organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Diospyrin

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 4 March 2004; accepted 31 March 2004; online 11 May 2004)

The structure of the title natural product, 1′,5-di­hydroxy-3′,7-di­methyl-2,2′-bi­naphthalene-1,4,5′,8′-tetrone, C22H14O6, confirms the atomic connectivity postulated on the basis of spectroscopic data. The geometric parameters are normal and the angle between the planes of the two ring systems is 59.74 (2)°. The crystal packing is influenced by O—H⋯O hydrogen bonds, and possible short C—H⋯O and ππ stacking interactions.

Comment

Diopyrin, C22H14O6, (I[link]), is an orange–red naphthoquinonyl­naphtho­quinone that is present in the heartwood of many species of Diospyros (persimmon) trees (Thomson, 1987[Thomson, R. H. (1987). Naturally Occurring Quinones III, p. 167. London: Chapman and Hall.]). The potent antimycobacterial properties of diospyrin and its analogues have been investigated by various workers (Lall et al., 2003[Lall, N., Das Sarma, M., Hazra, B. & Meyer, J. J. M. (2003). J. Antimicrob. Chemother. 51, 435-438.], and references therein). Arguments based on NMR spectra (Sidhu & Pardhasaradhi, 1967[Sidhu, G. S. & Pardhasaradhi, M. (1967). Tetrahedron Lett. pp. 4263-4267.], 1970[Sidhu, G. S. & Pardhasaradhi, M. (1970). Indian J. Chem. 8, 569-571.]; Lillie & Musgrave, 1977[Lillie, T. J. & Musgrave, O. C. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 355-359.]) indicated that diospyrin has the structure shown in the scheme[link] below, with a 6-21 linkage present between the naphthoquinonyl units, and a recent synthesis (Yoshida & Mori, 2000[Yoshida, M. & Mori, K. (2000). Eur. J. Org. Chem. pp. 1313-1317.]) has provided support for this hypothesis. However, the alternative 6-31 mode of linkage has never been conclusively disproved. We have now established crystallographically that diospyrin does indeed have the 6-21 structure (Fig. 1[link]).

[Scheme 1]

The geometric parameters for (I[link]) (Table 1[link]) are consistent with those reported for other naphtho­quinone systems (Lynch & McClenaghan, 2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704-o707.]). In the crystal, the two ring systems (C1–C11/O1–O3, with an r.m.s. deviation from the least-squares plane of 0.048 Å, and C12–C22/O5/O6, with an r.m.s. deviation of 0.069 Å) are not coplanar, the angle between their least-squares planes being 59.74 (2)°. The length of the inter-ring C9—C12 bond [1.494 (3) Å] suggests that it is essentially a single bond. A somewhat surprising feature is that the bulky C11 methyl group lies close to atom O4 rather than, as might be expected, close to the much smaller H atom attached to atom C13. As a result, atom O4 is significantly displaced [by 0.387 (3) Å] from the least-squares plane of its naphthoquinonyl unit (C12–C22/O5/O6). Conversely, atom C11 shows no significant deviation [displacement = 0.018 (2) Å] from the C1–C11/O1–O3 least-squares plane.

Both OH groups participate in bifurcated intra/intermolecular hydrogen bonds to C=O acceptors (Table 2[link]). The intramolecular O—H⋯O bonds are much shorter and stronger than the intermolecular links. This difference results in an `unbalanced' hydrogen-bonding network, in which atoms O2 and O5 accept two hydrogen bonds each (one intramol­ecular and one intermolecular), and atoms O1 and O4 do not accept any conventional hydrogen bonds. Together (Fig. 2[link]), the O—H⋯O bonds generate infinite [010] stacks of mol­ecules of (I[link]), generated by a 21 screw axis. A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I[link]) indicated the possible presence of two short C—H⋯O interactions arising from methyl group H atoms (Table 2[link]), although such interactions are expected to be very weak for such `unactivated' bonds (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, p. 306. Oxford University Press.]). Interestingly, the acceptor atoms are the `underbonded' atoms O1 and O4 (see above). If they are not merely packing artefacts, these C—H⋯O interactions may provide some coherence between adjacent [010] stacks of mol­ecules in the a direction. Possible ππ stacking interactions, with a centroid–centroid separation of less than 4.0 Å, are listed in Table 3[link]. The relatively large value of Δ in each case suggests that these interactions are weak.

The structure shown in Fig. 1[link] is dissymmetric, but crystal symmetry generates a racemic mixture that is consistent with the lack of optical activity shown by (I[link]) in solution (Lillie et al., 1976[Lillie, T. J., Musgrave, O. C. & Skoyles, D. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2155-2161.]). The interconversion of the two enantiomeric forms would be expected to occur readily in solution by analogy with the behaviour of trisubstituted bi­phenyls such as (II[link]) (Adams & Teeter, 1940[Adams, R. & Teeter, H. M. (1940). J. Am. Chem. Soc. 62, 2188-2190.]), which undergo rapid racemization in solution. The crystal packing of (I[link]) is shown in Fig. 3[link].

[Figure 1]
Figure 1
The asymmetric unit of (I[link]) (50% probability displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines.
[Figure 2]
Figure 2
A detail of (I[link]), showing the [010] stacking resulting from O—H⋯O hydrogen bonds (50% probability displacement ellipsoids). [Symmetry codes: (ii) [{1 \over 2}] − x, [{1 \over 2}] + y, [{1 \over 2}] − z; (ix) x, 1 + y, z.]
[Figure 3]
Figure 3
The crystal packing of (I[link]), projected on to (010) (H atoms have been omitted for clarity).

Experimental

Diospyrin was isolated from Diospyros montana (cf. Lillie et al., 1976[Lillie, T. J., Musgrave, O. C. & Skoyles, D. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2155-2161.]) and recrystallized from chloro­form as an intense orange powder accompanied by one or two well faceted orange plates.

Crystal data
  • C22H14O6

  • Mr = 374.33

  • Monoclinic, P21/n

  • a = 13.5603 (10) Å

  • b = 7.8549 (6) Å

  • c = 15.8121 (11) Å

  • β = 101.063 (2)°

  • V = 1652.9 (2) Å3

  • Z = 4

  • Dx = 1.504 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2069 reflections

  • θ = 2.6–25.5°

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • Plate, orange

  • 0.36 × 0.29 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.995

  • 10 116 measured reflections

  • 3091 independent reflections

  • 1739 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 25.6°

  • h = −16 → 14

  • k = −9 → 8

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 0.92

  • 3091 reflections

  • 255 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.069P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected interatomic distances (Å)

O1—C1 1.214 (3)
O2—C4 1.232 (3)
O3—C10 1.341 (2)
O4—C17 1.218 (2)
O5—C14 1.233 (2)
O6—C18 1.340 (2)
C1—C2 1.471 (3)
C1—C6 1.483 (3)
C2—C3 1.320 (3)
C3—C4 1.480 (3)
C4—C5 1.452 (3)
C5—C10 1.407 (3)
C5—C6 1.409 (3)
C6—C7 1.370 (3)
C7—C8 1.397 (3)
C8—C9 1.391 (3)
C8—C11 1.499 (3)
C9—C10 1.404 (3)
C9—C12 1.494 (3)
C12—C13 1.337 (3)
C12—C17 1.485 (3)
C13—C14 1.468 (3)
C14—C15 1.454 (3)
C15—C18 1.402 (3)
C15—C16 1.408 (3)
C16—C21 1.378 (3)
C16—C17 1.487 (3)
C18—C19 1.381 (3)
C19—C20 1.379 (3)
C20—C21 1.396 (3)
C20—C22 1.504 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2 0.96 1.77 2.607 (2) 144
O3—H1⋯O5i 0.96 2.40 2.986 (2) 119
O6—H2⋯O5 0.99 1.78 2.630 (2) 142
O6—H2⋯O2ii 0.99 2.36 2.980 (2) 120
C11—H6⋯O4iii 0.96 2.38 3.331 (3) 170
C22—H12⋯O1iv 0.96 2.52 3.415 (3) 156
Symmetry codes: (i) [{\script{1\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}-z]; (ii) [{\script{1\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (iii) [{\script{3\over 2}}-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (iv) [{\script{3\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}-z].

Table 3
ππ stacking interactions in (I)

Cg1 is the centroid of the C1–C6 ring, Cg2 is the centroid of the C5–C10 ring, Cg3 is the centroid of the C12–C17 ring and Cg4 is the centroid of the C15/C16/C18–C21 ring. φ is the dihedral angle (°) between the planes of the rings, d is the distance (Å) between the ring centroids and Δ is the displacement (Å) of the centroid of ring 2 relative to the intersection point of the normal to the centroid of ring 1 and the least-squares plane of ring 2.

Ring 1 Ring 2 φ d Δ
Cg1 Cg2v 0.0 3.9219 (14) 2.15
Cg1 Cg2vi 2.9 3.7161 (14) 1.17
Cg3 Cg4vii 4.5 3.9486 (14) 2.02
Cg4 Cg4viii 0.0 3.6772 (14) 1.36
Symmetry codes: (v) 1 -x, -y, -z; (vi) 1 -x, 1-y, -z; (vii) 1 -x, 1-y, 1-z; (viii) 1 -x, -y, 1-z.

H atoms bonded to O atoms were found in difference maps and refined as riding. H atoms bonded to C atoms were placed in calculated positions (C—H = 0.96–0.98 Å) and refined as riding, allowing for free rotation of the rigid methyl groups. Uiso(H) values were constrained to be 1.2Ueq(attached atom) [1.5Ueq(C) for methyl H atoms].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diopyrin, C22H14O6, (I), is an orange–red naphthoquinonylnaphthoquinone that is present in the heartwood of many species of Diospyros (persimmon) trees (Thomson, 1987). The potent antimycobacterial properties of diospyrin and its analogues have been investigated by various workers (Lall et al., 2003, and references therein). Arguments based on NMR spectra (Sidhu & Pardhasaradhi, 1967, 1970; Lillie & Musgrave, 1977) indicated that diospyrin has the structure shown in the scheme below, with a (6–21) linkage present between the naphthoquinonyl units, and a recent synthesis (Yoshida & Mori, 2000) has provided support for this hypothesis. However, the alternative (6–31) mode of linkage has never been conclusively disproved. We have now established crystallographically that diospyrin does indeed have the structure shown (Fig. 1).

The geometric parameters for (I) (Table 1) are consistent with those reported for other naphthoquinone systems (Lynch & McClenaghan, 2002). In the crystal, the two ring systems (C1–C11/O1–O3, with an r.m.s. deviation from the least-squares plane of 0.048 Å, and C12–C22/O5/O6, with an r.m.s. deviation of 0.069 Å) are not coplanar, the angle between their least-squares planes being 59.74 (2)°. The inter-ring C9—C12 bond length [1.494 (3) Å] suggests that it is essentially a single bond. A somewhat surprising feature is that the bulky C11 methyl group lies close to the atom O4 rather than, as might be expected, close to the much smaller H atom attached to atom C13. As a result, atom O4 is significantly displaced [by 0.387 (3) Å] from the least-squares plane of its naphthoquinonyl unit (C12–C22/O5/O6). Conversely, atom C11 shows no significant deviation [displacement = 0.018 (2) Å] from the C1–C11/O1–O3 least-squares plane.

Both OH groups participate in bifurcated intra/intermolecular hydrogen bonds to C=O acceptors (Table 2). The intramolecular O—H···O bonds are much shorter and stronger than the intermolecular links. This results in an `unbalanced' hydrogen-bonding network, in which atoms O2 and O5 accept two hydrogen bonds each (one intramolecular and one intermolecular), and atoms O1 and O4 do not accept any conventional hydrogen bonds. Together (Fig. 2), the O—H···O bonds generate infinite [010] stacks of molecules of (I), generated by a 21 screw axis. A PLATON (Spek, 2003) analysis of (I) indicated the possible presence of two short C—H···O interactions arising from methyl group H atoms (Table 2), although such interactions are expected to be very weak for such `unactivated' bonds (Desiraju & Steiner, 1999). Interestingly, the acceptor atoms are the `underbonded' atoms O1 and O4 (see above). If they are not merely packing artefacts, these C—H···O interactions may provide some coherence between adjacent [010] stacks of molecules in the a direction. Possible ππ stacking interactions, with a ring–centroid separation of less than 4.0 Å, are listed in Table 3. The relatively large value of Δ in each case suggests that these interactions are weak.

The structure shown in Fig. 1 is dissymmetric, but crystal symmetry generates a racemic mixture that is consistent with the lack of optical activity shown by (I) in solution (Lillie et al., 1976). The interconversion of the two enantiomeric forms would be expected to occur readily in solution by analogy with the behaviour of trisubstituted biphenyls such as (II) (Adams & Teeter, 1940), which undergo rapid racemization in solution. The unit-cell packing of (I) is shown in Fig. 3.

Experimental top

Diospyrin was isolated from Diospyros montana (cf. Lillie et al., 1976) and recrystallized from chloroform as an intense orange powder accompanied by one or two well faceted orange plates.

Refinement top

H atoms bonded to O atoms were found in difference maps and refined as riding. H atoms bonded to C atoms were placed in calculated positions (C—H = 0.96–0.98 Å) and refined as riding, allowing for free rotation of the rigid methyl groups. Uiso(H) values were constrained to be 1.2Ueq(attached atom) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) (50% probability displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A detail of (I), showing the [010] stacking resulting from O—H···O bydrogen bonds (50% probability displacement ellipsoids). [Symmetry codes: (i) 1/2 − x, 1/2 + y, 1/2 − z; (ii) x, 1 + y, z.]
[Figure 3] Fig. 3. The crystal packing of (I), projected on to (010) (H atoms have been omitted for clarity).
1',5-dihydroxy-3',7-dimethyl-2,2'-binaphthalene-1,4,5',8'-tetrone top
Crystal data top
C22H14O6F(000) = 776
Mr = 374.33Dx = 1.504 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2069 reflections
a = 13.5603 (10) Åθ = 2.6–25.5°
b = 7.8549 (6) ŵ = 0.11 mm1
c = 15.8121 (11) ÅT = 293 K
β = 101.063 (2)°Plate, orange
V = 1652.9 (2) Å30.36 × 0.29 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3091 independent reflections
Radiation source: fine-focus sealed tube1739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1614
Tmin = 0.920, Tmax = 0.995k = 98
10116 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (C-H)
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3091 reflectionsΔρmax = 0.22 e Å3
255 parametersΔρmin = 0.19 e Å3
0 restraints
Crystal data top
C22H14O6V = 1652.9 (2) Å3
Mr = 374.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5603 (10) ŵ = 0.11 mm1
b = 7.8549 (6) ÅT = 293 K
c = 15.8121 (11) Å0.36 × 0.29 × 0.05 mm
β = 101.063 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1739 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.995Rint = 0.039
10116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.92Δρmax = 0.22 e Å3
3091 reflectionsΔρmin = 0.19 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67119 (14)0.3929 (3)0.06871 (11)0.0706 (6)
O20.33522 (12)0.0988 (3)0.01421 (10)0.0661 (6)
O30.37668 (11)0.1809 (2)0.14853 (9)0.0505 (5)
H10.34270.12120.09830.061*
O40.62949 (13)0.1313 (2)0.33927 (10)0.0634 (5)
O50.30530 (11)0.4599 (2)0.39318 (9)0.0496 (5)
O60.34246 (11)0.3695 (2)0.55636 (9)0.0510 (5)
H20.30240.42070.50360.061*
C10.59863 (18)0.3184 (3)0.05253 (14)0.0449 (6)
C20.53119 (19)0.2234 (3)0.12023 (15)0.0563 (7)
H30.54850.21260.17410.068*
C30.44699 (19)0.1528 (3)0.10728 (15)0.0560 (7)
H40.40640.09530.15240.067*
C40.41564 (17)0.1630 (3)0.02276 (14)0.0449 (6)
C50.48317 (15)0.2454 (3)0.04771 (12)0.0369 (5)
C60.57353 (16)0.3201 (3)0.03472 (13)0.0373 (5)
C70.63802 (15)0.3939 (3)0.10202 (13)0.0416 (6)
H50.69740.44240.09230.050*
C80.61665 (15)0.3981 (3)0.18499 (13)0.0388 (5)
C90.52763 (15)0.3260 (3)0.19949 (13)0.0346 (5)
C100.46086 (15)0.2503 (3)0.13101 (13)0.0364 (5)
C110.68818 (17)0.4857 (4)0.25561 (14)0.0591 (8)
H60.74000.54060.23190.089*
H70.71780.40340.29780.089*
H80.65250.56920.28240.089*
C120.50020 (14)0.3249 (3)0.28660 (13)0.0346 (5)
C130.41787 (15)0.4030 (3)0.30217 (13)0.0367 (5)
H90.37920.46600.25810.044*
C140.38558 (15)0.3939 (3)0.38549 (13)0.0353 (5)
C150.45032 (14)0.3069 (3)0.45627 (12)0.0326 (5)
C160.53997 (14)0.2289 (3)0.44382 (13)0.0345 (5)
C170.56283 (15)0.2224 (3)0.35557 (13)0.0383 (5)
C180.42673 (15)0.3008 (3)0.53877 (13)0.0358 (5)
C190.49258 (15)0.2243 (3)0.60535 (14)0.0395 (5)
H100.47590.22040.65970.047*
C200.58219 (15)0.1535 (3)0.59406 (13)0.0374 (5)
C210.60467 (15)0.1542 (3)0.51152 (13)0.0378 (5)
H110.66370.10390.50220.045*
C220.65535 (16)0.0810 (3)0.66902 (13)0.0513 (6)
H120.69700.00220.64850.077*
H130.61910.02810.70850.077*
H140.69670.17070.69790.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0842 (13)0.0900 (15)0.0464 (11)0.0220 (11)0.0350 (10)0.0037 (10)
O20.0535 (11)0.0962 (16)0.0487 (11)0.0201 (10)0.0100 (8)0.0171 (10)
O30.0442 (9)0.0720 (13)0.0388 (9)0.0181 (8)0.0166 (7)0.0120 (8)
O40.0697 (11)0.0819 (14)0.0463 (10)0.0361 (10)0.0307 (9)0.0157 (9)
O50.0422 (9)0.0669 (12)0.0430 (9)0.0149 (8)0.0162 (7)0.0027 (8)
O60.0476 (9)0.0729 (13)0.0364 (9)0.0147 (8)0.0178 (7)0.0019 (8)
C10.0545 (15)0.0507 (16)0.0342 (13)0.0013 (11)0.0200 (11)0.0055 (11)
C20.0701 (17)0.075 (2)0.0270 (12)0.0019 (14)0.0172 (12)0.0051 (12)
C30.0610 (17)0.074 (2)0.0311 (13)0.0001 (13)0.0051 (12)0.0075 (12)
C40.0448 (14)0.0547 (17)0.0346 (13)0.0006 (11)0.0064 (11)0.0037 (11)
C50.0406 (12)0.0417 (15)0.0293 (12)0.0011 (10)0.0091 (10)0.0004 (10)
C60.0446 (13)0.0395 (14)0.0295 (12)0.0031 (10)0.0118 (10)0.0033 (10)
C70.0395 (13)0.0507 (16)0.0382 (13)0.0068 (10)0.0169 (10)0.0001 (11)
C80.0383 (12)0.0472 (15)0.0325 (12)0.0038 (10)0.0111 (10)0.0002 (10)
C90.0369 (12)0.0413 (15)0.0271 (11)0.0010 (9)0.0095 (9)0.0013 (9)
C100.0359 (12)0.0417 (15)0.0336 (12)0.0001 (9)0.0119 (9)0.0005 (10)
C110.0502 (15)0.090 (2)0.0382 (13)0.0199 (13)0.0119 (11)0.0076 (14)
C120.0362 (12)0.0401 (14)0.0298 (11)0.0040 (9)0.0122 (9)0.0014 (10)
C130.0392 (12)0.0421 (14)0.0291 (11)0.0011 (10)0.0075 (9)0.0029 (10)
C140.0339 (12)0.0397 (14)0.0340 (12)0.0016 (10)0.0104 (9)0.0035 (10)
C150.0353 (12)0.0349 (13)0.0289 (11)0.0008 (9)0.0092 (9)0.0026 (9)
C160.0373 (12)0.0363 (14)0.0325 (12)0.0021 (9)0.0137 (9)0.0018 (10)
C170.0403 (12)0.0429 (14)0.0353 (12)0.0043 (10)0.0161 (10)0.0019 (10)
C180.0366 (12)0.0399 (14)0.0336 (12)0.0013 (9)0.0132 (10)0.0050 (10)
C190.0488 (14)0.0436 (15)0.0291 (11)0.0026 (11)0.0148 (10)0.0014 (10)
C200.0419 (13)0.0400 (14)0.0306 (12)0.0035 (9)0.0077 (10)0.0004 (10)
C210.0363 (12)0.0443 (15)0.0344 (12)0.0029 (9)0.0107 (10)0.0010 (10)
C220.0545 (15)0.0632 (18)0.0362 (13)0.0066 (12)0.0087 (11)0.0075 (12)
Geometric parameters (Å, º) top
O1—C11.214 (3)C9—C121.494 (3)
O2—C41.232 (3)C11—H60.9600
O3—C101.341 (2)C11—H70.9600
O3—H10.9612C11—H80.9600
O4—C171.218 (2)C12—C131.337 (3)
O5—C141.233 (2)C12—C171.485 (3)
O6—C181.340 (2)C13—C141.468 (3)
O6—H20.9899C13—H90.9300
C1—C21.471 (3)C14—C151.454 (3)
C1—C61.483 (3)C15—C181.402 (3)
C2—C31.320 (3)C15—C161.408 (3)
C2—H30.9300C16—C211.378 (3)
C3—C41.480 (3)C16—C171.487 (3)
C3—H40.9300C18—C191.381 (3)
C4—C51.452 (3)C19—C201.379 (3)
C5—C101.407 (3)C19—H100.9300
C5—C61.409 (3)C20—C211.396 (3)
C6—C71.370 (3)C20—C221.504 (3)
C7—C81.397 (3)C21—H110.9300
C7—H50.9300C22—H120.9600
C8—C91.391 (3)C22—H130.9600
C8—C111.499 (3)C22—H140.9600
C9—C101.404 (3)
C10—O3—H1108.7H7—C11—H8109.5
C18—O6—H2109.9C13—C12—C17119.58 (18)
O1—C1—C2120.5 (2)C13—C12—C9122.10 (19)
O1—C1—C6122.1 (2)C17—C12—C9118.15 (17)
C2—C1—C6117.4 (2)C12—C13—C14123.1 (2)
C3—C2—C1122.4 (2)C12—C13—H9118.4
C3—C2—H3118.8C14—C13—H9118.4
C1—C2—H3118.8O5—C14—C15122.43 (19)
C2—C3—C4121.6 (2)O5—C14—C13119.29 (19)
C2—C3—H4119.2C15—C14—C13118.28 (18)
C4—C3—H4119.2C18—C15—C16118.19 (19)
O2—C4—C5122.6 (2)C18—C15—C14121.35 (18)
O2—C4—C3119.4 (2)C16—C15—C14120.44 (18)
C5—C4—C3118.0 (2)C21—C16—C15120.96 (19)
C10—C5—C6118.31 (19)C21—C16—C17119.85 (18)
C10—C5—C4120.88 (19)C15—C16—C17119.16 (19)
C6—C5—C4120.80 (19)O4—C17—C12120.42 (19)
C7—C6—C5120.44 (19)O4—C17—C16121.0 (2)
C7—C6—C1120.0 (2)C12—C17—C16118.52 (18)
C5—C6—C1119.5 (2)O6—C18—C19117.99 (18)
C6—C7—C8121.53 (19)O6—C18—C15122.37 (19)
C6—C7—H5119.2C19—C18—C15119.63 (18)
C8—C7—H5119.2C20—C19—C18122.28 (19)
C9—C8—C7119.21 (19)C20—C19—H10118.9
C9—C8—C11121.46 (19)C18—C19—H10118.9
C7—C8—C11119.29 (19)C19—C20—C21118.39 (19)
C8—C9—C10119.79 (18)C19—C20—C22121.02 (19)
C8—C9—C12122.12 (19)C21—C20—C22120.58 (19)
C10—C9—C12118.09 (17)C16—C21—C20120.47 (19)
O3—C10—C9117.48 (18)C16—C21—H11119.8
O3—C10—C5121.79 (18)C20—C21—H11119.8
C9—C10—C5120.72 (18)C20—C22—H12109.5
C8—C11—H6109.5C20—C22—H13109.5
C8—C11—H7109.5H12—C22—H13109.5
H6—C11—H7109.5C20—C22—H14109.5
C8—C11—H8109.5H12—C22—H14109.5
H6—C11—H8109.5H13—C22—H14109.5
C8—C9—C12—C1766.2 (3)C10—C9—C12—C17113.3 (2)
C8—C9—C12—C13118.5 (2)C10—C9—C12—C1361.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O20.961.772.607 (2)144
O3—H1···O5i0.962.402.986 (2)119
O6—H2···O50.991.782.630 (2)142
O6—H2···O2ii0.992.362.980 (2)120
C11—H6···O4iii0.962.383.331 (3)170
C22—H12···O1iv0.962.523.415 (3)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14O6
Mr374.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.5603 (10), 7.8549 (6), 15.8121 (11)
β (°) 101.063 (2)
V3)1652.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.36 × 0.29 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.920, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
10116, 3091, 1739
Rint0.039
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 0.92
No. of reflections3091
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
O1—C11.214 (3)C8—C111.499 (3)
O2—C41.232 (3)C9—C101.404 (3)
O3—C101.341 (2)C9—C121.494 (3)
O4—C171.218 (2)C12—C131.337 (3)
O5—C141.233 (2)C12—C171.485 (3)
O6—C181.340 (2)C13—C141.468 (3)
C1—C21.471 (3)C14—C151.454 (3)
C1—C61.483 (3)C15—C181.402 (3)
C2—C31.320 (3)C15—C161.408 (3)
C3—C41.480 (3)C16—C211.378 (3)
C4—C51.452 (3)C16—C171.487 (3)
C5—C101.407 (3)C18—C191.381 (3)
C5—C61.409 (3)C19—C201.379 (3)
C6—C71.370 (3)C20—C211.396 (3)
C7—C81.397 (3)C20—C221.504 (3)
C8—C91.391 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O20.961.772.607 (2)144
O3—H1···O5i0.962.402.986 (2)119
O6—H2···O50.991.782.630 (2)142
O6—H2···O2ii0.992.362.980 (2)120
C11—H6···O4iii0.962.383.331 (3)170
C22—H12···O1iv0.962.523.415 (3)156
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
π-π stacking Interactions in (I) top
Ring1Ring2ϕdΔ
π1π2i0.03.9219 (14)2.15
π1π2ii2.93.7161 (14)1.17
π3π4iii4.53.9486 (14)2.02
π4π4iv0.03.6772 (14)1.36
Notes: π1 = centroid of atoms C1-C6; π2 = centroid of atoms C5-C10; π3 = centroid of atoms C12-C17; π4 = centroid of atoms C15, C16, C18-C21. ϕ = dihedral angle (°) between ring best planes; d = distance between ring centroids (Å); and Δ = displacement (Å) of the centroid of ring 2 relative to the intersection point of the normal to the centroid of ring 1 and the best least-squares plane of ring 2. Symmetry codes: (i) 1 − x, −y, −z; (ii) 1 − x, 1 − y, −z; (iii) 1 − x, 1 − y, 1 − z; (iv) 1 − x, −y, 1 − z.
 

References

First citationAdams, R. & Teeter, H. M. (1940). J. Am. Chem. Soc. 62, 2188–2190.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond, p. 306. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLall, N., Das Sarma, M., Hazra, B. & Meyer, J. J. M. (2003). J. Antimicrob. Chemother. 51, 435–438.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLillie, T. J. & Musgrave, O. C. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 355–359.  CrossRef Web of Science Google Scholar
First citationLillie, T. J., Musgrave, O. C. & Skoyles, D. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2155–2161.  CrossRef Web of Science Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704–o707.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSidhu, G. S. & Pardhasaradhi, M. (1967). Tetrahedron Lett. pp. 4263–4267.  CrossRef Google Scholar
First citationSidhu, G. S. & Pardhasaradhi, M. (1970). Indian J. Chem. 8, 569–571.  CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomson, R. H. (1987). Naturally Occurring Quinones III, p. 167. London: Chapman and Hall.  Google Scholar
First citationYoshida, M. & Mori, K. (2000). Eur. J. Org. Chem. pp. 1313–1317.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds