organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

2-(4-Nitro­phen­oxy)­benzoic acid: a three-dimensional hydrogen-bonded framework in a triclinic structure having Z′ = 3

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 23 March 2004; accepted 24 March 2004; online 30 April 2004)

The title compound, C13H9NO5, crystallizes in space group P[\overline 1], with Z′ = 3. The mol­ecules are linked by O—H⋯O hydrogen bonds [H⋯O = 1.79–1.81 Å, O⋯O = 2.625 (3)–2.648 (3) Å and O—H⋯O = 172–176°] into two types of [R_2^2](8) dimer, only one of which is centrosymmetric. An extensive series of soft hydrogen bonds, of C—H⋯O and C—H⋯π(arene) types, links the dimers into a three-dimensional framework.

Comment

Per­sulfate oxidation of substituted 2-aryl­oxy­benzoic acids yields asymmetrically substituted bis­(salicyl­ates), whose formation has been ascribed to the 2-4 coupling of phenoxyl radicals (Thomson & Wylie, 1966[Thomson, R. H. & Wylie, A. G. (1966). J. Chem. Soc. C, pp. 321-324.]). We report here the molecular and supramolecular structure of one such precursor compound, namely 2-(4-nitro­phenoxy)­benzoic acid, (I[link]).

[Scheme 1]

Compound (I[link]) crystallizes in the triclinic space group [P\overline 1], with Z′ = 3 (Fig. 1[link]). In each of the three independent mol­ecules, the two aryl rings are both rotated away from the plane of the central C/O/C fragment, as shown by the leading torsion angles (Table 1[link]). Likewise, each of the nitro and carboxy groups is rotated away from the plane of the adjacent aryl ring. Comparison of the corresponding values for the three mol­ecules is sufficient to rule out the possibility of any additional symmetry.

The C—O distances within the carboxy groups are consistent with the fully ordered locations of the carboxy H atoms as deduced from difference maps. In each mol­ecule, the central C—O—C angle has a value significantly larger than the idealized tetrahedral angle. The remaining bond lengths and angles show no unusual values.

Molecules of types 1 and 3, containing atoms O1 and O3, respectively (Fig. 1[link]a), are linked into hydrogen-bonded dimers by two independent O—H⋯O hydrogen bonds, both of which are short for their type and nearly linear (Table 2[link]). By contrast, mol­ecules of type 2, containing atom O2 (Fig. 1[link]b), are linked by pairs of O—H⋯O hydrogen bonds into centrosymmetric [R_2^2](8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers. With the centrosymmetric dimer centred at ([1 \over 2], [1 \over 2], [1 \over 2]), the centroid of the non-centrosymmetric dimer is at approximately (0.265, 0.225, 0.416), thus precluding the possibility of any additional inversion centres.

The two types of dimer are linked by an extensive series of soft hydrogen bonds (Braga et al., 1995[Braga, D., Grepioni, F., Birdha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, pp. 86-89. Oxford University Press.]) into a continuous three-dimensional framework of considerable complexity. However, the descriptive analysis of the framework formation is eased by the adoption of the substructure approach (Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The dimeric units formed by the O—H⋯O hydrogen bonds are linked by the three strongest C—H⋯O hydrogen bonds (the first three such entries in Table 2[link], all having C—H⋯O angles greater than 160°) into two distinct types of chain running parallel to the [001] direction. These chains are then linked by two weaker C—H⋯O hydrogen bonds (the fourth and fifth such entries in Table 2[link], with C—H⋯O angles of ∼140° but with H⋯O distances shorter than 2.50 Å). The resulting framework is further reinforced, albeit weakly, by the remaining C—H⋯O hydrogen bonds (which have H⋯O distances slightly longer than 2.50 Å) and by a single C—H⋯π(arene) hydrogen bond.

The centrosymmetric dimers formed by the type 2 mol­ecules are linked by a single C—H⋯O hydrogen bond. Atom C46 in the mol­ecule at (x, y, z), which forms part of the centrosymmetric dimer centred at ([1 \over 2], [1 \over 2], [1 \over 2]), acts as a hydrogen-bond donor to nitro atom O31 in the type 2 mol­ecule at (1 − x, 1 − y, 2 − z), which forms part of the corresponding dimer centred at ([1 \over 2], [1 \over 2], [3 \over 2]). Propagation of this hydrogen bond then generates a chain of rings running parallel to [001] containing [R_2^2](8) rings centred at ([1 \over 2], [1 \over 2], n + [1 \over 2]) (n = zero or integer) and [R_2^2](20) rings centred at ([1 \over 2], [1 \over 2], n) (n = zero or integer) (Fig. 2[link]).

Molecules of types 1 and 3 are also linked into a [001] chain, but this is more complex than that formed by the type 2 mol­ecules and its formation involves two C—H⋯O hydrogen bonds. In the first such interaction, atom C26 in the type 1 mol­ecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O51 in the type 3 mol­ecule at (x, y, −1 + z), so linking the dimers formed by mol­ecules 1 and 3 into a C22(18)[[R_2^2](8)] chain of rings (Fig. 3[link]).

In the second of these interactions, atom C13 in the type 1 mol­ecule at (x, y, z) acts as a donor to nitro atom O52 in the type 3 mol­ecule at (1 − x, −y, 1 − z), thereby generating a centrosymmetric four-mol­ecule aggregate centred at ([1 \over 2], 0, [1 \over 2]) and containing two [R_2^2](8) rings and one R44(40) ring (Fig. 3[link]). The effect of the R44(40) motif is to link the C22(18)[[R_2^2](8)] chains of rings into pairs, forming a complex chain enclosing R44(20) rings centred at ([1 \over 2], 0, n) (n = zero or integer) alternating with R44(40) rings centred at ([1 \over 2], 0, n + [1 \over 2]) (n = zero or integer) (Fig. 3[link]).

There are thus chains of type 2 mol­ecules running along ([1 \over 2], [1 \over 2], z), and chains containing type 1 and type 3 mol­ecules running along ([1 \over 2], 0, z). Two further C—H⋯O hydrogen bonds suffice to link these two types of chain into a single framework. Atom C16 in the type 1 mol­ecule at (x, y, z), which lies in the chain along ([1 \over 2], 0, z), acts as a hydrogen-bond donor to nitro atom O32 in the type 2 mol­ecule at (−1 + x, y, −1 + z), which forms part of the chain along (−[1 \over 2], [1 \over 2], z). Finally, atom C52 in the type 3 mol­ecule at (x, y, z) acts as a donor to nitro atom O31 in the type 2 mol­ecule at (1 − x, 1 − y, 2 − z), which lies in the chain along ([1 \over 2], [1 \over 2], z). Propagation of these two hydrogen bonds by translation and inversion links all of the [001] chain, and the three remaining hydrogen bonds simply reinforce the resulting framework.

The pattern of the C—H⋯O hydrogen bonds is itself sufficient to preclude any possible additional symmetry; for example, the nitro O atoms in the type 1 mol­ecule, O11 and O12, do not act as hydrogen-bond acceptors, while both of the O atoms in the type 3 mol­ecule, O51 and O52, are acceptors of C—H⋯O hydrogen bonds.

In addition to the hydrogen bonds, there is a short dipolar interaction involving the type 3 mol­ecules only. The C61—O3 bonds in the mol­ecules at (x, y, z) and (−x, −y, 1 − z) are antiparallel; the corresponding O⋯Cvii and O⋯Ovii distances [symmetry code: (vii) −x, −y, 1 − z] are 2.978 (4) and 2.758 (3) Å, respectively, and the C—O⋯Cvii angle is 112.7 (2)°. In this respect, this interaction is reminiscent of the type II interaction between antiparallel pairs of carbonyl groups (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Figure 1]
Figure 1
The independent mol­ecules of (I[link]), showing the atom-labelling scheme and the dimers formed by the O—H⋯O hydrogen bonding. (a) The centrosymmetric dimer formed by the type 2 mol­ecules, where atoms labelled with the suffix a are at the symmetry position (1 − x, 1 − y, 1 − z). (b) The dimer formed by the type 1 and type 3 mol­ecules. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I[link]), showing the formation of a [001] chain of [R_2^2](8) and [R_2^2](20) rings formed by type 2 mol­ecules only. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I[link]), showing the formation of a complex chain along [001] containing [R_2^2](8), R44(20) and R44(40) rings and built from type 1 and type 3 mol­ecules only. For clarity, H atoms not involved in the motif shown have been omitted.

Experimental

A sample of (I[link]) was prepared by the Ullmann reaction of 2-chloro­benzoic acid with 4-nitro­phenol, according to the procedure published by Thomson & Wylie (1966[Thomson, R. H. & Wylie, A. G. (1966). J. Chem. Soc. C, pp. 321-324.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol (m.p. 435–437 K).

Crystal data
  • C13H9NO5

  • Mr = 259.21

  • Triclinic, [P\overline 1]

  • a = 7.8495 (6) Å

  • b = 14.0847 (15) Å

  • c = 17.2325 (18) Å

  • α = 113.187 (4)°

  • β = 98.515 (6)°

  • γ = 96.400 (7)°

  • V = 1701.5 (3) Å3

  • Z = 6

  • Dx = 1.518 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7578 reflections

  • θ = 2.9–27.5°

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.15 × 0.06 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.966, Tmax = 0.998

  • 14 193 measured reflections

  • 7578 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.122

  • θmax = 27.5°

  • h = −9 → 10

  • k = −18 → 18

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.149

  • S = 0.87

  • 7578 reflections

  • 517 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0444P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

C27—O21 1.226 (4)
C47—O41 1.245 (4)
C67—O61 1.234 (4)
C27—O22 1.314 (4)
C47—O42 1.297 (4)
C67—O62 1.297 (4)
C14—O1—C21 120.1 (3)
C34—O2—C41 119.2 (3)
C54—O3—C61 118.4 (3)
C13—C14—O1—C21 43.0 (5)
C33—C34—O2—C41 −20.9 (5)
C53—C54—O3—C61 −9.5 (5)
C14—O1—C21—C22 −153.2 (3)
C34—O2—C41—C42 129.4 (3)
C54—O3—C61—C62 115.8 (4)
C12—C11—N11—O11 8.5 (5)
C32—C31—N31—O31 −11.9 (5)
C52—C51—N51—O51 −19.2 (5)
C21—C22—C27—O21 150.2 (4)
C41—C42—C47—O41 −169.0 (3)
C61—C62—C67—O61 170.8 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg1 is the centroid of the C61–C66 ring in the type 3 mol­ecule; soft hydrogen bonds are listed in the order in which they are discussed in the Comment section.

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯O61 0.84 1.79 2.625 (3) 175
O42—H42⋯O41i 0.84 1.81 2.648 (3) 172
O62—H62⋯O21 0.84 1.80 2.637 (3) 176
C46—H46⋯O31ii 0.95 2.49 3.413 (5) 163
C26—H26⋯O51iii 0.95 2.36 3.268 (5) 161
C13—H13⋯O52iv 0.95 2.50 3.422 (5) 163
C16—H16⋯O32v 0.95 2.48 3.241 (5) 138
C52—H52⋯O31ii 0.95 2.35 3.153 (5) 142
C32—H32⋯O51ii 0.95 2.54 3.388 (5) 149
C44—H44⋯O22vi 0.95 2.53 3.370 (5) 147
C55—H55⋯Cg1vii 0.95 2.87 3.745 (4) 154
Symmetry codes: (i) 1-x,1-y,1-z; (ii) 1-x,1-y,2-z; (iii) x,y,z-1; (iv) 1-x,-y,1-z; (v) x-1,y,z-1; (vi) -x,1-y,1-z; (vii) -x,-y,1-z.

Crystals of (I[link]) are triclinic; space group [P\overline 1] was selected and confirmed by the subsequent structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(O). All H atoms were fully ordered. Examination of the refined structure using ADDSYM in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) revealed no possible additional symmetry. The quality of the crystals obtained was always poor and this fact may underlie both the low proportion (35%) of the reflections labelled `observed', even at 120 (2) K, and the fairly high merging index (0.12).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Persulfate oxidation of substituted 2-aryloxybenzoic acids yields asymmetrically substituted bis(salicylates), whose formation was ascribed to the 2–4 coupling of phenoxyl radicals (Thomson & Wylie, 1966). We report here the molecular and supramolecular structure of one such precursor compound, 2-(4-nitrophenoxy)benzoic acid, O2NC6H4OC6H4COOH, (I).

Compound (I) crystallizes in the triclinic space group P-1 with Z' = 3 (Fig. 1). In each of the three independent molecules, the two aryl rings are both rotated away from the plane of the central C/O/C fragment, as shown by the leading torsion angles (Table 1). Likewise, each of the nitro and carboxy groups is rotated away from the plane of the adjacent aryl ring. Comparison of the corresponding values for the three molecules is sufficient to rule out the possibility of any additional symmetry.

The C—O distances within the carboxy groups are consistent with the fully ordered locations of the carboxy H atoms, as deduced from difference maps. In each molecule, the central C—O—C angle has a value significantly larger than the idealized tetrahedral angle. The remaining bond lengths and angles show no unusual values.

Molecules of types 1 and 3, containing atoms O1 and O3, respectively (Fig. 1a), are linked into hydrogen-bonded dimers by two independent O—H···O hydrogen bonds, both of which are short for their type and nearly linear (Table 2). By contrast, molecules of type 2, containing atom O2 (Fig 1 b), are linked by pairs of O—H···O hydrogen bonds into centrosymmetric R22(8) (Bernstein et al., 1995) dimers. With the centrosymmetric dimer centred at (1/2, 1/2, 1/2), the centroid of the non-centrosymmetric dimer is at approximately (0.265, 0.225, 0.416), thus precluding the possibility of any additional inversion centres.

The two types of dimer are linked by an extensive series of soft (Braga et al., 1995; Desiraju & Steiner, 1999) hydrogen bonds into a continuous three-dimensional framework of considerable complexity. However, the descriptive analysis of the framework formation is materially eased by the adoption of the substructure approach (Gregson et al., 2000). The dimeric units formed by the O—H···O hydrogen bonds are linked by the three strongest C—H···O hydrogen bonds (the first three such entries in Table 2, all having C—H···O angles above 160°) into two distinct types of chain running parallel to the [001] direction. These chains are then linked by two weaker C—H···O hydrogen bonds (the fourth and fifth such entries in Table 2, with C—H···O angles of around 140° but with H···O distances shorter than 2.50 Å). The resulting framework is further reinforced, albeit weakly, by the remaining C—H···O hydrogen bonds (which have H···O distances slightly longer than 2.50 Å) and by a single C—H···π(arene) hydrogen bond.

The centrosymmetric dimers formed by the type 2 molecules are linked by a single C—H···O hydrogen bond. Atom C46 in the molecule at (x, y, z), which forms part of the centrosymmetric dimer centred at (1/2, 1/2, 1/2), acts as a hydrogen-bond donor to nitro atom O31 in the type 2 molecule at (1 − x, 1 − y, 2 − z), which forms part of the corresponding dimer centred at (1/2, 1/2, 1.5). Propagation of this hydrogen bond then generates a chain of rings running parallel to [001], containing R22(8) rings centred at (1/2, 1/2, n + 1/2) (n = zero or integer) and R22(20) rings centred at (1/2, 1/2, n) (n = zero or integer) (Fig. 2).

Molecules of types 1 and 3 are also linked into a [001] chain, but this is more complex than that formed by the type 2 molecules and its formation involves two C—H···O hydrogen bonds. In the first such interaction, atom C26 in the type 1 molecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O51 in the type 3 molecule at (x, y, −1 + z), so linking the dimers formed by molecules 1 and 3 into a C22(18)[R22(8)] chain of rings (Fig. 3).

In the second of these interactions, atom C13 in the type 1 molecule at (x, y, z) acts as a donor to nitro atom O52 in the type 3 molecule at (1 − x, −y, 1 − z), thereby generating a centrosymmetric four-molecule aggregate centred at (1/2, 0, 1/2) and containing two R22(8) rings and one R44(40) ring (Fig. 3). The effect of the R44(40) motif is to link the C22(18)[R22(8)] chains of rings into pairs, forming a complex chain enclosing R44(20) rings centred at (1/2, 0, n) (n = zero or integer) alternating with R44(40) rings centred at (1/2, 0, n + 1/2) (n = zero or integer) (Fig. 3).

There are thus chains of type 2 molecules running along (1/2, 1/2, z) and chains containing type 1 and type 3 molecules running along (1/2, 0, z). Two further C—H···O hydrogen bonds suffice to link these two types of chain into a single framework. Atom C16 in the type 1 molecule at (x, y, z), which lies in the chain along (1/2, 0, z), acts as a hydrogen-bond donor to nitro atom O32 in the type 2 molecule at (−1 + x, y, −1 + z), which forms part of the chain along (−0.5, 1/2, z). Finally, atom C52 in the type 3 molecule at (x, y, z) acts as a donor to nitro atom O31 in the type 2 molecule at (1 − x, 1 − y, 2 − z), which lies in the chain along (1/2, 1/2, z). Propagation of these two hydrogen bonds by translation and inversion links all of the [001] chain, and the three remaining hydrogen bonds simply reinforce the resulting framework.

The pattern of the C—H···O hydrogen bonds is itself sufficient to preclude any possible additional symmetry; for example, the nitro O atoms in the type 1 molecule, O11 and O12, do not act as hydrogen-bond acceptors, while both of the O atoms in the type 3 molecule, O51 and O52, are acceptors of C—H···O hydrogen bonds.

In addition to the hydrogen bonds, there is a short dipolar interaction involving the type 3 molecules only. The C61—O3 bonds in the molecules at (x, y, z) and (-x, −y, 1 − z) are antiparallel; the corresponding O···Cvii and O···Ovii distances [symmetry code: (vii) −x, −y, 1 − z] are 2.978 (4) and 2.758 (3) Å, respectively, and the C—O···Cvii angle is 112.7 (2)°. In this respect, this interaction is reminiscent of the type (II) interaction between antiparallel pairs of carbonyl groups (Allen et al., 1998).

Cg1 is ring centroid for ring C61—C66 in the type 3 molecule; soft hydrogen bonds are listed in the order in which they are discussed in the Comment section.

Experimental top

A sample of (I) was prepared by the Ullmann reaction of 2-chlorobenzoic acid with 4-nitrophenol, following the procedure published by Thomson & Wylie (1966). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol; m.p. 435–437 K.

Refinement top

Crystals of (I) are triclinic; space group P-1 was selected and confirmed by the subsequent structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(O). All H atoms were fully ordered. Examination of the refined structure using ADDSYM in PLATON (Spek, 2003) revealed no possible additional symmetry. The quality of the crystals obtained was always poor, and this fact may underlie both the low proportion (35%) of the reflections labelled `observed', even at 120 (2) K, and the fairly high merging index, 0.12.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecules of compound (I), showing the atom-labelling scheme and the dimers formed by the O—H···O hydrogen bonds. (a) The centrosymmetric dimer formed by the type 2 molecules, where atoms marked `a' are at the symmetry position (1 − x, 1 − y, 1 − z). (b) The dimer formed by the type 1 and type 3 molecules. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a [001] chain of R22(8) and R22(20) rings formed by type 2 molecules only. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a complex chain along [001], containing R22(8), R44(20) and R44(40) rings and built from type 1 and type 3 molecules only. For clarity, H atoms not involved in the motif shown have been omitted.
2-(4-Nitrophenoxy)benzoic acid top
Crystal data top
C13H9NO5Z = 6
Mr = 259.21F(000) = 804
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8495 (6) ÅCell parameters from 7578 reflections
b = 14.0847 (15) Åθ = 2.9–27.5°
c = 17.2325 (18) ŵ = 0.12 mm1
α = 113.187 (4)°T = 120 K
β = 98.515 (6)°Lath, colourless
γ = 96.400 (7)°0.15 × 0.06 × 0.02 mm
V = 1701.5 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
7578 independent reflections
Radiation source: rotating anode2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 910
Tmin = 0.966, Tmax = 0.998k = 1818
14193 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0444P)2]
where P = (Fo2 + 2Fc2)/3
7578 reflections(Δ/σ)max = 0.001
517 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H9NO5γ = 96.400 (7)°
Mr = 259.21V = 1701.5 (3) Å3
Triclinic, P1Z = 6
a = 7.8495 (6) ÅMo Kα radiation
b = 14.0847 (15) ŵ = 0.12 mm1
c = 17.2325 (18) ÅT = 120 K
α = 113.187 (4)°0.15 × 0.06 × 0.02 mm
β = 98.515 (6)°
Data collection top
Nonius KappaCCD
diffractometer
7578 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2621 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.998Rint = 0.122
14193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.87Δρmax = 0.27 e Å3
7578 reflectionsΔρmin = 0.33 e Å3
517 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0187 (4)0.1229 (3)0.0777 (2)0.0279 (9)
C120.1217 (4)0.0594 (3)0.0579 (3)0.0351 (10)
C130.2194 (5)0.0945 (3)0.0254 (3)0.0366 (10)
C140.2098 (4)0.1926 (3)0.0860 (2)0.0309 (10)
C150.1044 (4)0.2551 (3)0.0661 (2)0.0299 (10)
C160.0073 (4)0.2202 (3)0.0169 (2)0.0301 (10)
N110.0840 (4)0.0867 (3)0.1663 (2)0.0379 (9)
O110.0900 (3)0.0047 (3)0.21700 (19)0.0578 (9)
O120.1585 (3)0.1489 (2)0.18541 (17)0.0397 (7)
O10.2959 (3)0.2316 (2)0.17212 (16)0.0397 (7)
C210.4668 (4)0.2191 (3)0.1929 (2)0.0304 (10)
C220.5221 (4)0.2166 (3)0.2730 (2)0.0258 (9)
C230.6955 (4)0.2054 (3)0.2947 (2)0.0295 (9)
C240.8102 (5)0.1993 (3)0.2396 (2)0.0326 (10)
C250.7506 (5)0.2027 (3)0.1621 (3)0.0355 (10)
C260.5800 (5)0.2123 (3)0.1377 (2)0.0315 (10)
C270.4122 (4)0.2223 (3)0.3364 (2)0.0272 (9)
O210.4402 (3)0.1792 (2)0.38526 (16)0.0336 (7)
O220.2868 (3)0.2771 (2)0.33782 (17)0.0363 (7)
C310.6951 (4)0.4867 (3)0.9405 (2)0.0254 (9)
C320.5916 (4)0.5564 (3)0.9325 (2)0.0296 (10)
C330.4840 (4)0.5317 (3)0.8531 (2)0.0299 (10)
C340.4823 (4)0.4370 (3)0.7847 (2)0.0269 (9)
C350.5890 (4)0.3693 (3)0.7936 (2)0.0286 (9)
C360.6959 (4)0.3930 (3)0.8722 (2)0.0284 (9)
N310.8058 (4)0.5127 (3)1.0247 (2)0.0301 (8)
O310.8254 (3)0.6029 (2)1.08152 (16)0.0351 (7)
O320.8757 (3)0.4430 (2)1.03572 (16)0.0359 (7)
O20.3813 (3)0.40673 (19)0.70293 (15)0.0315 (7)
C410.2375 (4)0.4532 (3)0.6932 (2)0.0290 (9)
C420.2178 (4)0.4952 (3)0.6321 (2)0.0238 (9)
C430.0677 (4)0.5371 (3)0.6216 (2)0.0288 (9)
C440.0600 (4)0.5360 (3)0.6696 (2)0.0315 (10)
C450.0362 (4)0.4928 (3)0.7285 (2)0.0307 (10)
C460.1107 (4)0.4507 (3)0.7408 (2)0.0313 (10)
C470.3440 (4)0.4989 (3)0.5764 (2)0.0281 (9)
O410.3275 (3)0.5521 (2)0.53363 (17)0.0368 (7)
O420.4660 (3)0.4433 (2)0.57366 (18)0.0414 (7)
C510.4107 (4)0.1204 (3)0.8066 (2)0.0256 (9)
C520.2999 (4)0.1897 (3)0.8082 (2)0.0277 (9)
C530.1912 (4)0.1766 (3)0.7321 (2)0.0288 (9)
C540.2001 (4)0.0936 (3)0.6564 (2)0.0259 (9)
C550.3143 (4)0.0262 (3)0.6548 (2)0.0274 (9)
C560.4215 (4)0.0390 (3)0.7307 (2)0.0296 (10)
N510.5205 (4)0.1341 (3)0.8876 (2)0.0330 (8)
O510.5453 (3)0.2213 (2)0.94948 (17)0.0400 (7)
O520.5826 (3)0.0590 (2)0.89088 (17)0.0416 (7)
O30.0995 (3)0.07454 (19)0.57755 (15)0.0313 (7)
C610.0347 (4)0.1314 (3)0.5753 (2)0.0262 (9)
C620.0291 (4)0.2005 (3)0.5357 (2)0.0251 (9)
C630.1677 (4)0.2546 (3)0.5351 (2)0.0275 (9)
C640.3088 (4)0.2373 (3)0.5701 (2)0.0309 (10)
C650.3178 (4)0.1630 (3)0.6031 (2)0.0302 (10)
C660.1799 (4)0.1107 (3)0.6072 (2)0.0304 (10)
C670.1095 (4)0.2182 (3)0.4896 (2)0.0293 (10)
O610.0909 (3)0.2709 (2)0.44728 (16)0.0368 (7)
O620.2432 (3)0.1729 (2)0.49515 (18)0.0416 (7)
H120.12600.00760.10070.042*
H130.29150.05200.04050.044*
H150.09850.32160.10910.036*
H160.06600.26230.03190.036*
H230.73530.20190.34810.035*
H240.92810.19280.25530.039*
H250.82870.19830.12410.043*
H260.54110.21410.08350.038*
H220.22760.27310.37360.054*
H320.59390.62040.98050.035*
H330.41260.57900.84560.036*
H350.58910.30600.74530.034*
H360.76840.34610.87920.034*
H430.05230.56700.58090.035*
H440.16180.56470.66180.038*
H450.12280.49190.76150.037*
H460.12470.42050.78130.038*
H420.52710.44910.53910.062*
H520.29770.24630.86110.033*
H530.11280.22320.73200.035*
H550.31940.02910.60170.033*
H560.50110.00710.73070.035*
H630.16460.30400.51020.033*
H640.39980.27670.57130.037*
H650.41910.14740.62320.036*
H660.18460.06090.63170.036*
H620.30250.17600.45920.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.027 (2)0.034 (3)0.024 (2)0.0047 (18)0.0035 (17)0.015 (2)
C120.035 (2)0.031 (3)0.038 (3)0.0082 (19)0.007 (2)0.012 (2)
C130.034 (2)0.039 (3)0.046 (3)0.0153 (19)0.008 (2)0.026 (2)
C140.030 (2)0.044 (3)0.026 (2)0.0115 (19)0.0109 (18)0.019 (2)
C150.024 (2)0.035 (3)0.032 (2)0.0086 (18)0.0061 (18)0.014 (2)
C160.026 (2)0.035 (3)0.034 (2)0.0059 (18)0.0082 (18)0.020 (2)
N110.0277 (18)0.047 (3)0.035 (2)0.0076 (18)0.0065 (16)0.013 (2)
O110.0543 (19)0.047 (2)0.048 (2)0.0119 (16)0.0015 (16)0.0013 (18)
O120.0338 (15)0.055 (2)0.0375 (18)0.0166 (14)0.0084 (13)0.0248 (16)
O10.0332 (15)0.065 (2)0.0297 (17)0.0244 (14)0.0098 (13)0.0234 (16)
C210.028 (2)0.036 (3)0.034 (2)0.0157 (18)0.0116 (18)0.018 (2)
C220.029 (2)0.029 (2)0.024 (2)0.0105 (17)0.0108 (17)0.0114 (19)
C230.032 (2)0.026 (2)0.029 (2)0.0077 (17)0.0058 (18)0.009 (2)
C240.025 (2)0.035 (3)0.033 (3)0.0029 (17)0.0090 (19)0.010 (2)
C250.034 (2)0.036 (3)0.041 (3)0.0095 (19)0.019 (2)0.015 (2)
C260.037 (2)0.035 (3)0.032 (2)0.0132 (19)0.0132 (19)0.020 (2)
C270.020 (2)0.027 (2)0.029 (2)0.0077 (17)0.0001 (17)0.006 (2)
O210.0299 (14)0.0499 (19)0.0305 (16)0.0148 (13)0.0079 (12)0.0240 (15)
O220.0351 (15)0.0465 (19)0.0409 (18)0.0196 (14)0.0208 (13)0.0247 (15)
C310.028 (2)0.028 (2)0.021 (2)0.0054 (18)0.0054 (17)0.011 (2)
C320.026 (2)0.031 (3)0.032 (2)0.0061 (18)0.0091 (18)0.012 (2)
C330.026 (2)0.031 (3)0.037 (3)0.0109 (18)0.0071 (19)0.018 (2)
C340.026 (2)0.034 (3)0.025 (2)0.0077 (18)0.0081 (17)0.015 (2)
C350.028 (2)0.030 (3)0.031 (2)0.0125 (18)0.0136 (18)0.011 (2)
C360.025 (2)0.036 (3)0.030 (2)0.0113 (18)0.0075 (18)0.018 (2)
N310.0268 (18)0.036 (2)0.032 (2)0.0098 (17)0.0099 (16)0.016 (2)
O310.0399 (15)0.0310 (18)0.0284 (17)0.0079 (13)0.0042 (13)0.0069 (15)
O320.0369 (15)0.0381 (18)0.0375 (17)0.0142 (14)0.0071 (13)0.0193 (15)
O20.0351 (15)0.0396 (18)0.0232 (16)0.0174 (13)0.0047 (12)0.0143 (14)
C410.029 (2)0.029 (2)0.025 (2)0.0061 (18)0.0026 (17)0.008 (2)
C420.026 (2)0.023 (2)0.024 (2)0.0084 (16)0.0060 (16)0.0097 (19)
C430.029 (2)0.029 (2)0.027 (2)0.0033 (18)0.0014 (17)0.012 (2)
C440.025 (2)0.034 (3)0.038 (2)0.0118 (18)0.0114 (18)0.013 (2)
C450.032 (2)0.029 (3)0.031 (2)0.0040 (18)0.0087 (18)0.012 (2)
C460.037 (2)0.026 (2)0.033 (2)0.0088 (18)0.0110 (19)0.013 (2)
C470.024 (2)0.027 (3)0.026 (2)0.0069 (18)0.0019 (17)0.005 (2)
O410.0388 (16)0.0472 (19)0.0393 (17)0.0161 (13)0.0129 (13)0.0297 (16)
O420.0404 (17)0.053 (2)0.051 (2)0.0219 (15)0.0247 (14)0.0336 (17)
C510.025 (2)0.031 (3)0.023 (2)0.0069 (18)0.0030 (17)0.014 (2)
C520.028 (2)0.031 (3)0.024 (2)0.0086 (18)0.0069 (17)0.011 (2)
C530.027 (2)0.030 (3)0.031 (2)0.0104 (17)0.0037 (18)0.013 (2)
C540.024 (2)0.031 (3)0.024 (2)0.0054 (18)0.0044 (17)0.013 (2)
C550.028 (2)0.027 (2)0.026 (2)0.0072 (18)0.0059 (17)0.0088 (19)
C560.025 (2)0.028 (3)0.042 (3)0.0096 (17)0.0102 (19)0.020 (2)
N510.0306 (19)0.042 (3)0.033 (2)0.0079 (18)0.0104 (16)0.022 (2)
O510.0453 (17)0.042 (2)0.0274 (17)0.0066 (14)0.0032 (13)0.0108 (16)
O520.0426 (16)0.046 (2)0.0445 (19)0.0159 (15)0.0032 (14)0.0275 (17)
O30.0362 (15)0.0337 (17)0.0275 (16)0.0147 (12)0.0066 (12)0.0143 (14)
C610.032 (2)0.025 (2)0.020 (2)0.0121 (17)0.0049 (17)0.0061 (19)
C620.027 (2)0.027 (2)0.019 (2)0.0080 (17)0.0028 (16)0.0069 (19)
C630.029 (2)0.029 (2)0.025 (2)0.0052 (18)0.0036 (17)0.013 (2)
C640.031 (2)0.037 (3)0.025 (2)0.0136 (18)0.0070 (18)0.010 (2)
C650.031 (2)0.032 (3)0.026 (2)0.0090 (19)0.0106 (18)0.009 (2)
C660.042 (2)0.025 (2)0.026 (2)0.0049 (18)0.0124 (18)0.010 (2)
C670.021 (2)0.035 (3)0.027 (2)0.0087 (18)0.0027 (17)0.007 (2)
O610.0439 (16)0.0413 (19)0.0376 (18)0.0183 (14)0.0160 (13)0.0240 (16)
O620.0346 (16)0.058 (2)0.048 (2)0.0205 (15)0.0186 (13)0.0311 (17)
Geometric parameters (Å, º) top
C11—C121.375 (5)C36—H360.95
C11—C161.381 (5)N31—O311.237 (4)
C11—N111.474 (5)N31—O321.239 (4)
C12—C131.386 (5)O2—C411.388 (4)
C12—H120.95C41—C461.386 (5)
C13—C141.384 (5)C41—C421.394 (5)
C13—H130.95C42—C431.395 (5)
C14—C151.376 (5)C42—C471.488 (5)
C14—O11.392 (4)C43—C441.393 (4)
C15—C161.382 (5)C43—H430.95
C15—H150.95C44—C451.375 (5)
C16—H160.95C44—H440.95
N11—O121.225 (4)C45—C461.380 (5)
N11—O111.229 (4)C45—H450.95
O1—C211.385 (4)C46—H460.95
C21—C261.379 (5)O42—H420.84
C21—C221.398 (5)C51—C521.372 (5)
C22—C231.400 (4)C51—C561.381 (5)
C22—C271.473 (5)C51—N511.458 (4)
C23—C241.388 (4)C52—C531.387 (5)
C23—H230.95C52—H520.95
C24—C251.369 (5)C53—C541.385 (5)
C24—H240.95C53—H530.95
C25—C261.381 (5)C54—C551.372 (5)
C25—H250.95C54—O31.374 (4)
C26—H260.95C55—C561.380 (5)
C27—O211.226 (4)C55—H550.95
C47—O411.245 (4)C56—H560.95
C67—O611.234 (4)N51—O521.230 (4)
C27—O221.314 (4)N51—O511.240 (4)
C47—O421.297 (4)O3—C611.398 (4)
C67—O621.297 (4)C61—C661.387 (4)
O22—H220.84C61—C621.392 (5)
C31—C321.377 (5)C62—C631.397 (5)
C31—C361.381 (5)C62—C671.493 (5)
C31—N311.460 (4)C63—C641.380 (4)
C32—C331.388 (5)C63—H630.95
C32—H320.95C64—C651.375 (5)
C33—C341.386 (5)C64—H640.95
C33—H330.95C65—C661.384 (5)
C34—C351.374 (5)C65—H650.95
C34—O21.385 (4)C66—H660.95
C35—C361.376 (5)O62—H620.84
C35—H350.95
C12—C11—C16122.1 (4)C46—C41—O2118.9 (3)
C12—C11—N11119.5 (4)C46—C41—C42121.4 (3)
C16—C11—N11118.5 (4)O2—C41—C42119.6 (3)
C11—C12—C13119.1 (4)C41—C42—C43117.8 (3)
C11—C12—H12120.4C41—C42—C47125.4 (3)
C13—C12—H12120.4C43—C42—C47116.8 (3)
C14—C13—C12118.8 (4)C44—C43—C42121.4 (4)
C14—C13—H13120.6C44—C43—H43119.3
C12—C13—H13120.6C42—C43—H43119.3
C15—C14—C13121.8 (4)C45—C44—C43118.9 (4)
C15—C14—O1115.5 (4)C45—C44—H44120.6
C13—C14—O1122.6 (4)C43—C44—H44120.6
C14—C15—C16119.4 (4)C44—C45—C46121.4 (3)
C14—C15—H15120.3C44—C45—H45119.3
C16—C15—H15120.3C46—C45—H45119.3
C11—C16—C15118.8 (4)C45—C46—C41119.1 (4)
C11—C16—H16120.6C45—C46—H46120.5
C15—C16—H16120.6C41—C46—H46120.5
O12—N11—O11123.7 (4)O41—C47—O42122.9 (3)
O12—N11—C11118.5 (4)O41—C47—C42119.9 (3)
O11—N11—C11117.8 (4)O42—C47—C42117.1 (3)
C14—O1—C21120.1 (3)C47—O42—H42109.5
C26—C21—O1121.2 (3)C52—C51—C56121.9 (3)
C26—C21—C22121.1 (3)C52—C51—N51118.7 (3)
O1—C21—C22117.7 (3)C56—C51—N51119.4 (3)
C21—C22—C23117.8 (3)C51—C52—C53119.6 (4)
C21—C22—C27125.6 (3)C51—C52—H52120.2
C23—C22—C27116.5 (3)C53—C52—H52120.2
C24—C23—C22121.2 (4)C54—C53—C52118.2 (4)
C24—C23—H23119.4C54—C53—H53120.9
C22—C23—H23119.4C52—C53—H53120.9
C25—C24—C23118.9 (4)C55—C54—O3115.3 (3)
C25—C24—H24120.6C55—C54—C53121.9 (3)
C23—C24—H24120.6O3—C54—C53122.8 (3)
C24—C25—C26121.7 (4)C54—C55—C56119.7 (4)
C24—C25—H25119.1C54—C55—H55120.1
C26—C25—H25119.1C56—C55—H55120.1
C21—C26—C25119.2 (4)C55—C56—C51118.5 (4)
C21—C26—H26120.4C55—C56—H56120.7
C25—C26—H26120.4C51—C56—H56120.7
O21—C27—O22123.0 (3)O52—N51—O51123.9 (3)
O21—C27—C22120.9 (3)O52—N51—C51118.5 (3)
O22—C27—C22116.1 (4)O51—N51—C51117.6 (3)
C27—O22—H22109.5C54—O3—C61118.4 (3)
C32—C31—C36122.3 (4)C66—C61—C62120.9 (3)
C32—C31—N31118.4 (3)C66—C61—O3118.2 (3)
C36—C31—N31119.2 (3)C62—C61—O3120.7 (3)
C31—C32—C33118.9 (4)C61—C62—C63118.0 (3)
C31—C32—H32120.6C61—C62—C67125.3 (3)
C33—C32—H32120.6C63—C62—C67116.6 (3)
C34—C33—C32118.9 (4)C64—C63—C62121.0 (4)
C34—C33—H33120.5C64—C63—H63119.5
C32—C33—H33120.5C62—C63—H63119.5
C35—C34—O2115.8 (3)C65—C64—C63120.0 (4)
C35—C34—C33121.3 (4)C65—C64—H64120.0
O2—C34—C33122.9 (3)C63—C64—H64120.0
C34—C35—C36120.2 (4)C64—C65—C66120.3 (3)
C34—C35—H35119.9C64—C65—H65119.9
C36—C35—H35119.9C66—C65—H65119.9
C35—C36—C31118.4 (4)C65—C66—C61119.6 (4)
C35—C36—H36120.8C65—C66—H66120.2
C31—C36—H36120.8C61—C66—H66120.2
O31—N31—O32123.1 (3)O61—C67—O62123.7 (3)
O31—N31—C31118.6 (3)O61—C67—C62120.1 (3)
O32—N31—C31118.3 (3)O62—C67—C62116.2 (4)
C34—O2—C41119.2 (3)C67—O62—H62109.5
C16—C11—C12—C131.0 (6)N31—C31—C36—C35179.2 (3)
N11—C11—C12—C13179.3 (3)C36—C31—N31—O31168.9 (3)
C11—C12—C13—C140.0 (5)C32—C31—N31—O32168.0 (3)
C12—C13—C14—C150.9 (5)C36—C31—N31—O3211.2 (5)
C12—C13—C14—O1176.5 (3)C35—C34—O2—C41162.2 (3)
C13—C14—C15—C161.0 (5)C34—O2—C41—C4654.7 (4)
O1—C14—C15—C16176.9 (3)C46—C41—C42—C431.5 (5)
C12—C11—C16—C150.9 (5)O2—C41—C42—C43177.3 (3)
N11—C11—C16—C15179.4 (3)C46—C41—C42—C47178.4 (3)
C14—C15—C16—C110.1 (5)O2—C41—C42—C472.5 (5)
C12—C11—N11—O12171.6 (3)C41—C42—C43—C440.8 (5)
C16—C11—N11—O128.7 (5)C47—C42—C43—C44179.0 (3)
C16—C11—N11—O11171.2 (3)C42—C43—C44—C450.2 (5)
C15—C14—O1—C21141.2 (3)C43—C44—C45—C460.1 (5)
C14—O1—C21—C2628.5 (5)C44—C45—C46—C410.7 (5)
C13—C14—O1—C2143.0 (5)O2—C41—C46—C45177.3 (3)
C33—C34—O2—C4120.9 (5)C42—C41—C46—C451.4 (5)
C53—C54—O3—C619.5 (5)C43—C42—C47—O4111.1 (5)
C14—O1—C21—C22153.2 (3)C41—C42—C47—O4212.4 (5)
C34—O2—C41—C42129.4 (3)C43—C42—C47—O42167.4 (3)
C54—O3—C61—C62115.8 (4)C56—C51—C52—C532.0 (5)
C12—C11—N11—O118.5 (5)N51—C51—C52—C53178.4 (3)
C32—C31—N31—O3111.9 (5)C51—C52—C53—C540.7 (5)
C52—C51—N51—O5119.2 (5)C52—C53—C54—C551.0 (5)
C21—C22—C27—O21150.2 (4)C52—C53—C54—O3179.2 (3)
C41—C42—C47—O41169.0 (3)O3—C54—C55—C56179.8 (3)
C61—C62—C67—O61170.8 (3)C53—C54—C55—C561.4 (5)
C26—C21—C22—C230.9 (6)C54—C55—C56—C510.1 (5)
O1—C21—C22—C23179.2 (3)C52—C51—C56—C551.6 (5)
C26—C21—C22—C27179.4 (3)N51—C51—C56—C55178.8 (3)
O1—C21—C22—C272.3 (6)C52—C51—N51—O52160.6 (3)
C21—C22—C23—C241.4 (5)C56—C51—N51—O5219.8 (5)
C27—C22—C23—C24180.0 (3)C56—C51—N51—O51160.4 (3)
C22—C23—C24—C251.0 (6)C55—C54—O3—C61172.1 (3)
C23—C24—C25—C260.1 (6)C54—O3—C61—C6669.4 (4)
O1—C21—C26—C25178.3 (3)C66—C61—C62—C635.0 (5)
C22—C21—C26—C250.1 (6)O3—C61—C62—C63179.6 (3)
C24—C25—C26—C210.3 (6)C66—C61—C62—C67171.9 (3)
C23—C22—C27—O2128.3 (5)O3—C61—C62—C672.7 (5)
C21—C22—C27—O2230.9 (5)C61—C62—C63—C642.2 (5)
C23—C22—C27—O22150.6 (3)C67—C62—C63—C64174.9 (3)
C36—C31—C32—C330.1 (5)C62—C63—C64—C652.6 (5)
N31—C31—C32—C33179.0 (3)C63—C64—C65—C664.7 (5)
C31—C32—C33—C340.9 (5)C64—C65—C66—C612.0 (5)
C32—C33—C34—C352.2 (5)C62—C61—C66—C653.0 (5)
C32—C33—C34—O2178.9 (3)O3—C61—C66—C65177.7 (3)
O2—C34—C35—C36179.3 (3)C63—C62—C67—O616.2 (5)
C33—C34—C35—C362.4 (5)C61—C62—C67—O627.3 (5)
C34—C35—C36—C311.3 (5)C63—C62—C67—O62175.7 (3)
C32—C31—C36—C350.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O610.841.792.625 (3)175
O42—H42···O41i0.841.812.648 (3)172
O62—H62···O210.841.802.637 (3)176
C46—H46···O31ii0.952.493.413 (5)163
C26—H26···O51iii0.952.363.268 (5)161
C13—H13···O52iv0.952.503.422 (5)163
C16—H16···O32v0.952.483.241 (5)138
C52—H52···O31ii0.952.353.153 (5)142
C32—H32···O51ii0.952.543.388 (5)149
C44—H44···O22vi0.952.533.370 (5)147
C55—H55···Cg1vii0.952.873.745 (4)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1, y, z+1; (v) x1, y, z1; (vi) x, y+1, z+1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H9NO5
Mr259.21
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.8495 (6), 14.0847 (15), 17.2325 (18)
α, β, γ (°)113.187 (4), 98.515 (6), 96.400 (7)
V3)1701.5 (3)
Z6
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.15 × 0.06 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.966, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
14193, 7578, 2621
Rint0.122
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.149, 0.87
No. of reflections7578
No. of parameters517
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
C27—O211.226 (4)C27—O221.314 (4)
C47—O411.245 (4)C47—O421.297 (4)
C67—O611.234 (4)C67—O621.297 (4)
C14—O1—C21120.1 (3)C54—O3—C61118.4 (3)
C34—O2—C41119.2 (3)
C13—C14—O1—C2143.0 (5)C12—C11—N11—O118.5 (5)
C33—C34—O2—C4120.9 (5)C32—C31—N31—O3111.9 (5)
C53—C54—O3—C619.5 (5)C52—C51—N51—O5119.2 (5)
C14—O1—C21—C22153.2 (3)C21—C22—C27—O21150.2 (4)
C34—O2—C41—C42129.4 (3)C41—C42—C47—O41169.0 (3)
C54—O3—C61—C62115.8 (4)C61—C62—C67—O61170.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O610.841.792.625 (3)175
O42—H42···O41i0.841.812.648 (3)172
O62—H62···O210.841.802.637 (3)176
C46—H46···O31ii0.952.493.413 (5)163
C26—H26···O51iii0.952.363.268 (5)161
C13—H13···O52iv0.952.503.422 (5)163
C16—H16···O32v0.952.483.241 (5)138
C52—H52···O31ii0.952.353.153 (5)142
C32—H32···O51ii0.952.543.388 (5)149
C44—H44···O22vi0.952.533.370 (5)147
C55—H55···Cg1vii0.952.873.745 (4)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1, y, z+1; (v) x1, y, z1; (vi) x, y+1, z+1; (vii) x, y, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraga, D., Grepioni, F., Birdha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156–3166.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, pp. 86–89. Oxford University Press.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomson, R. H. & Wylie, A. G. (1966). J. Chem. Soc. C, pp. 321–324.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds