organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Monoclinic pseudosymmetry in 2-phen­oxy­benzene­sulfon­amide, a triclinic structure having Z′ = 4, and spontaneous resolution in monoclinic N-methyl-2-phen­oxy­benzene­sulfon­amide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 22 March 2004; accepted 26 March 2004; online 30 April 2004)

2-Phenoxy­benzene­sulfon­amide, C12H11NO3S, (I[link]), crystallizes in space group P[\overline 1] with Z′ = 4, but the structure closely mimics the monoclinic space group P21/b with Z′ = 2. The mol­ecules of (I[link]) are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds into two independent chains of centrosymmetric edge-fused R[{_2^2}](18) and R[{_6^6}](34) rings. N-Methyl-2-phenoxy­benzene­sulfon­amide, C13H13NO3S, (II[link]), crystallizes in space group P21 with Z′ = 1, and is an example of spontaneous resolution. The mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into chains of spiro-fused R[{_2^2}](12) rings, and these chains are linked into sheets by a single C—H⋯π(arene) hydrogen bond.

Comment

We report here the structure of two closely related sulfon­amides, namely 2-phenoxy­benzene­sulfon­amide, (I[link]), and its N-methyl analogue, (II[link]), which both show interesting crystallization characteristics.

Compound (I[link]) crystallizes in space group P[\overline 1] with four independent mol­ecules in the asymmetric unit (Fig. 1[link]). The choice of the asymmetric unit in cases where Z′ > 1 allows some flexibility, but for (I[link]) the asymmetric unit has been selected such that the mol­ecules labelled A and C act as hydrogen-bond donors to mol­ecules B and D, respectively, within the asymmetric unit. The bond lengths and angles present no unusual values, but the orientation of the sulfon­amide groups relative to the adjacent arene rings is very similar in all four mol­ecules (Table 1[link]). These orientations are probably controlled in part by the intramolecular N—H⋯O hydrogen bonds (Table 2[link]), each of which generates an S(6) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

The overall molecular conformations, which can be defined in terms of five independent torsion angles for each mol­ecule, indicate the occurrence of pseudosymmetry. The values of these torsion angles (Table 1[link]) show that for the selected asymmetric unit, mol­ecules A and D form an approximately enantiomorphous pair and mol­ecules B and C form a second such pair independent of the first. Detailed scrutiny of the atomic coordinates shows that those for mol­ecule D are approximately related to those for mol­ecule A by the transformation (x − 1, y − [{1 \over 2}], [{3 \over 2}] − z), while those of mol­ecule B are similarly related to those of mol­ecule C by the related transformation (x, y − [{1 \over 2}], [{3 \over 2}] − z). Overall, therefore, there is a pseudo b-glide plane at z = [{3 \over 4}]. The unit-cell dimensions rule out any symmetry higher than triclinic, and the absence of any additional symmetry was confirmed by examination of the refined structure using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). However, the structure exhibits a close mimicry of space group P21/b, an alternative to the conventional setting, P21/c, of space group No. 14. Consistent with this mimicry, the intensities of the 00l reflections are, in general, much weaker when l is odd than when l is even, although there is no obviously consistent pattern amongst the hk0 reflections.

The mol­ecules of (I[link]) are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]) into two independent but very similar chains of edge-fused rings, one built from mol­ecules of types A and B only, the other from mol­ecules of types C and D only. It is necessary to discuss only one of these in any detail. Within the asymmetric unit, atom N1A acts as hydrogen-bond donor, via atom H11A, to atom O11B. In a similar manner, atom N1B at (x, y, z) acts as donor, via atom H11B, to atom O11A at (x − 1, y, z). In this manner, a C[{_2^2}](8) chain built from type A and B mol­ecules and running parallel to the [100] direction is generated by translation. Within this chain, there is an intermolecular C—H⋯O contact, which is possibly more an adventitious contact consequent upon the N—H⋯O hydrogen bonds than a structurally significant hydrogen bond. Two antiparallel chains of A and B mol­ecules, related to one another by inversion, run through each unit cell and these are linked by a single C—H⋯O hydrogen bond. Atom C25B at (x, y, z) acts as hydrogen-bond donor to atom O12B at (1 − x, 1 − y, 1 − z), and propagation of this interaction by translation and inversion generates a chain of centrosymmetric edge-fused rings along (x, [{1 \over 2}], [{1 \over 2}]), with R[{_2^2}](18) rings centred at (n+[{1 \over 2}], [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) and R[{_6^6}](34) rings centred at (n, [{1 \over 2}], [{1 \over 2}]) (n = zero or integer) (Fig. 2[link]).

The mol­ecules of types C and D form an entirely similar chain of edge-fused rings running along the line (x, 0, 1). Hence, in projection down a, there is a chain of A and B type mol­ecules at the cell centre and chains of C and D type mol­ecules at the cell vertices. However, there are no direction-specific interactions between adjacent chains. Despite the large number of independent aryl groups in the structure of (I[link]), this contains neither C—H⋯π(arene) hydrogen bonds nor aromatic ππ stacking interactions.

The N-methyl analogue, (II[link]) (Fig. 3[link]), of (I[link]) crystallizes in the chiral space group P21 with Z′ = 1. The molecular conformation of (II[link]), as judged from the leading torsion angles (Table 1[link]) bears no particularly close resemblance to those in (I[link]), and there are no intramolecular hydrogen bonds in (II[link]). The resulting molecular point group is C1, so that the mol­ecules are chiral. Accordingly, each crystal of (II[link]) contains only a single enantiomorph, in contrast with the crystals of (I[link]). Since the bulk sample of (II[link]) is racemic, the crystallization represents an example of spontaneous resolution to form a conglomerate, rather than a racemate as in (I[link]).

The mol­ecules of (II[link]) are linked into sheets by a combination of three hydrogen bonds (Table 3[link]) and it is convenient to analyse the sheet formation in terms of its two one-dimensional substructures. Atoms N1 and C26 in the mol­ecule at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O11 and O12, both in the mol­ecule at (1 + x, y, z), so generating by translation a C(4)C(8)[R[{_2^2}](12)] chain of rings running parallel to the [100] direction (Fig. 4[link]). In addition, atom C4 at (x, y, z) acts as hydrogen-bond donor to the monosubstituted ring C21–C26 in the mol­ecule at (x, 1 + y, z), so generating by translation a chain running parallel to the [010] direction (Fig. 5[link]). The combination of the [100] and [010] chains generates an (001) sheet (Fig. 6[link]). Two such sheets pass through each unit cell, one each in the domains −0.02 < z < 0.49 and 0.51 < z < 1.02, but there are no direction-specific interactions between adjacent sheets.

The C(4) chain motif in (II[link]) is very characteristic of simple sulfon­amides (Vorontsova, 1966[Vorontsova, L. G. (1966). Zh. Strukt. Khim. 7, 280-283.]; Cotton & Stokely, 1970[Cotton, F. A. & Stokely, P. F. (1970). J. Am. Chem. Soc. 92, 294-302.]; Klug, 1970[Klug, H. P. (1970). Acta Cryst. B26, 1268-1275.]; Brink & Mattes, 1986[Brink, K. & Mattes, R. (1986). Acta Cryst. C42, 319-322.]; Lightfoot et al., 1993[Lightfoot, P., Tremayne, M., Glidewell, C., Harris, K. D. M. & Bruce, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1625-1630.]; Tremayne et al., 1999[Tremayne, M., MacLean, E. J., Tang, C. C. & Glidewell, C. (1999). Acta Cryst. B55, 1068-1074.], 2002[Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823-834.]; Clark et al., 2003[Clark, J. C., McLaughlin, M. L. & Fronczek, F. R. (2003). Acta Cryst. E59, o2005-o2006.]). The related C[{_2^2}](8) motif arises in (I[link]) because two independent mol­ecules participate in the formation of a single chain. On the other hand, the other hydrogen-bond motif most characteristic of sulfon­amides, the R[{_2^2}](8) ring (Klug, 1968[Klug, H. P. (1968). Acta Cryst. B24, 792-802.]; Blaschette et al., 1986[Blaschette, A., Wieland, E., Schomburg, D. & Adelhelm, M. (1986). Z. Anorg. Allg. Chem. 533, 7-17.]; Tremayne et al., 1999[Tremayne, M., MacLean, E. J., Tang, C. C. & Glidewell, C. (1999). Acta Cryst. B55, 1068-1074.], 2002[Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823-834.]; Kelly et al., 2002[Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94-108.]; Clark et al., 2003[Clark, J. C., McLaughlin, M. L. & Fronczek, F. R. (2003). Acta Cryst. E59, o2005-o2006.]), is absent from the structures of both (I[link]) and (II[link]). However, in compound (III[link]) [Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode SUTYOU; Chandramohan & Ravikumar, 1999[Chandramohan, K. & Ravikumar, K. (1999). Acta Cryst. C55, IUC9800078.]], which is an isomer of (II[link]), pairs of N—H⋯O hydrogen bonds generate centrosymmetric R[{_2^2}](8) rings, as noted in the original report. In addition, however, the resulting dimers are linked into [110] chains by a single aromatic ππ stacking interaction (Fig. 7[link]).

[Figure 1]
Figure 1
The four independent mol­ecules in (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I[link]), showing the formation of a [100] chain of edge-fused R[{_2^2}](18) and R[{_6^6}](34) rings built from mol­ecules of types A and B only. For the sake of clarity, H atoms bonded to C atoms but not involved in the hydrogen-bonding motif shown have been omitted
[Figure 3]
Figure 3
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Part of the crystal structure of (II[link]), showing the formation of a [100] chain of spiro-fused R[{_2^2}](12) rings. For the sake of clarity, H atoms bonded to C atoms but not involved in the hydrogen-bonding motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (x − 1, y, z), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of (II[link]), showing the formation of a C—H⋯π(arene) chain along [010]. For the sake of clarity, H atoms not involved in the hydrogen-bonding motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 + y, z) and (x, y − 1, z), respectively.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of (II[link]), showing the formation of an (001) sheet by combination of the [100] and [010] chains. For the sake of clarity, H atoms not involved in the hydrogen-bonding motifs shown have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of (III[link]) (Chandramohan & Ravikumar, 1999[Chandramohan, K. & Ravikumar, K. (1999). Acta Cryst. C55, IUC9800078.]), showing the formation of a π-stacked [110] chain of centrosymmetric hydrogen-bonded dimers. The original atom coordinates have been used. For the sake of clarity, H atoms not involved in the hydrogen-bonding motif shown have been omitted.

Experimental

Samples of (I[link]) and (II[link]) were prepared by the reaction of 2-phenoxy­benzene­sulfonyl chloride (Neale et al., 1965[Neale, A. J., Rawlins, T. J. & McCall, E. B. (1965). Tetrahedron, 21, 1299-1313.]) with an aqueous ammonia solution for (I[link]) or with an aqueous methyl­amine solution for (II[link]). Crystals suitable for single-crystal X-ray diffraction were grown from solutions in ethanol. M.p. for (I[link]): 388–389 K [literature value 386–388 K (Abramovitch et al., 1978[Abramovitch, R. A., Azogu, C. I., McMaster, I. T. M. & Vanderpool, D. P. (1978). J. Org. Chem. 43, 1218-1226.])]; m.p. for (II[link]): 354–357 K.

Table 1
Selected torsion angles (°) for (I[link]) and (II)

Parameter (I, n = A) (I, n = B) (I, n = C) (I, n = D) (II, n = nil)
C21n—O2n—C2n—C1n 132.0 (4) −130.1 (4) 132.5 (4) −130.6 (4) 101.8 (3)
C2n—O2n—C21n—C22n −26.3 (6) −98.4 (5) 96.5 (5) 23.7 (6) −6.1 (4)
C2n—C1n—S1n—N1n 51.5 (4) −50.2 (4) 50.4 (4) −50.6 (4) 66.5 (3)
C2n—C1n—S1n—O11n 166.2 (3) −165.4 (3) 165.4 (3) −165.8 (3) −179.0 (2)
C2n—C1n—S1n—O12n −66.1 (4) 66.3 (4) −67.0 (4) 66.0 (4) −48.6 (3)
C1—S1—N1—C11         61.3 (2)

Compound (I)[link]

Crystal data
  • C12H11NO3S

  • Mr = 249.28

  • Triclinic, [P\overline 1]

  • a = 5.2539 (2) Å

  • b = 16.2090 (8) Å

  • c = 26.5417 (9) Å

  • α = 84.850 (2)°

  • β = 88.951 (2)°

  • γ = 87.607 (2)°

  • V = 2248.98 (16) Å3

  • Z = 8

  • Dx = 1.472 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 9651 reflections

  • θ = 3.1–27.4°

  • μ = 0.28 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.22 × 0.16 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.926, Tmax = 0.967

  • 22 883 measured reflections

  • 9651 independent reflections

  • 4912 reflections with I > 2σ(I)

  • Rint = 0.071

  • θmax = 27.4°

  • h = −6 → 6

  • k = −20 → 20

  • l = −34 → 33

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.203

  • S = 1.05

  • 9651 reflections

  • 614 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0812P)2 + 1.7227P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.64 e Å−3

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H12A⋯O2A 0.88 2.33 2.897 (5) 122
N1B—H12B⋯O2B 0.88 2.19 2.894 (4) 137
N1C—H12C⋯O2C 0.88 2.37 2.871 (4) 117
N1D—H12D⋯O2D 0.88 2.20 2.915 (4) 138
N1A—H11A⋯O11B 0.88 2.13 2.950 (4) 156
N1B—H11B⋯O11Ai 0.88 2.08 2.945 (4) 165
N1C—H11C⋯O11D 0.88 2.14 2.947 (4) 153
N1D—H11D⋯O11Ci 0.88 2.07 2.931 (4) 165
C25B—H25B⋯O12Bii 0.95 2.47 3.371 (6) 157
C25C—H25C⋯O12Ciii 0.95 2.42 3.320 (6) 158
C26A—H26A⋯O12Ai 0.95 2.52 3.410 (5) 156
C26D—H26D⋯O12Di 0.95 2.46 3.378 (5) 161
Symmetry codes: (i) x-1,y,z; (ii) 1-x,1-y,1-z; (iii) 1-x,-y,2-z.

Compound (II)[link]

Crystal data
  • C13H13NO3S

  • Mr = 263.30

  • Monoclinic, P21

  • a = 5.3804 (2) Å

  • b = 7.9959 (4) Å

  • c = 14.4462 (7) Å

  • β = 95.226 (2)°

  • V = 618.91 (5) Å3

  • Z = 2

  • Dx = 1.413 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2703 reflections

  • θ = 2.9–27.5°

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.22 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.951, Tmax = 0.979

  • 7538 measured reflections

  • 2703 independent reflections

  • 2548 reflections with I > 2σ(I)

  • Rint = 0.116

  • θmax = 27.5°

  • h = −6 → 6

  • k = −10 → 10

  • l = −18 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.145

  • S = 1.05

  • 2703 reflections

  • 164 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.062P)2 + 0.5323P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1188 Friedel pairs

  • Flack parameter = 0.20 (11)

Table 3
Hydrogen-bonding geometry (Å, °) for (II)[link]

Cg1 is the centroid of ring C21–C26.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11i 0.88 2.21 2.953 (3) 141
C26—H26⋯O12i 0.95 2.43 3.377 (4) 174
C4—H4⋯Cg1ii 0.95 2.83 3.741 (3) 161
Symmetry codes: (i) 1+x,y,z; (ii) x,1+y,z.

Crystals of (I[link]) are triclinic and space group P[\overline 1] was selected and confirmed by the subsequent structure analysis. For (II[link]), the systematic absences permitted P21 and P21/m as possible space groups. Consideration of the unit-cell volume led to the selection of P21, which was confirmed by the successful structure analysis. All Hatoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl) and N—H distances of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or1.5Ueq(C) for the methyl group. Examination of the refined structure of (I[link]) using the ADDSYM option in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) revealed no possible additional symmetry, but scrutiny of the reflection data suggested the possibility of twinning about c*. Following the use of the TWINROTMAT option in PLATON to generate a HKLF 5-type reflection file, modified to take into account possible reflection overlap, further refinement led to significant reductions in the R indices, although with only trivial changes to the atomic coordinates and hence to the derived geometric parameters, and indicated a twin fraction of ca 8.8 (2)%. The correct absolute configuration of (II[link]) was established by means of the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]).

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement and data reduction: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structure of two closely-related sulfonamides, 2-phenoxybenzenesulfonamide, (I), and its N-methyl analogue, (II), which both show interesting crystallization characteristics. \sch

Compound (I) crystallizes in space group P1 with four independent molecules in the asymmetric unit (Fig. 1). The choice of the asymmetric unit in cases where Z' > 1 allows some flexibility, but for (I) the asymmetric unit has been selected such that the molecules labelled A and C act as hydrogen-bond donors to molecules B and D, respectively, within the asymmetric unit. The bond lengths and angles present no unusual values, but the orientation of the sulfonamide groups relative to the adjacent arene rings is very similar in all the molecules (Table 1). These orientations are probably controlled in part by the intramolecular N—H···O hydrogen bonds (Table 2), each of which generates an S(6) motif (Bernstein et al., 1995).

The overall molecular conformations, which can be defined in terms of five independent torsion angles for each molecule, indicate the occurrence of pseudosymmetry. The values of these torsion angles (Table 1) show that, for the selected asymmetric unit, molecules A and D form an approximately enantiomorphous pair and molecules B and C form a second such pair, independent of the first. Detailed scrutiny of the atomic coordinates shows that those for molecule D are approximately related to those for molecule A by the transformation (x − 1, y − 1/2, 3/2 − z), while those of molecule B are similarly related to those of molecule C by the related transformation (x, y − 1/2, 3/2 − z). Overall, therefore, there is a pseudo b-glide plane at z = 3/4. The unit-cell dimensions rule out any symmetry higher than triclinic, and the absence of any additional symmetry was confirmed by examination of the refined structure using PLATON (Spek, 2003). However, the structure exhibits a close mimicry of space group P21/b, an alternative to the conventional setting, P21/c, of space group No. 14. Consistent with this mimicry, the intensities of the (00 l) reflections are, in general, much weaker when l is odd than when l is even, although there is no obviously consistent pattern amongst the (hk0) reflections.

The molecules of (I) are linked by a combination of N—H···O and C—H···O hydrogen bonds (Table 2) into two independent but very similar chains of edge-fused rings, one built from molecules of types A and B only, the other from molecules of types C and D only. It is necessary to discuss only one of these in any detail. Within the asymmetric unit, atom N1A acts as hydrogen-bond donor, via atom H11A, to atom O11B. In a similar manner, atom N1B at (x, y, z) acts as donor, via atom H11B, to atom O11A at (x − 1, y, z). In this manner, a C22(8) chain built from type A and B molecules and running parallel to the [100] direction is generated by translation. Within this chain, there is an intermolecular C—H···O contact, which is possibly more an adventitious contact consequent upon the N—H···O hydrogen bonds than a structurally significant hydrogen-bond. Two antiparallel chains of A and B molecules, related to one another by inversion, run through each unit cell and these are linked by a single C—H···O hydrogen bond. Atom C25B at (x, y, z) acts as hydrogen-bond donor to atom O12B at (1 − x, 1 − y, 1 − z), and propagation of this interaction by translation and inversion generates a chain of centrosymmetric edge-fused rings along (x, 1/2, 1/2), with R22(18) rings centred at (n+1/2, 1/2, 1/2) (n = zero or integer), and R66(34) rings centred at (n, 1/2, 1/2) (n = zero or integer) (Fig. 2).

The molecules of types C and D form an entirely similar chain of edge-fused rings running along the line (x, 0, 1). Hence in projection down a, there is a chain of A and B type molecules at the cell centre, and chains of C and D type molecules at the cell vertices. However, there are no direction-specific interactions between adjacent chains. Despite the large number of independent aryl groups in the structure of (I), this contains neither C—H···π(arene) hydrogen bonds nor aromatic ππ stacking interactions.

The N-methyl analogue, (II) (Fig. 3), of (I) crystallizes in the chiral space group P21 with Z' = 1. The molecular conformation of (II), as judged from the leading torsion angles (Table 1) bears no particularly close resemblance to those in (I), and there are no intramolecular hydrogen bonds in (II). The resulting molecular point group is C1, so that the molecules are chiral. Accordingly, each crystal of (II) contains only a single enantiomorph, in contrast with the crystals of (I). Since the bulk sample of (II) is racemic, the crystallization represents an example of spontaneous resolution to form a conglomerate, rather than a racemate as in (I).

The molecules of (II) are linked into sheets by a combination of three hydrogen bonds (Table 3) and it is convenient to analyse the sheet formation in terms of its two one-dimensional sub-structures. Atoms N1 and C26 in the molecule at (x, y, z) act as hydrogen-bond donors to, respectively, atoms O11 and O12, both in the molecule at (1 + x, y, z), so generating by translation a C(4) C(8)[R22(12)] chain of rings running parallel to the [100] direction (Fig. 4). In addition, atom C4 at (x, y, z) acts as hydrogen-bond donor to the monosubstituted ring C21—C26 in the molecule at (x, 1 + y, z), so generating by translation a chain running parallel to the [010] direction (Fig. 5). The combination of the [100] and [010] chains generates an (001) sheet (Fig. 6). Two such sheets pass through each unit cell, one each in the domains −0.02 < z < 0.49 and 0.51 < z < 1.02, but there are no direction-specific interactions between adjacent sheets.

The C(4) chain motif in (II) is very characteristic of simple sulfonamides (Vorontsova, 1966; Cotton & Stokely, 1970; Klug, 1970; Brink & Mattes, 1986; Lightfoot et al., 1993; Tremayne et al., 1999, 2002; Clark et al., 2003). The related C22(8) motif arises in (I) because two independent molecules participate in the formation of a single chain. On the other hand, the other hydrogen-bond motif most characteristic of sulfonamides, the R22(8) ring (Klug, 1968; Blaschette et al., 1986; Tremayne et al., 1999, 2002; Kelly et al., 2002; Clark et al., 2003), is absent from the structures of both (I) and (II). However, in compound (III) [Cambridge Structural Database (Allen, 2002) refcode SUTYOU; Chandramohan & Ravikumar, 1999], which is an isomer of (II), pairs of N—H···O hydrogen bonds generate centrosymmetric R22(8) rings, as noted in the original report. In addition, however, the resulting dimers are linked into [110] chains by a single aromatic ππ stacking interaction (Fig. 7).

Table 1. Selected torsional angles (°) for compounds (I) and (II)

Table 2. Hydrogen bond parameters (Å, °) for compound (I)

Table 2. Hydrogen bond parameters (Å, °) for compound (II): Cg1 is the centroid of ring C21—C26

Experimental top

Samples of (I) and (II) were prepared by the reaction of 2-phenoxybenzenesulfonyl chloride (Neale et al., 1965) with aqueous ammonia solution for (I), or with aqueous methylamine solution for (II). Crystals suitable for single-crystal X-ray diffraction were grown from solutions in ethanol. M.p. for (I): 388–389 K [literature value 386–388 K (Abramovitch et al., 1978)]. M.p. for (II): 354–357 K.

Refinement top

Crystals of (I) are triclinic and space group P1 was selected, and then confirmed by the subsequent structure analysis. For (II), the systematic absences permitted P21 and P21/m as possible space groups. Consideration of the unit-cell volume led to the selection of P21, which was confirmed by the successful structure analysis. All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl) and N—H distances of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for the methyl group. Examination of the refined structure of (I) using the ADDSYM option in PLATON (Spek, 2003) revealed no possible additional symmetry, but scrutiny of the reflection data suggested the possibility of twinning about c*. Following use of the TWINROTMAT option in PLATON to generate an HKLF 5-type reflection file, modified to take into account possible reflection overlap, further refinement led to significant reductions in the R indices, although with only trivial changes to the atomic corrdinates and hence to the derived geometric parameters, and indicated a twin fraction of ca 8.8 (2)%. The correct absolute configuration of (II) in the crystal under study was established by means of the Flack parameter (Flack, 1983).

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The four independent molecules in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing formation of a [100] chain of edge-fused R22(18) and R66(34) rings built from molecules of types A and B only. For the sake of clarity, H atoms bonded to C atoms but not involved in the hydrogen-bonding shown have been omitted
[Figure 3] Fig. 3. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing formation of a [100] chain of spiro-fused R22(12) rings. For the sake of clarity, H atoms bonded to C atoms but not involved in the hydrogen-bonding motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (x − 1, y, z), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing formation of a C—H···π(arene) chain along [010]. For the sake of clarity, H atoms not involved in the hydrogen-bonding motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 + y, z) and (x, y − 1, z), respectively.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing formation of an (001) sheet by combination of the [100] and [010] chains. For the sake of clarity, H atoms not involved in the hydrogen-bonding motifs shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (III) (Chandramohan & Ravikumar, 1999), showing formation of a π-stacked [110] chain of centrosymmetric hydrogen-bonded dimers. The original atom coordinates have been used. For the sake of clarity, H atoms not involved in the hydrogen-bonding motif shown have been omitted.
(I) 2-Phenoxybenzenesulfonamide top
Crystal data top
C12H11NO3SZ = 8
Mr = 249.28F(000) = 1040
Triclinic, P1Dx = 1.472 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2539 (2) ÅCell parameters from 9651 reflections
b = 16.2090 (8) Åθ = 3.1–27.4°
c = 26.5417 (9) ŵ = 0.28 mm1
α = 84.850 (2)°T = 120 K
β = 88.951 (2)°Block, colourless
γ = 87.607 (2)°0.22 × 0.16 × 0.12 mm
V = 2248.98 (16) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
9651 independent reflections
Radiation source: rotating anode4912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 66
Tmin = 0.926, Tmax = 0.967k = 2020
22883 measured reflectionsl = 3433
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0812P)2 + 1.7227P]
where P = (Fo2 + 2Fc2)/3
9651 reflections(Δ/σ)max = 0.001
614 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C12H11NO3Sγ = 87.607 (2)°
Mr = 249.28V = 2248.98 (16) Å3
Triclinic, P1Z = 8
a = 5.2539 (2) ÅMo Kα radiation
b = 16.2090 (8) ŵ = 0.28 mm1
c = 26.5417 (9) ÅT = 120 K
α = 84.850 (2)°0.22 × 0.16 × 0.12 mm
β = 88.951 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
9651 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
4912 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.967Rint = 0.071
22883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
9651 reflectionsΔρmin = 0.64 e Å3
614 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.9210 (2)0.51997 (7)0.82938 (4)0.0198 (3)
O11A1.0634 (6)0.50443 (18)0.78422 (11)0.0251 (7)
O12A1.0312 (6)0.49179 (19)0.87669 (11)0.0270 (7)
N1A0.6529 (7)0.4766 (2)0.82568 (13)0.0226 (8)
C1A0.8649 (8)0.6284 (3)0.82745 (15)0.0191 (9)
C2A0.6866 (8)0.6621 (3)0.85996 (15)0.0213 (10)
C3A0.6413 (9)0.7466 (3)0.85754 (18)0.0297 (11)
C4A0.7776 (9)0.7977 (3)0.82392 (18)0.0308 (12)
C5A0.9611 (9)0.7650 (3)0.79166 (18)0.0298 (11)
C6A1.0011 (9)0.6801 (3)0.79349 (16)0.0241 (10)
O2A0.5518 (6)0.60737 (19)0.89177 (11)0.0283 (7)
C21A0.5289 (8)0.6196 (3)0.94330 (16)0.0222 (10)
C22A0.7088 (8)0.6612 (3)0.96774 (17)0.0280 (11)
C23A0.6791 (10)0.6672 (3)1.01920 (18)0.0363 (12)
C24A0.4724 (9)0.6321 (3)1.04564 (17)0.0321 (12)
C25A0.2981 (9)0.5914 (3)1.02017 (17)0.0301 (11)
C26A0.3255 (8)0.5852 (3)0.96859 (16)0.0250 (10)
S1B0.4192 (2)0.47590 (7)0.67480 (4)0.0197 (3)
O11B0.5758 (6)0.45312 (19)0.71816 (10)0.0248 (7)
O12B0.5083 (6)0.45230 (19)0.62674 (11)0.0269 (7)
N1B0.1466 (7)0.4351 (2)0.68614 (13)0.0230 (8)
C1B0.3736 (8)0.5853 (3)0.67105 (14)0.0179 (9)
C2B0.1844 (8)0.6248 (3)0.64027 (15)0.0200 (10)
C3B0.1474 (9)0.7098 (3)0.63852 (16)0.0251 (10)
C4B0.3062 (9)0.7555 (3)0.66545 (17)0.0263 (11)
C5B0.4992 (9)0.7165 (3)0.69449 (17)0.0275 (11)
C6B0.5312 (8)0.6314 (3)0.69817 (16)0.0238 (10)
O2B0.0314 (6)0.57638 (18)0.61448 (10)0.0240 (7)
C21B0.0086 (8)0.6011 (3)0.56234 (16)0.0229 (10)
C22B0.2019 (8)0.6484 (3)0.54527 (17)0.0280 (11)
C23B0.2242 (10)0.6702 (3)0.49382 (18)0.0367 (12)
C24B0.0384 (9)0.6447 (3)0.46043 (17)0.0318 (12)
C25B0.1717 (10)0.5968 (3)0.47842 (18)0.0357 (12)
C26B0.1940 (9)0.5752 (3)0.52960 (17)0.0308 (11)
S1C0.4039 (2)0.01826 (7)0.82718 (4)0.0211 (3)
O11C0.5445 (6)0.00351 (19)0.78144 (11)0.0267 (7)
O12C0.5152 (6)0.01135 (19)0.87439 (11)0.0281 (7)
N1C0.1336 (7)0.0237 (2)0.82357 (13)0.0239 (9)
C1C0.3535 (8)0.1270 (3)0.82664 (15)0.0201 (10)
C2C0.1739 (8)0.1599 (3)0.85987 (15)0.0208 (10)
C3C0.1398 (9)0.2450 (3)0.85989 (17)0.0265 (11)
C4C0.2879 (9)0.2962 (3)0.82792 (18)0.0286 (11)
C5C0.4672 (9)0.2639 (3)0.79521 (18)0.0298 (11)
C6C0.4982 (9)0.1789 (3)0.79464 (16)0.0264 (11)
O2C0.0296 (6)0.10505 (19)0.88953 (10)0.0250 (7)
C21C0.0092 (8)0.1174 (3)0.94146 (16)0.0209 (10)
C22C0.1974 (8)0.1603 (3)0.95901 (18)0.0298 (11)
C23C0.2170 (9)0.1705 (3)1.01029 (18)0.0348 (12)
C24C0.0324 (10)0.1366 (3)1.04281 (17)0.0310 (12)
C25C0.1738 (9)0.0930 (3)1.02408 (18)0.0338 (12)
C26C0.1970 (9)0.0835 (3)0.97331 (18)0.0308 (11)
S1D0.0949 (2)0.02297 (7)0.67248 (4)0.0189 (3)
O11D0.0567 (5)0.04790 (18)0.71626 (10)0.0243 (7)
O12D0.0043 (6)0.04732 (19)0.62480 (10)0.0266 (7)
N1D0.3707 (6)0.0615 (2)0.68270 (13)0.0205 (8)
C1D0.1313 (8)0.0865 (3)0.66906 (15)0.0180 (9)
C2D0.3151 (8)0.1286 (3)0.63740 (16)0.0217 (10)
C3D0.3519 (8)0.2129 (3)0.63762 (17)0.0282 (11)
C4D0.1973 (9)0.2560 (3)0.66681 (17)0.0292 (11)
C5D0.0105 (8)0.2159 (3)0.69662 (17)0.0258 (11)
C6D0.0219 (8)0.1308 (3)0.69822 (16)0.0233 (10)
O2D0.4625 (6)0.08193 (19)0.60998 (11)0.0260 (7)
C21D0.4872 (8)0.1048 (3)0.55804 (15)0.0206 (10)
C22D0.3120 (9)0.1500 (3)0.53022 (17)0.0279 (11)
C23D0.3449 (9)0.1664 (3)0.47859 (18)0.0341 (12)
C24D0.5506 (9)0.1358 (3)0.45535 (17)0.0307 (12)
C25D0.7246 (9)0.0889 (3)0.48389 (16)0.0269 (11)
C26D0.6950 (8)0.0738 (3)0.53546 (16)0.0250 (10)
H11A0.59650.48200.79450.027*
H12A0.53520.48940.84800.027*
H3A0.51600.76960.87910.036*
H4A0.74660.85600.82260.037*
H5A1.05670.80070.76890.036*
H6A1.12280.65690.77130.029*
H22A0.84920.68490.94960.034*
H23A0.80030.69541.03670.044*
H24A0.45260.63631.08100.039*
H25A0.15730.56731.03800.036*
H26A0.20400.55720.95100.030*
H12B0.04800.45910.66220.028*
H11B0.09280.45400.71470.028*
H3B0.01370.73690.61900.030*
H4B0.28220.81410.66390.032*
H5B0.61020.74850.71200.033*
H6B0.66000.60440.71910.029*
H22B0.32920.66570.56840.034*
H23B0.36790.70290.48140.044*
H24B0.05440.65990.42520.038*
H25B0.29940.57900.45550.043*
H26B0.33730.54250.54210.037*
H11C0.08150.01490.79220.029*
H12C0.04140.02170.85150.029*
H3C0.01590.26800.88170.032*
H4C0.26630.35460.82840.034*
H5C0.56740.29980.77350.036*
H6C0.61930.15610.77220.032*
H22C0.32610.18290.93650.036*
H23C0.35860.20111.02300.042*
H24C0.04690.14311.07800.037*
H25C0.30130.06941.04650.041*
H26C0.34020.05390.96040.037*
H12D0.45420.03730.65660.025*
H11D0.42460.04600.71210.025*
H3D0.48240.24140.61790.034*
H4D0.22070.31450.66630.035*
H5D0.09560.24670.71600.031*
H6D0.14850.10260.71920.028*
H22D0.16910.17000.54610.033*
H23D0.22600.19890.45900.041*
H24D0.57220.14690.41990.037*
H25D0.86440.06720.46800.032*
H26D0.81540.04240.55530.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0224 (6)0.0181 (7)0.0191 (5)0.0001 (5)0.0003 (4)0.0033 (4)
O11A0.0259 (16)0.0231 (19)0.0272 (16)0.0007 (13)0.0060 (14)0.0087 (13)
O12A0.0348 (18)0.0218 (19)0.0244 (16)0.0009 (14)0.0044 (14)0.0008 (13)
N1A0.026 (2)0.020 (2)0.0228 (19)0.0059 (16)0.0031 (16)0.0054 (15)
C1A0.020 (2)0.016 (3)0.021 (2)0.0022 (18)0.0015 (18)0.0040 (18)
C2A0.025 (2)0.017 (3)0.023 (2)0.0045 (19)0.0037 (19)0.0063 (18)
C3A0.029 (3)0.021 (3)0.040 (3)0.004 (2)0.004 (2)0.009 (2)
C4A0.037 (3)0.013 (3)0.043 (3)0.002 (2)0.007 (2)0.006 (2)
C5A0.037 (3)0.020 (3)0.032 (3)0.008 (2)0.002 (2)0.001 (2)
C6A0.025 (2)0.024 (3)0.023 (2)0.001 (2)0.0021 (19)0.0057 (19)
O2A0.0341 (18)0.027 (2)0.0256 (16)0.0082 (15)0.0125 (14)0.0113 (14)
C21A0.022 (2)0.018 (3)0.027 (2)0.0066 (19)0.0054 (19)0.0072 (18)
C22A0.018 (2)0.030 (3)0.036 (3)0.000 (2)0.003 (2)0.007 (2)
C23A0.040 (3)0.036 (3)0.034 (3)0.001 (2)0.007 (2)0.009 (2)
C24A0.039 (3)0.033 (3)0.024 (2)0.010 (2)0.004 (2)0.002 (2)
C25A0.031 (3)0.027 (3)0.031 (3)0.004 (2)0.008 (2)0.000 (2)
C26A0.022 (2)0.025 (3)0.027 (2)0.0036 (19)0.0016 (19)0.0049 (19)
S1B0.0210 (6)0.0169 (7)0.0214 (6)0.0013 (5)0.0015 (5)0.0036 (4)
O11B0.0250 (16)0.0243 (19)0.0249 (16)0.0043 (13)0.0016 (14)0.0036 (13)
O12B0.0297 (17)0.026 (2)0.0253 (16)0.0045 (14)0.0087 (14)0.0063 (13)
N1B0.026 (2)0.018 (2)0.0254 (19)0.0020 (16)0.0032 (16)0.0035 (15)
C1B0.019 (2)0.020 (3)0.015 (2)0.0021 (18)0.0055 (17)0.0006 (17)
C2B0.018 (2)0.023 (3)0.019 (2)0.0031 (18)0.0043 (18)0.0036 (18)
C3B0.029 (2)0.018 (3)0.027 (2)0.002 (2)0.005 (2)0.0003 (19)
C4B0.031 (3)0.016 (3)0.032 (2)0.003 (2)0.010 (2)0.0048 (19)
C5B0.029 (3)0.023 (3)0.031 (2)0.010 (2)0.004 (2)0.005 (2)
C6B0.021 (2)0.026 (3)0.025 (2)0.002 (2)0.0014 (19)0.0056 (19)
O2B0.0261 (16)0.0237 (19)0.0220 (15)0.0056 (13)0.0020 (13)0.0015 (12)
C21B0.023 (2)0.019 (3)0.027 (2)0.0074 (19)0.005 (2)0.0001 (18)
C22B0.023 (2)0.032 (3)0.029 (2)0.003 (2)0.001 (2)0.003 (2)
C23B0.035 (3)0.042 (3)0.032 (3)0.004 (2)0.004 (2)0.001 (2)
C24B0.041 (3)0.035 (3)0.021 (2)0.012 (2)0.003 (2)0.001 (2)
C25B0.034 (3)0.042 (4)0.032 (3)0.002 (2)0.008 (2)0.012 (2)
C26B0.022 (2)0.036 (3)0.035 (3)0.002 (2)0.000 (2)0.007 (2)
S1C0.0225 (6)0.0202 (7)0.0209 (5)0.0017 (5)0.0019 (5)0.0035 (4)
O11C0.0292 (17)0.026 (2)0.0259 (16)0.0003 (14)0.0059 (14)0.0081 (13)
O12C0.0336 (18)0.024 (2)0.0268 (16)0.0064 (14)0.0086 (14)0.0016 (13)
N1C0.030 (2)0.021 (2)0.0208 (18)0.0054 (17)0.0014 (16)0.0031 (15)
C1C0.020 (2)0.018 (3)0.022 (2)0.0008 (18)0.0035 (19)0.0024 (18)
C2C0.022 (2)0.019 (3)0.021 (2)0.0027 (19)0.0030 (19)0.0051 (18)
C3C0.028 (3)0.024 (3)0.029 (2)0.003 (2)0.004 (2)0.009 (2)
C4C0.030 (3)0.019 (3)0.037 (3)0.003 (2)0.004 (2)0.005 (2)
C5C0.032 (3)0.024 (3)0.033 (3)0.008 (2)0.002 (2)0.000 (2)
C6C0.027 (2)0.028 (3)0.025 (2)0.003 (2)0.001 (2)0.003 (2)
O2C0.0309 (18)0.024 (2)0.0217 (15)0.0065 (14)0.0045 (14)0.0063 (13)
C21C0.020 (2)0.020 (3)0.023 (2)0.0090 (19)0.0009 (19)0.0036 (18)
C22C0.020 (2)0.037 (3)0.033 (3)0.001 (2)0.001 (2)0.003 (2)
C23C0.030 (3)0.040 (3)0.035 (3)0.002 (2)0.009 (2)0.008 (2)
C24C0.044 (3)0.027 (3)0.023 (2)0.009 (2)0.000 (2)0.003 (2)
C25C0.030 (3)0.040 (3)0.030 (3)0.003 (2)0.007 (2)0.001 (2)
C26C0.031 (3)0.024 (3)0.038 (3)0.003 (2)0.000 (2)0.005 (2)
S1D0.0193 (5)0.0182 (7)0.0191 (5)0.0000 (4)0.0006 (4)0.0016 (4)
O11D0.0259 (16)0.0235 (19)0.0233 (16)0.0026 (13)0.0040 (13)0.0023 (13)
O12D0.0331 (18)0.025 (2)0.0224 (16)0.0007 (14)0.0068 (14)0.0064 (13)
N1D0.0196 (19)0.018 (2)0.0242 (18)0.0027 (15)0.0038 (15)0.0012 (15)
C1D0.020 (2)0.015 (3)0.019 (2)0.0003 (17)0.0007 (18)0.0005 (17)
C2D0.019 (2)0.021 (3)0.025 (2)0.0022 (19)0.0032 (19)0.0028 (18)
C3D0.022 (2)0.027 (3)0.035 (3)0.005 (2)0.002 (2)0.003 (2)
C4D0.038 (3)0.016 (3)0.033 (3)0.002 (2)0.009 (2)0.003 (2)
C5D0.022 (2)0.022 (3)0.035 (3)0.006 (2)0.001 (2)0.009 (2)
C6D0.018 (2)0.028 (3)0.024 (2)0.0030 (19)0.0009 (19)0.0018 (19)
O2D0.0297 (17)0.0233 (19)0.0249 (16)0.0060 (14)0.0084 (14)0.0021 (13)
C21D0.023 (2)0.016 (3)0.022 (2)0.0049 (18)0.0037 (19)0.0006 (17)
C22D0.022 (2)0.032 (3)0.030 (2)0.001 (2)0.002 (2)0.001 (2)
C23D0.027 (3)0.038 (3)0.036 (3)0.002 (2)0.007 (2)0.002 (2)
C24D0.040 (3)0.033 (3)0.018 (2)0.008 (2)0.002 (2)0.0006 (19)
C25D0.026 (2)0.029 (3)0.026 (2)0.006 (2)0.008 (2)0.0075 (19)
C26D0.023 (2)0.025 (3)0.027 (2)0.0001 (19)0.0019 (19)0.0016 (19)
Geometric parameters (Å, º) top
S1A—O12A1.422 (3)S1C—O12C1.428 (3)
S1A—O11A1.437 (3)S1C—O11C1.443 (3)
S1A—N1A1.609 (4)S1C—N1C1.608 (4)
S1A—C1A1.767 (4)S1C—C1C1.770 (5)
N1A—H11A0.88N1C—H11C0.88
N1A—H12A0.88N1C—H12C0.88
C1A—C6A1.384 (6)C1C—C6C1.381 (6)
C1A—C2A1.390 (6)C1C—C2C1.402 (6)
C2A—C3A1.376 (6)C2C—O2C1.376 (5)
C2A—O2A1.378 (5)C2C—C3C1.384 (6)
C3A—C4A1.374 (7)C3C—C4C1.385 (7)
C3A—H3A0.95C3C—H3C0.95
C4A—C5A1.397 (7)C4C—C5C1.388 (7)
C4A—H4A0.95C4C—H4C0.95
C5A—C6A1.381 (6)C5C—C6C1.382 (6)
C5A—H5A0.95C5C—H5C0.95
C6A—H6A0.95C6C—H6C0.95
O2A—C21A1.402 (5)O2C—C21C1.412 (5)
C21A—C26A1.364 (6)C21C—C22C1.362 (6)
C21A—C22A1.387 (6)C21C—C26C1.376 (6)
C22A—C23A1.384 (7)C22C—C23C1.387 (7)
C22A—H22A0.95C22C—H22C0.95
C23A—C24A1.396 (7)C23C—C24C1.375 (7)
C23A—H23A0.95C23C—H23C0.95
C24A—C25A1.372 (7)C24C—C25C1.378 (7)
C24A—H24A0.95C24C—H24C0.95
C25A—C26A1.386 (6)C25C—C26C1.373 (7)
C25A—H25A0.95C25C—H25C0.95
C26A—H26A0.95C26C—H26C0.95
S1B—O12B1.429 (3)S1D—O12D1.427 (3)
S1B—O11B1.439 (3)S1D—O11D1.439 (3)
S1B—N1B1.614 (4)S1D—N1D1.611 (3)
S1B—C1B1.774 (4)S1D—C1D1.770 (4)
N1B—H11B0.88N1D—H11D0.88
N1B—H12B0.88N1D—H12D0.88
C1B—C6B1.389 (6)C1D—C6D1.391 (6)
C1B—C2B1.396 (6)C1D—C2D1.406 (6)
C2B—O2B1.378 (5)C2D—O2D1.367 (5)
C2B—C3B1.380 (6)C2D—C3D1.373 (6)
C3B—C4B1.387 (6)C3D—C4D1.384 (6)
C3B—H3B0.95C3D—H3D0.95
C4B—C5B1.382 (7)C4D—C5D1.376 (6)
C4B—H4B0.95C4D—H4D0.95
C5B—C6B1.378 (6)C5D—C6D1.381 (6)
C5B—H5B0.95C5D—H5D0.95
C6B—H6B0.95C6D—H6D0.95
O2B—C21B1.412 (5)O2D—C21D1.402 (5)
C21B—C26B1.371 (6)C21D—C22D1.365 (6)
C21B—C22B1.379 (6)C21D—C26D1.389 (6)
C22B—C23B1.386 (7)C22D—C23D1.385 (7)
C22B—H22B0.95C22D—H22D0.95
C23B—C24B1.382 (7)C23D—C24D1.386 (7)
C23B—H23B0.95C23D—H23D0.95
C24B—C25B1.389 (7)C24D—C25D1.384 (7)
C24B—H24B0.95C24D—H24D0.95
C25B—C26B1.378 (7)C25D—C26D1.379 (6)
C25B—H25B0.95C25D—H25D0.95
C26B—H26B0.95C26D—H26D0.95
O12A—S1A—O11A117.79 (19)O12C—S1C—O11C117.95 (19)
O12A—S1A—N1A108.24 (19)O12C—S1C—N1C108.2 (2)
O11A—S1A—N1A106.54 (19)O11C—S1C—N1C106.81 (19)
O12A—S1A—C1A108.49 (19)O12C—S1C—C1C107.93 (19)
O11A—S1A—C1A106.62 (19)O11C—S1C—C1C106.6 (2)
N1A—S1A—C1A108.9 (2)N1C—S1C—C1C109.1 (2)
S1A—N1A—H11A111.3S1C—N1C—H11C108.3
S1A—N1A—H12A115.9S1C—N1C—H12C112.5
H11A—N1A—H12A112.7H11C—N1C—H12C127.7
C6A—C1A—C2A119.9 (4)C6C—C1C—C2C120.5 (4)
C6A—C1A—S1A119.6 (3)C6C—C1C—S1C119.6 (4)
C2A—C1A—S1A120.5 (3)C2C—C1C—S1C119.9 (3)
C3A—C2A—O2A122.8 (4)O2C—C2C—C3C122.8 (4)
C3A—C2A—C1A120.0 (4)O2C—C2C—C1C117.7 (4)
O2A—C2A—C1A117.1 (4)C3C—C2C—C1C119.4 (4)
C4A—C3A—C2A119.9 (4)C2C—C3C—C4C119.5 (4)
C4A—C3A—H3A120.1C2C—C3C—H3C120.3
C2A—C3A—H3A120.1C4C—C3C—H3C120.3
C3A—C4A—C5A120.9 (4)C3C—C4C—C5C121.3 (5)
C3A—C4A—H4A119.6C3C—C4C—H4C119.4
C5A—C4A—H4A119.6C5C—C4C—H4C119.4
C6A—C5A—C4A118.9 (4)C6C—C5C—C4C119.2 (4)
C6A—C5A—H5A120.6C6C—C5C—H5C120.4
C4A—C5A—H5A120.6C4C—C5C—H5C120.4
C5A—C6A—C1A120.4 (4)C1C—C6C—C5C120.2 (4)
C5A—C6A—H6A119.8C1C—C6C—H6C119.9
C1A—C6A—H6A119.8C5C—C6C—H6C119.9
C2A—O2A—C21A119.4 (3)C2C—O2C—C21C116.6 (3)
C26A—C21A—C22A121.8 (4)C22C—C21C—C26C121.7 (4)
C26A—C21A—O2A116.3 (4)C22C—C21C—O2C119.6 (4)
C22A—C21A—O2A121.9 (4)C26C—C21C—O2C118.6 (4)
C23A—C22A—C21A118.4 (5)C21C—C22C—C23C118.9 (4)
C23A—C22A—H22A120.8C21C—C22C—H22C120.5
C21A—C22A—H22A120.8C23C—C22C—H22C120.5
C22A—C23A—C24A120.5 (5)C24C—C23C—C22C120.3 (5)
C22A—C23A—H23A119.8C24C—C23C—H23C119.9
C24A—C23A—H23A119.8C22C—C23C—H23C119.9
C25A—C24A—C23A119.5 (4)C23C—C24C—C25C119.6 (4)
C25A—C24A—H24A120.3C23C—C24C—H24C120.2
C23A—C24A—H24A120.3C25C—C24C—H24C120.2
C24A—C25A—C26A120.6 (5)C26C—C25C—C24C120.7 (4)
C24A—C25A—H25A119.7C26C—C25C—H25C119.7
C26A—C25A—H25A119.7C24C—C25C—H25C119.7
C21A—C26A—C25A119.3 (4)C25C—C26C—C21C118.8 (5)
C21A—C26A—H26A120.4C25C—C26C—H26C120.6
C25A—C26A—H26A120.4C21C—C26C—H26C120.6
O12B—S1B—O11B118.08 (18)O12D—S1D—O11D117.78 (19)
O12B—S1B—N1B107.42 (19)O12D—S1D—N1D107.15 (19)
O11B—S1B—N1B107.34 (19)O11D—S1D—N1D107.19 (18)
O12B—S1B—C1B108.86 (18)O12D—S1D—C1D109.24 (19)
O11B—S1B—C1B106.42 (18)O11D—S1D—C1D106.64 (18)
N1B—S1B—C1B108.40 (19)N1D—S1D—C1D108.56 (19)
S1B—N1B—H11B104.8S1D—N1D—H11D106.3
S1B—N1B—H12B104.2S1D—N1D—H12D100.4
H11B—N1B—H12B106.7H11D—N1D—H12D114.3
C6B—C1B—C2B120.4 (4)C6D—C1D—C2D120.0 (4)
C6B—C1B—S1B119.4 (3)C6D—C1D—S1D119.6 (3)
C2B—C1B—S1B120.1 (3)C2D—C1D—S1D120.4 (3)
O2B—C2B—C3B122.1 (4)O2D—C2D—C3D122.7 (4)
O2B—C2B—C1B118.2 (4)O2D—C2D—C1D117.6 (4)
C3B—C2B—C1B119.6 (4)C3D—C2D—C1D119.6 (4)
C2B—C3B—C4B119.7 (4)C2D—C3D—C4D119.5 (4)
C2B—C3B—H3B120.1C2D—C3D—H3D120.2
C4B—C3B—H3B120.1C4D—C3D—H3D120.2
C5B—C4B—C3B120.5 (4)C5D—C4D—C3D121.4 (4)
C5B—C4B—H4B119.7C5D—C4D—H4D119.3
C3B—C4B—H4B119.7C3D—C4D—H4D119.3
C6B—C5B—C4B120.2 (4)C4D—C5D—C6D119.6 (4)
C6B—C5B—H5B119.9C4D—C5D—H5D120.2
C4B—C5B—H5B119.9C6D—C5D—H5D120.2
C5B—C6B—C1B119.5 (4)C5D—C6D—C1D119.8 (4)
C5B—C6B—H6B120.3C5D—C6D—H6D120.1
C1B—C6B—H6B120.3C1D—C6D—H6D120.1
C2B—O2B—C21B114.7 (3)C2D—O2D—C21D118.2 (3)
C26B—C21B—C22B121.5 (4)C22D—C21D—C26D121.3 (4)
C26B—C21B—O2B118.9 (4)C22D—C21D—O2D123.0 (4)
C22B—C21B—O2B119.6 (4)C26D—C21D—O2D115.5 (4)
C21B—C22B—C23B118.8 (4)C21D—C22D—C23D119.2 (4)
C21B—C22B—H22B120.6C21D—C22D—H22D120.4
C23B—C22B—H22B120.6C23D—C22D—H22D120.4
C24B—C23B—C22B120.3 (4)C22D—C23D—C24D120.3 (5)
C24B—C23B—H23B119.8C22D—C23D—H23D119.9
C22B—C23B—H23B119.8C24D—C23D—H23D119.9
C23B—C24B—C25B120.0 (4)C25D—C24D—C23D119.9 (4)
C23B—C24B—H24B120.0C25D—C24D—H24D120.1
C25B—C24B—H24B120.0C23D—C24D—H24D120.1
C26B—C25B—C24B119.7 (5)C26D—C25D—C24D120.0 (4)
C26B—C25B—H25B120.1C26D—C25D—H25D120.0
C24B—C25B—H25B120.1C24D—C25D—H25D120.0
C21B—C26B—C25B119.7 (4)C25D—C26D—C21D119.3 (4)
C21B—C26B—H26B120.1C25D—C26D—H26D120.4
C25B—C26B—H26B120.1C21D—C26D—H26D120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H12A···O2A0.882.332.897 (5)122
N1B—H12B···O2B0.882.192.894 (4)137
N1C—H12C···O2C0.882.372.871 (4)117
N1D—H12D···O2D0.882.202.915 (4)138
N1A—H11A···O11B0.882.132.950 (4)156
N1B—H11B···O11Ai0.882.082.945 (4)165
N1C—H11C···O11D0.882.142.947 (4)153
N1D—H11D···O11Ci0.882.072.931 (4)165
C25B—H25B···O12Bii0.952.473.371 (6)157
C25C—H25C···O12Ciii0.952.423.320 (6)158
C26A—H26A···O12Ai0.952.523.410 (5)156
C26D—H26D···O12Di0.952.463.378 (5)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
(II) N-methyl-2-phenoxybenzenesulfonamide top
Crystal data top
C13H13NO3SF(000) = 276
Mr = 263.30Dx = 1.413 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2703 reflections
a = 5.3804 (2) Åθ = 2.9–27.5°
b = 7.9959 (4) ŵ = 0.26 mm1
c = 14.4462 (7) ÅT = 120 K
β = 95.226 (2)°Block, colourless
V = 618.91 (5) Å30.22 × 0.10 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
2703 independent reflections
Radiation source: rotating anode2548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 66
Tmin = 0.951, Tmax = 0.979k = 1010
7538 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.062P)2 + 0.5323P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2703 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.48 e Å3
1 restraintAbsolute structure: Flack (1983), 1188 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (11)
Crystal data top
C13H13NO3SV = 618.91 (5) Å3
Mr = 263.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.3804 (2) ŵ = 0.26 mm1
b = 7.9959 (4) ÅT = 120 K
c = 14.4462 (7) Å0.22 × 0.10 × 0.08 mm
β = 95.226 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2548 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.979Rint = 0.116
7538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.48 e Å3
2703 reflectionsAbsolute structure: Flack (1983), 1188 Friedel pairs
164 parametersAbsolute structure parameter: 0.20 (11)
1 restraint
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06643 (12)0.66270 (9)0.88106 (5)0.0193 (2)
O20.4366 (4)0.7311 (3)0.74276 (14)0.0216 (5)
O110.1415 (4)0.6849 (3)0.93551 (15)0.0265 (5)
O120.0746 (5)0.5187 (3)0.82236 (17)0.0267 (5)
N10.3168 (4)0.6586 (4)0.95212 (16)0.0201 (5)
C10.0851 (6)0.8451 (4)0.8135 (2)0.0201 (6)
C20.2691 (5)0.8611 (4)0.7510 (2)0.0192 (6)
C30.2937 (6)1.0089 (4)0.7025 (2)0.0234 (6)
C40.1366 (6)1.1431 (4)0.7163 (2)0.0255 (6)
C50.0479 (6)1.1285 (4)0.7776 (2)0.0257 (7)
C60.0715 (6)0.9809 (4)0.8265 (2)0.0231 (6)
C110.3562 (6)0.7982 (5)1.0182 (2)0.0287 (7)
C210.3989 (5)0.6245 (3)0.6670 (2)0.0187 (6)
C220.1886 (6)0.6314 (4)0.6029 (2)0.0230 (7)
C230.1702 (6)0.5181 (4)0.5290 (2)0.0254 (7)
C240.3555 (6)0.4008 (4)0.5197 (2)0.0272 (7)
C250.5635 (6)0.3962 (4)0.5845 (2)0.0268 (7)
C260.5858 (6)0.5074 (4)0.6584 (2)0.0231 (6)
H10.45080.64010.92290.024*
H11A0.38410.90150.98410.043*
H11B0.50220.77491.06190.043*
H11C0.20850.81121.05250.043*
H30.41741.01850.65990.028*
H40.15511.24500.68390.031*
H50.15721.21950.78580.031*
H60.19510.97210.86920.028*
H220.06080.71140.60950.028*
H230.02880.52160.48450.030*
H240.34090.32390.46940.033*
H250.69120.31620.57800.032*
H260.72750.50360.70270.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (3)0.0157 (3)0.0243 (3)0.0019 (3)0.0015 (2)0.0018 (3)
O20.0201 (10)0.0217 (10)0.0226 (10)0.0034 (8)0.0008 (8)0.0045 (9)
O110.0176 (10)0.0281 (13)0.0346 (11)0.0010 (9)0.0073 (8)0.0084 (10)
O120.0340 (13)0.0166 (11)0.0287 (12)0.0044 (9)0.0010 (10)0.0006 (10)
N10.0167 (11)0.0196 (11)0.0238 (11)0.0007 (12)0.0013 (8)0.0008 (12)
C10.0208 (15)0.0179 (14)0.0214 (14)0.0003 (12)0.0003 (11)0.0002 (11)
C20.0178 (14)0.0177 (13)0.0220 (14)0.0008 (11)0.0007 (11)0.0014 (12)
C30.0231 (15)0.0249 (16)0.0227 (14)0.0030 (12)0.0040 (11)0.0007 (13)
C40.0331 (16)0.0184 (15)0.0249 (13)0.0021 (13)0.0024 (11)0.0027 (13)
C50.0294 (16)0.0212 (17)0.0271 (15)0.0054 (11)0.0055 (12)0.0006 (12)
C60.0218 (15)0.0208 (14)0.0273 (16)0.0024 (12)0.0052 (12)0.0020 (12)
C110.0332 (18)0.0267 (16)0.0263 (16)0.0032 (14)0.0028 (13)0.0058 (14)
C210.0202 (14)0.0186 (16)0.0179 (13)0.0020 (10)0.0059 (10)0.0002 (10)
C220.0216 (14)0.0246 (17)0.0225 (14)0.0012 (11)0.0007 (10)0.0006 (12)
C230.0269 (16)0.0272 (16)0.0217 (14)0.0032 (13)0.0011 (12)0.0010 (13)
C240.0320 (18)0.0292 (17)0.0216 (15)0.0076 (13)0.0085 (13)0.0065 (13)
C250.0242 (17)0.0260 (16)0.0314 (17)0.0007 (12)0.0090 (13)0.0035 (13)
C260.0193 (14)0.0237 (15)0.0265 (15)0.0001 (11)0.0035 (11)0.0035 (13)
Geometric parameters (Å, º) top
S1—O121.433 (2)C4—H40.95
S1—O111.436 (2)C5—C61.388 (4)
S1—N11.618 (2)C5—H50.95
S1—C11.763 (3)C6—H60.95
N1—C111.471 (4)O2—C211.388 (3)
N1—H10.8802C21—C261.387 (4)
C11—H11A0.98C21—C221.396 (4)
C11—H11B0.98C22—C231.397 (4)
C11—H11C0.98C22—H220.95
C1—C61.398 (4)C23—C241.384 (5)
C1—C21.405 (4)C23—H230.95
C2—C31.386 (4)C24—C251.393 (5)
C2—O21.388 (4)C24—H240.95
C3—C41.392 (5)C25—C261.386 (4)
C3—H30.95C25—H250.95
C4—C51.393 (4)C26—H260.95
O12—S1—O11119.40 (15)C5—C4—H4119.9
O12—S1—N1106.87 (15)C6—C5—C4119.9 (3)
O11—S1—N1107.47 (13)C6—C5—H5120.1
O12—S1—C1109.30 (13)C4—C5—H5120.1
O11—S1—C1106.73 (14)C5—C6—C1120.5 (3)
N1—S1—C1106.38 (15)C5—C6—H6119.7
C11—N1—S1117.3 (2)C1—C6—H6119.7
C11—N1—H1111.2C21—O2—C2118.6 (2)
S1—N1—H1111.7C26—C21—O2115.5 (3)
N1—C11—H11A109.5C26—C21—C22121.2 (3)
N1—C11—H11B109.5O2—C21—C22123.4 (3)
H11A—C11—H11B109.5C21—C22—C23118.5 (3)
N1—C11—H11C109.5C21—C22—H22120.7
H11A—C11—H11C109.5C23—C22—H22120.7
H11B—C11—H11C109.5C24—C23—C22120.8 (3)
C6—C1—C2119.0 (3)C24—C23—H23119.6
C6—C1—S1120.2 (2)C22—C23—H23119.6
C2—C1—S1120.7 (2)C23—C24—C25119.6 (3)
C3—C2—O2120.1 (3)C23—C24—H24120.2
C3—C2—C1120.6 (3)C25—C24—H24120.2
O2—C2—C1119.2 (3)C26—C25—C24120.6 (3)
C2—C3—C4119.8 (3)C26—C25—H25119.7
C2—C3—H3120.1C24—C25—H25119.7
C4—C3—H3120.1C25—C26—C21119.3 (3)
C3—C4—C5120.3 (3)C25—C26—H26120.4
C3—C4—H4119.9C21—C26—H26120.4
O12—S1—N1—C11178.0 (2)C3—C4—C5—C61.4 (5)
O11—S1—N1—C1152.7 (3)C4—C5—C6—C11.3 (5)
C1—S1—N1—C1161.3 (3)C2—C1—C6—C50.8 (5)
O12—S1—C1—C6136.2 (3)S1—C1—C6—C5176.1 (3)
O11—S1—C1—C65.8 (3)C3—C2—O2—C2182.3 (3)
N1—S1—C1—C6108.7 (3)C1—C2—O2—C21101.8 (3)
O12—S1—C1—C248.6 (3)C2—O2—C21—C26174.1 (3)
O11—S1—C1—C2179.0 (2)C2—O2—C21—C226.1 (4)
N1—S1—C1—C266.5 (3)C26—C21—C22—C230.4 (4)
C6—C1—C2—C30.5 (4)O2—C21—C22—C23179.8 (3)
S1—C1—C2—C3175.8 (2)C21—C22—C23—C240.4 (5)
C6—C1—C2—O2175.4 (3)C22—C23—C24—C250.4 (5)
S1—C1—C2—O20.2 (4)C23—C24—C25—C260.3 (5)
O2—C2—C3—C4175.3 (3)C24—C25—C26—C210.3 (5)
C1—C2—C3—C40.6 (5)O2—C21—C26—C25179.8 (3)
C2—C3—C4—C51.1 (5)C22—C21—C26—C250.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.882.212.953 (3)141
C26—H26···O12i0.952.433.377 (4)174
C4—H4···Cg1ii0.952.833.741 (3)161
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H11NO3SC13H13NO3S
Mr249.28263.30
Crystal system, space groupTriclinic, P1Monoclinic, P21
Temperature (K)120120
a, b, c (Å)5.2539 (2), 16.2090 (8), 26.5417 (9)5.3804 (2), 7.9959 (4), 14.4462 (7)
α, β, γ (°)84.850 (2), 88.951 (2), 87.607 (2)90, 95.226 (2), 90
V3)2248.98 (16)618.91 (5)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.280.26
Crystal size (mm)0.22 × 0.16 × 0.120.22 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.926, 0.9670.951, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
22883, 9651, 4912 7538, 2703, 2548
Rint0.0710.116
(sin θ/λ)max1)0.6470.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.203, 1.05 0.055, 0.145, 1.05
No. of reflections96512703
No. of parameters614164
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.640.21, 0.48
Absolute structure?Flack (1983), 1188 Friedel pairs
Absolute structure parameter?0.20 (11)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1A—H12A···O2A0.882.332.897 (5)122
N1B—H12B···O2B0.882.192.894 (4)137
N1C—H12C···O2C0.882.372.871 (4)117
N1D—H12D···O2D0.882.202.915 (4)138
N1A—H11A···O11B0.882.132.950 (4)156
N1B—H11B···O11Ai0.882.082.945 (4)165
N1C—H11C···O11D0.882.142.947 (4)153
N1D—H11D···O11Ci0.882.072.931 (4)165
C25B—H25B···O12Bii0.952.473.371 (6)157
C25C—H25C···O12Ciii0.952.423.320 (6)158
C26A—H26A···O12Ai0.952.523.410 (5)156
C26D—H26D···O12Di0.952.463.378 (5)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
Selected torsion angles (°) for (I) and (II) top
Parameter(I, n = A)(I, n = B)(I, n = C)(I, n = D)(II, n = nil)
C21n-O2n-C2n-C1n132.0 (4)-130.1 (4)132.5 (4)-130.6 (4)101.8 (3)
C2n-O2n-C21n-C22n-26.3 (6)-98.4 (5)96.5 (5)23.7 (6)-6.1 (4)
C2n-C1n-S1n-N1n51.5 (4)-50.2 (4)50.4 (4)-50.6 (4)66.5 (3)
C2n-C1n-S1n-O11n166.2 (3)-165.4 (3)165.4 (3)-165.8 (3)-179.0 (2)
C2n-C1n-S1n-O12n-66.1 (4)66.3 (4)-67.0 (4)66.0 (4)-48.6 (3)
C1-S1-N1-C1161.3 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.882.212.953 (3)141
C26—H26···O12i0.952.433.377 (4)174
C4—H4···Cg1ii0.952.833.741 (3)161
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAbramovitch, R. A., Azogu, C. I., McMaster, I. T. M. & Vanderpool, D. P. (1978). J. Org. Chem. 43, 1218–1226.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlaschette, A., Wieland, E., Schomburg, D. & Adelhelm, M. (1986). Z. Anorg. Allg. Chem. 533, 7–17.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrink, K. & Mattes, R. (1986). Acta Cryst. C42, 319–322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChandramohan, K. & Ravikumar, K. (1999). Acta Cryst. C55, IUC9800078.  CrossRef IUCr Journals Google Scholar
First citationClark, J. C., McLaughlin, M. L. & Fronczek, F. R. (2003). Acta Cryst. E59, o2005–o2006.  CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A. & Stokely, P. F. (1970). J. Am. Chem. Soc. 92, 294–302.  CSD CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKlug, H. P. (1968). Acta Cryst. B24, 792–802.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKlug, H. P. (1970). Acta Cryst. B26, 1268–1275.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationLightfoot, P., Tremayne, M., Glidewell, C., Harris, K. D. M. & Bruce, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1625–1630.  CSD CrossRef Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNeale, A. J., Rawlins, T. J. & McCall, E. B. (1965). Tetrahedron, 21, 1299–1313.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTremayne, M., MacLean, E. J., Tang, C. C. & Glidewell, C. (1999). Acta Cryst. B55, 1068–1074.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823–834.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVorontsova, L. G. (1966). Zh. Strukt. Khim. 7, 280–283.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds