tetrahedral value. The bond angles at S2 and S3 are typical of those in organo­sulfides.

[Scheme 1]

For the heterocyclic ring of (I[link]), the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the atom sequence S1/C1/C6–C9 are θ = 85.5 (5)° and φ = 18.6 (5)°, indicative of a conformation best described as twist-boat (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). The values of the torsion angles C9—C8—S2—C21 and C8—C9—S3—C31 are indicative of entirely different orientations for the two pendant groups (see also Fig. 1[link]).

The mol­ecules of (I[link]) are linked into a three-dimensional framework by a variety of weak but direction-specific intermolecular forces, and the formation of this framework is readily analysed by means of the substructure approach (Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). A single C—H⋯O hydrogen bond (Table 2[link]) links the mol­ecules into chains. These chains are linked into sheets by the combined action of two C—­H⋯π(arene) hydrogen bonds and the sheets are linked together by a single aromatic ππ stacking interaction.

Atom C32 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to sulfone atom O11 in the mol­ecule at (x, [{1 \over 2}] − y, z − [{1 \over 2}]), so producing a zigzag C(7) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [001] direction and generated by the c-glide plane at y = [{1 \over 4}] (Fig. 2[link]). The formation of this chain is modestly reinforced by a short dipolar contact between the negatively charged sulfone atom O11 in the mol­ecule at (x, y, z) and the positively charged carbonyl atom C7 in the mol­ecule at (x, [{1 \over 2}] − y, [{1 \over 2}] + z). The O11⋯C7iv distance is 2.938 (3) Å and the S1—O11⋯C7iv angle is 138.6 (2)° [symmetry code: (iv) x, [{1 \over 2}] − y, [{1 \over 2}] + z].

Atoms C5 and C35 in the mol­ecule at (x, y, z) act as hydrogen-bond donors to, respectively, the C31–C36 ring in the mol­ecule at (x − 1, y, z) and the C21–C26 ring in the mol­ecule at (1 + x, y, z). In this manner, a chain of rings is generated by translation along the [100] direction (Fig. 3[link]). The combination of the [100] and [001] chains produces an (010) sheet lying in the domain −0.06 < y < 0.56 and generated by the c-glide plane at y = [{1 \over 4}] (Fig. 4[link]). A similar sheet, generated by the c-glide plane at y = [{3 \over 4}] and related to the first by inversion, lies in the domain 0.44 < y < 1.06.

Adjacent (010) sheets are weakly linked by a ππ stacking interaction. The C21–C26 rings in the mol­ecules at (x, y, z) and (−x, −y, 2 − z) lie in (010) sheets generated by glide planes at y = [{1 \over 4}] and −[{1 \over 4}], respectively. These two rings are parallel, with an interplanar spacing of 3.548 (2) Å. The ring-centroid separation is 3.876 (2) Å, corresponding to a centroid offset of 1.561 (2) Å (Fig. 5[link]). Propagation by the space group of this interaction is sufficient to link all of the (010) sheets into a single framework structure.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I[link]), showing the formation of a C(7) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [{1 \over 2}] − y, z − [{1 \over 2}]) and (x, y, z − 1), respectively.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of a chain of rings along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (x − 1, y, z), respectively.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (I[link]), showing the formation of an (010) sheet by the combination of the [100] and [001] chains. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of (I[link]), showing the ππ stacking interaction which links adjacent (010) sheets. For the sake of clarity, H atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x, −y, 2 − z).

Experimental

A sample of compound (I[link]) was prepared following the procedure of Christie et al. (1980[Christie, R. M., Shand, C. A., Thomson, R. H. & Greenhalgh, C. W. (1980). J. Chem. Res. (S), pp. 008-009; J. Chem. Res. (M), pp. 139-155.]). The crystals used in the present structure determination were grown by slow evaporation of a solution in ethanol [m.p. 432–434 K; literature m.p. 433–433.5 K (Christie et al., 1980[Christie, R. M., Shand, C. A., Thomson, R. H. & Greenhalgh, C. W. (1980). J. Chem. Res. (S), pp. 008-009; J. Chem. Res. (M), pp. 139-155.])].

Crystal data
  • C23H18O3S3

  • Mr = 438.58

  • Monoclinic, P21/c

  • a = 9.6349 (3) Å

  • b = 22.5791 (7) Å

  • c = 9.1895 (4) Å

  • β = 91.253 (2)°

  • V = 1998.67 (12) Å3

  • Z = 4

  • Dx = 1.458 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4564 reflections

  • θ = 3.2–27.5°

  • μ = 0.39 mm−1

  • T = 120 (2) K

  • Block, orange

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.891, Tmax = 0.962

  • 8989 measured reflections

  • 4564 independent reflections

  • 3002 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

  • h = −12 → 12

  • k = −27 → 29

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.00

  • 4564 reflections

  • 264 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.753 (2)
S1—C9 1.770 (2)
C8—S2 1.756 (2)
S2—C21 1.778 (2)
C9—S3 1.757 (2)
S3—C31 1.784 (2)
S1—O11 1.4363 (17)
S1—O12 1.4311 (16)
C6—C7 1.488 (3)
C7—C8 1.513 (3)
C8—C9 1.349 (3)
C7—O71 1.213 (3)
O11—S1—O12 117.38 (10)
C1—S1—C9 104.88 (10)
C8—S2—C21 101.52 (10)
C9—S3—C31 103.53 (11)
S1—C1—C6—C7 8.8 (3)
C1—C6—C7—C8 13.2 (3)
C6—C7—C8—C9 −22.1 (3)
C7—C8—C9—S1 7.4 (3)
C8—C9—S1—C1 11.8 (2)
C9—S1—C1—C6 −19.7 (2)
O71—C7—C8—C9 159.0 (2)
O71—C7—C6—C1 −167.9 (2)
C9—C8—S2—C21 133.62 (19)
C8—S2—C21—C22 −49.7 (2)
C8—C9—S3—C31 49.6 (2)
C9—S3—C31—C32 35.3 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring and Cg2 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯O11i 0.95 2.32 3.197 (3) 154
C5—H5⋯Cg1ii 0.95 2.55 3.308 (2) 137
C35—H35⋯Cg2iii 0.95 2.73 3.658 (2) 164
Symmetry codes: (i) [x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (ii) x-1,y,z; (iii) 1+x,y,z.

The space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C) for aromatic H and 1.5Ueq(C) for methyl H atoms.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

1,4-Naphthoquinone derivatives have been extensively studied as dyes and pigments (Tilak, 1971). Although 4H-1-benzothiopyran-4-one 1,1-dioxide derivatives have not been so well studied, it is known that their absorption spectra exhibit hypsochromic effects compared with the 1,4-naphthoquinone analogues (Christie et al., 1980; Watanabe et al., 1989, 1990). The crystal structures of two halogenated derivatives have been investigated as part of a study of non-linear optical materials (Watanabe et al., 1989, 1992). Accordingly, we have now investigated the title non-halogenated analogue, (I) (Fig. 1), whose structure exhibits a rich variety of weak direction-specific intermolecular interactions. \sch

The S—C distances in (I) (Table 1) show an unusual pattern. For the sulfone atom S1, formally SVI, the S—C distance involving aryl C atoms is less than those involving alkene C atoms, whereas for the two sulfide atoms S2 and S3, formally S—II, the bonds to alkene C atoms are the shorter. Within the heterocyclic ring, there is clear bond fixation, with a short C8—C9 bond, while the π-bonding in each of the arene rings is fully delocalized.

The O—S—O bond angle in the sulfone fragment of (I) is significantly larger than the tetrahedral angle, while the opposed C—S—C angle at S1 is correspondingly much smaller than the tetrahedral value. The bond angles at S2 and S3 are typical of those in organosulfides.

For the heterocyclic ring of (I), the ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence S1/C1/C6—C9 are θ = 85.5 (5)° and ϕ = 18.6 (5)°, indicative of a conformation best described as twist-boat (Evans & Boeyens, 1989). The values of the two torsion angles C9—C8—S2—C21 and C8—C9—S3—C31 are indicative of entirely different orientations for the two pendant groups (see also Fig. 1).

The molecules of (I) are linked into a three-dimensional framework by a variety of weak but direction-specific intermolecular forces, and the formation of this framework is readily analysed by means of the sub-structure approach (Gregson et al., 2000). A single C—H···O hydrogen bond (Table 2) links the molecules into chains, these chains are linked into sheets by the combined action of two C—H···π(arene) hydrogen bonds, and the sheets into linked together by a single aromatic ππ stacking interaction.

Atom C32 in the molecule at (x, y, z) acts as hydrogen-bond donor to sulfone atom O11 in the molecule at (x, 1/2 − y, z − 1/2), so producing a zigzag C(7) chain (Bernstein et al., 1995) running parallel to the [001] direction and generated by the c-glide plane at y = 1/4 (Fig. 2). The formation of this chain is modestly reinforced by a short dipolar contact between the negatively charged sulfone atom O11 in the molecule at (x, y, z) and the positively charged carbonyl atom C7 in the molecule at (x, 1/2 − y, 1/2 + z). The O11···C7iv distance is 2.938 (3) Å and the S1—O11···C7iv angle is 138.6 (2)° [symmetry code: (iv) x, 1/2 − y, 1/2 + z].

Atoms C5 and C35 in the molecule at (x, y, z) act as hydrogen-bond donors to, respectively, the C31—C36 ring in the molecule at (x − 1, y, z) and the C21—C26 ring in the molecule at (1 + x, y, z). In this manner, a chain of rings is generated by translation along the [100] direction (Fig. 3). The combination of the [100] and [001] chains produces an (010) sheet lying in the domain −0.06 < y < 0.56 and generated by the c-glide plane at y = 1/4 (Fig. 4). A similar sheet, generated by the c-glide plane at y = 3/4 and related to the first by inversion, lies in the domain 0.44 < y < 1.06.

Adjacent (010) sheets are weakly linked by a ππ stacking interaction. The C21—C26 rings in the molecules at (x, y, z) and (-x, −y, 2 − z) lie in (010) sheets generated by glide planes at y = 1/4 and y = −1/4, respectively. These two rings are parallel, with an interplanar spacing of 3.548 (2) Å. The ring-centroid separation is 3.876 (2) Å, corresponding to a centroid offset of 1.561 (2) Å (Fig. 5). Propagation by the space group of this interaction is sufficient to link all of the (010) sheets into a single framework structure.

Table 2. Hydrogen bond parameters (Å, °) for compound (I). Cg1 is the centroid of the C31—C36 ring and Cg2 is the centroid of the C21—C26 ring.

Experimental top

A sample of compound (I) was prepared following the procedure of Christie et al. (1980). The crystals used in the present structure determination were grown by slow evaporation of a solution in ethanol [m.p. 432–434 K; literature value (Christie et al., 1980) 433–433.5 K].

Refinement top

The space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(C) for aromatic H and 1.5Ueq(C) for methyl H.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing formation of a C(7) chain along [001]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1/2 − y, z − 1/2) and (x, y, z − 1), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing formation of a chain of rings along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (x − 1, y, z), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing formation of an (010) sheet by the combination of the [100] and [001] chains. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the ππ stacking interaction which links adjacent (010) sheets. For the sake of clarity, H atoms have been omitted.
2,3-Bis[(4-methylphenyl)sulfanyl]-4H-1-benzothiopyran-4-one 1,1-dioxide top
Crystal data top
C23H18O3S3F(000) = 912
Mr = 438.58Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4564 reflections
a = 9.6349 (3) Åθ = 3.2–27.5°
b = 22.5791 (7) ŵ = 0.39 mm1
c = 9.1895 (4) ÅT = 120 K
β = 91.253 (2)°Block, orange
V = 1998.67 (12) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4564 independent reflections
Radiation source: rotating anode3002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1212
Tmin = 0.891, Tmax = 0.962k = 2729
8989 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
4564 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C23H18O3S3V = 1998.67 (12) Å3
Mr = 438.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6349 (3) ŵ = 0.39 mm1
b = 22.5791 (7) ÅT = 120 K
c = 9.1895 (4) Å0.30 × 0.20 × 0.10 mm
β = 91.253 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4564 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3002 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.962Rint = 0.051
8989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
4564 reflectionsΔρmin = 0.52 e Å3
264 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10208 (6)0.27529 (2)0.70282 (7)0.01843 (16)
S20.13922 (6)0.08214 (2)0.68332 (7)0.02260 (17)
S30.32554 (6)0.19732 (3)0.79040 (7)0.02217 (16)
O110.11720 (15)0.30057 (7)0.84572 (18)0.0233 (4)
O120.17223 (16)0.30414 (7)0.58686 (19)0.0267 (4)
O710.10696 (15)0.12330 (6)0.51304 (18)0.0218 (4)
C10.0756 (2)0.27169 (9)0.6587 (3)0.0171 (5)
C20.1518 (2)0.32310 (10)0.6758 (3)0.0236 (6)
C30.2905 (2)0.32394 (10)0.6330 (3)0.0257 (6)
C40.3504 (2)0.27408 (10)0.5710 (3)0.0281 (6)
C50.2743 (2)0.22280 (10)0.5535 (3)0.0231 (6)
C60.1351 (2)0.22067 (10)0.5987 (3)0.0182 (5)
C70.0597 (2)0.16342 (10)0.5866 (3)0.0183 (5)
C80.0763 (2)0.15497 (9)0.6694 (3)0.0167 (5)
C90.1564 (2)0.20056 (10)0.7156 (3)0.0172 (5)
C210.0051 (2)0.04489 (10)0.7584 (3)0.0198 (5)
C220.0710 (2)0.06696 (10)0.8804 (3)0.0246 (6)
C230.1755 (3)0.03432 (10)0.9435 (3)0.0255 (6)
C240.2159 (2)0.02075 (10)0.8883 (3)0.0219 (5)
C250.1481 (2)0.04205 (10)0.7681 (3)0.0207 (5)
C260.0441 (2)0.00996 (9)0.7019 (3)0.0199 (5)
C270.3309 (2)0.05497 (11)0.9582 (3)0.0283 (6)
C310.4161 (2)0.15200 (10)0.6649 (3)0.0176 (5)
C320.3887 (2)0.15339 (10)0.5171 (3)0.0204 (5)
C330.4637 (2)0.11650 (10)0.4260 (3)0.0205 (5)
C340.5672 (2)0.07933 (9)0.4805 (3)0.0206 (5)
C350.5950 (2)0.07985 (10)0.6290 (3)0.0218 (6)
C360.5194 (2)0.11533 (10)0.7220 (3)0.0206 (5)
C370.6488 (2)0.04015 (10)0.3807 (3)0.0277 (6)
H20.10930.35750.71650.028*
H30.34430.35870.64620.031*
H40.44500.27510.54000.034*
H50.31680.18890.51060.028*
H220.04440.10420.92020.030*
H230.22070.04981.02610.031*
H250.17340.07970.72970.025*
H260.00020.02530.61870.024*
H27A0.42020.04320.91420.042*
H27B0.33080.04651.06280.042*
H27C0.31630.09750.94310.042*
H320.31950.17920.47780.025*
H330.44360.11680.32430.025*
H350.66720.05550.66790.026*
H360.53820.11450.82390.025*
H37A0.59000.02860.29700.042*
H37B0.67920.00460.43360.042*
H37C0.73010.06180.34660.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0175 (3)0.0173 (3)0.0205 (4)0.0009 (2)0.0010 (2)0.0026 (2)
S20.0189 (3)0.0167 (3)0.0323 (4)0.0018 (2)0.0023 (3)0.0008 (3)
S30.0159 (3)0.0273 (3)0.0233 (4)0.0013 (2)0.0016 (2)0.0079 (3)
O110.0212 (8)0.0240 (9)0.0245 (10)0.0006 (7)0.0043 (7)0.0101 (7)
O120.0263 (9)0.0234 (9)0.0308 (11)0.0068 (7)0.0088 (8)0.0022 (8)
O710.0213 (8)0.0199 (9)0.0243 (10)0.0032 (7)0.0010 (7)0.0043 (7)
C10.0178 (11)0.0189 (12)0.0147 (13)0.0008 (10)0.0006 (10)0.0002 (9)
C20.0268 (13)0.0185 (12)0.0256 (15)0.0005 (10)0.0006 (11)0.0004 (11)
C30.0231 (13)0.0192 (12)0.0349 (17)0.0058 (10)0.0012 (12)0.0027 (11)
C40.0186 (12)0.0264 (13)0.0390 (17)0.0028 (11)0.0049 (11)0.0043 (12)
C50.0231 (12)0.0195 (12)0.0267 (15)0.0010 (10)0.0019 (11)0.0024 (10)
C60.0180 (11)0.0197 (12)0.0170 (13)0.0023 (9)0.0021 (10)0.0003 (10)
C70.0175 (11)0.0207 (12)0.0168 (13)0.0021 (10)0.0007 (10)0.0010 (10)
C80.0151 (11)0.0169 (11)0.0183 (13)0.0008 (9)0.0040 (10)0.0006 (10)
C90.0148 (11)0.0209 (12)0.0162 (13)0.0015 (10)0.0037 (10)0.0024 (10)
C210.0207 (12)0.0185 (12)0.0201 (14)0.0023 (9)0.0020 (10)0.0018 (10)
C220.0299 (13)0.0192 (12)0.0247 (15)0.0013 (11)0.0007 (11)0.0030 (11)
C230.0284 (13)0.0273 (13)0.0211 (15)0.0050 (11)0.0040 (11)0.0016 (11)
C240.0237 (12)0.0221 (12)0.0197 (14)0.0033 (10)0.0016 (11)0.0054 (10)
C250.0239 (12)0.0145 (12)0.0236 (15)0.0003 (9)0.0039 (11)0.0009 (10)
C260.0221 (12)0.0194 (12)0.0182 (13)0.0051 (10)0.0012 (10)0.0004 (10)
C270.0290 (13)0.0284 (14)0.0275 (16)0.0041 (11)0.0035 (12)0.0032 (11)
C310.0127 (10)0.0189 (12)0.0213 (14)0.0007 (9)0.0022 (10)0.0001 (10)
C320.0131 (11)0.0230 (12)0.0250 (15)0.0002 (10)0.0009 (10)0.0018 (11)
C330.0170 (11)0.0257 (12)0.0187 (14)0.0040 (10)0.0006 (10)0.0027 (10)
C340.0150 (11)0.0175 (12)0.0293 (16)0.0028 (9)0.0041 (11)0.0032 (10)
C350.0148 (11)0.0187 (12)0.0320 (16)0.0028 (10)0.0013 (11)0.0038 (11)
C360.0198 (12)0.0241 (13)0.0178 (14)0.0016 (10)0.0009 (10)0.0042 (10)
C370.0237 (13)0.0233 (13)0.0364 (17)0.0006 (10)0.0059 (12)0.0095 (12)
Geometric parameters (Å, º) top
C1—C21.384 (3)C22—H220.95
C1—C61.395 (3)C23—C241.395 (3)
S1—C11.753 (2)C23—H230.95
S1—C91.770 (2)C24—C251.382 (3)
C8—S21.756 (2)C24—C271.506 (3)
S2—C211.778 (2)C25—C261.388 (3)
C9—S31.757 (2)C25—H250.95
S3—C311.784 (2)C26—H260.95
S1—O111.4363 (17)C27—H27A0.98
S1—O121.4311 (16)C27—H27B0.98
C6—C71.488 (3)C27—H27C0.98
C7—C81.513 (3)C31—C321.379 (3)
C8—C91.349 (3)C31—C361.388 (3)
C7—O711.213 (3)C32—C331.394 (3)
C2—C31.385 (3)C32—H320.95
C2—H20.95C33—C341.389 (3)
C3—C41.382 (3)C33—H330.95
C3—H30.95C34—C351.384 (3)
C4—C51.381 (3)C34—C371.508 (3)
C4—H40.95C35—C361.390 (3)
C5—C61.396 (3)C35—H350.95
C5—H50.95C36—H360.95
C21—C261.391 (3)C37—H37A0.98
C21—C221.392 (3)C37—H37B0.98
C22—C231.385 (3)C37—H37C0.98
C2—C1—C6121.6 (2)C24—C23—H23119.3
C2—C1—S1116.90 (17)C25—C24—C23117.9 (2)
C6—C1—S1121.35 (17)C25—C24—C27121.8 (2)
C1—C2—C3119.3 (2)C23—C24—C27120.3 (2)
C1—C2—H2120.3C24—C25—C26121.8 (2)
C3—C2—H2120.3C24—C25—H25119.1
C4—C3—C2119.8 (2)C26—C25—H25119.1
C4—C3—H3120.1C25—C26—C21119.5 (2)
C2—C3—H3120.1C25—C26—H26120.2
C5—C4—C3120.9 (2)C21—C26—H26120.2
C5—C4—H4119.6C24—C27—H27A109.5
C3—C4—H4119.6C24—C27—H27B109.5
C4—C5—C6120.2 (2)H27A—C27—H27B109.5
C4—C5—H5119.9C24—C27—H27C109.5
C6—C5—H5119.9H27A—C27—H27C109.5
C1—C6—C5118.2 (2)H27B—C27—H27C109.5
C1—C6—C7123.4 (2)C9—S3—C31103.53 (11)
C5—C6—C7118.3 (2)C32—C31—C36120.4 (2)
O71—C7—C6120.8 (2)C32—C31—S3122.52 (17)
O71—C7—C8119.8 (2)C36—C31—S3117.03 (18)
C6—C7—C8119.37 (19)C31—C32—C33119.1 (2)
C9—C8—C7123.0 (2)C31—C32—H32120.4
C9—C8—S2119.85 (18)C33—C32—H32120.4
C7—C8—S2116.63 (16)C34—C33—C32121.5 (2)
C8—C9—S3127.61 (18)C34—C33—H33119.3
C8—C9—S1122.73 (18)C32—C33—H33119.3
S3—C9—S1109.64 (12)C35—C34—C33118.2 (2)
O11—S1—O12117.38 (10)C35—C34—C37120.8 (2)
O12—S1—C1108.89 (11)C33—C34—C37121.0 (2)
O11—S1—C1108.00 (10)C34—C35—C36121.2 (2)
O12—S1—C9109.85 (10)C34—C35—H35119.4
O11—S1—C9107.11 (11)C36—C35—H35119.4
C1—S1—C9104.88 (10)C31—C36—C35119.5 (2)
C8—S2—C21101.52 (10)C31—C36—H36120.3
C26—C21—C22119.7 (2)C35—C36—H36120.3
C26—C21—S2118.90 (17)C34—C37—H37A109.5
C22—C21—S2121.16 (18)C34—C37—H37B109.5
C23—C22—C21119.6 (2)H37A—C37—H37B109.5
C23—C22—H22120.2C34—C37—H37C109.5
C21—C22—H22120.2H37A—C37—H37C109.5
C22—C23—C24121.4 (2)H37B—C37—H37C109.5
C22—C23—H23119.3
C6—C1—C2—C30.3 (3)C6—C1—S1—O11133.73 (19)
S1—C1—C2—C3175.50 (19)C2—C1—S1—C9165.02 (18)
C1—C2—C3—C41.4 (4)C8—C9—S1—O12105.1 (2)
C2—C3—C4—C51.2 (4)S3—C9—S1—O1273.40 (14)
C3—C4—C5—C60.1 (4)C8—C9—S1—O11126.4 (2)
C2—C1—C6—C51.0 (3)S3—C9—S1—O1155.11 (13)
S1—C1—C6—C5174.01 (17)S3—C9—S1—C1169.72 (11)
C2—C1—C6—C7176.1 (2)C7—C8—S2—C2154.35 (18)
S1—C1—C6—C78.8 (3)C8—S2—C21—C26136.3 (2)
C1—C6—C7—C813.2 (3)C26—C21—C22—C230.6 (4)
C6—C7—C8—C922.1 (3)S2—C21—C22—C23174.58 (19)
C7—C8—C9—S17.4 (3)C21—C22—C23—C240.6 (4)
C8—C9—S1—C111.8 (2)C22—C23—C24—C250.0 (4)
C9—S1—C1—C619.7 (2)C22—C23—C24—C27179.4 (2)
O71—C7—C8—C9159.0 (2)C23—C24—C25—C260.7 (4)
O71—C7—C6—C1167.9 (2)C27—C24—C25—C26178.7 (2)
C9—C8—S2—C21133.62 (19)C24—C25—C26—C210.8 (4)
C8—S2—C21—C2249.7 (2)C22—C21—C26—C250.1 (4)
C8—C9—S3—C3149.6 (2)S2—C21—C26—C25174.04 (18)
C9—S3—C31—C3235.3 (2)S1—C9—S3—C31128.77 (12)
C4—C5—C6—C11.2 (3)C9—S3—C31—C36145.94 (17)
C4—C5—C6—C7176.1 (2)C36—C31—C32—C331.5 (3)
C5—C6—C7—O7115.0 (3)S3—C31—C32—C33179.84 (15)
C5—C6—C7—C8163.9 (2)C31—C32—C33—C341.3 (3)
O71—C7—C8—S212.7 (3)C32—C33—C34—C350.3 (3)
C6—C7—C8—S2166.13 (16)C32—C33—C34—C37179.28 (19)
C7—C8—C9—S3170.73 (16)C33—C34—C35—C361.7 (3)
S2—C8—C9—S30.8 (3)C37—C34—C35—C36179.29 (19)
S2—C8—C9—S1178.94 (12)C32—C31—C36—C350.1 (3)
C2—C1—S1—O1277.4 (2)S3—C31—C36—C35178.85 (16)
C6—C1—S1—O1297.8 (2)C34—C35—C36—C311.5 (3)
C2—C1—S1—O1151.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O11i0.952.323.197 (3)154
C5—H5···Cg1ii0.952.553.308 (2)137
C35—H35···Cg2iii0.952.733.658 (2)164
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H18O3S3
Mr438.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.6349 (3), 22.5791 (7), 9.1895 (4)
β (°) 91.253 (2)
V3)1998.67 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.891, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
8989, 4564, 3002
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.00
No. of reflections4564
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.52

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
S1—C11.753 (2)S1—O111.4363 (17)
S1—C91.770 (2)S1—O121.4311 (16)
C8—S21.756 (2)C6—C71.488 (3)
S2—C211.778 (2)C7—C81.513 (3)
C9—S31.757 (2)C8—C91.349 (3)
S3—C311.784 (2)C7—O711.213 (3)
O11—S1—O12117.38 (10)C8—S2—C21101.52 (10)
C1—S1—C9104.88 (10)C9—S3—C31103.53 (11)
S1—C1—C6—C78.8 (3)O71—C7—C8—C9159.0 (2)
C1—C6—C7—C813.2 (3)O71—C7—C6—C1167.9 (2)
C6—C7—C8—C922.1 (3)C9—C8—S2—C21133.62 (19)
C7—C8—C9—S17.4 (3)C8—S2—C21—C2249.7 (2)
C8—C9—S1—C111.8 (2)C8—C9—S3—C3149.6 (2)
C9—S1—C1—C619.7 (2)C9—S3—C31—C3235.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O11i0.952.323.197 (3)154
C5—H5···Cg1ii0.952.553.308 (2)137
C35—H35···Cg2iii0.952.733.658 (2)164
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChristie, R. M., Shand, C. A., Thomson, R. H. & Greenhalgh, C. W. (1980). J. Chem. Res. (S), pp. 008–009; J. Chem. Res. (M), pp. 139–155.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTilak, B. D. (1971). The Chemistry of Synthetic Dyes, edited by K. Venkataraman, Vol. 5. New York: Academic Press.  Google Scholar
First citationWatanabe, S., Nakazumi, H., Akazi, N., Maeda, K. & Kitao, T. (1990). J. Heterocycl. Chem. 27, 1241–1244.  CrossRef CAS Google Scholar
First citationWatanabe, S., Nakazumi, H. & Kitao, T. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 993–998.  CrossRef Google Scholar
First citationWatanabe, S., Nakazumi, H. & Kitao, T. (1992). J. Chem. Res. (S), pp. 212–213; J. Chem. Res. (M), pp. 1616–1641.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds