organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydro­gen-bonding adducts of benzene­poly­carboxyl­ic acids with N,N-di­methyl­form­amide: benzene-1,4-di­carboxyl­ic acid N,N-di­methyl­form­amide disolvate, benzene-1,2,4,5-tetra­carboxyl­ic acid N,N-di­methyl­form­amide tetrasolvate and benzene-1,2,3-tri­carboxyl­ic acid N,N-di­methyl­form­amide disolvate mono­hydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

(Received 18 March 2004; accepted 21 April 2004; online 31 May 2004)

The N,N-di­methyl­form­amide (DMF) solvates of terephthalic acid, H2TA·2DMF (C8H6O6·2C3H7NO), pyromellitic acid, H4PMA·4DMF (C10H6O8·4C3H7NO), and hemimellitic acid, H3HMA·2DMF·H2O (C9H6O6·2C3H7NO·H2O), are reported. The DMF solvate of terephthalic acid is centrosymmetric, containing one complete formula unit in the asymmetric unit. Both carboxyl­ic acid groups hydrogen bond to a DMF mol­ecule via an [R_2^2](7) O—H⋯O/C—H⋯O motif. Discrete H2TA·2DMF units are observed. The DMF solvate of pyromellitic acid is centrosymmetric and the asymmetric unit contains half a formula unit. One of the unique carboxyl­ic acid groups forms an [R_2^2](7) motif with a DMF mol­ecule, while the other forms a linear O—H⋯O hydrogen bond to the second unique DMF mol­ecule. Discrete H4PMA·4DMF units are observed. The DMF solvate of hemimellitic acid is non-centrosymmetric and includes a mol­ecule of water per formula unit. Both DMF mol­ecules form an [R_2^2](7) motif with the two outer carboxyl­ic acid groups of HMA. A one-dimensional ladder structure is formed via hydrogen bonding between the central carboxyl­ic acid group and the water mol­ecules. The carboxyl­ic acid [R_2^2](8) head-to-tail motif is not observed in any of these examples. The inclusion of DMF thereby has the effect of limiting the dimensionality of the structures.

Comment

A wide variety of solvents are available to the chemist for the dissolution and recrystallization of compounds. In the case of benzene­poly­carboxyl­ic acids, those solvents of most interest in the synthesis of solvent-inclusion clathrates must be capable of hydrogen bonding, containing donor and/or acceptor atoms. A recent study (Nangia & Desiraju, 1999[Nangia, A. & Desiraju, G. R. (1999). Chem. Commun. pp. 605-606.]), with corrections applied for the different usages of solvents in recrystallization, has found that the greater the number of donor and acceptor sites on the solvent mol­ecule, the more likely the solvent is to be included in organic crystals. Solvents such as N,N-di­methyl­form­amide (DMF), di­methyl ­sulfoxide and dioxane, while having low usage as recrystallization solvents, have an extremely high probability of inclusion through their ability to bond to the solute mol­ecule via `multi-point recognition' using both strong and weak hydrogen bonds.

Numerous examples of benzene­poly­carboxyl­ic acid solvent-inclusion compounds exist in the literature (for example, Dale & Elsegood, 2003b[Dale, S. H. & Elsegood, M. R. J. (2003b). Acta Cryst. E59, o127-o128.]; Chatterjee et al., 2000[Chatterjee, S., Pedireddi, V. R., Ranganathan, A. & Rao, C. N. R. (2000). J. Mol. Struct. 520, 107-115.]; Herbstein & Kapon, 1978[Herbstein, F. H. & Kapon, M. (1978). Acta Cryst. B34, 1608-1612.]; Herbstein et al., 1978[Herbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613-1617.]) and yet only one literature example of a single-crystal X-ray structure shows the solvation of a benzene­poly­carboxyl­ic acid by DMF, that of benzene-1,3,5-tri­carboxyl­ic acid (trimesic acid) N,N-di­methyl­form­amide disolvate (H3TMA·2DMF; Dale & Elsegood, 2003b[Dale, S. H. & Elsegood, M. R. J. (2003b). Acta Cryst. E59, o127-o128.]). In the presence of DMF, the formation of the common [R_2^2](8) head-to-tail carboxyl­ic acid–acid graph-set motif (Leiserowitz, 1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]; Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter & MacDonald, 1990[Etter, M. C. & MacDonald, J. C. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) is prevented in this structure. Instead, two of the three carboxyl­ic acid groups interact directly with DMF mol­ecules in an [R_2^2](7) graph-set pattern, with a combination of strong O—H⋯O and weaker C—H⋯O hydrogen bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond in Structural Chemistry and Biology, pp. 44-68. New York: Oxford University Press Inc.]), while the third carboxyl group interacts with one of these carboxyl–DMF synthons.

[Scheme 1]

We investigate here the hydrogen-bonding arrays created by the co-crystallization of DMF with benzene-1,4-di­carboxylic acid (terephthalic acid, H2TA), benzene-1,2,4,5-tetra­carboxylic acid (pyromellitic acid, H4PMA) and benzene-1,2,3-tri­carboxylic acid (hemimellitic acid, H3HMA). H2TA dissolves easily in DMF, one of very few examples of organic solvents capable of dissolving this acid. X-Ray analysis of colourless crystals grown from the DMF solution at approximately 258 K showed that H2TA co-crystallizes with two mol­ecules of DMF, producing H2TA·2DMF, (I[link]). Because of the instability of this compound under ambient conditions, the collation of supporting evidence, such as microanalysis and IR spectra, has proven impossible. The H2TA mol­ecule in (I[link]) does not possess an inversion centre because of rotational disorder [82.8 (4):17.2 (4)%] in the carboxyl group attached to atom C1 and complementary rotational disorder in the aldehyde group of the DMF mol­ecule hydrogen bonded to this carboxyl group. The asymmetric unit therefore comprises one complete formula unit (Fig. 1[link]). The geometry of the H2TA mol­ecule (Table 1[link]) shows good agreement with that found previously (Bailey & Brown, 1967[Bailey, M. & Brown, C. J. (1967). Acta Cryst. 22, 387-391.]). The H2TA mol­ecule is roughly planar, with the carboxyl groups only deviating slightly from coplanarity with the aromatic ring [the dihedral angles between the C1–C6 ring and the C7/O1/O2 and C8/O3/O4 planes are 0.7 (3) and 2.2 (3)°, respectively].

Both unique DMF mol­ecules hydrogen bond to their respective carboxyl groups utilizing the same [R_2^2](7) synthon observed in H3TMA·2DMF (Dale & Elsegood, 2003b[Dale, S. H. & Elsegood, M. R. J. (2003b). Acta Cryst. E59, o127-o128.]), with one strong O—H⋯O hydrogen bond and one complementary, weaker, C—H⋯O hydrogen bond (Table 2[link]). Larger dihedral angles occur between the carboxyl groups and the aldehyde groups of their associated DMF mol­ecules within the [R_2^2](7) motifs [the dihedral angle between C7/O1/O2 and C9/O5/H9 is 16.4 (3)°, and that between C8/O3/O4 and C12/O6/H12 is 17.3 (3)°]. No further strong hydrogen bonding exists outside the asymmetric unit.

H4PMA co-crystallizes with four mol­ecules of DMF, yielding H4PMA·4DMF, (II[link]), which forms readily at room temperature and shows reasonable stability under ambient conditions, in contrast to (I[link]). The H4PMA mol­ecule lies on a crystallographic centre of symmetry, resulting in the asymmetric unit comprising half of a formula unit (Fig. 2[link]). The geometry of the H4PMA mol­ecule (Table 3[link]) concurs with that determined previously (Dale & Elsegood, 2003c[Dale, S. H. & Elsegood, M. R. J. (2003c). Acta Cryst. E59, o1087-o1088.]).

As expected, steric repulsions force the rotation of adjacent carboxyl groups away from the plane of the aromatic ring [the dihedral angles between the C1–C3i ring and the C4/O1/O2 and C5/O3/O4 planes are 53.75 (12) and 38.85 (13)°, respectively; symmetry code: (i) −x, 2 − y, −z].

The two independent DMF mol­ecules in (II[link]) have differing binding modes to the carboxyl groups: while one adopts the O—H⋯O/C—H⋯O [R_2^2](7) arrangement seen in both (I[link]) and H3TMA·2DMF (Dale & Elsegood, 2003b[Dale, S. H. & Elsegood, M. R. J. (2003b). Acta Cryst. E59, o127-o128.]), the second interacts via a simple linear O—H⋯O hydrogen bond utilizing the OH group of the second unique carboxyl group (Table 4[link]). The [R_2^2](7) motif in this structure contains a shorter, and therefore stronger, C—H⋯O interaction than the same motif in (I[link]). As with (I[link]), no further strong hydrogen-bonding interactions occur outside the asymmetric unit of (II[link]). The co-crystallization of commercially available H3HMA·2H2O with DMF yields colourless crystals of H3HMA·2DMF·H2O, (III) (Table 5[link] and Fig. 3[link]). Compound (III[link]) was observed to desolvate over a period of a few minutes under ambient conditions, sufficient time to allow IR spectroscopic and microanalyses to be carried out. The asymmetric unit of (III[link]) contains a whole formula unit, in which the outer carboxyl groups of the H3HMA mol­ecule, at atoms C1 and C3, both hydrogen bond, via the [R_2^2](7) synthon, to different DMF mol­ecules, creating H3HMA·2DMF units (Table 6[link]). These secondary building blocks are linked into a one-dimensional ladder structure (Fig. 4[link]) by hydrogen bonding involving the mol­ecule of water included in the asymmetric unit.

The inner carboxyl group at atom C2 lies almost perpendicular to the plane of the aromatic ring [the dihedral angle between the C1–C6 ring and the C8/O3/O4 plane is 81.54 (10)°], as observed in the dihydrate of H3HMA (Fornies-Marquina et al., 1972[Fornies-Marquina, J. M., Courseille, C., Busetta, B. & Hospital, M. (1972). Cryst. Struct. Commun. 1, 47-50.]; Takusagawa & Shimada, 1973[Takusagawa, F. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2998-3004.]; Mo & Adman, 1975[Mo, F. & Adman, E. (1975). Acta Cryst. B31, 192-198.]) and in its 2-methyl ester (Dale & Elsegood, 2003a[Dale, S. H. & Elsegood, M. R. J. (2003a). Acta Cryst. C59, o165-o166.]). This carboxyl group, aided by its anti-planar conformation (Leiserowitz, 1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]), forms a zigzag C22(6) chain by hydrogen bonding with one OH group of the water mol­ecule.

A search of the Cambridge Structural Database (CSD; Version 5.25 of November 2003, plus one update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) identifies 30 hits containing both carboxylic acid groups and DMF mol­ecules, of which six are redeterminations. A more detailed search for hydrogen-bonding motifs in carboxylic acid/DMF structures [constraining the O⋯O contact distance to within the range 2–3.2 Å and the C⋯O contact distance to within the range 2.5–3.5 Å; redeterminations omitted from statistical analysis] indicates that 19 structures contain O—H⋯O hydrogen bonding between the CO2H group and the aldehyde O atom, the mean O⋯O contact distance being 2.597 (15) Å (range 2.507–2.888 Å). 13 of these 19 structures also contain C—H⋯O hydrogen bonding, producing the [R_2^2](7) motif observed in (I[link]), (II[link]) and (III[link]). The mean O⋯O contact distance within this population [containing the [R_2^2](7) motif] is 2.585 (13) Å (range 2.507–2.692 Å), while the mean O—H⋯O angle is 169.4 (17)°, indicating a slight shortening in the O—H⋯O hydrogen-bond distance when C—H⋯O interactions exist and showing good agreement with the hydrogen-bond geometry observed for the same motifs in (I[link]), (II[link]) and (III[link]). C—H⋯O interactions within this population have a mean C⋯O contact distance of 3.24 (3) Å (range 3.054–3.490 Å). It is interesting to note the structure of 1,1′-bi­naphthyl-2,2′-di­carboxyl­ic acid bis(DMF) clathrate (CSD refcode CIWJIB10; Csoregh et al., 1986[Csoregh, I., Sjogren, A., Czugler, M., Cserzo, M. & Weber, E. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 507-513.]), in which two DMF binding modes are present, viz. one [R_2^2](7) motif and one simple linear O—H⋯O motif, just as observed in the structure of (II[link]). The O⋯O contact distances within these motifs are 2.692 and 2.888 Å, respectively, considerably longer than those observed in (II[link]) [2.5723 (12) and 2.5508 (13) Å, respectively], presumably because of the increased steric bulk of the solute mol­ecule. While the CO2H/DMF [R_2^2](7) synthon has relatively few examples in the CSD compared with the analogous, well studied, carboxylic acid–pyridine [R_2^2](7) synthon (Vishweshwar et al., 2002[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2002). J. Org. Chem. 67, 556-565.]), the majority (15) of the 21 CSD structures containing the CO2H–formyl group [R_2^2](7) synthon [search constraints as above; mean O⋯O = 2.599 (10) Å and mean C⋯O = 3.28 (2) Å] do involve DMF, indicating the more general carboxylic acid–formyl group as a supramolecular synthon worthy of future study.

The three examples of DMF clathrates presented here show that the presence of DMF as the co-crystallization solvent can limit the dimensionality of the resulting solid-state structure, compared with that of the parent benzene­poly­carboxyl­ic acid and its other solvent-inclusion clathrates. This limitation is due to the binding of the DMF mol­ecules to the often extensively hydrogen-bonded carboxyl groups via the [R_2^2](7) synthon. While the inclusion of water mol­ecules in (III[link]) helps produce a more extended structure, the dimensionality of the co-crystal will, of course, also depend on the nature of the solute mol­ecule. Comparisons with the two-dimensional structure of H3TMA·2DMF imply that both the number and relative positions of the carboxyl groups in the benzene­poly­carboxylic acid mol­ecules can lead to a range of hydrogen-bonded supramolecular structures with various dimensionalities.

[Figure 1]
Figure 1
A view of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are represented by circles of arbitrary radius and hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
A view of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are represented by circles of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x, 2 − y, −z.]
[Figure 3]
Figure 3
A view of (III[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are represented by circles of arbitrary radius and hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
The one-dimensional ladder structure of (III[link]), maintained by hydrogen bonds (shown as dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Experimental

X-Ray quality colourless crystals of (I[link]) were obtained by diffusing Et2O into a solution of terephthalic acid in DMF and then placing the resulting solution in a freezer (∼258 K) overnight. The crystalline sample proved unstable under ambient conditions and hence no further data are available. X-Ray quality colourless crystals of (II[link]) were obtained by the slow evaporation of a DMF solution of pyromellitic acid at room temperature (m.p. 312–322 K). Analysis calculated for C22H34N4O12: C 48.35, H 6.27, N 10.25%; found: C 48.66, H 6.20, N 9.90%; IR (Nujol, cm−1): νmax 3500–2500 (br, OH), 2461 (OH), 1916, 1709, 1659 and 1642 (C=O), 1556 (C=C), 1255 and 1106 (C—O), 922, 816, 758 and 672 (aromatic C—H). X-Ray quality colourless crystals of (III[link]) were obtained by the slow evaporation of a DMF solution of hemimellitic acid dihydrate at room temperature [m.p. 323–325 K (liquid seen), 393–397 K (desolvated) and 463 K (liquified)]. Analysis calculated for C15H22N2O9: C 48.13, H 5.92, N 7.48%; found: C 47.82, H 6.25, N 7.93%; IR (KBr, cm−1): νmax 3443 (br, OH), 3079 (aromatic C—H), 2976 and 2936 (Csp3—H), 2777 (aldehyde C—H), 1704 and 1622 (s, C=O), 1583 (C=C), 1460, 1436, 1425, 1414 and 1374 (Csp3—H), 1308, 1270, 1210, 1175, 1157, 1112, 1064, 1020 and 1008 (C—O), 905, 810, 792 and 782 (aromatic C—H), 678, 671.

Compound (I)[link]

Crystal data
  • C8H6O4·2C3H7NO

  • Mr = 312.32

  • Monoclinic, C2/c

  • a = 19.663 (4) Å

  • b = 7.5404 (13) Å

  • c = 21.929 (4) Å

  • β = 104.661 (3)°

  • V = 3145.5 (10) Å3

  • Z = 8

  • Dx = 1.319 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3980 reflections

  • θ = 2.5–27.8°

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.34 × 0.28 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • 12 434 measured reflections

  • 3577 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.5°

  • h = −25 → 25

  • k = −9 → 9

  • l = −28 → 27

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.05

  • 3577 reflections

  • 222 parameters

  • H atom; see below

  • w = 1/[σ2(Fo2) + (0.0554P)2 + 2.6815P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected interatomic distances (Å) for (I)[link]

C1—C6 1.388 (3)
C1—C2 1.394 (2)
C1—C7 1.494 (3)
C2—C3 1.384 (3)
C3—C4 1.387 (3)
C4—C5 1.394 (2)
C4—C8 1.493 (3)
C5—C6 1.383 (3)
C7—O1 1.227 (2)
C7—O2 1.296 (2)
C8—O3 1.216 (2)
C8—O4 1.313 (2)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.93 (3) 1.64 (3) 2.563 (2) 175 (3)
O4—H4⋯O6 0.93 (3) 1.63 (3) 2.554 (2) 175 (2)
O1—H1X⋯O5X 0.93 (3) 1.58 (8) 2.442 (8) 152 (14)
C9—H9X⋯O2 0.95 2.78 3.365 (3) 121
C9—H9⋯O1 0.95 2.70 3.339 (3) 125
C12—H12⋯O3 0.95 2.64 3.314 (3) 128

Compound (II)[link]

Crystal data
  • C10H6O8·4C3H7NO

  • Mr = 546.53

  • Monoclinic, P21/n

  • a = 12.8905 (10) Å

  • b = 7.9398 (6) Å

  • c = 13.8078 (10) Å

  • β = 108.162 (2)°

  • V = 1342.79 (17) Å3

  • Z = 2

  • Dx = 1.352 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5456 reflections

  • θ = 2.6–28.6°

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.69 × 0.39 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.991

  • 11 290 measured reflections

  • 3213 independent reflections

  • 2522 reflections with I > 2σ(I)

  • Rint = 0.017

  • θmax = 28.9°

  • h = −16 → 17

  • k = −10 → 10

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.04

  • 3213 reflections

  • 182 parameters

  • H atom: see below

  • w = 1/[σ2(Fo2) + (0.0474P)2 + 0.3704P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 3
Selected interatomic distances (Å) for (II)[link]

C1—C2 1.3909 (16)
C1—C3i 1.3988 (16)
C1—C4 1.5015 (16)
C2—C3 1.3906 (17)
C3—C5 1.5045 (16)
C4—O1 1.2025 (15)
C4—O2 1.3130 (15)
C5—O3 1.2097 (15)
C5—O4 1.3087 (15)
Symmetry code: (i) -x,2-y,-z.

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5 0.935 (18) 1.643 (19) 2.5723 (12) 172.4 (17)
O2—H2⋯O6 0.91 (2) 1.65 (2) 2.5508 (13) 169.3 (18)
C6—H6⋯O3 0.95 2.47 3.1761 (16) 132

Compound (III)[link]

Crystal data
  • C9H6O6·2C3H7NO·H2O

  • Mr = 374.35

  • Orthorhombic, P212121

  • a = 13.8441 (15) Å

  • b = 19.745 (2) Å

  • c = 6.6606 (7) Å

  • V = 1820.7 (3) Å3

  • Z = 4

  • Dx = 1.366 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8092 reflections

  • θ = 2.5–28.3°

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.57 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.990

  • 16 155 measured reflections

  • 2593 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 29.0°

  • h = −18 → 18

  • k = −26 → 26

  • l = −9 → 8

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.11

  • 2593 reflections

  • 254 parameters

  • H atoms: see below

  • w = 1/[σ2(Fo2) + (0.0823P)2 + 0.6452P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.22 e Å−3

Table 5
Selected interatomic distances (Å) for (III)[link]

C1—C2 1.401 (3)
C1—C6 1.401 (3)
C1—C7 1.506 (3)
C2—C3 1.408 (3)
C2—C8 1.519 (3)
C3—C4 1.400 (3)
C3—C9 1.500 (3)
C4—C5 1.384 (3)
C5—C6 1.389 (3)
C7—O2 1.202 (3)
C7—O1 1.329 (3)
C8—O3 1.224 (3)
C8—O4 1.303 (3)
C9—O6 1.217 (3)
C9—O5 1.301 (3)

Table 6
Hydrogen-bonding geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8 0.95 (4) 1.62 (4) 2.561 (3) 175 (4)
O9—H9B⋯O3 0.78 (4) 1.95 (4) 2.734 (3) 178 (4)
O4—H4⋯O9ii 0.86 (4) 1.72 (4) 2.588 (3) 178 (3)
O5—H5⋯O7 0.99 (4) 1.53 (4) 2.491 (2) 162 (4)
O9—H9A⋯O6iii 0.87 (4) 1.90 (4) 2.749 (2) 167 (4)
C10—H10⋯O6 0.95 2.67 3.353 (3) 129
C13—H13⋯O2 0.95 2.80 3.329 (3) 116
Symmetry codes: (ii) x,y,1+z; (iii) [{\script{3\over 2}}-x,-y,z-{\script{1\over 2}}].

In (I[link])–(III[link]), aromatic/aldehyde (C—H = 0.95 Å) and methyl (C—H = 0.98 Å) H atoms were positioned geometrically and treated using a riding model, while the coordinates of O-bound H atoms were refined freely in (II[link]) and (III[link]). The Uiso(H) values were set at 1.2Ueq(C) for aromatic and aldehyde H atoms, and at 1.5Ueq(C,O) for methyl and O-bound H atoms. Geometric restraints were applied to the disordered aldehyde group and the hydroxy bond lengths in (I[link]). Friedel pairs (1811) were merged in the refinement of (III[link]) as a consequence of the use of Mo Kα X-ray radiation, and hence the absolute structure was not determined.

For all compounds, data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

A wide variety of solvents are available to the chemist for the dissolution and recrystallization of compounds. In the case of benzenepolycarboxylic acids, those solvents of most interest in the synthesis of solvent-inclusion clathrates must be capable of hydrogen bonding, containing donor and/or acceptor atoms. A recent study (Nangia & Desiraju, 1999), with corrections applied for the different usages of solvents in recrystallization, has found that the greater the number of donor and acceptor sites on the solvent molecule, the more likely the solvent is to be included in organic crystals. Solvents such as N,N-dimethylformamide (DMF), dimethylsulfoxide and dioxane, while having low usage as recrystallization solvents, have an extremely high probability of inclusion through their ability to bond to the solute molecule via `multi-point recognition' using both strong and weak hydrogen bonds.

Numerous examples of benzenepolycarboxylic acid solvent-inclusion compounds exist in the literature (for example, Dale & Elsegood, 2003a; Chatterjee et al., 2000; Herbstein & Kapon, 1978; Herbstein et al., 1978), and yet only one literature example of a single-crystal X-ray structure shows the solvation of a benzenepolycarboxylic acid by DMF, that of benzene-1,3,5-tricarboxylic acid (trimesic acid) bis(N,N-dimethylformamide) solvate (H3TMA·2DMF) (Dale & Elsegood, 2003a). In the presence of DMF, the formation of the common R22(8) head-to-tail carboxylic acid-acid graph-set motif (Leiserowitz, 1976; Etter, 1990; Etter & MacDonald, 1990; Bernstein et al., 1995) is prevented in this structure. Instead, two of the three carboxylic acid groups interact directly with DMF molecules in an R22(7) graph-set pattern with a combination of strong O—H···O and weaker C—H···O hydrogen bonds (Desiraju & Steiner, 1999), while the third carboxyl group interacts with one of these carboxyl–DMF synthons.

We investigate here the hydrogen-bonding arrays created by the cocrystallization of DMF with benzene-1,4-dicarboxylic acid (terephthalic acid, H2TA), benzene-1,2,4,5-tetracarboxylic acid (pyromellitic acid, H4PMA) and benzene-1,2,3-tricarboxylic acid (hemimellitic acid, H3HMA). H2TA dissolves easily in DMF, one of very few examples of organic solvents capable of dissolving this acid. X-ray analysis of colourless crystals grown from the DMF solution at approximately 258 K showed that H2TA cocrystallizes with two molecules of DMF, producing H2TA·2DMF (C14H20N2O6), (I). Because of the instability of this compound under ambient conditions, the collation of supporting evidence, such as microanalysis and IR spectra, has proven impossible. The H2TA molecule in (I) does not possess an inversion centre because of rotational disorder [82.8 (4):17.2 (4) %] in the carboxyl group attached to atom C1 and complementary rotational disorder in the aldehyde group of the DMF molecule hydrogen bonded to this carboxyl group. The asymmetric unit therefore comprises one complete formula unit (Fig. 1). The geometry of the H2TA molecule (Table 1) shows good agreement with that previously found (Bailey & Brown, 1967). The H2TA molecule is roughly planar, with the carboxyl groups only deviating slightly from coplanarity with the aromatic ring [the dihedral angles with respect to the C1–C6 ring are 0.7 (3)° for C7/O1/O2 and 2.2 (3)° for C8/O3/O4].

Both unique DMF molecules hydrogen bond to their respective carboxyl groups utilizing the same R22(7) synthon observed in H3TMA·2DMF (Dale & Elsegood, 2003a), with one strong O—H···O hydrogen bond and one complementary, weaker C—H···O hydrogen bond (Table 2). Larger dihedral angles occur between the carboxyl groups and the aldehyde groups of their associated DMF molecules within the R22(7) motifs [the dihedral angle between C7/O1/O2 and C9/O5/H9 is 16.4 (3)°, and that between C8/O3/O4 and C12/O6/H12 is 17.3 (3)°]. No further strong hydrogen bonding exists outside the asymmetric unit.

H4PMA cocrystallizes with four molecules of DMF, yielding H4PMA·4DMF (C22H34N4O12), (II), which forms readily at room temperature and shows reasonable stability under ambient conditions, in contrast to (I). The H4PMA molecule lies on a crystallographic centre of symmetry, resulting in the asymmetric unit comprising half of a formula unit (Fig. 2). The geometry of the H4PMA molecule (Table 3) concurs with that previously determined (Dale & Elsegood, 2003b).

As expected, steric repulsions force the rotation of adjacent carboxyl groups away from the plane of the aromatic ring [the dihedral angles with respect to the C1/C3i ring are 53.75 (12)° for C4/O1/O2 and 38.85 (13)° for C5/O3/O4; symmetry code: (i) −x, 2 − y, −z].

The two independent DMF molecules in (II) have differing binding modes to the carboxyl groups; while one adopts the O—H···O/C—H···O R22(7) arrangement seen in both (I) and H3TMA·2DMF (Dale & Elsegood, 2003a), the second interacts via a simple linear O—H···O hydrogen bond utilizing the OH group of the second unique carboxyl group (Table 4). The R22(7) motif in this structure contains a shorter, and therefore stronger, C—H···O interaction than the same motif in (I). As with (I), no further strong hydrogen-bonding interactions occur outside the asymmetric unit of (II). The cocrystallization of commercially available H3HMA·2H2O with DMF yields colourless crystals of H3HMA·2DMF·H2O (C15H22N2O9), (III) (Fig. 3). Compound (III) was observed to desolvate over a period of a few minutes under ambient conditions, sufficient time to allow IR and microanalyses to be carried out. The asymmetric unit of (III) contains a whole formula unit, in which the outer carboxyl groups of the H3HMA molecule, at atoms C1 and C3, both hydrogen bond, via the R22(7) synthon, to different DMF molecules, creating H3HMA·2DMF units (Table 6). These secondary building blocks are linked into a one-dimensional ladder structure (Fig. 4) by hydrogen bonding involving the molecule of water included in the asymmetric unit.

The inner carboxyl group at C2 lies almost perpendicular to the plane of the aromatic ring [the dihedral angle between the C1/C6 ring and C8/O3/O4 plane is 81.54 (10)°] as observed in the dihydrate of H3HMA (Fornies-Marquina et al., 1972; Takusagawa & Shimada, 1973; Mo & Adman, 1975) and in its 2- methyl ester (Dale & Elsegood, 2003c). This carboxyl group, aided by its anti- planar conformation (Leiserowitz, 1976), forms a zigzag C22(6) chain through hydrogen bonding with one OH group of the water molecule. A search of the Cambridge Structural Database (CSD; Version 5.25 of November 2003 plus one update; Allen, 2002) identifies 30 hits containing both carboxylic acid groups and DMF molecules, of which six are redeterminations. A more detailed search of hydrogen-bonding motifs in carboxylic acid/DMF structures [constrainung the O···O contact distance to within the range 2– 3.2 Å and the C···O contact distance to within the range 2.5–3.5 Å; redeterminations omitted from statistical analysis] indicates that 19 structures contain O—H···O hydrogen bonding between the CO2H group and the aldehyde O atom, the mean O···O contact distance being 2.597 (15) Å [range 2.507–2.888 Å]. 13 of these 19 structures also contain C—H···O hydrogen bonding, producing the R22(7) motif observed in (I), (II) and (III). The mean O···O contact distance within this population [containing the R22(7) motif] is 2.585 (13) Å [range 2.507–2.692 Å], while the mean O—Ĥ···O angle is 169.4 (17)°, indicating a slight shortening in the O—H···O hydrogen-bond distance when C—H···O interactions exist and showing good agreement with the hydrogen-bond geometry observed for the same motifs in (I), (II) and (III). C—H···O interactions within this population have a mean C···O contact distance of 3.24 (3) Å [range 3.054–3.490 Å]. It is interesting to note the structure of 1,1'-binaphthyl-2,2'-dicarboxylic acid bis(DMF) clathrate (CSD refcode CIWJIB10; Csoregh et al., 1986), in which two DMF binding modes are present, viz. one R22(7) motif and one simple linear O—H···O motif, just as observed in the structure of (II). The O···O contact distances within these motifs are 2.692 and 2.888 Å, respectively, considerably longer than those observed in (II) [2.5723 (12) and 2.5508 (13) Å, respectively], presumably becasue of the increased steric bulk of the solute molecule. While the CO2H/DMF R22(7) synthon has relatively few examples in the CSD compared with the analogous, well studied, carboxylic acid–pyridine R22(7) synthon (Vishweshwar et al., 2002), the majority (15) of the 21 CSD-held structures containing the CO2H/formyl group R22(7) synthon [search constraints as above; mean O···O = 2.599 (10) Å, mean C···O = 3.28 (2) Å] do involve DMF, indicating the more general carboxylic acid/formyl group as a supramolecular synthon worthy of future study.

The three examples of DMF clathrates presented here show that the presence of DMF as the cocrystallization solvent can limit the dimensionality of the resulting solid-state structure, compared with that of the parent benzenepolycarboxylic acid and its other solvent-inclusion clathrates. This limitation? is due to the binding of the DMF molecules to the often extensively hydrogen-bonded carboxyl groups via the R22(7) synthon. While the inclusion of water molecules in (III) helps produce a more extended structure, the dimensionality of the cocrystal will, of course, also depend on the nature of the solute molecule. Comparisons with the two-dimensional structure of H3TMA·2DMF imply that both the number and relative positions of the carboxyl groups in the benzenepolycarboxylic acid molecules can lead to a range of hydrogen-bonded supramolecular structures with varying dimensionalities.

Experimental top

X-ray-quality colourless crystals of (I) were obtained by diffusing Et2O into a solution of terephthalic acid in DMF and then placing the resulting solution in a freezer (ca 258 K) overnight. The crystalline sample proved unstable at ambient conditions, and hence no further data are available. X-ray-quality colourless crystals of (II) were obtained from the slow evaporation of a DMF solution of pyromellitic acid at room temperature. M.p. 312–322 K. Analysis calculated for C22H34N4O12: C 48.35, H 6.27, N 10.25%; found: C 48.66, H 6.20, N 9.90%; IR (Nujol, νmax, cm−1) 3500–2500 (br, OH), 2461 (OH), 1916, 1709, 1659 and 1642 (CO), 1556 (CC), 1255 and 1106 (C—O), 922, 816, 758 and 672 (aromatic C—H). X-ray-quality colourless crystals of (III) were obtained from the slow evaporation of a DMF solution of pyromellitic acid at room temperature. M.p. 323–325 K (liquid seen), 393–397 K (desolvated), 463 K (liquified). Analysis calculated for C15H22N2O9: C 48.13, H 5.92, N 7.48%; found: C 47.82, H 6.25, N 7.93%; IR (KBr, νmax, cm−1) 3443 (br, OH), 3079 (aromatic C—H), 2976 and 2936 (sp3 C—H), 2777 (aldehyde C—H), 1704 and 1622 (s, CO), 1583 (CC), 1460, 1436, 1425, 1414 and 1374 (sp3 C—H), 1308, 1270, 1210, 1175, 1157, 1112, 1064, 1020 and 1008 (C—O), 905, 810, 792 and 782 (aromatic C—H), 678, 671.

Refinement top

Aromatic and aldehyde H (C—H distance = 0.95 Å) and methyl H (C—H distance = 0.98 Å) atoms were placed in geometric positions using a riding model in (I)–(III), while the coordinates of O-bound H atoms were refined freely in (II) and (III). The Uiso(H) values were set to 1.2Ueq(C) for aryl and aldehyde H atoms, and 1.5Ueq(C,O) for methyl and O-bound H atoms. Geometric restraints were applied to the disordered aldehyde group and hydroxy bond lengths in (I). Friedel pairs (1811) were merged in the refinement of (III) as a consequence of the use of Mo Kα X-ray radiation and hence the absolute structure was not determined.

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are represented by circles of arbitrary radius and hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are represented by circles of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x, 2 − y, −z.]
[Figure 3] Fig. 3. A view of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, H atoms are represented by circles of arbitrary radius and hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The one-dimensional ladder structure of (III), maintained by hydrogen bonds (shown as dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) benzene-1,4-dicarboxylic acid N,N-dimethylformamide disolvate top
Crystal data top
C8H6O4·2C3H7NOF(000) = 1328
Mr = 312.32Dx = 1.319 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3980 reflections
a = 19.663 (4) Åθ = 2.5–27.8°
b = 7.5404 (13) ŵ = 0.10 mm1
c = 21.929 (4) ÅT = 150 K
β = 104.661 (3)°Block, colourless
V = 3145.5 (10) Å30.34 × 0.28 × 0.18 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
2318 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 2525
12434 measured reflectionsk = 99
3577 independent reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: Geom except OH coords freely refined
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0554P)2 + 2.6815P]
where P = (Fo2 + 2Fc2)/3
3577 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.27 e Å3
5 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H6O4·2C3H7NOV = 3145.5 (10) Å3
Mr = 312.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.663 (4) ŵ = 0.10 mm1
b = 7.5404 (13) ÅT = 150 K
c = 21.929 (4) Å0.34 × 0.28 × 0.18 mm
β = 104.661 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2318 reflections with I > 2σ(I)
12434 measured reflectionsRint = 0.044
3577 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0505 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3577 reflectionsΔρmin = 0.18 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.08996 (9)0.4816 (2)0.12585 (8)0.0267 (4)
C20.13670 (10)0.4234 (3)0.18115 (8)0.0311 (4)
H2A0.14550.49490.21800.037*
C30.17034 (10)0.2617 (3)0.18240 (8)0.0308 (4)
H30.20210.22240.22020.037*
C40.15803 (9)0.1568 (3)0.12877 (8)0.0266 (4)
C50.11138 (9)0.2154 (3)0.07347 (8)0.0284 (4)
H50.10260.14410.03660.034*
C60.07778 (9)0.3770 (3)0.07211 (8)0.0291 (4)
H60.04620.41650.03420.035*
C70.05241 (10)0.6548 (3)0.12306 (9)0.0320 (4)
O10.01091 (8)0.7059 (2)0.07458 (7)0.0441 (4)
H1X0.004 (8)0.827 (5)0.069 (7)0.066*0.172 (4)
O20.06678 (8)0.7443 (2)0.17520 (7)0.0476 (4)
H20.0400 (16)0.847 (4)0.1725 (15)0.071*0.828 (4)
C80.19606 (9)0.0154 (3)0.13084 (8)0.0304 (4)
O30.23846 (8)0.0690 (2)0.17766 (6)0.0412 (4)
O40.17991 (8)0.1005 (2)0.07687 (7)0.0429 (4)
H40.2050 (14)0.206 (3)0.0783 (12)0.064*
C90.03297 (10)1.1015 (3)0.12136 (10)0.0341 (5)
H90.02941.04500.08360.041*0.828 (4)
H9X0.00171.06930.16030.041*0.172 (4)
O50.00076 (9)1.0362 (2)0.17247 (8)0.0405 (6)0.828 (4)
O5X0.0381 (4)1.0044 (11)0.0715 (3)0.038 (2)0.172 (4)
N10.07190 (8)1.2457 (2)0.11704 (7)0.0314 (4)
C100.10576 (11)1.3241 (3)0.05625 (10)0.0414 (5)
H10A0.09441.25400.02250.062*
H10B0.08891.44590.05460.062*
H10C0.15681.32530.05070.062*
C110.07987 (12)1.3359 (3)0.17322 (10)0.0426 (5)
H11A0.06261.25930.21000.064*
H11B0.12961.36300.16880.064*
H11C0.05271.44640.17890.064*
C120.27680 (10)0.4584 (3)0.12466 (9)0.0320 (4)
H120.27230.40230.16220.038*
O60.24528 (7)0.39171 (19)0.07377 (6)0.0393 (4)
N20.31611 (8)0.6020 (2)0.13023 (7)0.0323 (4)
C130.35034 (12)0.6745 (3)0.19196 (10)0.0432 (5)
H13A0.33790.60290.22480.065*
H13B0.40140.67240.19780.065*
H13C0.33470.79700.19470.065*
C140.32418 (12)0.6969 (3)0.07519 (10)0.0438 (5)
H14A0.29840.80920.07150.066*
H14B0.37410.72100.07930.066*
H14C0.30550.62480.03750.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (9)0.0304 (10)0.0276 (9)0.0011 (7)0.0059 (7)0.0011 (8)
C20.0311 (10)0.0363 (11)0.0250 (9)0.0004 (8)0.0057 (8)0.0042 (8)
C30.0276 (9)0.0389 (11)0.0236 (9)0.0014 (8)0.0025 (7)0.0032 (8)
C40.0220 (9)0.0315 (10)0.0263 (9)0.0003 (7)0.0062 (7)0.0029 (8)
C50.0266 (9)0.0338 (10)0.0244 (9)0.0007 (8)0.0057 (7)0.0023 (8)
C60.0250 (9)0.0365 (11)0.0245 (9)0.0019 (8)0.0041 (7)0.0023 (8)
C70.0264 (9)0.0350 (11)0.0344 (10)0.0021 (8)0.0075 (8)0.0035 (8)
O10.0488 (9)0.0397 (8)0.0351 (8)0.0122 (7)0.0057 (7)0.0020 (7)
O20.0539 (10)0.0448 (10)0.0354 (8)0.0185 (8)0.0045 (7)0.0112 (7)
C80.0261 (9)0.0353 (11)0.0298 (10)0.0007 (8)0.0069 (8)0.0026 (8)
O30.0414 (8)0.0397 (8)0.0351 (8)0.0085 (7)0.0037 (6)0.0033 (6)
O40.0479 (9)0.0407 (9)0.0339 (8)0.0173 (7)0.0015 (7)0.0056 (7)
C90.0328 (10)0.0326 (11)0.0383 (11)0.0026 (9)0.0115 (9)0.0034 (9)
O50.0420 (11)0.0366 (11)0.0424 (11)0.0058 (8)0.0099 (8)0.0005 (8)
O5X0.036 (5)0.035 (5)0.041 (5)0.006 (4)0.006 (4)0.004 (4)
N10.0293 (8)0.0305 (9)0.0348 (9)0.0024 (7)0.0090 (7)0.0029 (7)
C100.0417 (12)0.0381 (12)0.0426 (12)0.0008 (10)0.0077 (9)0.0031 (10)
C110.0442 (12)0.0416 (13)0.0434 (12)0.0011 (10)0.0139 (10)0.0095 (10)
C120.0319 (10)0.0300 (10)0.0349 (10)0.0014 (8)0.0099 (8)0.0003 (8)
O60.0407 (8)0.0362 (8)0.0392 (8)0.0093 (7)0.0070 (6)0.0045 (6)
N20.0329 (9)0.0310 (9)0.0332 (9)0.0013 (7)0.0086 (7)0.0046 (7)
C130.0427 (12)0.0436 (13)0.0409 (11)0.0037 (10)0.0061 (9)0.0118 (10)
C140.0475 (13)0.0405 (12)0.0457 (12)0.0121 (10)0.0159 (10)0.0012 (10)
Geometric parameters (Å, º) top
C1—C61.388 (3)C9—H90.9500
C1—C21.394 (2)C9—H9X0.9501
C1—C71.494 (3)N1—C111.450 (2)
C2—C31.384 (3)N1—C101.456 (3)
C2—H2A0.9500C10—H10A0.9800
C3—C41.387 (3)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C4—C51.394 (2)C11—H11A0.9800
C4—C81.493 (3)C11—H11B0.9800
C5—C61.383 (3)C11—H11C0.9800
C5—H50.9500C12—O61.238 (2)
C6—H60.9500C12—N21.318 (2)
C7—O11.227 (2)C12—H120.9500
C7—O21.296 (2)N2—C141.446 (3)
O1—H1X0.93 (3)N2—C131.457 (2)
O2—H20.93 (3)C13—H13A0.9800
C8—O31.216 (2)C13—H13B0.9800
C8—O41.313 (2)C13—H13C0.9800
O4—H40.93 (3)C14—H14A0.9800
C9—O51.241 (3)C14—H14B0.9800
C9—O5X1.298 (7)C14—H14C0.9800
C9—N11.319 (3)
C6—C1—C2119.60 (18)H9—C9—H9X119.8
C6—C1—C7119.00 (16)C9—N1—C11120.73 (18)
C2—C1—C7121.40 (17)C9—N1—C10121.52 (17)
C3—C2—C1120.06 (17)C11—N1—C10117.69 (17)
C3—C2—H2A120.0N1—C10—H10A109.5
C1—C2—H2A120.0N1—C10—H10B109.5
C2—C3—C4120.39 (17)H10A—C10—H10B109.5
C2—C3—H3119.8N1—C10—H10C109.5
C4—C3—H3119.8H10A—C10—H10C109.5
C3—C4—C5119.44 (17)H10B—C10—H10C109.5
C3—C4—C8119.45 (16)N1—C11—H11A109.5
C5—C4—C8121.10 (16)N1—C11—H11B109.5
C6—C5—C4120.25 (17)H11A—C11—H11B109.5
C6—C5—H5119.9N1—C11—H11C109.5
C4—C5—H5119.9H11A—C11—H11C109.5
C5—C6—C1120.25 (17)H11B—C11—H11C109.5
C5—C6—H6119.9O6—C12—N2124.43 (18)
C1—C6—H6119.9O6—C12—H12117.8
O1—C7—O2123.32 (19)N2—C12—H12117.8
O1—C7—C1121.58 (17)C12—N2—C14120.99 (17)
O2—C7—C1115.10 (16)C12—N2—C13121.11 (17)
C7—O1—C9100.45 (13)C14—N2—C13117.84 (18)
C7—O1—H1X118 (9)N2—C13—H13A109.5
C7—O2—H2113 (2)N2—C13—H13B109.5
O3—C8—O4123.80 (19)H13A—C13—H13B109.5
O3—C8—C4123.07 (17)N2—C13—H13C109.5
O4—C8—C4113.13 (15)H13A—C13—H13C109.5
C8—O3—C1299.59 (13)H13B—C13—H13C109.5
C8—O4—H4112.4 (16)N2—C14—H14A109.5
O5—C9—N1123.10 (19)N2—C14—H14B109.5
O5X—C9—N1119.0 (4)H14A—C14—H14B109.5
O5—C9—H9118.4N2—C14—H14C109.5
N1—C9—H9118.4H14A—C14—H14C109.5
O5X—C9—H9X120.5H14B—C14—H14C109.5
N1—C9—H9X120.5
C6—C1—C2—C30.4 (3)C2—C1—C7—O20.1 (3)
C7—C1—C2—C3179.54 (17)C3—C4—C8—O30.6 (3)
C1—C2—C3—C40.2 (3)C5—C4—C8—O3178.07 (18)
C2—C3—C4—C50.0 (3)C3—C4—C8—O4179.52 (17)
C2—C3—C4—C8178.70 (17)C5—C4—C8—O40.8 (2)
C3—C4—C5—C60.1 (3)O4—C8—O3—C124.0 (2)
C8—C4—C5—C6178.61 (17)C4—C8—O3—C12177.25 (15)
C4—C5—C6—C10.3 (3)O5—C9—N1—C110.8 (3)
C2—C1—C6—C50.5 (3)O5X—C9—N1—C11166.2 (5)
C7—C1—C6—C5179.48 (16)O5—C9—N1—C10176.5 (2)
C6—C1—C7—O10.4 (3)O5X—C9—N1—C1016.5 (5)
C2—C1—C7—O1179.54 (19)O6—C12—N2—C141.4 (3)
C6—C1—C7—O2179.94 (17)O6—C12—N2—C13178.66 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.93 (3)1.64 (3)2.563 (2)175 (3)
O4—H4···O60.93 (3)1.63 (3)2.554 (2)175 (2)
O1—H1X···O5X0.93 (3)1.58 (8)2.442 (8)152 (14)
C9—H9X···O20.952.783.365 (3)121
C9—H9···O10.952.703.339 (3)125
C12—H12···O30.952.643.314 (3)128
(II) benzene-1,2,4,5-tetracarboxylic acid N,N-dimethylformamide tetrasolvate top
Crystal data top
C10H6O8·4C3H7NOF(000) = 580
Mr = 546.53Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5456 reflections
a = 12.8905 (10) Åθ = 2.6–28.6°
b = 7.9398 (6) ŵ = 0.11 mm1
c = 13.8078 (10) ÅT = 150 K
β = 108.162 (2)°Block, colourless
V = 1342.79 (17) Å30.69 × 0.39 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
3213 independent reflections
Radiation source: sealed tube2522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1617
Tmin = 0.936, Tmax = 0.991k = 1010
11290 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: Geom except OH coords freely refined
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.3704P]
where P = (Fo2 + 2Fc2)/3
3213 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H6O8·4C3H7NOV = 1342.79 (17) Å3
Mr = 546.53Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.8905 (10) ŵ = 0.11 mm1
b = 7.9398 (6) ÅT = 150 K
c = 13.8078 (10) Å0.69 × 0.39 × 0.08 mm
β = 108.162 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3213 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2522 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.991Rint = 0.017
11290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3213 reflectionsΔρmin = 0.18 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02936 (9)1.15687 (14)0.02955 (8)0.0237 (2)
C20.07958 (9)1.11810 (15)0.04362 (9)0.0253 (2)
H2A0.13431.19920.07380.030*
C30.10990 (9)0.96287 (15)0.01433 (8)0.0240 (2)
C40.05675 (10)1.33162 (15)0.05531 (9)0.0267 (3)
O10.11925 (7)1.42163 (12)0.00569 (8)0.0390 (2)
O20.00097 (9)1.37265 (12)0.14924 (7)0.0381 (2)
H20.0168 (15)1.481 (3)0.1616 (14)0.057*
C50.22954 (9)0.93294 (16)0.03142 (9)0.0275 (3)
O30.29836 (7)0.98649 (16)0.10621 (8)0.0494 (3)
O40.25066 (7)0.85283 (12)0.04312 (7)0.0332 (2)
H40.3257 (15)0.832 (2)0.0226 (13)0.050*
C60.51767 (10)0.84451 (16)0.07839 (10)0.0309 (3)
H60.48840.92160.11560.037*
O50.45481 (7)0.78348 (12)0.00169 (7)0.0346 (2)
N10.62271 (9)0.80804 (15)0.11438 (9)0.0336 (3)
C70.67272 (12)0.6921 (2)0.06036 (13)0.0451 (4)
H7A0.64940.57680.06830.068*
H7B0.75240.69980.08860.068*
H7C0.65000.72160.01220.068*
C80.69038 (12)0.8810 (2)0.21002 (12)0.0462 (4)
H8A0.64660.95970.23580.069*
H8B0.75180.94140.19850.069*
H8C0.71820.79120.26000.069*
C90.06223 (11)1.75010 (17)0.22678 (10)0.0322 (3)
H90.12131.69930.21030.039*
O60.02586 (8)1.67321 (12)0.20340 (8)0.0402 (2)
N20.07929 (8)1.89666 (14)0.27270 (8)0.0308 (2)
C100.00745 (13)1.9791 (2)0.30094 (14)0.0483 (4)
H10A0.04052.06680.25090.072*
H10B0.02262.03010.36850.072*
H10C0.06311.89600.30240.072*
C110.18364 (13)1.9831 (2)0.29769 (13)0.0537 (4)
H11A0.23381.91840.27140.081*
H11B0.21451.99380.37190.081*
H11C0.17302.09540.26670.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0246 (6)0.0242 (6)0.0208 (5)0.0013 (4)0.0048 (4)0.0000 (4)
C20.0222 (5)0.0265 (6)0.0250 (6)0.0047 (4)0.0042 (4)0.0032 (4)
C30.0210 (5)0.0278 (6)0.0213 (5)0.0013 (4)0.0039 (4)0.0002 (4)
C40.0246 (6)0.0242 (6)0.0310 (6)0.0033 (4)0.0082 (5)0.0017 (5)
O10.0317 (5)0.0301 (5)0.0462 (6)0.0051 (4)0.0009 (4)0.0006 (4)
O20.0552 (6)0.0244 (5)0.0296 (5)0.0024 (4)0.0058 (4)0.0056 (4)
C50.0230 (5)0.0288 (6)0.0290 (6)0.0012 (5)0.0056 (5)0.0020 (5)
O30.0228 (5)0.0757 (8)0.0434 (6)0.0007 (5)0.0010 (4)0.0262 (6)
O40.0231 (4)0.0435 (5)0.0326 (5)0.0004 (4)0.0082 (4)0.0086 (4)
C60.0284 (6)0.0288 (6)0.0375 (7)0.0008 (5)0.0131 (5)0.0078 (5)
O50.0274 (4)0.0382 (5)0.0385 (5)0.0029 (4)0.0108 (4)0.0020 (4)
N10.0256 (5)0.0371 (6)0.0386 (6)0.0006 (4)0.0108 (5)0.0091 (5)
C70.0318 (7)0.0540 (9)0.0529 (9)0.0098 (6)0.0179 (7)0.0079 (7)
C80.0327 (7)0.0575 (10)0.0440 (8)0.0058 (7)0.0057 (6)0.0060 (7)
C90.0325 (6)0.0339 (7)0.0299 (6)0.0087 (5)0.0091 (5)0.0002 (5)
O60.0440 (6)0.0277 (5)0.0448 (6)0.0034 (4)0.0079 (4)0.0111 (4)
N20.0254 (5)0.0314 (6)0.0328 (6)0.0035 (4)0.0050 (4)0.0032 (4)
C100.0438 (8)0.0341 (8)0.0655 (10)0.0038 (6)0.0148 (7)0.0185 (7)
C110.0383 (8)0.0701 (11)0.0449 (9)0.0239 (8)0.0015 (7)0.0045 (8)
Geometric parameters (Å, º) top
C1—C21.3909 (16)C7—H7A0.9800
C1—C3i1.3988 (16)C7—H7B0.9800
C1—C41.5015 (16)C7—H7C0.9800
C2—C31.3906 (17)C8—H8A0.9800
C2—H2A0.9500C8—H8B0.9800
C3—C51.5045 (16)C8—H8C0.9800
C4—O11.2025 (15)C9—O61.2400 (16)
C4—O21.3130 (15)C9—N21.3105 (17)
O2—H20.91 (2)C9—H90.9500
C5—O31.2097 (15)N2—C101.4499 (18)
C5—O41.3087 (15)N2—C111.4527 (17)
O4—H40.935 (18)C10—H10A0.9800
C6—O51.2471 (16)C10—H10B0.9800
C6—N11.3208 (16)C10—H10C0.9800
C6—H60.9500C11—H11A0.9800
N1—C71.4560 (19)C11—H11B0.9800
N1—C81.4569 (19)C11—H11C0.9800
C2—C1—C3i119.40 (11)H7B—C7—H7C109.5
C2—C1—C4118.24 (10)N1—C8—H8A109.5
C3i—C1—C4122.21 (10)N1—C8—H8B109.5
C3—C2—C1121.24 (10)H8A—C8—H8B109.5
C3—C2—H2A119.4N1—C8—H8C109.5
C1—C2—H2A119.4H8A—C8—H8C109.5
C2—C3—C1i119.37 (10)H8B—C8—H8C109.5
C2—C3—C5117.49 (10)O6—C9—N2124.41 (12)
C1i—C3—C5123.14 (11)N2—C9—O2168.49 (10)
O1—C4—O2125.83 (12)O6—C9—H9117.8
O1—C4—C1122.61 (11)N2—C9—H9117.8
O2—C4—C1111.50 (10)C9—N2—C10120.24 (11)
C4—O2—H2109.5 (12)C9—N2—C11122.54 (13)
O3—C5—O4124.42 (11)C10—N2—C11117.22 (13)
O3—C5—C3121.44 (11)N2—C10—H10A109.5
O4—C5—C3114.07 (10)N2—C10—H10B109.5
C5—O4—H4107.4 (11)H10A—C10—H10B109.5
O5—C6—H6118.1N2—C10—H10C109.5
N1—C6—H6118.1H10A—C10—H10C109.5
C6—N1—C7120.77 (12)H10B—C10—H10C109.5
C6—N1—C8120.52 (12)N2—C11—H11A109.5
C7—N1—C8118.71 (12)N2—C11—H11B109.5
N1—C7—H7A109.5H11A—C11—H11B109.5
N1—C7—H7B109.5N2—C11—H11C109.5
H7A—C7—H7B109.5H11A—C11—H11C109.5
N1—C7—H7C109.5H11B—C11—H11C109.5
H7A—C7—H7C109.5
C3i—C1—C2—C30.38 (19)C2—C3—C5—O337.22 (18)
C4—C1—C2—C3175.22 (11)C1i—C3—C5—O3143.11 (14)
C1—C2—C3—C1i0.38 (19)C2—C3—C5—O4139.67 (11)
C1—C2—C3—C5179.30 (11)C1i—C3—C5—O440.01 (16)
C2—C1—C4—O1122.73 (13)O5—C6—N1—C70.6 (2)
C3i—C1—C4—O152.74 (17)O5—C6—N1—C8178.33 (12)
C2—C1—C4—O254.62 (14)O6—C9—N2—C100.8 (2)
C3i—C1—C4—O2129.91 (12)O6—C9—N2—C11179.32 (13)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.935 (18)1.643 (19)2.5723 (12)172.4 (17)
O2—H2···O60.91 (2)1.65 (2)2.5508 (13)169.3 (18)
C6—H6···O30.952.473.1761 (16)132
(III) benzene-1,2,3-tricarboxylic acid N,N-dimethylformamide disolvate monohydrate top
Crystal data top
C9H6O6·2C3H7NO·H2OF(000) = 792
Mr = 374.35Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8092 reflections
a = 13.8441 (15) Åθ = 2.5–28.3°
b = 19.745 (2) ŵ = 0.11 mm1
c = 6.6606 (7) ÅT = 150 K
V = 1820.7 (3) Å3Block, colourless
Z = 40.57 × 0.16 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2593 independent reflections
Radiation source: sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1818
Tmin = 0.929, Tmax = 0.990k = 2626
16155 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: Geom except OH coords freely refined
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.6452P]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H6O6·2C3H7NO·H2OV = 1820.7 (3) Å3
Mr = 374.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.8441 (15) ŵ = 0.11 mm1
b = 19.745 (2) ÅT = 150 K
c = 6.6606 (7) Å0.57 × 0.16 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2297 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.990Rint = 0.022
16155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.66 e Å3
2593 reflectionsΔρmin = 0.22 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70722 (16)0.22164 (11)0.4858 (4)0.0215 (5)
C20.76594 (14)0.16416 (10)0.5032 (4)0.0174 (4)
C30.72210 (16)0.09996 (11)0.5152 (4)0.0204 (4)
C40.62119 (17)0.09517 (12)0.5166 (4)0.0246 (5)
H4A0.59170.05190.52650.030*
C50.56364 (16)0.15232 (12)0.5038 (4)0.0262 (5)
H5A0.49530.14830.50770.031*
C60.60639 (16)0.21563 (12)0.4852 (4)0.0243 (5)
H60.56720.25490.47210.029*
C70.75213 (17)0.29089 (11)0.4701 (4)0.0237 (5)
O10.69869 (14)0.33449 (9)0.3663 (4)0.0355 (5)
H10.728 (3)0.378 (2)0.359 (7)0.053*
O20.82946 (13)0.30466 (9)0.5413 (3)0.0334 (5)
C80.87487 (15)0.17298 (10)0.4967 (4)0.0197 (4)
O30.91671 (12)0.18029 (9)0.3363 (3)0.0246 (4)
O40.92184 (12)0.17362 (9)0.6663 (3)0.0238 (4)
H40.888 (3)0.1673 (17)0.774 (6)0.036*
C90.77795 (18)0.03485 (11)0.5189 (4)0.0239 (5)
O50.87118 (12)0.04261 (8)0.5093 (4)0.0347 (5)
H50.900 (3)0.003 (2)0.505 (7)0.052*
O60.73742 (15)0.01970 (8)0.5300 (4)0.0363 (5)
C100.93429 (19)0.11833 (12)0.5068 (4)0.0286 (5)
H100.86580.12040.51470.034*
O70.97352 (14)0.06117 (9)0.5093 (4)0.0354 (5)
N10.98230 (15)0.17588 (10)0.4940 (3)0.0258 (4)
C111.08763 (19)0.17693 (13)0.4816 (5)0.0341 (6)
H11A1.11180.13050.46800.051*
H11B1.10750.20360.36460.051*
H11C1.11420.19740.60380.051*
C120.9320 (2)0.24081 (12)0.4907 (5)0.0319 (5)
H12A0.86210.23300.48940.048*
H12B0.94950.26700.61040.048*
H12C0.95070.26610.37010.048*
C130.83670 (19)0.47076 (13)0.4570 (5)0.0332 (6)
H130.84100.44550.57800.040*
O80.78043 (15)0.44991 (10)0.3228 (4)0.0391 (5)
N20.89063 (18)0.52613 (12)0.4398 (4)0.0348 (6)
C140.8855 (3)0.56746 (18)0.2587 (7)0.0565 (10)
H14A0.86390.53940.14580.085*
H14B0.94950.58620.22900.085*
H14C0.83960.60460.27950.085*
C150.9484 (2)0.55029 (17)0.6057 (6)0.0428 (8)
H15A0.94940.51600.71210.064*
H15B0.92040.59230.65800.064*
H15C1.01450.55890.55950.064*
O90.82103 (14)0.15198 (10)0.0129 (3)0.0300 (4)
H9B0.848 (3)0.160 (2)0.088 (7)0.045*
H9A0.808 (3)0.110 (2)0.019 (6)0.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (9)0.0206 (10)0.0233 (11)0.0003 (8)0.0000 (10)0.0011 (10)
C20.0173 (9)0.0178 (9)0.0171 (10)0.0021 (7)0.0007 (9)0.0009 (9)
C30.0221 (9)0.0173 (9)0.0219 (11)0.0023 (8)0.0008 (10)0.0001 (9)
C40.0231 (10)0.0252 (10)0.0255 (12)0.0082 (8)0.0008 (10)0.0015 (11)
C50.0177 (9)0.0326 (11)0.0284 (12)0.0032 (9)0.0036 (11)0.0007 (12)
C60.0190 (9)0.0269 (11)0.0270 (12)0.0032 (8)0.0001 (10)0.0022 (11)
C70.0235 (10)0.0191 (10)0.0285 (12)0.0008 (8)0.0006 (10)0.0020 (10)
O10.0325 (10)0.0200 (8)0.0539 (13)0.0006 (8)0.0123 (10)0.0061 (9)
O20.0266 (8)0.0230 (8)0.0506 (13)0.0042 (7)0.0115 (9)0.0017 (9)
C80.0176 (9)0.0142 (8)0.0273 (11)0.0010 (7)0.0003 (10)0.0008 (10)
O30.0217 (8)0.0268 (9)0.0252 (9)0.0029 (7)0.0041 (7)0.0005 (7)
O40.0198 (8)0.0255 (8)0.0261 (9)0.0038 (7)0.0035 (7)0.0031 (7)
C90.0275 (10)0.0185 (9)0.0257 (12)0.0014 (8)0.0006 (10)0.0012 (10)
O50.0250 (8)0.0171 (7)0.0621 (14)0.0021 (6)0.0013 (10)0.0003 (10)
O60.0391 (10)0.0180 (8)0.0518 (13)0.0065 (7)0.0025 (10)0.0013 (9)
C100.0308 (11)0.0254 (10)0.0296 (13)0.0082 (9)0.0038 (13)0.0003 (11)
O70.0358 (9)0.0224 (8)0.0479 (12)0.0067 (7)0.0021 (11)0.0037 (9)
N10.0322 (10)0.0225 (9)0.0228 (10)0.0062 (8)0.0014 (10)0.0008 (10)
C110.0326 (12)0.0300 (12)0.0397 (15)0.0094 (10)0.0015 (13)0.0015 (13)
C120.0385 (13)0.0230 (11)0.0343 (14)0.0031 (10)0.0018 (15)0.0006 (11)
C130.0294 (12)0.0230 (11)0.0472 (17)0.0008 (9)0.0022 (12)0.0039 (12)
O80.0406 (10)0.0257 (9)0.0508 (13)0.0079 (8)0.0102 (10)0.0046 (10)
N20.0299 (11)0.0256 (10)0.0490 (16)0.0032 (9)0.0023 (11)0.0007 (11)
C140.064 (2)0.0409 (17)0.064 (2)0.0229 (17)0.005 (2)0.0161 (18)
C150.0322 (14)0.0375 (14)0.059 (2)0.0001 (12)0.0034 (14)0.0132 (15)
O90.0340 (9)0.0241 (8)0.0320 (10)0.0073 (7)0.0023 (10)0.0013 (9)
Geometric parameters (Å, º) top
C1—C21.401 (3)C10—H100.9500
C1—C61.401 (3)N1—C121.459 (3)
C1—C71.506 (3)N1—C111.461 (3)
C2—C31.408 (3)C11—H11A0.9800
C2—C81.519 (3)C11—H11B0.9800
C3—C41.400 (3)C11—H11C0.9800
C3—C91.500 (3)C12—H12A0.9800
C4—C51.384 (3)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C5—C61.389 (3)C13—O81.255 (4)
C5—H5A0.9500C13—N21.329 (3)
C6—H60.9500C13—H130.9500
C7—O21.202 (3)N2—C151.445 (4)
C7—O11.329 (3)N2—C141.458 (5)
O1—H10.95 (4)C14—H14A0.9800
C8—O31.224 (3)C14—H14B0.9800
C8—O41.303 (3)C14—H14C0.9800
O4—H40.86 (4)C15—H15A0.9800
C9—O61.217 (3)C15—H15B0.9800
C9—O51.301 (3)C15—H15C0.9800
O5—H50.99 (4)O9—H9B0.78 (4)
C10—O71.253 (3)O9—H9A0.87 (4)
C10—N11.319 (3)
C2—C1—C6120.7 (2)C10—N1—C12121.1 (2)
C2—C1—C7120.12 (19)C10—N1—C11121.3 (2)
C6—C1—C7119.2 (2)C12—N1—C11117.6 (2)
C1—C2—C3118.96 (18)N1—C11—H11A109.5
C1—C2—C8118.75 (18)N1—C11—H11B109.5
C3—C2—C8122.20 (18)H11A—C11—H11B109.5
C4—C3—C2119.4 (2)N1—C11—H11C109.5
C4—C3—C9117.1 (2)H11A—C11—H11C109.5
C2—C3—C9123.39 (19)H11B—C11—H11C109.5
C5—C4—C3121.3 (2)N1—C12—H12A109.5
C5—C4—H4A119.4N1—C12—H12B109.5
C3—C4—H4A119.4H12A—C12—H12B109.5
C4—C5—C6119.6 (2)N1—C12—H12C109.5
C4—C5—H5A120.2H12A—C12—H12C109.5
C6—C5—H5A120.2H12B—C12—H12C109.5
C5—C6—C1120.0 (2)O8—C13—N2123.9 (3)
C5—C6—H6120.0O8—C13—H13118.1
C1—C6—H6120.0N2—C13—H13118.1
O2—C7—O1123.7 (2)C13—N2—C15121.1 (3)
O2—C7—C1123.1 (2)C13—N2—C14120.3 (3)
O1—C7—C1113.2 (2)C15—N2—C14118.4 (3)
C7—O1—H1112 (3)N2—C14—H14A109.5
O3—C8—O4121.29 (18)N2—C14—H14B109.5
O3—C8—C2120.6 (2)H14A—C14—H14B109.5
O4—C8—C2118.1 (2)N2—C14—H14C109.5
C8—O4—H4116 (2)H14A—C14—H14C109.5
O6—C9—O5124.4 (2)H14B—C14—H14C109.5
O6—C9—C3121.5 (2)N2—C15—H15A109.5
O5—C9—C3114.2 (2)N2—C15—H15B109.5
C9—O5—H5107 (2)H15A—C15—H15B109.5
O7—C10—N1123.9 (2)N2—C15—H15C109.5
N1—C10—O6155.89 (18)H15A—C15—H15C109.5
O7—C10—H10118.0H15B—C15—H15C109.5
N1—C10—H10118.0H9B—O9—H9A94 (4)
C6—C1—C2—C31.6 (4)C6—C1—C7—O2151.2 (3)
C7—C1—C2—C3179.3 (2)C2—C1—C7—O1150.7 (3)
C6—C1—C2—C8178.1 (3)C6—C1—C7—O130.1 (4)
C7—C1—C2—C82.7 (4)C1—C2—C8—O379.5 (3)
C1—C2—C3—C42.2 (4)C3—C2—C8—O397.0 (3)
C8—C2—C3—C4178.7 (3)C1—C2—C8—O499.4 (3)
C1—C2—C3—C9175.3 (2)C3—C2—C8—O484.1 (3)
C8—C2—C3—C91.1 (4)C4—C3—C9—O62.6 (4)
C2—C3—C4—C50.8 (4)C2—C3—C9—O6179.8 (3)
C9—C3—C4—C5176.9 (2)C4—C3—C9—O5177.4 (3)
C3—C4—C5—C61.3 (4)C2—C3—C9—O50.2 (4)
C4—C5—C6—C12.0 (4)O7—C10—N1—C12179.6 (3)
C2—C1—C6—C50.5 (4)O7—C10—N1—C110.1 (5)
C7—C1—C6—C5178.6 (2)O8—C13—N2—C15175.2 (3)
C2—C1—C7—O228.0 (4)O8—C13—N2—C141.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.95 (4)1.62 (4)2.561 (3)175 (4)
O9—H9B···O30.78 (4)1.95 (4)2.734 (3)178 (4)
O4—H4···O9i0.86 (4)1.72 (4)2.588 (3)178 (3)
O5—H5···O70.99 (4)1.53 (4)2.491 (2)162 (4)
O9—H9A···O6ii0.87 (4)1.90 (4)2.749 (2)167 (4)
C10—H10···O60.952.673.353 (3)129
C13—H13···O20.952.803.329 (3)116
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC8H6O4·2C3H7NOC10H6O8·4C3H7NOC9H6O6·2C3H7NO·H2O
Mr312.32546.53374.35
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/nOrthorhombic, P212121
Temperature (K)150150150
a, b, c (Å)19.663 (4), 7.5404 (13), 21.929 (4)12.8905 (10), 7.9398 (6), 13.8078 (10)13.8441 (15), 19.745 (2), 6.6606 (7)
α, β, γ (°)90, 104.661 (3), 9090, 108.162 (2), 9090, 90, 90
V3)3145.5 (10)1342.79 (17)1820.7 (3)
Z824
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.110.11
Crystal size (mm)0.34 × 0.28 × 0.180.69 × 0.39 × 0.080.57 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.936, 0.9910.929, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12434, 3577, 2318 11290, 3213, 2522 16155, 2593, 2297
Rint0.0440.0170.022
(sin θ/λ)max1)0.6490.6800.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.05 0.035, 0.100, 1.04 0.049, 0.138, 1.11
No. of reflections357732132593
No. of parameters222182254
No. of restraints500
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.180.31, 0.180.66, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL and local programs.

Selected bond lengths (Å) for (I) top
C1—C61.388 (3)C4—C81.493 (3)
C1—C21.394 (2)C5—C61.383 (3)
C1—C71.494 (3)C7—O11.227 (2)
C2—C31.384 (3)C7—O21.296 (2)
C3—C41.387 (3)C8—O31.216 (2)
C4—C51.394 (2)C8—O41.313 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.93 (3)1.64 (3)2.563 (2)175 (3)
O4—H4···O60.93 (3)1.63 (3)2.554 (2)175 (2)
O1—H1X···O5X0.93 (3)1.58 (8)2.442 (8)152 (14)
C9—H9X···O20.952.783.365 (3)121
C9—H9···O10.952.703.339 (3)125
C12—H12···O30.952.643.314 (3)128
Selected bond lengths (Å) for (II) top
C1—C21.3909 (16)C4—O11.2025 (15)
C1—C3i1.3988 (16)C4—O21.3130 (15)
C1—C41.5015 (16)C5—O31.2097 (15)
C2—C31.3906 (17)C5—O41.3087 (15)
C3—C51.5045 (16)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.935 (18)1.643 (19)2.5723 (12)172.4 (17)
O2—H2···O60.91 (2)1.65 (2)2.5508 (13)169.3 (18)
C6—H6···O30.952.473.1761 (16)131.5
Selected bond lengths (Å) for (III) top
C1—C21.401 (3)C5—C61.389 (3)
C1—C61.401 (3)C7—O21.202 (3)
C1—C71.506 (3)C7—O11.329 (3)
C2—C31.408 (3)C8—O31.224 (3)
C2—C81.519 (3)C8—O41.303 (3)
C3—C41.400 (3)C9—O61.217 (3)
C3—C91.500 (3)C9—O51.301 (3)
C4—C51.384 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O80.95 (4)1.62 (4)2.561 (3)175 (4)
O9—H9B···O30.78 (4)1.95 (4)2.734 (3)178 (4)
O4—H4···O9i0.86 (4)1.72 (4)2.588 (3)178 (3)
O5—H5···O70.99 (4)1.53 (4)2.491 (2)162 (4)
O9—H9A···O6ii0.87 (4)1.90 (4)2.749 (2)167 (4)
C10—H10···O60.952.673.353 (3)129
C13—H13···O20.952.803.329 (3)116
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y, z1/2.
 

Acknowledgements

The authors acknowledge the EPSRC for the provision of a studentship (SHD). Microanalyses were carried out by the Chemistry Departmental Service at Loughborough University.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBailey, M. & Brown, C. J. (1967). Acta Cryst. 22, 387–391.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, S., Pedireddi, V. R., Ranganathan, A. & Rao, C. N. R. (2000). J. Mol. Struct. 520, 107–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationCsoregh, I., Sjogren, A., Czugler, M., Cserzo, M. & Weber, E. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 507–513.  Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2003a). Acta Cryst. C59, o165–o166.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2003b). Acta Cryst. E59, o127–o128.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2003c). Acta Cryst. E59, o1087–o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond in Structural Chemistry and Biology, pp. 44–68. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. & MacDonald, J. C. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFornies-Marquina, J. M., Courseille, C., Busetta, B. & Hospital, M. (1972). Cryst. Struct. Commun. 1, 47–50.  CAS Google Scholar
First citationHerbstein, F. H. & Kapon, M. (1978). Acta Cryst. B34, 1608–1612.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHerbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613–1617.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMo, F. & Adman, E. (1975). Acta Cryst. B31, 192–198.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNangia, A. & Desiraju, G. R. (1999). Chem. Commun. pp. 605–606.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationTakusagawa, F. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2998–3004.  CrossRef CAS Web of Science Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2002). J. Org. Chem. 67, 556–565.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds