organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Molecular conformation and supramol­ecular aggregation in four 2,3,4,5-tetra­hydro-3,4-di­phenylbenzo­thia­zepines

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 12 March 2004; accepted 13 April 2004; online 22 May 2004)

In (2RS,4RS)-1-acetyl-2,3,4,5-tetra­hydro-2,4-di­phenyl-1,5-benzo­thia­zepine, C23H21NOS, (I), and (2RS,4RS)-1-chloroacet­yl-2,3,4,5-tetra­hydro-2,4-di­phenyl-1,5-benzo­thia­zepine,C23H20ClNOS, (II), the seven-membered rings have boat conformations, whereas in (2RS,4RS)-1-benzoyl-2,3,4,5-tetra­hydro-2,4-di­phenyl-1,5-benzo­thia­zepine, C28H23NOS, (III), this ring has a conformation intermediate between the boat and twist-boat forms. The mol­ecules of (I) are linked into isolated [R_2^2](16) dimers by two C—H⋯O hydrogen bonds [H⋯O = 2.41 and 2.47 Å, C⋯O = 3.268 (3) and 3.336 (3) Å, and C—H⋯O = 150 and 152°]. In (II), the mol­ecules are again linked by two C—H⋯O hydrogen bonds [H⋯O = 2.42 and 2.48 Å, C⋯O = 3.295 (3) and 3.364 (2) Å, and C—H⋯O = 153 and 154°], forming chains of alternating [R_2^2](18) and [R_2^2](22) rings. Two C—H⋯O hydrogen bonds [H⋯O = 2.49 and 2.53 Å, C⋯O = 3.347 (2) and 3.295 (2) Å, and C—H⋯O = 150 and 138°] link the mol­ecules of (III) into sheets containing alternating [R_2^2](22) and [R_6^4](30) rings. Re-examination of the published structure of (2RS,4RS)-2,3,4,5-tetra­hydro-2,4-di­phenyl-1,5-benzo­thia­zepine shows that the mol­ecules are linked by three C—H⋯π(arene) hydrogen bonds into a three-dimensional framework.

Comment

We report here the molecular and supramolecular structures of three N-acyl-C-phenyl­ated tetra­hydro­benzo­thia­zepines, (I[link])–(III[link]), and we compare these with the simpler analogue, (IV[link]), which is unsubstituted at the N atom and whose structure has recently been reported (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]). These compounds are of interest as their molecular constitutions all bear some resemblance to that of the calcium antagonist drug diltiazem [or (2S,3S)-3-acetoxy-5-(di­methyl­amino­ethyl)-2-(4-meth­oxy­phenyl)-2,3-di­hydro-1,5-benzo­thia­zepine-4(5H)-one,(V)] and its 2R,3R enantiomer (Kojić-Prodić et al., 1984[Kojić-Prodić, B., Ruz˘ić-Toros˘, Z., S˘unjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916-925.]).

[Scheme 1]

Each of (I[link])–(III[link]) (Figs. 1[link][link]–3[link]) contains two stereogenic C atoms, C2 and C4, and hence the formation of diastereo­iso­mers is possible. However, each of the crystalline samples ex­amined contained a single pair of enantiomers, R,R and S,S, and for each compound the reference mol­ecule was selected as having the R,R configuration. In this respect, the configurations of (I[link])–(III[link]) are identical to that of (IV[link]) (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]). It should, however, be noted here that the schematic view of (IV[link]) in the original report shows the incorrect 2S,4R isomer. The interbond angles at the N atom in each of (I[link])–(III[link]) sum to ∼360.0°, so that no further configurational isomers are possible.

Compound (I[link]) crystallizes with Z′ = 2; the thia­zepine rings in the two independent mol­ecules in (I[link]) and in the mol­ecules of (II[link]) and (III[link]) all adopt similar conformations, as shown by the ring torsion angles (Table 5[link]). Apart from the S1—C10—C11—N5 angle, there are corresponding pairs of torsion angles having similar magnitudes but opposite signs. This fact indicates conformations that, apart from the obvious differences in atom types and bond lengths, approximate in (I[link]) and (II[link]) to pseudo-mirror symmetry; this conformation may be best described as the boat conformation (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). The conformation of the thia­zepine ring in (III[link]) does not exhibit even approximate symmetry and it cannot be described in terms of a single primitive form (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). Instead, the conformation is intermediate between the boat and twist-boat forms. By contrast, the thia­zepine ring in (IV[link]) exhibits approximate pseudo-twofold rotational symmetry, as the corresponding pairs of torsion angles have similar magnitudes with the same signs, although all four primitive forms contribute to the overall conformation of (IV[link]).

The only significant difference between the bond lengths in (I)–(III) and those in (IV[link]) occurs for the N5—C11 bond. In (I)–(III), where atom N5 is coplanar with the thiazepine ring, this distance lies in the range 1.427 (3)–1.439 (2) Å, whereas in (IV[link]), where the configuration involving atom N5 is pyramidal, this distance is 1.395 (3) Å. By contrast, the mean values for bonds of types Caryl—NC2, involving planar N atoms, and Caryl—NHC, involving pyramidal N atoms, are 1.371 and 1.419 Å, respectively (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The remaining bond lengths in (I)–(III) show no unusual values.

The supramolecular structures of (I[link])–(III[link]) all have different dimensionality. In (I[link]), the two independent mol­ecules are linked by a pair of C—H⋯O hydrogen bonds (Table 1[link]). Atom C145 in the type 1 mol­ecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O25 in the type 2 mol­ecule at (1 − x, 1 − y, 1 − z), while atom C245 at (1 − x, 1 − y, 1 − z) in turn acts as a donor to carbonyl atom O15 at (x, y, z). In this manner, an approximately centrosymmetric [R_2^2](16) dimer is formed (Fig. 4[link]). This dimeric aggregate is centred at approximately (0.75, 0.37, 0.75), and this alone precludes the possibility of any additional symmetry. While such an aggregate would normally have been selected as the asymmetric unit, in this instance the asymmetric unit was selected so that each of the independent mol­ecules had the R,R configuration. The [R_2^2](16) dimer contains one R,R mol­ecule and one S,S mol­ecule. There are four of these dimeric units in each unit cell, but there are no direction-specific interactions between adjacent dimers.

In (II[link]), the mol­ecules are linked by two C—H⋯O hydrogen bonds (Table 2[link]) into a chain of rings. Atom C24 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O5 in the mol­ecule at (1 − x, −y, 1 − z), so forming an [R_2^2](22) ring centred at ([1 \over 2], 0, [1 \over 2]), while atom C44 at (x, y, z) acts as a donor to atom O5 at (1 − x, 1 − y, 1 − z), thus forming an [R_2^2](18) ring centred at ([1 \over 2], [1 \over 2], [1 \over 2]). Propagation of these two hydrogen bonds then generates a chain of rings along ([1 \over 2], y, [1 \over 2]), with [R_2^2](18) rings centred at ([1 \over 2], n + [1 \over 2], [1 \over 2]) (n = zero or integer) and [R_2^2](22) rings centred at ([1 \over 2], n, [1 \over 2]) (n = zero or integer) (Fig. 5[link]). Two chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

As in (II[link]), the supramolecular structure of (III[link]) is again dictated by two intermolecular C—H⋯O hydrogen bonds (Table 3[link]), but now their effect is to generate a sheet structure, in contrast with the chain of rings in (II[link]). The stronger of these two hydrogen bonds gives rise to a chain running parallel to the [010] direction. Atom C23 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O5 in the mol­ecule at ([1 \over 2] − x, [1 \over 2] + y, [3 \over 2] − z), so producing a C(10) chain, generated by the 21 screw axis along ([1 \over 4], y, [3 \over 4]) (Fig. 6[link]). Four of these chains pass through each unit cell; two, lying in the domain −0.02 < x < 0.52, are generated by screw axes at x = [1 \over 4], while the other two, lying in the domain 0.48 < x < 1.02, are generated by screw axes at x = [3 \over 4]. Within each domain, the C(10) chains are linked into sheets by the second of the C—H⋯O hydrogen bonds. Atom C24 in the mol­ecule at (x, y, z), which lies in the C(10) chain along ([1 \over 4], y, [3 \over 4]), acts as a hydrogen-bond donor to carbonyl atom O5 in the mol­ecule at ([1 \over 2] − x, [1 \over 2] − y, 2 − z), which lies in the C(10) chain along ([1 \over 4], y, [5 \over 4]), so forming a centrosymmetric [R_2^2](22) ring centred at ([1 \over 4], [1 \over 4], 1) (Fig. 7[link]). The combination of the [R_2^2](22) rings and the C(10) chains generates a (100) sheet built from [R_2^2](22) and [R_6^4](30) rings alternating in a chessboard fashion (Fig. 8[link]). Two sheets of this type pass through each unit cell, one in each domain of x as defined above, but there are no direction-specific inter­actions between adjacent sheets. Despite the presence of at least three independent aryl rings in each of (I[link])–(III[link]), there are neither C—H⋯π(arene) hydrogen bonds nor aromatic π–­π stacking interactions present in any of their structures.

In the light of the very different supramolecular structures adopted by (I[link])–(III[link]), it seemed of interest to re-ex­amine the supramolecular structure of (IV[link]) using space group P21/n, with Z′ = 1, and the atomic coordinates established by Laavanya et al. (2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]), where the atom labelling is identical to that employed in (I[link])–(III[link]). There are, in fact, three C—H⋯π(arene) hydrogen bonds, all with H⋯centroid distances of less than 3.0 Å (Table 4[link]), which were not noted in the original report but which together link the mol­ecules of (IV[link]) into a continuous three-dimensional framework.

In the first of these interactions, atom C6 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the C6–C11 ring in the mol­ecule at ([1 \over 2] − x, [1 \over 2] + y, [1 \over 2] − z), so producing a [010] chain generated by the 21 screw axis along ([1 \over 4], y, [1 \over 4]) (Fig. 9[link]). In a similar way, atom C21 at (x, y, z) acts as a donor to the C20–C25 ring (original atom numbering) in the mol­ecule at ([3 \over 2] − x, [1 \over 2] + y, [1 \over 2] − z), so producing a second [010] chain, this time generated by the screw axis along ([3 \over 4], y, [1 \over 4]). The combination of these two chains then generates a (001) sheet in the form of a (4,4)-net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]), lying in the domain −0.04 < z < 0.54 (Fig. 10[link]); a second sheet, related to the first by inversion, lies in the domain 0.46 < z < 1.04.

The third C—H⋯π(arene) hydrogen bond links adjacent (001) sheets; atom C34 in the mol­ecule at (x, y, z), which lies in the domain −0.04 < z < 0.54, acts as a hydrogen-bond donor to ring C20–C25 in the mol­ecule at (1 − x, 1 − y, −z), which lies in the domain −0.54 < z < 0.04. The resulting centrosymmetric motif (Fig. 11[link]) thus serves to link sheets in different domains and in this manner to link all of the (001) sheets into a single framework.

It is also timely to re-evaluate the intermolecular N—H⋯S interaction in (IV[link]). This interaction was originally discounted (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]) as insignificant on the grounds that the shortest intermolecular N⋯S distance (Table 4[link]) is in excess of the 3.3 Å sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). However, an analysis (Allen et al., 1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696-701.]) of hydrogen bonds having two-coordinate S as the acceptor, using data retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), indicated mean H⋯S, N⋯S and N—H⋯S parameters in such bonds where S is bonded to two C atoms of 2.74 (2) Å, 3.58 (3) Å and 145 (3)° respectively. Accordingly, if the N—H⋯S contact in (IV[link]) is not considered to be a significant intermolecular interaction, it is more soundly rejected on the grounds of the long H⋯S distance and the small N—H⋯S angle than on the grounds of the N⋯S distance.

In summary, we have shown that the very closely related series of compounds (I[link])–(IV[link]) exhibit supramolecular aggregation in zero, one, two and three dimensions, respectively, and that while in (I[link])–(III[link]) the aggregation depends solely on C—H⋯O hydrogen bonds, in (IV[link]) it depends solely on C—H⋯π(arene) hydrogen bonds. The occurrence of such differences resulting from very modest changes in molecular constitution undoubtedly presents a considerable challenge for computational methods that seek to predict, whether from first principles or otherwise, the crystal structures of simple molecular compounds (Lommerse et al., 2000[Lommerse, J. P. M., Motherwell, W. D. S., Ammon, L. H., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714.]; Motherwell et al., 2002[Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Scheraga, H., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647-661.]).

[Figure 1]
Figure 1
The two independent mol­ecules of (I[link]), showing the atom-labelling schemes: (a) mol­ecule 1 and (b) mol­ecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecule of (III[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Part of the crystal structure of (I[link]), showing the formation of a hydrogen-bonded [R_2^2](16) dimer. For clarity, the unit-cell box and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5]
Figure 5
A stereoview of part of the crystal structure of (II[link]), showing the formation of a chain of alternating [R_2^2](18) and [R_2^2](22) rings along [010]. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of (III[link]), showing the formation of a C(10) chain along [010]. For clarity, the unit-cell box and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([1 \over 2] − x, [1 \over 2] + y, [3 \over 2] − z) and (x, 1 + y, z), respectively.
[Figure 7]
Figure 7
Part of the crystal structure of (III[link]), showing the formation of an [R_2^2](22) dimer. For clarity, the unit-cell box and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position ([1 \over 2] − x, [1 \over 2] − y, 2 − z).
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of (III[link]), showing the formation of a (100) sheet built from alternating [R_2^2](22) and [R_6^4](30) rings. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of (IV[link]) (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]), showing the formation of a C—H⋯π(arene) chain along ([1 \over 4], y, [1 \over 4]). For clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([1 \over 2] − x, [1 \over 2] + y, [1 \over 2] − z) and (x, 1 + y, z), respectively.
[Figure 10]
Figure 10
A stereoview of part of the crystal structure of (IV[link]), showing the formation of a (001) sheet. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 11]
Figure 11
Part of the crystal structure of (IV[link]), showing the formation of the centrosymmetric motif that links the (001) sheets. For clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (1-x, 1-y, -z).

Experimental

Compounds (I[link])–(III[link]) were prepared by acyl­ation of (IV[link]) (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]) with acetic anhydride, chloro­acetyl chloride and benzoyl chloride, respectively, in the presence of triethyl­amine in dry benzene under reflux conditions. Analyses found for (I): C 77.0, H 6.1, N 3.7%; C23H21NOS requires: C 76.8, H 5.9, N 3.9%; found for (II[link]): C 70.2, H 5.0, N 3.6%; C23H20ClNOS requires: C 70.1, H 5.1, N 3.6%; found for (III[link]): C 79.5, H 5.6, N 3.3%; C28H23NOS requires: C 79.8, H 5.5, N 3.3%. Crystals of (I[link])–(III[link]) suitable for single-crystal X-ray diffraction were grown from solutions in ethanol; m.p.: (I[link]) 401–404 K, (II[link]) 393–397 K, and (III[link]) 445–449 K.

Compound (I)[link]

Crystal data
  • C23H21NOS

  • Mr = 359.48

  • Monoclinic, P21/c

  • a = 20.3579 (4) Å

  • b = 8.3014 (1) Å

  • c = 22.2513 (4) Å

  • β = 93.865 (1)°

  • V = 3751.90 (11) Å3

  • Z = 8

  • Dx = 1.273 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8274 reflections

  • θ = 3.0–27.1°

  • μ = 0.18 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.20 × 0.04 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.954, Tmax = 0.994

  • 51 290 measured reflections

  • 8274 independent reflections

  • 4659 reflections with I > 2σ(I)

  • Rint = 0.109

  • θmax = 27.1°

  • h = −25 → 26

  • k = −10 → 9

  • l = −26 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.125

  • S = 1.00

  • 8274 reflections

  • 471 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0541P)2 + 0.0549P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C145—H145⋯O25i 0.95 2.47 3.336 (3) 152
C245—H245⋯O15i 0.95 2.41 3.268 (3) 150
Symmetry code: (i) 1-x,1-y,1-z.

Compound (II)[link]

Crystal data
  • C23H20ClNOS

  • Mr = 393.92

  • Monoclinic, P21/n

  • a = 12.6348 (4) Å

  • b = 11.9337 (5) Å

  • c = 12.7904 (5) Å

  • β = 92.549 (2)°

  • V = 1926.63 (13) Å3

  • Z = 4

  • Dx = 1.358 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4418 reflections

  • θ = 3.2–27.5°

  • μ = 0.32 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.28 × 0.24 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) Tmin = 0.926, Tmax = 0.987

  • 26 344 measured reflections

  • 4418 independent reflections

  • 2950 reflections with I > 2σ(I)

  • Rint = 0.081

  • θmax = 27.5°

  • h = −16 → 16

  • k = −15 → 15

  • l = −16 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.098

  • S = 1.00

  • 4418 reflections

  • 244 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0478P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.37 e Å−3

Table 2
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O5ii 0.95 2.42 3.295 (3) 153
C44—H44⋯O5i 0.95 2.48 3.364 (2) 154
Symmetry codes: (i) 1-x,1-y,1-z; (ii) 1-x,-y,1-z.

Compound (III)[link]

Crystal data
  • C28H23NOS

  • Mr = 421.53

  • Monoclinic, C2/c

  • a = 30.1891 (8) Å

  • b = 14.8005 (3) Å

  • c = 9.7965 (3) Å

  • β = 102.2570 (16)°

  • V = 4277.43 (19) Å3

  • Z = 8

  • Dx = 1.309 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4894 reflections

  • θ = 3.0–27.5°

  • μ = 0.17 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.36 × 0.26 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) Tmin = 0.937, Tmax = 0.973

  • 21 732 measured reflections

  • 4894 independent reflections

  • 3535 reflections with I > 2σ(I)

  • Rint = 0.060

  • θmax = 27.5°

  • h = −39 → 35

  • k = −19 → 18

  • l = −11 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.03

  • 4894 reflections

  • 280 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0545P)2 + 1.1026P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.38 e Å−3

Table 3
Hydrogen-bonding geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O5iii 0.95 2.49 3.347 (2) 150
C24—H24⋯O5iv 0.95 2.53 3.295 (2) 138
Symmetry codes: (iii) [{\script{1\over 2}}-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z]; (iv) [{\script{1\over 2}}-x,{\script{1\over 2}}-y,2-z].

Table 4
Hydro­gen bonds and short intermolecular contact parameters (Å, °) for (IV)

Original atom numbering (Laavanya et al., 2002[Laavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701-o702.]). Cg1 and Cg2 are the centroids of the C6–C11 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1v 0.98 2.82 3.521 (3) 129
C21—H21⋯Cg2vi 0.94 2.99 3.746 (3) 139
C34—H34⋯Cg2vii 0.91 2.98 3.669 (4) 133
N5—H5⋯S1viii 0.82 (2) 3.05 (2) 3.490 (3) 116 (2)
Symmetry codes: (v) [{1 \over 2} - x, {1 \over 2} + y, {1 \over 2} - z]; (vi) [{3 \over 2} - x, {1 \over 2} + y, {1 \over 2} -z ]; (vii) 1 - x, 1 - y, -z; (viii) x, 1 + y, z.

Table 5
Selected torsion angles (°) for (I[link])–(IV)

Torsion angle (I) (II) (III) (IV)
  Mol. 1 Mol. 2      
x 1 2 nil nil nil
Sx1—Cx10—Cx11—Xx5 −7.2 (3) −6.3 (2) −2.6 (2) −8.6 (2) 0.7 (3)
Cx11—Cx10—Sx1—Cx2 64.1 (2) 63.2 (2) 62.6 (2) 60.3 (2) 32.2 (2)
Cx10—Cx11—Xx5—Cx4 −71.8 (3) −72.0 (3) −74.3 (2) −75.1 (2) 38.4 (3)
Sx1—Cx2—Cx3—Cx4 −64.6 (2) −64.5 (2) −63.4 (2) −70.7 (2) 45.9 (3)
Xx5—Cx4—Cx3—Cx2 64.1 (2) 64.2 (2) 66.3 (2) 58.1 (2) 45.3 (3)
Cx10—Sx1—Cx2—Cx3 −18.1 (2) −18.4 (2) −20.8 (2) −9.0 (2) −83.4 (2)
Cx11—Xx5—Cx4—Cx3 33.1 (3) 32.9 (3) 30.4 (2) 42.3 (2) −96.3 (3)

For (I[link]) and (II[link]), space groups P21/c and P21/n, respectively, were uniquely assigned from the systematic absences. For (III[link]), the systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and confirmed by successful structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.99 (CH2) and 1.00 Å (aliphatic CH). Examination of the refined structure of (I[link]) for possible additional symmetry using ADDSYM in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) showed that none could be detected.

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the molecular and supramolecular structures of three N-acyl-C-phenylated tetrahydrobenzothiazepines, (I)–(III), and we compare these with the simpler analogue, (IV), which is unsubstituted at N, whose structure has recently been reported (Laavanya et al., 2002). These compounds are of interest as their molecular constitutions all have some resemblance to that of the calcium antagonist drug diltiazem [(2S,3S)-3-acetoxy-5-(dimethylaminoethyl)-2-(4-methoxyphenyl)- 2,3-dihydro-1,5-benzothiazepine-4(5H)-one, (V)] and its (2R,3R) enantiomer (Kojić-Prodić et al., 1984).

Each of the compounds (I)–(III) (Figs. 1–3) contains two stereogenic C atoms, C2 and C4, and hence the formation of diastereoisomers is possible. However, each of the crystalline samples examined contained a single pair of enantiomers, (R,R) and (S,S), and for each compound the reference molecule was selected as having the (R,R) configuration. In this respect, the configurations of (I)–(III) are identical to that of (IV) (Laavanya et al., 2002). It should, however, be noted here that the schematic view of (IV) in the original report shows the incorrect (2S,4R) isomer. The interbond angles at the N atom in each of (I)-(III) sum to ca 360.0°, so that no further configurational isomers are possible.

Compound (I) crystallizes with Z' = 2; the thiazepine rings in the two independent molecules in (I) and in the molecules of (II) and (III) all adopt similar conformations, as shown by the ring torsion angles (Table 1). Apart from the S1—C10—C11—N5 angle, there are corresponding pairs of torsion angles having similar magnitudes but opposite signs. This fact indicates conformations that, apart from the obvious differences in atom types and bond lengths, approximate in (I) and (II) to pseudo-mirror symmetry; this conformation may be best described as the boat conformation (Evans & Boeyens, 1989). The conformation of the thiazepine ring in (III) does not exhibit even approximate symmetry and it cannot be described in terms of a single primitive form (Evans & Boeyens, 1989). Instead, the conformation is intermediate between the boat and the twist-boat forms. By contrast, the thiazepine ring in (IV) exhibits approximate pseudo-twofold rotational symmetry, as the corresponding pairs of torsion angles have similar magnitudes with the same signs, although all four primitive forms contribute to the overall conformation of (IV).

The only significant difference between the bond lengths in (I)–(III) and those in (IV) occurs for the N5—C11 bond. In (I)–(III), where atom N5 is planar, this distances lies in the range 1.427 (3)–1.439 (2) Å, whereas in (IV), where N5 is pyramidal, this distance is 1.395 (3) Å. By contrast, the mean values for bonds of types C(aryl)—NC2, involving planar N atoms, and C(aryl)—NHC, involving pyramidal N atoms, are 1.371 and 1.419 Å, respectively (Allen et al., 1987). The remaining bond lengths in (I)–(III) show no unusual values.

The supramolecular structures of (I)–(III) all have different dimensionality. In (I), the two independent molecules are linked by a pair of C—H····O hydrogen bonds (Table 2). Atom C145 in the type 1 molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O25 in the type 2 molecule at (1 − x, 1 − y, 1 − z), while atom C245 at (1 − x, 1 − y, 1 − z) in turn acts as a donor to carbonyl atom O15 at (x, y, z). In this manner, an approximately centrosymmetric R22(16) dimer is formed (Fig. 4). This dimeric aggregate is centred at approximately (3/4, 0.370, 3/4), and this fact alone precludes the possibility of any additional symmetry. While such an aggregate would normally have been selected as the asymmetric unit, in this instance the asymmetric unit was selected so that each of the independent molecules had the (R,R) configuration. The R22(16) dimer contains one (R,R) molecule and one (S,S) molecule. There are four of these dimeric units in each unit cell, but there are no direction-specific interactions between adjacent dimers.

In (II), the molecules are linked by two C—H···O hydrogen bonds (Table 3) into a chain of rings. Atom C24 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O5 in the molecule at (1 − x, −y, 1 − z), so forming an R22(22) ring centred at (1/2, 0, 1/2), while atom C44 at (x, y, z) acts as a donor to atom O5 at (1 − x, 1 − y, 1 − z), thus forming an R22(18) ring centred at (1/2, 1/2, 1/2). Propagation of these two hydrogen bonds then generates a chain of rings along (1/2, y, 1/2), with R22(18) rings centred at (1/2, n + 1/2, 1/2) (n = zero or integer) and R22(22) rings centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 5). Two chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

As in (II), the supramolecular structure of (III) is again directed by two intermolecular C—H···O hydrogen bonds (Table 4), but now their effect is to generate a sheet structure, in contrast to the chain of rings in (II). The stronger of these two hydrogen bonds gives rise to a chain running parallel to the [010] direction. Atom C23 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O5 in the molecule at (0.5 − x, 0.5 + y, 1.5 − z), so producing a C(10) chain, generated by the 21 screw axis along (1/4, y, 3/4) (Fig. 6). Four of these chains pass through each unit cell; two, lying in the domain −0.02 < x < 0.52, are generated by screw axes at x = 1/4, while the other two, lying in the domain 0.48 < x < 1.02, are generated by screw axes at x = 0.75. Within each domain, the C(10) chains are linked into sheets by the second of the C—H···O hydrogen bonds. Atom C24 in the molecule at (x, y, z), which lies in the C(10) chain along (1/4, y, 3/4), acts as a hydrogen-bond donor to carbonyl atom O5 in the molecule at (0.5 − x, 0.5 − y, 2 − z), which lies in the C(10) chain along (1/4, y, 1.25), so forming a centrosymmetric R22(22) ring centred at (1/4, 1/4, 1) (Fig. 7). The combination of the R22(22) rings and the C(10) chains generates a (100) sheet built from R22(22) and R46(30) rings alternating in a chess-board fashion (Fig. 8). Two sheets of this type pass through each unit cell, one in each domain of x as defined above, but there are no direction-specific interactions between adjacent sheets. Despite the presence of at least three independent aryl rings in each of (I)–(III), there are neither C—H···π(arene) hydrogen bonds, nor aromatic ππ stacking interactions present in any of their structures.

In the light of the very different supramolecular structures adopted by (I)–(III), it seemed of interest to re-examine the supramolecular structure of (IV) using space group P21/n, with Z' = 1, and the atomic coordinates established by the recent study (Laavanya et al., 2002), where the atom-labelling is identical to that employed in (I)–(III). There are, in fact, three C—H···π(arene) hydrogen bonds, all with H···centroid distances of less than 3.0 Å (Table 5), which were not noted in the original report but which together link the molecules of (IV) into a continuous three-dimensional framework.

In the first of these interactions, atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the C6—C11 ring in the molecule at (0.5 − x, 0.5 + y, 0.5 − z), so producing a [010] chain generated by the 21 screw axis along (1/4, y, 1/4) (Fig. 9). In a similar way, atom C21 at (x, y, z) acts as a donor to the C20—C25 ring (original atom numbering) in the molecule at (1.5 − x, 0.5 + y, 0.5 − z), so producing a second [010] chain, this time generated by the screw axis along (3/4, y, 1/4). The combination of these two chains then generates a (001) sheet in the form of a (4,4) net (Batten & Robson, 1998), lying in the domain −0.04 < z < 0.54 (Fig. 10); a second sheet, related to the first by inversion, lies in the domain 0.46 < z < 1.04.

The third C—H···π(arene) hydrogen bond links adjacent (001) sheets; atom C34 in the molecule at (x, y, z), which lies in the domain −0.04 < z < 0.54, acts as a hydrogen bond donor to ring C20—C25 in the molecule at (1 − x, 1 − y, −z), which lies in the domain −0.54 < z < 0.04. The resulting centrosymmetric motif (Fig. 11) thus serves to link sheets in different domains and in this manner to link all of the (001) sheets into a single framework.

It is also timely to re-evaluate the intermolecular N—H···S interaction in (IV). This interaction was originally discounted (Laavanya et al., 2002) as insignificant on the grounds that the shortest intermolecular N···S distance (Table 5) is somewhat in excess of the 3.3 Å sum of the van der Waals radii (Bondi, 1964). However, an analysis (Allen et al., 1997) of hydrogen bonds having two-coordinate S as the acceptor, using data retrieved from the Cambridge Structural Database (Allen, 2002), indicated mean H···S, N···S and N—H···S parameters in such bonds where S is bonded to two C atoms of 2.74 (2) Å, 3.58 (3) Å and 145 (3)° respectively. Accordingly, if the N—H···S contact in (IV) is not considered to be a significant intermolecular interaction, it is more soundly rejected on the grounds of the long H···S distance and the small N—H···S angle rather than on the grounds of the N···S distance.

In summary, we have shown that the very closely-related series of compounds (I)–(IV) exhibit supramolecular aggregation in zero, one, two and three dimensions, respectively, and that while in (I)–(III) the aggregation depends solely on C—H···O hydrogen bonds, in (IV) it depends solely on C—H···π(arene) hydrogen bonds. The occurrence of such differences resulting from very modest changes in molecular constitution undoubtedly presents a considerable challenge for computational methods that seek to predict, whether from first principles or otherwise, the crystal structures of simple molecular compounds (Lommerse et al., 2000; Motherwell et al., 2002).

Experimental top

Compounds (I)–(III) were prepared by acylation of (IV) (Laavanya et al., 2002) with acetic anhydride, chloroacetyl chloride and benzoyl chloride, respectively, in the presence of triethylamine in dry benzene under reflux conditions. Analyses found for (I): C 77.0, H 6.1, N 3.7%; C23H21NOS requires: C 76.8, H 5.9, N 3.9%; found for (II): C 70.2, H 5.0, N 3.6%; C23H20ClNOS requires: C 70.1, H 5.1, N 3.6%; found for (III): C 79.5, H 5.6, N 3.3%; C28H23NOS requires: C 79.8, H 5.5, N 3.3%. Crystals of (I)–(III) suitable for single-crystal X-ray diffraction were grown from solutions in ethanol. M.p. (I) 401–404 K, (II) 393–397 K, (III) 445–449 K.

Refinement top

For (I) and (II), space groups P21/c and P21/n, respectively, were uniquely assigned from the systematic absences. For (III), the systematic absences permitted Cc and C2/c as possible space groups; C2/c was selected and confirmed by successful structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.99 (CH2) and 1.00 Å (aliphatic CH). Examination of the refined structure of (I) for possible additional symmetry using ADDSYM in PLATON (Spek, 2003) showed that none could be detected.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme: (a) molecule 1 and (b) molecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded R22(16) dimer. For clarity, the unit-cell box and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (II), showing the formation of a chain of alternating R22(18) and R22(22) rings along [010]. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. Part of the crystal structure of (III), showing the formation of a C(10) chain along [010]. For clarity, the unit-cell box and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (0.5 − x, 0.5 + y, 1.5 − z) and (x, 1 + y, z), respectively.
[Figure 7] Fig. 7. Part of the crystal structure of (III), showing the formation of an R22(22) dimer. For clarity, the unit-cell box and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (0.5 − x, 0.5 − y, 2 − z).
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (III), showing the formation of a (100) sheet built from alternating R22(22) and R46(30) rings. For clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9] Fig. 9. Part of the crystal structure of (IV) (Laavanya et al., 2002), showing the formation of a C—H···π(arene) chain along (1/4, y, 1/4). For clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (0.5 − x, 0.5 + y, 0.5 − z) and (x, 1 + y, z), respectively.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of compound (IV) showing formation of a (001) sheet. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 11] Fig. 11. Part of the crystal structure of compound (IV) showing formation of the centrosymmetric motif which links the (001) sheets. For the sake of clarity, the H atoms bonded to C atoms but not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, −z).
(I) (2RS,4RS)-N-Acetyl-2,3,4,5-tetrahydro-2,4-diphenyl-1,5-benzothiazepine top
Crystal data top
C23H21NOSF(000) = 1520
Mr = 359.48Dx = 1.273 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8274 reflections
a = 20.3579 (4) Åθ = 3.0–27.1°
b = 8.3014 (1) ŵ = 0.18 mm1
c = 22.2513 (4) ÅT = 120 K
β = 93.865 (1)°Plate, colourless
V = 3751.90 (11) Å30.20 × 0.04 × 0.03 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
8274 independent reflections
Radiation source: rotating anode4659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ϕ scans, and ω scans with κ offsetsθmax = 27.1°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 2526
Tmin = 0.954, Tmax = 0.994k = 109
51290 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.0549P]
where P = (Fo2 + 2Fc2)/3
8274 reflections(Δ/σ)max = 0.001
471 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C23H21NOSV = 3751.90 (11) Å3
Mr = 359.48Z = 8
Monoclinic, P21/cMo Kα radiation
a = 20.3579 (4) ŵ = 0.18 mm1
b = 8.3014 (1) ÅT = 120 K
c = 22.2513 (4) Å0.20 × 0.04 × 0.03 mm
β = 93.865 (1)°
Data collection top
Nonius KappaCCD
diffractometer
8274 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
4659 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.994Rint = 0.109
51290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
8274 reflectionsΔρmin = 0.40 e Å3
471 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.55232 (3)0.07017 (7)0.57493 (3)0.03099 (16)
O150.67431 (8)0.02049 (19)0.75018 (7)0.0325 (4)
N150.68042 (9)0.0501 (2)0.65265 (8)0.0225 (4)
C120.58165 (11)0.1376 (3)0.56443 (10)0.0254 (5)
C130.65673 (11)0.1552 (3)0.57227 (10)0.0255 (5)
C140.68905 (11)0.1205 (2)0.63497 (9)0.0220 (5)
C160.73112 (12)0.2785 (3)0.60441 (10)0.0270 (5)
C170.72932 (13)0.3975 (3)0.56066 (11)0.0329 (6)
C180.67562 (13)0.4102 (3)0.51975 (10)0.0328 (6)
C190.62276 (13)0.3058 (3)0.52263 (10)0.0313 (6)
C1100.62335 (11)0.1872 (2)0.56696 (10)0.0250 (5)
C1110.67867 (11)0.1736 (2)0.60785 (9)0.0221 (5)
C1210.54498 (11)0.2516 (3)0.60390 (10)0.0262 (5)
C1220.53382 (12)0.2194 (3)0.66392 (11)0.0325 (6)
C1230.50062 (12)0.3283 (3)0.69761 (11)0.0362 (6)
C1240.47750 (13)0.4716 (3)0.67236 (12)0.0411 (7)
C1250.48880 (13)0.5060 (3)0.61306 (12)0.0400 (6)
C1260.52254 (12)0.3968 (3)0.57951 (11)0.0316 (6)
C1410.76039 (11)0.1735 (3)0.63839 (9)0.0231 (5)
C1420.80901 (11)0.0895 (3)0.61025 (10)0.0251 (5)
C1430.87325 (11)0.1438 (3)0.61409 (10)0.0277 (5)
C1440.89028 (12)0.2833 (3)0.64524 (10)0.0315 (6)
C1450.84242 (12)0.3692 (3)0.67280 (11)0.0325 (6)
C1460.77795 (12)0.3143 (3)0.66906 (10)0.0277 (5)
C1510.67074 (11)0.0851 (3)0.71171 (10)0.0249 (5)
C1520.65498 (12)0.2565 (3)0.72614 (10)0.0293 (5)
S210.05595 (3)0.18797 (7)0.07576 (3)0.03175 (16)
O250.17490 (8)0.28513 (19)0.25344 (7)0.0326 (4)
N250.18202 (9)0.2128 (2)0.15618 (8)0.0233 (4)
C220.08467 (11)0.3966 (3)0.06528 (10)0.0285 (5)
C230.15942 (11)0.4159 (3)0.07507 (10)0.0258 (5)
C240.19022 (11)0.3833 (2)0.13820 (9)0.0234 (5)
C260.23402 (12)0.0194 (3)0.11198 (10)0.0275 (5)
C270.23264 (13)0.1442 (3)0.07002 (10)0.0316 (6)
C280.18027 (13)0.1585 (3)0.02737 (10)0.0336 (6)
C290.12798 (13)0.0516 (3)0.02691 (10)0.0316 (6)
C2100.12758 (12)0.0702 (3)0.06994 (10)0.0265 (5)
C2110.18183 (12)0.0882 (3)0.11200 (9)0.0249 (5)
C2210.04604 (11)0.5107 (3)0.10293 (10)0.0285 (5)
C2220.03703 (12)0.4833 (3)0.16379 (11)0.0330 (6)
C2230.00275 (12)0.5934 (3)0.19640 (12)0.0399 (6)
C2240.02376 (13)0.7306 (3)0.16882 (13)0.0448 (7)
C2250.01514 (13)0.7585 (3)0.10878 (13)0.0443 (7)
C2260.01995 (12)0.6496 (3)0.07629 (12)0.0353 (6)
C2410.26101 (11)0.4412 (2)0.14320 (9)0.0218 (5)
C2420.30873 (12)0.3744 (3)0.10869 (10)0.0306 (6)
C2430.37224 (12)0.4348 (3)0.11246 (11)0.0352 (6)
C2440.38912 (12)0.5630 (3)0.14960 (11)0.0327 (6)
C2450.34213 (12)0.6318 (3)0.18363 (10)0.0307 (5)
C2460.27833 (11)0.5706 (2)0.17998 (10)0.0257 (5)
C2510.17183 (11)0.1786 (3)0.21500 (10)0.0246 (5)
C2520.15496 (13)0.0075 (3)0.23008 (10)0.0307 (6)
H120.56860.16740.52180.030*
H1920.54930.12130.68180.039*
H1230.49360.30470.73850.043*
H1240.45410.54560.69550.049*
H1250.47340.60430.59540.048*
H1260.53050.42190.53900.038*
H13A0.67640.08200.54330.031*
H13B0.66820.26670.56110.031*
H140.66600.18820.66420.026*
H1420.79790.00590.58830.030*
H1430.90610.08470.59510.033*
H1440.93460.32000.64770.038*
H1450.85370.46540.69420.039*
H1460.74520.37420.68780.033*
H15A0.63840.26220.76640.044*
H15B0.69490.32220.72510.044*
H15C0.62140.29740.69640.044*
H160.76850.26890.63210.032*
H170.76510.47040.55890.040*
H180.67480.49090.48940.039*
H190.58600.31520.49420.038*
H220.07290.42480.02220.034*
H2220.05450.38880.18290.040*
H2230.00260.57480.23790.048*
H2240.04780.80520.19120.054*
H2250.03320.85240.08970.053*
H2260.02620.67050.03510.042*
H23A0.18020.34270.04680.031*
H23B0.17080.52740.06390.031*
H240.16570.45030.16660.028*
H2420.29760.28700.08240.037*
H2430.40450.38720.08920.042*
H2440.43280.60400.15180.039*
H2450.35330.72040.20940.037*
H2460.24610.61870.20320.031*
H25A0.19460.05950.22970.046*
H25B0.12150.03330.20020.046*
H25C0.13790.00370.27020.046*
H260.27060.00790.14050.033*
H270.26780.21960.07070.038*
H280.18020.24220.00180.040*
H290.09240.06140.00280.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0231 (3)0.0268 (3)0.0426 (4)0.0020 (2)0.0014 (3)0.0020 (3)
C120.0223 (13)0.0234 (11)0.0300 (12)0.0000 (9)0.0015 (10)0.0066 (10)
C1210.0158 (12)0.0278 (12)0.0343 (13)0.0013 (10)0.0029 (10)0.0012 (10)
C1220.0243 (14)0.0346 (13)0.0376 (14)0.0003 (10)0.0043 (11)0.0049 (11)
C1230.0250 (14)0.0475 (15)0.0360 (13)0.0012 (12)0.0013 (11)0.0034 (12)
C1240.0328 (15)0.0380 (15)0.0527 (17)0.0034 (12)0.0038 (13)0.0135 (13)
C1250.0374 (16)0.0276 (13)0.0543 (17)0.0035 (11)0.0022 (13)0.0006 (12)
C1260.0269 (14)0.0293 (13)0.0382 (13)0.0009 (11)0.0022 (11)0.0034 (11)
C130.0231 (13)0.0260 (12)0.0273 (12)0.0005 (10)0.0001 (10)0.0066 (10)
C140.0218 (12)0.0185 (10)0.0256 (11)0.0007 (9)0.0021 (9)0.0018 (9)
C1410.0223 (12)0.0236 (11)0.0230 (11)0.0020 (10)0.0010 (9)0.0044 (9)
C1420.0255 (13)0.0252 (11)0.0243 (11)0.0011 (10)0.0000 (10)0.0006 (9)
C1430.0220 (13)0.0334 (13)0.0278 (12)0.0049 (10)0.0020 (10)0.0036 (10)
C1440.0220 (13)0.0366 (13)0.0353 (13)0.0053 (11)0.0020 (11)0.0050 (11)
C1450.0308 (14)0.0288 (13)0.0371 (13)0.0037 (11)0.0029 (11)0.0037 (11)
C1460.0264 (13)0.0246 (11)0.0319 (12)0.0020 (10)0.0010 (10)0.0019 (10)
N150.0260 (11)0.0202 (9)0.0212 (9)0.0009 (8)0.0006 (8)0.0014 (8)
C1510.0184 (12)0.0296 (12)0.0263 (12)0.0027 (10)0.0011 (10)0.0017 (10)
O150.0413 (11)0.0301 (9)0.0262 (8)0.0008 (8)0.0024 (8)0.0046 (7)
C1520.0314 (14)0.0303 (12)0.0267 (12)0.0011 (11)0.0050 (10)0.0054 (10)
C160.0321 (14)0.0232 (11)0.0259 (12)0.0009 (10)0.0022 (10)0.0025 (10)
C170.0385 (15)0.0261 (12)0.0356 (13)0.0040 (11)0.0131 (12)0.0050 (11)
C180.0491 (17)0.0257 (12)0.0248 (12)0.0025 (11)0.0117 (12)0.0038 (10)
C190.0406 (15)0.0303 (13)0.0225 (12)0.0090 (11)0.0009 (11)0.0022 (10)
C1100.0275 (13)0.0221 (11)0.0256 (11)0.0028 (10)0.0022 (10)0.0018 (10)
C1110.0260 (13)0.0196 (11)0.0211 (11)0.0003 (9)0.0042 (9)0.0002 (9)
S210.0263 (4)0.0311 (3)0.0371 (3)0.0078 (3)0.0034 (3)0.0034 (3)
C220.0251 (13)0.0311 (13)0.0282 (12)0.0068 (10)0.0059 (10)0.0057 (10)
C2210.0187 (12)0.0302 (12)0.0356 (13)0.0056 (10)0.0067 (10)0.0053 (11)
C2220.0222 (13)0.0386 (14)0.0376 (14)0.0001 (11)0.0037 (11)0.0047 (11)
C2230.0266 (15)0.0479 (16)0.0448 (15)0.0004 (12)0.0002 (12)0.0025 (13)
C2240.0344 (16)0.0391 (15)0.0606 (19)0.0019 (12)0.0011 (14)0.0092 (14)
C2250.0345 (16)0.0327 (14)0.0642 (19)0.0006 (12)0.0072 (14)0.0072 (14)
C2260.0314 (15)0.0313 (13)0.0419 (14)0.0083 (11)0.0057 (12)0.0077 (12)
C230.0235 (13)0.0259 (12)0.0276 (12)0.0042 (10)0.0005 (10)0.0037 (10)
C240.0251 (13)0.0198 (11)0.0253 (11)0.0014 (9)0.0008 (10)0.0019 (9)
C2410.0207 (12)0.0205 (11)0.0237 (11)0.0007 (9)0.0021 (9)0.0018 (9)
C2420.0295 (14)0.0301 (12)0.0323 (13)0.0035 (11)0.0019 (11)0.0108 (11)
C2430.0256 (14)0.0396 (14)0.0410 (14)0.0016 (11)0.0062 (11)0.0100 (12)
C2440.0264 (14)0.0337 (13)0.0378 (13)0.0044 (11)0.0009 (11)0.0031 (11)
C2450.0295 (14)0.0271 (12)0.0343 (13)0.0039 (10)0.0065 (11)0.0060 (10)
C2460.0256 (13)0.0232 (11)0.0280 (12)0.0029 (10)0.0002 (10)0.0001 (10)
N250.0254 (11)0.0232 (9)0.0213 (9)0.0030 (8)0.0004 (8)0.0011 (8)
C2510.0205 (12)0.0300 (12)0.0231 (11)0.0023 (10)0.0003 (9)0.0014 (10)
O250.0383 (10)0.0354 (9)0.0240 (8)0.0002 (8)0.0018 (7)0.0033 (7)
C2520.0332 (14)0.0332 (13)0.0260 (12)0.0018 (11)0.0039 (11)0.0051 (10)
C260.0316 (14)0.0257 (12)0.0256 (12)0.0033 (10)0.0042 (10)0.0038 (10)
C270.0437 (16)0.0228 (12)0.0291 (12)0.0005 (11)0.0082 (11)0.0028 (10)
C280.0525 (17)0.0228 (12)0.0261 (12)0.0102 (12)0.0077 (12)0.0017 (10)
C290.0409 (16)0.0296 (13)0.0242 (12)0.0146 (11)0.0003 (11)0.0026 (10)
C2100.0294 (14)0.0252 (12)0.0248 (11)0.0087 (10)0.0010 (10)0.0040 (10)
C2110.0303 (13)0.0228 (11)0.0218 (11)0.0043 (10)0.0033 (10)0.0025 (9)
Geometric parameters (Å, º) top
S11—C1101.761 (2)S21—C2101.768 (2)
S11—C121.845 (2)S21—C221.848 (2)
C12—C1211.521 (3)C22—C2211.518 (3)
C12—C131.534 (3)C22—C231.531 (3)
C12—H121.00C22—H221.00
C121—C1261.386 (3)C221—C2261.386 (3)
C121—C1221.396 (3)C221—C2221.398 (3)
C122—C1231.380 (3)C222—C2231.384 (3)
C122—H1920.95C222—H2220.95
C123—C1241.385 (4)C223—C2241.386 (4)
C123—H1230.95C223—H2230.95
C124—C1251.384 (4)C224—C2251.379 (4)
C124—H1240.95C224—H2240.95
C125—C1261.386 (3)C225—C2261.385 (4)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
C13—C141.529 (3)C23—C241.523 (3)
C13—H13A0.99C23—H23A0.99
C13—H13B0.99C23—H23B0.99
C14—N151.483 (3)C24—N251.483 (3)
C14—C1411.515 (3)C24—C2411.516 (3)
C14—H141.00C24—H241.00
C141—C1461.388 (3)C241—C2461.382 (3)
C141—C1421.393 (3)C241—C2421.393 (3)
C142—C1431.380 (3)C242—C2431.384 (3)
C142—H1420.95C242—H2420.95
C143—C1441.382 (3)C243—C2441.377 (3)
C143—H1430.95C243—H2430.95
C144—C1451.384 (3)C244—C2451.383 (3)
C144—H1440.95C244—H2440.95
C145—C1461.386 (3)C245—C2461.392 (3)
C145—H1450.95C245—H2450.95
C146—H1460.95C246—H2460.95
N15—C1511.373 (3)N25—C2511.368 (3)
N15—C1111.429 (3)N25—C2111.427 (3)
C151—O151.224 (3)C251—O251.229 (3)
C151—C1521.498 (3)C251—C2521.505 (3)
C152—H15A0.98C252—H25A0.98
C152—H15B0.98C252—H25B0.98
C152—H15C0.98C252—H25C0.98
C16—C1111.384 (3)C26—C2111.388 (3)
C16—C171.386 (3)C26—C271.394 (3)
C16—H160.95C26—H260.95
C17—C181.379 (4)C27—C281.384 (3)
C17—H170.95C27—H270.95
C18—C191.386 (3)C28—C291.385 (4)
C18—H180.95C28—H280.95
C19—C1101.393 (3)C29—C2101.393 (3)
C19—H190.95C29—H290.95
C110—C1111.404 (3)C210—C2111.407 (3)
C110—S11—C12103.17 (10)C210—S21—C22103.86 (10)
C121—C12—C13113.52 (18)C221—C22—C23113.77 (18)
C121—C12—S11109.46 (15)C221—C22—S21109.57 (15)
C13—C12—S11113.79 (15)C23—C22—S21113.57 (16)
C121—C12—H12106.5C221—C22—H22106.5
C13—C12—H12106.5C23—C22—H22106.5
S11—C12—H12106.5S21—C22—H22106.5
C126—C121—C122118.1 (2)C226—C221—C222118.5 (2)
C126—C121—C12118.5 (2)C226—C221—C22118.7 (2)
C122—C121—C12123.4 (2)C222—C221—C22122.7 (2)
C123—C122—C121120.8 (2)C223—C222—C221120.3 (2)
C123—C122—H192119.6C223—C222—H222119.9
C121—C122—H192119.6C221—C222—H222119.9
C122—C123—C124120.5 (2)C222—C223—C224120.4 (3)
C122—C123—H123119.7C222—C223—H223119.8
C124—C123—H123119.7C224—C223—H223119.8
C125—C124—C123119.4 (2)C225—C224—C223119.7 (3)
C125—C124—H124120.3C225—C224—H224120.1
C123—C124—H124120.3C223—C224—H224120.1
C124—C125—C126119.9 (2)C224—C225—C226120.0 (2)
C124—C125—H125120.0C224—C225—H225120.0
C126—C125—H125120.0C226—C225—H225120.0
C125—C126—C121121.3 (2)C225—C226—C221121.1 (2)
C125—C126—H126119.3C225—C226—H226119.5
C121—C126—H126119.3C221—C226—H226119.5
C14—C13—C12116.75 (18)C24—C23—C22117.13 (18)
C14—C13—H13A108.1C24—C23—H23A108.0
C12—C13—H13A108.1C22—C23—H23A108.0
C14—C13—H13B108.1C24—C23—H23B108.0
C12—C13—H13B108.1C22—C23—H23B108.0
H13A—C13—H13B107.3H23A—C23—H23B107.3
N15—C14—C141113.22 (17)N25—C24—C241113.98 (18)
N15—C14—C13111.74 (17)N25—C24—C23111.82 (17)
C141—C14—C13110.08 (17)C241—C24—C23109.96 (18)
N15—C14—H14107.2N25—C24—H24106.9
C141—C14—H14107.2C241—C24—H24106.9
C13—C14—H14107.2C23—C24—H24106.9
C146—C141—C142118.4 (2)C246—C241—C242118.4 (2)
C146—C141—C14118.9 (2)C246—C241—C24119.56 (19)
C142—C141—C14122.66 (19)C242—C241—C24121.88 (19)
C143—C142—C141120.5 (2)C243—C242—C241120.4 (2)
C143—C142—H142119.8C243—C242—H242119.8
C141—C142—H142119.8C241—C242—H242119.8
C142—C143—C144120.6 (2)C244—C243—C242120.7 (2)
C142—C143—H143119.7C244—C243—H243119.7
C144—C143—H143119.7C242—C243—H243119.7
C143—C144—C145119.6 (2)C243—C244—C245119.6 (2)
C143—C144—H144120.2C243—C244—H244120.2
C145—C144—H144120.2C245—C244—H244120.2
C144—C145—C146119.8 (2)C244—C245—C246119.6 (2)
C144—C145—H145120.1C244—C245—H245120.2
C146—C145—H145120.1C246—C245—H245120.2
C145—C146—C141121.2 (2)C241—C246—C245121.2 (2)
C145—C146—H146119.4C241—C246—H246119.4
C141—C146—H146119.4C245—C246—H246119.4
C151—N15—C111121.14 (17)C251—N25—C211121.01 (18)
C151—N15—C14118.90 (17)C251—N25—C24118.86 (18)
C111—N15—C14119.87 (16)C211—N25—C24120.07 (16)
O15—C151—N15120.8 (2)O25—C251—N25120.9 (2)
O15—C151—C152122.3 (2)O25—C251—C252121.72 (19)
N15—C151—C152116.93 (19)N25—C251—C252117.41 (19)
C151—C152—H15A109.5C251—C252—H25A109.5
C151—C152—H15B109.5C251—C252—H25B109.5
H15A—C152—H15B109.5H25A—C252—H25B109.5
C151—C152—H15C109.5C251—C252—H25C109.5
H15A—C152—H15C109.5H25A—C252—H25C109.5
H15B—C152—H15C109.5H25B—C252—H25C109.5
C111—C16—C17120.2 (2)C211—C26—C27119.8 (2)
C111—C16—H16119.9C211—C26—H26120.1
C17—C16—H16119.9C27—C26—H26120.1
C18—C17—C16120.0 (2)C28—C27—C26120.2 (2)
C18—C17—H17120.0C28—C27—H27119.9
C16—C17—H17120.0C26—C27—H27119.9
C17—C18—C19120.3 (2)C27—C28—C29120.4 (2)
C17—C18—H18119.8C27—C28—H28119.8
C19—C18—H18119.8C29—C28—H28119.8
C18—C19—C110120.3 (2)C28—C29—C210120.0 (2)
C18—C19—H19119.8C28—C29—H29120.0
C110—C19—H19119.8C210—C29—H29120.0
C19—C110—C111118.9 (2)C29—C210—C211119.6 (2)
C19—C110—S11119.55 (18)C29—C210—S21119.66 (18)
C111—C110—S11121.26 (16)C211—C210—S21120.49 (17)
C16—C111—C110120.13 (19)C26—C211—C210119.9 (2)
C16—C111—N15120.5 (2)C26—C211—N25120.0 (2)
C110—C111—N15119.40 (19)C210—C211—N25120.0 (2)
C110—S11—C12—C121146.32 (15)C210—S21—C22—C221146.81 (15)
C110—S11—C12—C1318.1 (2)C210—S21—C22—C2318.37 (19)
C13—C12—C121—C12695.0 (2)C23—C22—C221—C22699.2 (2)
S11—C12—C121—C126136.62 (19)S21—C22—C221—C226132.44 (19)
C13—C12—C121—C12283.6 (3)C23—C22—C221—C22279.2 (3)
S11—C12—C121—C12244.7 (3)S21—C22—C221—C22249.1 (3)
C126—C121—C122—C1230.8 (4)C226—C221—C222—C2230.1 (3)
C12—C121—C122—C123179.5 (2)C22—C221—C222—C223178.4 (2)
C121—C122—C123—C1240.3 (4)C221—C222—C223—C2240.9 (4)
C122—C123—C124—C1250.9 (4)C222—C223—C224—C2250.9 (4)
C123—C124—C125—C1260.5 (4)C223—C224—C225—C2260.0 (4)
C124—C125—C126—C1210.6 (4)C224—C225—C226—C2210.9 (4)
C122—C121—C126—C1251.3 (4)C222—C221—C226—C2250.9 (4)
C12—C121—C126—C125180.0 (2)C22—C221—C226—C225179.4 (2)
C121—C12—C13—C1461.4 (3)C221—C22—C23—C2461.8 (3)
S11—C12—C13—C1464.6 (2)S21—C22—C23—C2464.5 (2)
C12—C13—C14—N1564.1 (2)C22—C23—C24—N2564.2 (2)
C12—C13—C14—C141169.21 (18)C22—C23—C24—C241168.13 (18)
N15—C14—C141—C146129.7 (2)N25—C24—C241—C246121.1 (2)
C13—C14—C141—C146104.4 (2)C23—C24—C241—C246112.4 (2)
N15—C14—C141—C14252.5 (3)N25—C24—C241—C24263.2 (3)
C13—C14—C141—C14273.4 (3)C23—C24—C241—C24263.3 (3)
C146—C141—C142—C1431.4 (3)C246—C241—C242—C2431.4 (3)
C14—C141—C142—C143179.2 (2)C24—C241—C242—C243177.2 (2)
C141—C142—C143—C1440.8 (3)C241—C242—C243—C2441.0 (4)
C142—C143—C144—C1450.0 (3)C242—C243—C244—C2450.2 (4)
C143—C144—C145—C1460.2 (4)C243—C244—C245—C2460.0 (4)
C144—C145—C146—C1410.4 (4)C242—C241—C246—C2451.2 (3)
C142—C141—C146—C1451.2 (3)C24—C241—C246—C245177.1 (2)
C14—C141—C146—C145179.1 (2)C244—C245—C246—C2410.5 (3)
C141—C14—N15—C15191.6 (2)C241—C24—N25—C25190.3 (2)
C13—C14—N15—C151143.5 (2)C23—C24—N25—C251144.2 (2)
C141—C14—N15—C11191.9 (2)C241—C24—N25—C21192.6 (2)
C13—C14—N15—C11133.1 (3)C23—C24—N25—C21132.9 (3)
C111—N15—C151—O15177.7 (2)C211—N25—C251—O25176.8 (2)
C14—N15—C151—O155.7 (3)C24—N25—C251—O256.1 (3)
C111—N15—C151—C1523.0 (3)C211—N25—C251—C2524.9 (3)
C14—N15—C151—C152173.53 (19)C24—N25—C251—C252172.23 (19)
C111—C16—C17—C181.0 (3)C211—C26—C27—C281.8 (3)
C16—C17—C18—C191.0 (3)C26—C27—C28—C291.6 (3)
C17—C18—C19—C1100.1 (3)C27—C28—C29—C2100.7 (3)
C18—C19—C110—C1111.0 (3)C28—C29—C210—C2112.8 (3)
C18—C19—C110—S11173.21 (17)C28—C29—C210—S21171.13 (17)
C12—S11—C110—C19121.78 (18)C22—S21—C210—C29122.94 (18)
C12—S11—C110—C11164.11 (19)C22—S21—C210—C21163.2 (2)
C17—C16—C111—C1100.1 (3)C27—C26—C211—C2100.4 (3)
C17—C16—C111—N15179.64 (19)C27—C26—C211—N25177.87 (19)
C19—C110—C111—C161.0 (3)C29—C210—C211—C262.7 (3)
S11—C110—C111—C16173.18 (16)S21—C210—C211—C26171.23 (16)
C19—C110—C111—N15178.62 (18)C29—C210—C211—N25179.85 (19)
S11—C110—C111—N157.2 (3)S21—C210—C211—N256.3 (3)
C151—N15—C111—C1675.7 (3)C251—N25—C211—C2672.4 (3)
C14—N15—C111—C16107.7 (2)C24—N25—C211—C26110.6 (2)
C151—N15—C111—C110104.7 (2)C251—N25—C211—C210105.1 (2)
C14—N15—C111—C11071.8 (3)C24—N25—C211—C21072.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C145—H145···O25i0.952.473.336 (3)152
C245—H245···O15i0.952.413.268 (3)150
Symmetry code: (i) x+1, y+1, z+1.
(II) (2RS,4RS)-N-Chloroacetyl-2,3,4,5-tetrahydro-2,4-diphenyl-1,5-benzothiazepine top
Crystal data top
C23H20ClNOSF(000) = 824
Mr = 393.92Dx = 1.358 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4418 reflections
a = 12.6348 (4) Åθ = 3.2–27.5°
b = 11.9337 (5) ŵ = 0.32 mm1
c = 12.7904 (5) ÅT = 120 K
β = 92.549 (2)°Plate, colourless
V = 1926.63 (13) Å30.28 × 0.24 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4418 independent reflections
Radiation source: rotating anode2950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1616
Tmin = 0.926, Tmax = 0.987k = 1515
26344 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
4418 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C23H20ClNOSV = 1926.63 (13) Å3
Mr = 393.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6348 (4) ŵ = 0.32 mm1
b = 11.9337 (5) ÅT = 120 K
c = 12.7904 (5) Å0.28 × 0.24 × 0.04 mm
β = 92.549 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4418 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2950 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.987Rint = 0.081
26344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
4418 reflectionsΔρmin = 0.37 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl50.91507 (4)0.23886 (5)0.38523 (4)0.03279 (15)
S10.62010 (4)0.10640 (4)0.09520 (4)0.02562 (14)
O50.68726 (10)0.23583 (11)0.41271 (10)0.0254 (3)
N50.62888 (12)0.29611 (13)0.25199 (12)0.0210 (3)
C20.48382 (14)0.11544 (15)0.14149 (15)0.0211 (4)
C30.45311 (15)0.23221 (15)0.18065 (15)0.0223 (4)
C40.51655 (14)0.27594 (15)0.27657 (15)0.0213 (4)
C60.68342 (15)0.43814 (16)0.12682 (15)0.0239 (4)
C70.71108 (15)0.46821 (17)0.02638 (15)0.0266 (4)
C80.70979 (16)0.38876 (16)0.05196 (15)0.0262 (4)
C90.67862 (15)0.27932 (16)0.03213 (15)0.0245 (4)
C100.65120 (15)0.24793 (15)0.06785 (15)0.0219 (4)
C110.65492 (15)0.32806 (15)0.14771 (14)0.0207 (4)
C210.46712 (14)0.02588 (15)0.22280 (15)0.0216 (4)
C220.53824 (15)0.00511 (15)0.30613 (15)0.0235 (4)
C230.51420 (16)0.07096 (16)0.38456 (16)0.0264 (4)
C240.41872 (17)0.12711 (17)0.37951 (17)0.0315 (5)
C250.34730 (17)0.10777 (17)0.29671 (18)0.0324 (5)
C260.37133 (15)0.03237 (16)0.21828 (16)0.0264 (4)
C410.46579 (14)0.37879 (15)0.32295 (15)0.0218 (4)
C420.42153 (15)0.36996 (17)0.42056 (15)0.0251 (4)
C430.37349 (15)0.46205 (18)0.46527 (16)0.0288 (5)
C440.36970 (15)0.56379 (18)0.41354 (16)0.0291 (5)
C450.41336 (16)0.57349 (17)0.31652 (17)0.0299 (5)
C460.45954 (16)0.48096 (16)0.27098 (16)0.0274 (5)
C510.70636 (15)0.26827 (15)0.32498 (15)0.0218 (4)
C520.81861 (15)0.27880 (19)0.28850 (16)0.0294 (5)
H20.43480.09780.08020.025*
H220.60430.04320.31000.028*
H230.56360.08400.44140.032*
H240.40220.17890.43280.038*
H250.28140.14610.29330.039*
H260.32200.02050.16110.032*
H3A0.46070.28630.12280.027*
H3B0.37730.23060.19720.027*
H40.51630.21570.33090.026*
H420.42420.30050.45680.030*
H430.34320.45500.53160.035*
H440.33730.62680.44440.035*
H450.41170.64350.28110.036*
H460.48720.48760.20340.033*
H52A0.83140.35750.26800.035*
H52B0.82610.23130.22580.035*
H60.68400.49270.18090.029*
H70.73080.54330.01190.032*
H80.73030.40890.12000.031*
H90.67610.22570.08710.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0297 (3)0.0194 (2)0.0285 (3)0.0014 (2)0.0100 (2)0.0002 (2)
C20.0211 (9)0.0201 (9)0.0222 (10)0.0001 (8)0.0011 (7)0.0001 (8)
C210.0223 (10)0.0157 (9)0.0272 (11)0.0008 (8)0.0047 (8)0.0049 (8)
C220.0246 (10)0.0196 (9)0.0266 (11)0.0006 (8)0.0038 (8)0.0025 (8)
C230.0363 (11)0.0198 (9)0.0233 (11)0.0030 (9)0.0046 (9)0.0005 (8)
C240.0424 (13)0.0212 (10)0.0323 (12)0.0009 (9)0.0176 (10)0.0006 (9)
C250.0312 (11)0.0226 (10)0.0445 (14)0.0079 (9)0.0145 (10)0.0070 (9)
C260.0236 (10)0.0229 (10)0.0329 (12)0.0009 (9)0.0017 (8)0.0064 (9)
C30.0219 (9)0.0211 (10)0.0240 (10)0.0027 (8)0.0014 (8)0.0008 (8)
C40.0234 (9)0.0201 (9)0.0206 (10)0.0005 (8)0.0030 (8)0.0008 (8)
C410.0211 (9)0.0226 (10)0.0216 (10)0.0002 (8)0.0003 (8)0.0028 (8)
C420.0210 (9)0.0286 (11)0.0256 (11)0.0023 (8)0.0014 (8)0.0006 (9)
C430.0229 (10)0.0368 (12)0.0270 (11)0.0006 (9)0.0044 (8)0.0085 (9)
C440.0233 (10)0.0285 (11)0.0353 (12)0.0031 (9)0.0022 (9)0.0126 (9)
C450.0346 (11)0.0203 (10)0.0344 (12)0.0026 (9)0.0015 (9)0.0039 (9)
C460.0311 (11)0.0247 (10)0.0267 (11)0.0029 (9)0.0045 (9)0.0016 (8)
N50.0227 (8)0.0228 (8)0.0176 (8)0.0002 (7)0.0033 (6)0.0027 (6)
C510.0277 (10)0.0183 (9)0.0196 (10)0.0000 (8)0.0015 (8)0.0021 (8)
O50.0304 (8)0.0288 (7)0.0170 (7)0.0003 (6)0.0027 (6)0.0022 (6)
C520.0241 (10)0.0399 (12)0.0240 (11)0.0002 (9)0.0011 (8)0.0062 (9)
Cl50.0266 (3)0.0420 (3)0.0293 (3)0.0002 (2)0.0039 (2)0.0037 (2)
C60.0270 (10)0.0224 (10)0.0222 (10)0.0021 (8)0.0001 (8)0.0008 (8)
C70.0299 (10)0.0246 (10)0.0254 (11)0.0031 (9)0.0010 (8)0.0057 (9)
C80.0284 (10)0.0307 (11)0.0197 (10)0.0014 (9)0.0025 (8)0.0079 (9)
C90.0284 (11)0.0265 (10)0.0186 (10)0.0008 (9)0.0030 (8)0.0019 (8)
C100.0224 (9)0.0224 (10)0.0212 (10)0.0018 (8)0.0022 (8)0.0015 (8)
C110.0215 (9)0.0235 (10)0.0172 (10)0.0019 (8)0.0014 (7)0.0031 (8)
Geometric parameters (Å, º) top
S1—C101.7725 (19)C42—H420.95
S1—C21.8487 (18)C43—C441.383 (3)
C2—C211.513 (3)C43—H430.95
C2—C31.536 (2)C44—C451.385 (3)
C2—H21.00C44—H440.95
C21—C221.386 (3)C45—C461.389 (3)
C21—C261.395 (3)C45—H450.95
C22—C231.396 (3)C46—H460.95
C22—H220.95N5—C511.363 (2)
C23—C241.379 (3)N5—C111.439 (2)
C23—H230.95C51—O51.221 (2)
C24—C251.380 (3)C51—C521.518 (3)
C24—H240.95C52—Cl51.763 (2)
C25—C261.391 (3)C52—H52A0.99
C25—H250.95C52—H52B0.99
C26—H260.95C6—C111.391 (3)
C3—C41.527 (3)C6—C71.393 (3)
C3—H3A0.99C6—H60.95
C3—H3B0.99C7—C81.379 (3)
C4—N51.487 (2)C7—H70.95
C4—C411.518 (3)C8—C91.391 (3)
C4—H41.00C8—H80.95
C41—C461.389 (3)C9—C101.391 (3)
C41—C421.394 (3)C9—H90.95
C42—C431.391 (3)C10—C111.399 (3)
C10—S1—C2103.03 (8)C44—C43—C42120.24 (18)
C21—C2—C3111.82 (15)C44—C43—H43119.9
C21—C2—S1109.84 (12)C42—C43—H43119.9
C3—C2—S1114.18 (13)C43—C44—C45119.70 (18)
C21—C2—H2106.9C43—C44—H44120.1
C3—C2—H2106.9C45—C44—H44120.1
S1—C2—H2106.9C44—C45—C46120.06 (19)
C22—C21—C26118.33 (18)C44—C45—H45120.0
C22—C21—C2123.36 (16)C46—C45—H45120.0
C26—C21—C2118.10 (17)C45—C46—C41120.86 (18)
C21—C22—C23120.97 (18)C45—C46—H46119.6
C21—C22—H22119.5C41—C46—H46119.6
C23—C22—H22119.5C51—N5—C11120.82 (15)
C24—C23—C22120.0 (2)C51—N5—C4118.61 (14)
C24—C23—H23120.0C11—N5—C4119.90 (15)
C22—C23—H23120.0O5—C51—N5122.77 (17)
C23—C24—C25119.71 (19)O5—C51—C52122.29 (17)
C23—C24—H24120.1N5—C51—C52114.93 (16)
C25—C24—H24120.1C51—C52—Cl5112.83 (14)
C24—C25—C26120.35 (19)C51—C52—H52A109.0
C24—C25—H25119.8Cl5—C52—H52A109.0
C26—C25—H25119.8C51—C52—H52B109.0
C25—C26—C21120.6 (2)Cl5—C52—H52B109.0
C25—C26—H26119.7H52A—C52—H52B107.8
C21—C26—H26119.7C11—C6—C7119.87 (18)
C4—C3—C2116.15 (16)C11—C6—H6120.1
C4—C3—H3A108.2C7—C6—H6120.1
C2—C3—H3A108.2C8—C7—C6119.84 (18)
C4—C3—H3B108.2C8—C7—H7120.1
C2—C3—H3B108.2C6—C7—H7120.1
H3A—C3—H3B107.4C7—C8—C9120.49 (18)
N5—C4—C41112.07 (15)C7—C8—H8119.8
N5—C4—C3110.93 (14)C9—C8—H8119.8
C41—C4—C3112.00 (15)C8—C9—C10120.31 (18)
N5—C4—H4107.2C8—C9—H9119.8
C41—C4—H4107.2C10—C9—H9119.8
C3—C4—H4107.2C9—C10—C11119.05 (17)
C46—C41—C42118.57 (17)C9—C10—S1120.30 (15)
C46—C41—C4122.60 (16)C11—C10—S1120.53 (14)
C42—C41—C4118.82 (17)C6—C11—C10120.39 (17)
C43—C42—C41120.54 (19)C6—C11—N5120.00 (17)
C43—C42—H42119.7C10—C11—N5119.61 (16)
C41—C42—H42119.7
C10—S1—C2—C21147.32 (13)C4—C41—C46—C45179.36 (18)
C10—S1—C2—C320.80 (16)C41—C4—N5—C5193.70 (19)
C3—C2—C21—C2280.5 (2)C3—C4—N5—C51140.30 (17)
S1—C2—C21—C2247.4 (2)C41—C4—N5—C1195.62 (19)
C3—C2—C21—C2694.2 (2)C3—C4—N5—C1130.4 (2)
S1—C2—C21—C26138.00 (15)C11—N5—C51—O5176.57 (17)
C26—C21—C22—C230.9 (3)C4—N5—C51—O56.0 (3)
C2—C21—C22—C23173.68 (17)C11—N5—C51—C522.5 (3)
C21—C22—C23—C240.3 (3)C4—N5—C51—C52173.09 (16)
C22—C23—C24—C250.0 (3)O5—C51—C52—Cl50.3 (3)
C23—C24—C25—C260.3 (3)N5—C51—C52—Cl5178.73 (14)
C24—C25—C26—C210.9 (3)C11—C6—C7—C80.2 (3)
C22—C21—C26—C251.2 (3)C6—C7—C8—C91.5 (3)
C2—C21—C26—C25173.69 (17)C7—C8—C9—C101.8 (3)
C21—C2—C3—C462.1 (2)C8—C9—C10—C110.3 (3)
S1—C2—C3—C463.4 (2)C8—C9—C10—S1175.75 (15)
C2—C3—C4—N566.3 (2)C2—S1—C10—C9121.43 (16)
C2—C3—C4—C41167.65 (15)C2—S1—C10—C1162.6 (2)
N5—C4—C41—C4658.2 (2)C7—C6—C11—C101.7 (3)
C3—C4—C41—C4667.2 (2)C7—C6—C11—N5178.44 (17)
N5—C4—C41—C42123.23 (18)C9—C10—C11—C61.4 (3)
C3—C4—C41—C42111.4 (2)S1—C10—C11—C6177.46 (14)
C46—C41—C42—C430.8 (3)C9—C10—C11—N5178.70 (17)
C4—C41—C42—C43179.44 (17)S1—C10—C11—N52.6 (2)
C41—C42—C43—C440.4 (3)C51—N5—C11—C683.9 (2)
C42—C43—C44—C450.4 (3)C4—N5—C11—C6105.6 (2)
C43—C44—C45—C460.8 (3)C51—N5—C11—C1096.2 (2)
C44—C45—C46—C412.1 (3)C4—N5—C11—C1074.3 (2)
C42—C41—C46—C452.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O5i0.952.423.295 (3)153
C44—H44···O5ii0.952.483.364 (2)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
(III) (2RS,4RS)-N-Benzoyl-2,3,4,5-tetrahydro-2,4-diphenyl-1,5-benzothiazepine top
Crystal data top
C28H23NOSF(000) = 1776
Mr = 421.53Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4894 reflections
a = 30.1891 (8) Åθ = 3.0–27.5°
b = 14.8005 (3) ŵ = 0.17 mm1
c = 9.7965 (3) ÅT = 120 K
β = 102.2570 (16)°Block, colourless
V = 4277.43 (19) Å30.36 × 0.26 × 0.16 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4894 independent reflections
Radiation source: rotating anode3535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 3935
Tmin = 0.937, Tmax = 0.973k = 1918
21732 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0545P)2 + 1.1026P]
where P = (Fo2 + 2Fc2)/3
4894 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C28H23NOSV = 4277.43 (19) Å3
Mr = 421.53Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.1891 (8) ŵ = 0.17 mm1
b = 14.8005 (3) ÅT = 120 K
c = 9.7965 (3) Å0.36 × 0.26 × 0.16 mm
β = 102.2570 (16)°
Data collection top
Nonius KappaCCD
diffractometer
4894 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3535 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.973Rint = 0.060
21732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4894 reflectionsΔρmin = 0.38 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.094107 (14)0.42954 (3)0.77386 (4)0.02642 (13)
O50.17444 (4)0.15956 (8)0.69736 (13)0.0315 (3)
N50.12068 (4)0.26493 (8)0.62342 (14)0.0208 (3)
C20.14420 (5)0.46165 (11)0.70379 (17)0.0232 (4)
C30.14544 (6)0.41805 (10)0.56286 (17)0.0228 (3)
C40.15486 (5)0.31680 (10)0.56536 (16)0.0213 (3)
C60.04472 (6)0.24342 (11)0.47728 (17)0.0252 (4)
C70.00021 (6)0.27212 (12)0.43145 (18)0.0289 (4)
C80.01450 (6)0.35052 (12)0.48598 (18)0.0297 (4)
C90.01483 (6)0.39916 (11)0.58627 (18)0.0256 (4)
C100.05930 (5)0.37055 (11)0.63496 (17)0.0222 (3)
C110.07424 (5)0.29148 (10)0.57957 (16)0.0212 (3)
C210.18738 (5)0.44868 (10)0.81379 (16)0.0211 (3)
C220.22147 (6)0.51296 (11)0.82174 (18)0.0258 (4)
C230.26166 (6)0.50527 (12)0.92018 (19)0.0300 (4)
C240.26810 (6)0.43394 (12)1.01364 (19)0.0290 (4)
C250.23471 (6)0.36931 (11)1.00595 (17)0.0274 (4)
C260.19454 (6)0.37592 (11)0.90624 (17)0.0234 (4)
C410.15783 (5)0.27965 (10)0.42232 (16)0.0205 (3)
C420.12596 (6)0.30039 (11)0.30132 (17)0.0237 (4)
C430.12925 (6)0.26244 (12)0.17391 (18)0.0270 (4)
C440.16410 (6)0.20381 (11)0.16507 (18)0.0285 (4)
C450.19614 (6)0.18313 (12)0.28431 (18)0.0291 (4)
C460.19296 (6)0.22055 (11)0.41200 (18)0.0251 (4)
C510.10328 (6)0.12645 (10)0.74628 (17)0.0239 (4)
C520.07184 (6)0.15941 (11)0.81872 (18)0.0290 (4)
C530.04732 (7)0.10049 (13)0.8830 (2)0.0378 (5)
C540.05359 (7)0.00808 (13)0.8753 (2)0.0428 (5)
C550.08459 (7)0.02543 (12)0.8026 (2)0.0427 (5)
C560.10975 (6)0.03312 (11)0.7399 (2)0.0332 (4)
C570.13505 (6)0.18430 (11)0.68621 (17)0.0243 (4)
H20.14150.52820.68600.028*
H220.21710.56270.75890.031*
H230.28490.54910.92360.036*
H240.29540.42951.08270.035*
H250.23920.31991.06930.033*
H260.17190.33070.90110.028*
H3A0.11590.42920.49850.027*
H3B0.16900.44890.52350.027*
H40.18500.30680.62920.026*
H420.10180.34070.30580.028*
H430.10730.27700.09210.032*
H440.16610.17790.07780.034*
H450.22040.14330.27890.035*
H460.21500.20570.49340.030*
H520.06720.22270.82400.035*
H530.02600.12350.93290.045*
H540.03660.03220.91980.051*
H550.08860.08880.79580.051*
H560.13160.00990.69220.040*
H60.05500.19060.43840.030*
H70.02010.23820.36300.035*
H80.04480.37060.45410.036*
H90.00460.45290.62260.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (2)0.0301 (2)0.0232 (2)0.00194 (18)0.00794 (17)0.00742 (18)
C20.0304 (9)0.0193 (8)0.0210 (8)0.0017 (7)0.0079 (7)0.0007 (7)
C210.0266 (8)0.0202 (8)0.0184 (8)0.0001 (6)0.0092 (6)0.0043 (6)
C220.0338 (9)0.0232 (8)0.0244 (9)0.0018 (7)0.0155 (7)0.0006 (7)
C230.0274 (9)0.0324 (9)0.0329 (10)0.0069 (7)0.0124 (8)0.0079 (8)
C240.0249 (9)0.0380 (10)0.0245 (9)0.0021 (8)0.0060 (7)0.0084 (8)
C250.0365 (10)0.0260 (8)0.0209 (9)0.0034 (7)0.0090 (7)0.0009 (7)
C260.0292 (9)0.0200 (8)0.0220 (9)0.0040 (7)0.0073 (7)0.0034 (7)
C30.0277 (8)0.0223 (8)0.0190 (8)0.0016 (7)0.0063 (7)0.0003 (7)
C40.0245 (8)0.0221 (8)0.0178 (8)0.0003 (6)0.0057 (6)0.0003 (6)
C410.0239 (8)0.0192 (7)0.0199 (8)0.0034 (6)0.0080 (6)0.0005 (6)
C420.0254 (8)0.0245 (8)0.0228 (9)0.0024 (7)0.0083 (7)0.0009 (7)
C430.0294 (9)0.0326 (9)0.0192 (9)0.0020 (7)0.0053 (7)0.0003 (7)
C440.0352 (10)0.0305 (9)0.0223 (9)0.0009 (8)0.0121 (7)0.0039 (7)
C450.0305 (9)0.0306 (9)0.0286 (9)0.0062 (7)0.0120 (7)0.0023 (8)
C460.0254 (8)0.0255 (8)0.0250 (9)0.0013 (7)0.0064 (7)0.0019 (7)
N50.0260 (7)0.0185 (6)0.0192 (7)0.0020 (5)0.0074 (6)0.0032 (5)
C570.0322 (9)0.0218 (8)0.0199 (8)0.0037 (7)0.0080 (7)0.0002 (7)
O50.0314 (7)0.0292 (6)0.0357 (7)0.0084 (5)0.0110 (5)0.0087 (5)
C510.0329 (9)0.0210 (8)0.0179 (8)0.0030 (7)0.0057 (7)0.0028 (7)
C520.0419 (10)0.0220 (8)0.0257 (9)0.0052 (7)0.0128 (8)0.0036 (7)
C530.0498 (12)0.0326 (10)0.0382 (11)0.0089 (9)0.0253 (9)0.0064 (8)
C540.0541 (12)0.0297 (10)0.0526 (13)0.0012 (9)0.0289 (10)0.0127 (9)
C550.0593 (13)0.0206 (9)0.0556 (14)0.0039 (9)0.0292 (11)0.0067 (9)
C560.0426 (11)0.0248 (9)0.0376 (11)0.0068 (8)0.0206 (9)0.0021 (8)
C60.0319 (9)0.0222 (8)0.0228 (9)0.0043 (7)0.0089 (7)0.0019 (7)
C70.0283 (9)0.0357 (10)0.0217 (9)0.0090 (7)0.0031 (7)0.0001 (8)
C80.0247 (9)0.0351 (10)0.0286 (9)0.0000 (7)0.0042 (7)0.0054 (8)
C90.0282 (9)0.0235 (8)0.0259 (9)0.0022 (7)0.0072 (7)0.0040 (7)
C100.0262 (8)0.0217 (8)0.0191 (8)0.0012 (6)0.0060 (6)0.0019 (7)
C110.0257 (8)0.0203 (8)0.0185 (8)0.0001 (6)0.0064 (6)0.0036 (6)
Geometric parameters (Å, º) top
S1—C101.7637 (16)C44—H440.95
S1—C21.8507 (16)C45—C461.390 (2)
C2—C211.517 (2)C45—H450.95
C2—C31.532 (2)C46—H460.95
C2—H21.00N5—C571.370 (2)
C21—C221.391 (2)N5—C111.431 (2)
C21—C261.394 (2)C57—O51.227 (2)
C22—C231.385 (3)C57—C511.496 (2)
C22—H220.95C51—C521.389 (2)
C23—C241.384 (3)C51—C561.398 (2)
C23—H230.95C52—C531.380 (3)
C24—C251.380 (2)C52—H520.95
C24—H240.95C53—C541.385 (3)
C25—C261.390 (2)C53—H530.95
C25—H250.95C54—C551.383 (3)
C26—H260.95C54—H540.95
C3—C41.525 (2)C55—C561.379 (3)
C3—H3A0.99C55—H550.95
C3—H3B0.99C56—H560.95
C4—N51.492 (2)C6—C111.388 (2)
C4—C411.526 (2)C6—C71.390 (2)
C4—H41.00C6—H60.95
C41—C421.393 (2)C7—C81.389 (3)
C41—C461.395 (2)C7—H70.95
C42—C431.391 (2)C8—C91.378 (2)
C42—H420.95C8—H80.95
C43—C441.381 (2)C9—C101.392 (2)
C43—H430.95C9—H90.95
C44—C451.384 (2)C10—C111.404 (2)
C10—S1—C2103.94 (7)C44—C45—C46120.14 (16)
C21—C2—C3113.92 (13)C44—C45—H45119.9
C21—C2—S1110.53 (11)C46—C45—H45119.9
C3—C2—S1113.85 (11)C45—C46—C41120.93 (16)
C21—C2—H2105.9C45—C46—H46119.5
C3—C2—H2105.9C41—C46—H46119.5
S1—C2—H2105.9C57—N5—C11124.79 (13)
C22—C21—C26118.75 (15)C57—N5—C4116.13 (13)
C22—C21—C2117.84 (14)C11—N5—C4117.18 (12)
C26—C21—C2123.41 (14)O5—C57—N5120.57 (15)
C23—C22—C21120.73 (16)O5—C57—C51118.97 (14)
C23—C22—H22119.6N5—C57—C51120.43 (14)
C21—C22—H22119.6C52—C51—C56119.12 (15)
C24—C23—C22120.18 (16)C52—C51—C57124.39 (14)
C24—C23—H23119.9C56—C51—C57116.14 (15)
C22—C23—H23119.9C53—C52—C51120.17 (15)
C25—C24—C23119.61 (16)C53—C52—H52119.9
C25—C24—H24120.2C51—C52—H52119.9
C23—C24—H24120.2C52—C53—C54120.42 (17)
C24—C25—C26120.52 (16)C52—C53—H53119.8
C24—C25—H25119.7C54—C53—H53119.8
C26—C25—H25119.7C55—C54—C53119.84 (17)
C25—C26—C21120.18 (15)C55—C54—H54120.1
C25—C26—H26119.9C53—C54—H54120.1
C21—C26—H26119.9C56—C55—C54120.05 (17)
C4—C3—C2116.10 (13)C56—C55—H55120.0
C4—C3—H3A108.3C54—C55—H55120.0
C2—C3—H3A108.3C55—C56—C51120.37 (16)
C4—C3—H3B108.3C55—C56—H56119.8
C2—C3—H3B108.3C51—C56—H56119.8
H3A—C3—H3B107.4C11—C6—C7120.36 (15)
N5—C4—C3111.71 (13)C11—C6—H6119.8
N5—C4—C41110.18 (12)C7—C6—H6119.8
C3—C4—C41112.75 (13)C8—C7—C6119.82 (16)
N5—C4—H4107.3C8—C7—H7120.1
C3—C4—H4107.3C6—C7—H7120.1
C41—C4—H4107.3C9—C8—C7120.07 (16)
C42—C41—C46118.36 (15)C9—C8—H8120.0
C42—C41—C4122.51 (14)C7—C8—H8120.0
C46—C41—C4119.11 (15)C8—C9—C10120.83 (16)
C43—C42—C41120.42 (15)C8—C9—H9119.6
C43—C42—H42119.8C10—C9—H9119.6
C41—C42—H42119.8C9—C10—C11119.13 (15)
C44—C43—C42120.70 (16)C9—C10—S1119.14 (13)
C44—C43—H43119.7C11—C10—S1121.54 (12)
C42—C43—H43119.7C6—C11—C10119.77 (15)
C43—C44—C45119.45 (16)C6—C11—N5120.93 (14)
C43—C44—H44120.3C10—C11—N5119.17 (14)
C45—C44—H44120.3
C10—S1—C2—C21138.65 (11)C11—N5—C57—O5166.53 (15)
C10—S1—C2—C39.0 (2)C4—N5—C57—O52.7 (2)
C3—C2—C21—C2289.28 (17)C11—N5—C57—C5115.4 (2)
S1—C2—C21—C22141.05 (12)C4—N5—C57—C51179.24 (13)
C3—C2—C21—C2690.52 (18)O5—C57—C51—C52138.48 (18)
S1—C2—C21—C2639.15 (19)N5—C57—C51—C5239.6 (2)
C26—C21—C22—C230.4 (2)O5—C57—C51—C5634.6 (2)
C2—C21—C22—C23179.76 (14)N5—C57—C51—C56147.28 (16)
C21—C22—C23—C241.0 (3)C56—C51—C52—C530.2 (3)
C22—C23—C24—C251.6 (3)C57—C51—C52—C53173.12 (17)
C23—C24—C25—C260.7 (2)C51—C52—C53—C540.4 (3)
C24—C25—C26—C210.7 (2)C52—C53—C54—C550.1 (3)
C22—C21—C26—C251.3 (2)C53—C54—C55—C561.1 (3)
C2—C21—C26—C25178.91 (15)C54—C55—C56—C511.7 (3)
C21—C2—C3—C457.31 (18)C52—C51—C56—C551.2 (3)
S1—C2—C3—C470.67 (16)C57—C51—C56—C55174.73 (18)
C2—C3—C4—N558.11 (18)C11—C6—C7—C81.5 (3)
C2—C3—C4—C41177.16 (13)C6—C7—C8—C90.7 (3)
N5—C4—C41—C4278.61 (18)C7—C8—C9—C100.4 (3)
C3—C4—C41—C4247.0 (2)C8—C9—C10—C110.6 (2)
N5—C4—C41—C4699.49 (16)C8—C9—C10—S1174.59 (13)
C3—C4—C41—C46134.95 (15)C2—S1—C10—C9124.66 (14)
C46—C41—C42—C430.3 (2)C2—S1—C10—C1160.3 (2)
C4—C41—C42—C43177.82 (14)C7—C6—C11—C101.3 (2)
C41—C42—C43—C440.1 (2)C7—C6—C11—N5177.27 (15)
C42—C43—C44—C450.3 (3)C9—C10—C11—C60.2 (2)
C43—C44—C45—C460.6 (3)S1—C10—C11—C6175.31 (12)
C44—C45—C46—C410.4 (3)C9—C10—C11—N5176.30 (14)
C42—C41—C46—C450.1 (2)S1—C10—C11—N58.6 (2)
C4—C41—C46—C45178.12 (15)C57—N5—C11—C662.8 (2)
C3—C4—N5—C57152.61 (14)C4—N5—C11—C6100.87 (17)
C41—C4—N5—C5781.25 (17)C57—N5—C11—C10121.19 (17)
C3—C4—N5—C1142.3 (2)C4—N5—C11—C1075.1 (2)
C41—C4—N5—C1183.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O5i0.952.493.347 (2)150
C24—H24···O5ii0.952.533.295 (2)138
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC23H21NOSC23H20ClNOSC28H23NOS
Mr359.48393.92421.53
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)120120120
a, b, c (Å)20.3579 (4), 8.3014 (1), 22.2513 (4)12.6348 (4), 11.9337 (5), 12.7904 (5)30.1891 (8), 14.8005 (3), 9.7965 (3)
β (°) 93.865 (1) 92.549 (2) 102.2570 (16)
V3)3751.90 (11)1926.63 (13)4277.43 (19)
Z848
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.180.320.17
Crystal size (mm)0.20 × 0.04 × 0.030.28 × 0.24 × 0.040.36 × 0.26 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.954, 0.9940.926, 0.9870.937, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
51290, 8274, 4659 26344, 4418, 2950 21732, 4894, 3535
Rint0.1090.0810.060
(sin θ/λ)max1)0.6410.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.125, 1.00 0.043, 0.098, 1.00 0.043, 0.109, 1.03
No. of reflections827444184894
No. of parameters471244280
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.400.22, 0.370.21, 0.38

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C145—H145···O25i0.952.473.336 (3)152
C245—H245···O15i0.952.413.268 (3)150
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O5i0.952.423.295 (3)153
C44—H44···O5ii0.952.483.364 (2)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O5i0.952.493.347 (2)150
C24—H24···O5ii0.952.533.295 (2)138
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+2.
Hydrogen bonds and short intermolecular contact parameters (Å, °) for compound (IV) top
D-H···AD-HH···AD···AD-H···A
C6-H6···Cg1i0.982.823.521 (3)129
C21-H21···Cg2ii0.942.993.746 (3)139
C34-H34···Cg2iii0.912.983.669 (4)133
N5-H5···S1iv0.82 (2)3.05 (2)3.490 (3)116 (2)
Original atom numbering (Laavanya et al., 2002). Cg1 and Cg2 are centroids of the rings C6-C11 and C20-C25 respectively. Symmetry codes: i (0.5 − x, 0.5 + y, 0.5 − z), ii (1.5 − x, 0.5 + y, 0.5 − z), iii (1 − x, 1 − y, −z), iv (x, 1 + y, z)
Selected torsional angles (°) for compounds (I) - (IV) top
Parameter(I)(I)(II)(III)(IV)
Mol 1Mol 2
x =12nilnilnil
Sx1—Cx10—Cx11—Xx5-7.2 (3)-6.3 (2)-2.6 (2)-8.6 (2)0.7 (3)
Cx11—Cx10—Sx1—Cx264.1 (2)63.2 (2)62.6 (2)60.3 (2)32.2 (2)
Cx10—Cx11—Xx5—Cx4-71.8 (3)-72.0 (3)-74.3 (2)-75.1 (2)38.4 (3)
Sx1—Cx2—Cx3–Cx4-64.6 (2)-64.5 (2)-63.4 (2)-70.7 (2)45.9 (3)
Xx5—Cx4—Cx3—Cx264.1 (2)64.2 (2)66.3 (2)58.1 (2)45.3 (3)
Cx10—Sx1—Cx2—Cx3-18.1 (2)-18.4 (2)-20.8 (2)-9.0 (2)-83.4 (2)
Cx11—Xx5—Cx4—Cx333.1 (3)32.9 (3)30.4 (2)42.3 (2)-96.3 (3)
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696–701.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKojić-Prodić, B., Ruz˘ić-Toros˘, Z., S˘unjić, V., Decorte, E. & Moimas, F. (1984). Helv. Chim. Acta, 67, 916–925.  CSD CrossRef Web of Science Google Scholar
First citationLaavanya, P., Panchanatheswaran, K., Muthukumar, M., Jeyaraman, R. & Kraus Bauer, J. A. (2002). Acta Cryst. E58, o701–o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLommerse, J. P. M., Motherwell, W. D. S., Ammon, L. H., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMotherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Scheraga, H., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–661.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds