organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The supramolecular structure of 6-hy­droxy-1,3-benzoxa­thiol-2-one (tioxolone)

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland
*Correspondence e-mail: p.j.cox@rgu.ac.uk

(Received 10 March 2004; accepted 5 April 2004; online 11 May 2004)

The planar mol­ecules of 6-hydroxy-1,3-benzoxa­thiol-2-one, C7H4O3S, are linked by extensive O—H⋯O and C—H⋯O hydrogen bonding and are further stablilized by face-to-face ππ interactions.

Comment

The title compound, (I[link]), also known as tioxolone, has been used in the treatment of acne due to its sulfur content (Lius & Sennerfeldt, 1979[Lius, V. & Sennerfeldt, P. (1979). Lakartidningen, 76, 39-41.]). It is reported to possess cytostatic (Goeth & Wildfeuer, 1969[Goeth, H. & Wildfeuer, A. (1969). Arzneim. Forsch. 19, 1298-1304.]), antipsoriatic, antibacterial and antimycotic properties (Wildfeuer, 1970[Wildfeuer, A. (1970). Arzneim. Forsch. 20, 824-831.]). It is also added to some cosmetics (e.g. hair shampoos and skin cleansers), due to claims for its oil-regulating and antibacterial properties.

[Scheme 1]

The bond lengths and angles in (I[link]) are as expected (Table 1[link]) for this almost planar mol­ecule, where the greatest torsion angle deviation from zero or ±180° is seen for C2—O1—C7—O2 [−177.49 (18)°]. For simple mol­ecules of this kind, with a hydrogen-bond donor group (—OH) at one end and an acceptor (C=O) at the other, it can be predicted that a continuous chain of hydrogen-bonded mol­ecules will be present in the crystal lattice. Such is the case for 5-hydroxy­benzo­furan-(3H)-one (Bocelli & Grenier-Loustalot, 1982[Bocelli, G. & Grenier-Loustalot, M. F. (1982). J. Mol. Struct. 82, 301-306.]). For (I[link]), this is indeed the case, and details of the classical O3—H3⋯O2i hydrogen bond are given in Table 2[link] [symmetry code: (i) 1 + x, [{1 \over 2}] − y, z − [{1 \over 2}]].

Further examination of non-bonded contacts also reveals two intermolecular C—H⋯O bonds (Table 2[link]). Hence, as shown in Fig. 2[link], each mol­ecule of (I[link]) is linked through six hydrogen bonds to five adjacent mol­ecules. One C—H⋯O bond is arranged as described by graph set R22(8) about inversion centres, as shown in Fig. 3[link]. The other C—H⋯O bond links the O2 keto group to C4; hence atom O2 acts as an acceptor for two H atoms, with an H3⋯O2⋯H4 angle of 120°. The resultant C—H⋯O hydrogen-bonding motif may be described as zigzag ribbons. Hydroxy atom O3 acts as both a donor, in forming the continuous chain of classical hydrogen bonds in the [20[\overline 1]] direction, and an acceptor, in the formation of the R22(8) rings. Only one H atom in the mol­ecule, namely H5, is not involved in hydrogen bonding.

The three-dimensional framework of (I[link]) is further stabilized by ππ interactions (Steed & Atwood, 2000[Steed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry. Chichester: Wiley.]) between the oxa­thiol­one and benzene rings in partially overlapping mol­ecules (Fig. 4[link]). Here, the interplanar spacing is 3.377 (3) Å, the distance between the centroids of the two rings is 3.508 (2) Å, the two centres are offset by 0.961 (2) Å and the interacting mol­ecules are related by unit-cell translations along the short a axis.

A search of the Cambridge Structural Database (Version 5.25, January 2004 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-397.]) shows that the ring system in (I[link]) is unique among crystal structures examined to date. Similar, but not identical, ring systems which lack classical hydrogen bonding are present in the crystal structures of 5,7-di-tert-butyl-3H-2,1-benzoxa­thiol-3-one (Krische et al., 1982[Krische, B., Walter, W. & Adiwidjaja, G. (1982). Chem. Ber. 115, 3842-3850.]) and 3-oxo-3H-2,1-benzoxa­thiole-7-carboxylic acid methyl ester (Walter et al., 1978[Walter, W., Krisch, B., Adiwidjaja, G. & Voss, J. (1978). Chem. Ber. 111, 1685-1700.]).

[Figure 1]
Figure 1
A view of the atomic arrangement in (I[link]), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A partial packing diagram for (I[link]), showing the intermolecular hydrogen bonding [symmetry codes: (i) 1 + x, [{1 \over 2}] − y, z − [{1 \over 2}]; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 −x, y − [{1 \over 2}], [{3 \over 2}] − z; (iv) x − 1, [{1 \over 2}] − y, z + [{1 \over 2}]; (v) 1 − x, y + [{1 \over 2}], [{3 \over 2}] − z].
[Figure 3]
Figure 3
The C—H⋯O hydrogen bonding in the crystal structure of (I[link]).
[Figure 4]
Figure 4
A partial packing diagram for (I[link]), showing mol­ecules stacked along the a axis. Ring centroids (Cg1 for the oxa­thiol­one ring and Cg2 for the benzene ring) involved in the ππ interactions are joined by dashed lines.

Experimental

The title compound was purchased from Sigma and recrystallized from n-butanol. Data were collected on a very small crystal (2 × 10−5 mm3).

Crystal data
  • C7H4O3S

  • Mr = 168.16

  • Monoclinic, P21/c

  • a = 3.7620 (2) Å

  • b = 10.686 (4) Å

  • c = 16.447 (9) Å

  • β = 91.424 (16)°

  • V = 661.0 (4) Å3

  • Z = 4

  • Dx = 1.69 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 18 478 reflections

  • θ = 2.9–27.5°

  • μ = 0.43 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.10 × 0.02 × 0.01 mm

Data collection
  • Enraf–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans to fill Ewald sphere

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-429.]) Tmin = 0.965, Tmax = 1.000

  • 11 482 measured reflections

  • 1502 independent reflections

  • 1174 reflections with I > 2σ(I)

  • Rint = 0.08

  • θmax = 27.5°

  • h = −4 → 4

  • k = −13 → 13

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R(F) = 0.037

  • wR(F2) = 0.083

  • S = 1.05

  • 1502 reflections

  • 103 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0338P)2 + 0.3671P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C7 1.747 (2) 
S1—C3 1.748 (2)
O1—C7 1.362 (2)
O2—C7 1.207 (2)
C7—S1—C3 90.11 (9)
C7—O1—C2 112.08 (15)
C2—C3—S1 110.61 (14)
O2—C7—S1 127.03 (16)
O1—C7—S1 112.63 (13)
C2—O1—C7—O2 −177.49 (18)
C2—O1—C7—S1 2.3 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.86 (2) 1.91 (2) 2.767 (2) 172 (2)
C1—H1⋯O3ii 0.95 2.42 3.365 (3) 174
C4—H4⋯O2iii 0.95 2.53 3.437 (3) 161
Symmetry codes: (i) [1+x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (ii) 1-x,1-y,1-z; (iii) [1-x,y-{\script{1\over 2}},{\script{3\over 2}}-z].

Due to the small amount of scattering material, it was necessary to stabilize the position of the hydroxy H atom using distance restraints [O3—H3 = 0.90 (2) Å and H3⋯O2 = 1.90 (2) Å] that led to acceptable geometries. The remaining H atoms were allowed to ride on their attached atoms, with C—H distances constrained to 0.95 Å. For all H atoms, Uiso(H) = 1.2Ueq(parent atom).

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), also known as tioxolone, has been used in the treatment of acne due to its sulfur content (Lius & Sennerfeldt, 1979). It is reported to possess cytostatic (Goeth & Wildfeuer, 1969), antipsoriatic, antibacterial and antimycotic properties (Wildfeuer, 1970). It is also added to some cosmetics (e.g. hair shampoos and skin cleansers), due to claims for its oil-regulating and antibacterial properties. \sch

The bond lengths and angles in (I) are as expected (Table 1) for this almost planar molecule, where the greatest torsion angle deviation from zero or ±180° is seen for C2—O1—C7—O2 [−177.49 (18)°]. For simple molecules of this kind, with a hydrogen-bond donor group (–OH) at one end and an acceptor (CO) at the other, it can be predicted that a continuous chain of hydrogen-bonded molecules will be present in the crystal lattice. Such is the case for 5-hydroxy-2(3H)-benzofuranone (Bocelli & Grenier-Loustalot, 1982). For (I), this is indeed the case, and details of the classical O3—H3···O2i hydrogen bond are given in Table 2 [symmetry code: (i) 1 + x, 1/2 − y, z − 1/2].

Further examination of non-bonded contacts also reveals two intermolecular C—H···O bonds (Table 2). Hence, as shown in Fig. 2, each molecule of (I) is linked through six hydrogen bonds to five adjacent molecules. One C—H···O bond is arranged as described by graph set R22(8) about inversion centres, as shown in Fig.3. The other C—H···O bond links the O2 keto group to C4, hence atom O2 acts as an acceptor for two H atoms, with H3···O2···H4 120°. The resultant C—H···O hydrogen-bonding motif may be described as zigzag ribbons. The hydroxy atom O3 acts as both a donor, in forming the continuous chain of classical hydrogen bonds in the [201] direction, and as an acceptor, in the formation of the R22(8) rings. Only one H atom in the molecule, namely H5, is not involved in hydrogen bonding.

The three-dimensional framework of (I) is further stabilized by ππ interactions (Steed & Atwood, 2000) between the oxathiolone and phenyl rings in partially overlapping molecules (Fig. 4). Here, the interplanar spacing is 3.377 (3) Å, the distance between the centres of gravity of the two rings is 3.508 (2) Å, the two centres are offset by 0.961 (2) Å and the interacting molecules are related by unit-cell translations along the short a axis.

A search of the Cambridge Structural Database (Version?; Allen, 2002) shows that the ring system in (I) is unique among crystal structures examined to date. Similar, but not identical, ring systems which lack classical hydrogen bonding are present in the crystal structures of 5,7-di-tert-butyl-3H-2,1-benzoxathiol-3-one (Krische et al., 1982) and 3-oxo-3H-2,1-benzoxathiole-7-carboxylic acid methyl ester (Walter et al., 1978).

Experimental top

The title compound was purchased from Sigma and recrystallized from n-butanol. Data were collected on a very small crystal (2 × 10−5mm3).

Refinement top

The hydroxy H atom was refined using distance restraints [O3—H3 0.90 (2) and H3···O2 1.90 (2) Å]. The remaining H atoms were allowed to ride on their attached atoms, with C—H constrained at 0.95 Å. For all H atoms, Uiso(H) = 1.2Ueq(parent atom). From the coeditor: It seems unusual to restrain an intermolecular distance, since these are less predictable than covalently bonded distances. Please provide some justification, and confirm that this intermolecular restraint has not biased the resulting hydrogen-bonding parameters in Table 2.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the atomic arrangement in (I), showing the atom-numbering scheme and with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram for (I), showing the intermolecular hydrogen bonding [symmetry codes: (i) 1 + x, 1/2 − y, z − 1/2; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, y − 1/2, 3/2 − z; (iv) x − 1, 1/2 − y, z + 1/2; (v) 1 − x, y + 1/2, 3/2 − z].
[Figure 3] Fig. 3. The C—H···O hydrogen bonding in the crystal of (I).
[Figure 4] Fig. 4. A partial packing diagram for (I), showing molecules stacked along the a axis. Ring centroids (Cg1 for the oxathiolone ring and Cg2 for the phenyl ring) involved in the ππ interactions are joined by dotted lines.
(I) top
Crystal data top
C7H4O3SF(000) = 344
Mr = 168.16Dx = 1.69 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18478 reflections
a = 3.7620 (2) Åθ = 2.9–27.5°
b = 10.686 (4) ŵ = 0.43 mm1
c = 16.447 (9) ÅT = 120 K
β = 91.424 (16)°Needle, colourless
V = 661.0 (4) Å30.1 × 0.02 × 0.01 mm
Z = 4
Data collection top
Enraf Nonius KappaCCD area-detector
diffractometer
1174 reflections with I > 2σ(I)
ϕ and ω scans to fill Ewald sphereRint = 0.08
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.965, Tmax = 1.000h = 44
11482 measured reflectionsk = 1313
1502 independent reflectionsl = 2121
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.3671P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.33 e Å3
1502 reflectionsΔρmin = 0.30 e Å3
103 parameters
Crystal data top
C7H4O3SV = 661.0 (4) Å3
Mr = 168.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7620 (2) ŵ = 0.43 mm1
b = 10.686 (4) ÅT = 120 K
c = 16.447 (9) Å0.1 × 0.02 × 0.01 mm
β = 91.424 (16)°
Data collection top
Enraf Nonius KappaCCD area-detector
diffractometer
1502 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1174 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 1.000Rint = 0.08
11482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
1502 reflectionsΔρmin = 0.30 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31869 (13)0.12103 (4)0.76562 (3)0.01635 (16)
O10.2310 (4)0.35210 (12)0.72071 (8)0.0161 (3)
O20.0223 (4)0.31042 (13)0.84351 (8)0.0215 (4)
O30.6947 (4)0.34264 (13)0.45481 (8)0.0211 (4)
H30.802 (6)0.2907 (19)0.4239 (12)0.025*
C10.4639 (5)0.35334 (18)0.58528 (11)0.0151 (4)
H10.41520.43990.57810.018*
C20.3875 (5)0.29119 (17)0.65601 (11)0.0135 (4)
C30.4551 (5)0.16607 (18)0.66909 (11)0.0137 (4)
C40.6082 (5)0.09592 (18)0.60835 (11)0.0156 (4)
H40.65740.00950.61610.019*
C50.6879 (5)0.15485 (18)0.53593 (11)0.0151 (4)
H50.79180.10820.49350.018*
C60.6171 (5)0.28151 (18)0.52483 (11)0.0152 (4)
C70.1683 (5)0.27299 (18)0.78366 (11)0.0157 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0207 (3)0.0143 (3)0.0141 (2)0.0007 (2)0.00184 (18)0.0018 (2)
O10.0218 (8)0.0138 (7)0.0129 (7)0.0011 (5)0.0037 (5)0.0001 (5)
O20.0278 (9)0.0192 (8)0.0178 (7)0.0048 (6)0.0093 (6)0.0035 (6)
O30.0330 (9)0.0181 (8)0.0125 (7)0.0052 (6)0.0082 (6)0.0022 (6)
C10.0178 (10)0.0123 (10)0.0154 (9)0.0002 (8)0.0000 (8)0.0002 (7)
C20.0142 (10)0.0136 (10)0.0129 (9)0.0005 (8)0.0004 (7)0.0040 (7)
C30.0141 (10)0.0144 (10)0.0124 (9)0.0016 (7)0.0019 (8)0.0030 (7)
C40.0160 (10)0.0121 (10)0.0186 (10)0.0035 (8)0.0025 (8)0.0005 (8)
C50.0153 (10)0.0164 (10)0.0135 (9)0.0011 (8)0.0001 (8)0.0034 (7)
C60.0164 (11)0.0173 (10)0.0119 (9)0.0001 (8)0.0009 (8)0.0012 (8)
C70.0165 (10)0.0161 (10)0.0144 (9)0.0038 (8)0.0005 (8)0.0003 (8)
Geometric parameters (Å, º) top
S1—C71.747 (2)C1—C61.392 (3)
S1—C31.748 (2)C1—H10.95
O1—C71.362 (2)C2—C31.377 (3)
O1—C21.391 (2)C3—C41.386 (3)
O2—C71.207 (2)C4—C51.387 (3)
O3—C61.362 (2)C4—H40.95
O3—H30.860 (15)C5—C61.391 (3)
C1—C21.376 (3)C5—H50.95
C7—S1—C390.11 (9)C3—C4—C5118.44 (18)
C7—O1—C2112.08 (15)C3—C4—H4120.8
C6—O3—H3107.7 (15)C5—C4—H4120.8
C2—C1—C6115.89 (18)C4—C5—C6120.66 (18)
C2—C1—H1122.1C4—C5—H5119.7
C6—C1—H1122.1C6—C5—H5119.7
C1—C2—C3123.99 (17)O3—C6—C5122.24 (17)
C1—C2—O1121.49 (17)O3—C6—C1116.15 (17)
C3—C2—O1114.52 (16)C5—C6—C1121.62 (18)
C2—C3—C4119.41 (17)O2—C7—O1120.34 (18)
C2—C3—S1110.61 (14)O2—C7—S1127.03 (16)
C4—C3—S1129.97 (15)O1—C7—S1112.63 (13)
C6—C1—C2—C30.3 (3)S1—C3—C4—C5179.12 (15)
C6—C1—C2—O1179.38 (17)C3—C4—C5—C60.3 (3)
C7—O1—C2—C1178.14 (17)C4—C5—C6—O3179.41 (18)
C7—O1—C2—C31.6 (2)C4—C5—C6—C10.2 (3)
C1—C2—C3—C40.2 (3)C2—C1—C6—O3179.74 (17)
O1—C2—C3—C4179.49 (17)C2—C1—C6—C50.1 (3)
C1—C2—C3—S1179.59 (16)C2—O1—C7—O2177.49 (18)
O1—C2—C3—S10.1 (2)C2—O1—C7—S12.3 (2)
C7—S1—C3—C20.98 (15)C3—S1—C7—O2177.9 (2)
C7—S1—C3—C4178.3 (2)C3—S1—C7—O11.90 (15)
C2—C3—C4—C50.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.86 (2)1.91 (2)2.767 (2)172 (2)
C1—H1···O3ii0.952.423.365 (3)174
C4—H4···O2iii0.952.533.437 (3)161
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H4O3S
Mr168.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)3.7620 (2), 10.686 (4), 16.447 (9)
β (°) 91.424 (16)
V3)661.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.1 × 0.02 × 0.01
Data collection
DiffractometerEnraf Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.965, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11482, 1502, 1174
Rint0.08
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.083, 1.05
No. of reflections1502
No. of parameters103
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO and COLLECT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C71.747 (2)O1—C71.362 (2)
S1—C31.748 (2)O2—C71.207 (2)
C7—S1—C390.11 (9)O2—C7—S1127.03 (16)
C7—O1—C2112.08 (15)O1—C7—S1112.63 (13)
C2—C3—S1110.61 (14)
C2—O1—C7—O2177.49 (18)C2—O1—C7—S12.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.860 (15)1.912 (15)2.767 (2)172 (2)
C1—H1···O3ii0.952.423.365 (3)174
C4—H4···O2iii0.952.533.437 (3)161
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the EPSRC National X-ray Crystallography Service at Southampton University for collecting the data.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–429.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBocelli, G. & Grenier-Loustalot, M. F. (1982). J. Mol. Struct. 82, 301–306.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoeth, H. & Wildfeuer, A. (1969). Arzneim. Forsch. 19, 1298–1304.  CAS Google Scholar
First citationKrische, B., Walter, W. & Adiwidjaja, G. (1982). Chem. Ber. 115, 3842–3850.  CrossRef CAS Web of Science Google Scholar
First citationLius, V. & Sennerfeldt, P. (1979). Lakartidningen, 76, 39–41.  PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry. Chichester: Wiley.  Google Scholar
First citationWalter, W., Krisch, B., Adiwidjaja, G. & Voss, J. (1978). Chem. Ber. 111, 1685–1700.  CrossRef CAS Web of Science Google Scholar
First citationWildfeuer, A. (1970). Arzneim. Forsch. 20, 824–831.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds