organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three hexa­hydro­pyrido­pyrimidine-spiro-cyclo­hexane­triones: supra­molecular structures generated by O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds, and ππ stacking interactions

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartment of Chemistry, University of Guelph, Ontario, Canada N1G 2W1, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, dDepartamento de Química, Universidad de Nariño, Cuidad Universitaria, Torobajo, AA 1175, Pasto, Colombia, eGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360, Cali, Colombia, and fSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 14 April 2004; accepted 20 April 2004; online 22 May 2004)

4′,4′-Di­methyl-2-methyl­sulfanyl-3,4,5,6,7,8-hexa­hydro­pyrido­[2,3-d]­pyrimidine-6-spiro-1′-cyclo­hexane-2′,4,6′-trione, C15H19N3O3S, (I), has a markedly polarized molecular–electronic structure, and the mol­ecules are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds. 8-Hydro­xy­methyl-4′,4′-di­methyl-2-methyl­sulfanyl-3,4,5,6,7,8-hexa­hydro­pyrido­[2,3-d]­pyrimidine-6-spiro-1′-cyclo­hexane-2′,4,6′-trione, C16H21N3O4S, (II), where the hydroxy­methyl substituent is disordered over two sets of sites, has a much less polarized structure than (I); the mol­ecules are linked by a combination of O—H⋯O and N—H⋯O hydrogen bonds into chains containing alternating [R_2^2](8) and [R_2^2](16) rings, and these chains are linked into sheets by a combination of a ππ stacking interaction and a C—H⋯O hydrogen bond. 8-Ethoxy­methyl-2-methoxy-4′,4′-di­methyl-3,4,5,6,7,8-hexa­hydro­pyrido­[2,3-d]­pyrimidine-6-spiro-1′-cyclo­hexane-2′,4,6′-trione, C18H25N3O5, (III[link]), has an unpolarized electronic structure, and a combination of N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds links the mol­ecules into sheets.

Comment

Di­hydro­pyridine systems are of current interest because of their exceptional properties as calcium antagonists (Bossert & Vater, 1989[Bossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291-324.]) and as powerful arteriolar vasodilators (Kazda & Towart, 1981[Kazda, S. & Towart, R. (1981). Br. J. Pharmacol. 72, P582-583.]). As part of a search for new fused heterocyclic systems containing di­hydro­pyridine units, we have been exploring the use of three-component cyclo­condensation

[Scheme 1]
reactions between 4-amino­pyrimidin-4(3H)-ones, dimedone (5,5-di­methyl-1,3-cyclo­hexane­dione) and simple aliphatic aldehydes, in the expectation of forming pyrimidino­quinolines. In the event, reactions of this type, using an excess of form­aldehyde in the presence of triethyl­amine, have led to the formation of spiro compounds rather than the expected pyrimidino­quinolines, and we report here the molecular and supramolecular structures of three such compounds, (I[link])–(III[link]). All of the mol­ecules are chiral, but the compounds studied all crystallize in the centrosymmetric space group [P \overline 1] and hence are racemic. The structure of (II[link]) is complicated by the disorder of the –CH2OH substituent at atom N8, which was modelled using sets of sites, each with an occupancy of 0.5, corresponding to two distinct orientations for this group.

The bond lengths in (I[link]) (Fig. 1[link] and Table 1[link]) show some discrepancies when compared with typical values for bonds of similar types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For example, the N3—C4 and C4—O4 bonds are both long for their types, the C4—C4A and C4A—C8A bonds are too similar in length to be characterized as single and double bonds, respectively, and the C8A—N8 bond, involving a three-coordinate N atom, is much shorter than the C8A—N1 bond, which involves a two-coordinate N atom. These observations, taken together, effectively preclude the polarized form (Ia[link]) as an effective contributor to the overall molecular–electronic structure, instead pointing to the importance of the polarized vinyl­ogous amide form (Ib[link]).

Compounds (II[link]) and (III[link]) (Figs. 2[link] and 3[link]) both show a much smaller degree of electronic polarization. For example, the difference between the C8A—N1 and C8A—N8 bond lengths (Tables 3[link] and 5[link]) is much smaller in (II[link]) and (III[link]) than in (I[link]). Hence, for these compounds, the classically localized forms are the most appropriate representations. We also note here the much greater difference between the C2—O2 and O2—C21 distances in (III[link]) (∼0.11 Å) than between the corresponding C2—S2 and S2—C21 distances in (I[link]) and (II[link]) (∼0.04 and ∼0.02 Å, respectively). In each compound, the exocyclic bond angles at atom C2 are very different from 120°.

In each of (I[link])–(III[link]), the ring containing atoms N1 and N3 is effectively planar, but for the ring containing atom N8, the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) corresponding to the atom sequence N8—C7—C6—C5—C4A—C8A [θ = 129.2 (2)° and φ = 304.5 (3)° in (I[link]), θ = 51.3 (3)° and φ = 98.5 (3)° in (II[link]), and θ = 126.5 (3)° and φ = 283.2 (4)° in (III[link])] indicate that, in each compound, the conformation of this ring is best described as an envelope form, itself dominated by a combination of boat and chair forms (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). The carbocyclic rings adopt almost perfect chair conformations, with local pseudo-mirror symmetry defined by the plane through atoms C6, C63, C631 and C632. The conformations of the pendent CH3X substituents [X = S in (I[link]) and (II[link]), and O in (III[link])] are similar in (I[link])–(III[link]), while the –­CH2OEt unit in (III[link]) exhibits some unusual torsion angles (Table 5[link]).

The mol­ecules of (I[link]) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds (Table 2[link]). Two independent N—H⋯O hydrogen bonds generate a one-dimensional substructure in the form of a chain of rings; these chains are linked into sheets by the C—H⋯O hydrogen bonds, and the sheets are linked by C—H⋯π hydrogen bonds. Atom N3 in the mol­ecule at (x, y, z) acts as a donor to atom O4 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric [R_2^2](8) ring, centred at ([1 \over 2], [1 \over 2], [1 \over 2]) (Fig. 4[link]). Similarly, atom N8 at (x, y, z) acts as a donor to atom O65 in the mol­ecule at (−x, 1 − y, −z), forming a centrosymmetric [R_2^2](12) motif, this time centred at (0, [1 \over 2], 0). The propagation by inversion of these two motifs generates a chain running parallel to the [101] direction. Atom C5 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to atom O61 in the mol­ecule at (−x, 2 − y, −z), so forming a third centrosymmetric ring motif, of [R_2^2](10) type, centred at (0, 1, 0). The combination of this motif with the [101] chains generates a (10[\overline 1]) sheet (Fig. 4[link]) containing four distinct types of ring, all centrosymmetric; in addition to the [R_2^2](8), [R_2^2](10) and [R_2^2](12) types already described, the sheet also contains R66(34) rings. Finally, atom C64 in the mol­ecule at (x, y, z), which lies in the sheet passing through ([1 \over 2], [1 \over 2], [1 \over 2]), acts as a hydrogen-bond donor, via H64A, to the N1/C2/N3/C4/C4A/C8A ring in the mol­ecule at (1 − x, 1 − y, −z), which lies in the sheet passing through ([1 \over 2], [1 \over 2], −[1 \over 2]). The formation of this further centrosymmetric motif (Fig. 5[link]) thus serves to link all of the centrosymmetric sheets into a single framework.

The mol­ecules of (II[link]) are linked by a combination of N—H⋯O and O—H⋯O hydrogen bonds (Table 4[link]) into chains, and these chains are linked into sheets by a combination of a C—H⋯O hydrogen bond and a ππ stacking interaction. The description of the supramolecular aggregation is complicated by the disorder of the pendent –CH2OH unit. Atom N3 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O4 in the mol­ecule at (2 − x, 1 − y, 1 − z), so forming a fully ordered [R_2^2](8) motif centred at (1, [1 \over 2], [1 \over 2]). In addition, the partially occupied O8A site at (x, y, z) acts as a donor to carboxyl atom O61 in the mol­ecule at (1 − x, 1 − y, −z). There is also a much longer, and hence presumably weaker, O—H⋯O interaction involving the alternative atom site, O8B, as a donor and the same O61 atom as an acceptor. Hence, regardless of which site, O8A or O8B, is occupied, there will be two O—H⋯O linkages between the pair of mol­ecules in question, forming an [R_2^2](16) ring. If the O8A sites were occupied in both mol­ecules, the ring would be centrosymmetric. At the local level, such pairs of mol­ecules can, in fact, be linked by zero, one or two strong O—H⋯O hydrogen bonds, with a mean of one such bond. In any event, the combination of the N—H⋯O and O—H⋯O hydrogen bonds generates a chain of rings running parallel to the [101] direction (Fig. 6[link]).

Two weaker interactions combine to link the [101] chains into sheets. The N1/C2/N3/C4/C4A/C8A rings in the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an interplanar spacing of 3.583 (2) Å; the ring-centroid separation is 3.878 (2) Å, corresponding to a centroid offset of 1.484 (2) Å (Fig. 7[link]). The mol­ecules involved lie in adjacent [101] chains, separated by a unit translation along [100]. This interaction is reinforced by a single C—H⋯O hydrogen bond; atom C62 in the mol­ecule at (x, y, z) acts as a donor, via H62B, to the partially occupied O8A site in the mol­ecule at (−x, 1 − y, −z) (Fig. 8[link]).

In (III[link]), the mol­ecules are linked into sheets by a combination of N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds (Table 6[link]). Pairs of N—H⋯O and of C—H⋯O hydrogen bonds generate a chain containing two types of centrosymmetric ring, and these chains are linked by C—H⋯π hydrogen bonds. Amine atom N3 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to amide atom O4 in the mol­ecule at (1 − x, 1 − y, 1 − z), thereby generating a centrosymmetric [R_2^2](8) motif centred at ([1 \over 2], [1 \over 2], [1 \over 2]). In addition, ring atom C7 at (x, y, z) acts as a donor, via H7B, to the exocyclic atom O81 in the mol­ecule at (3 − x, −y, 1 − z), so forming an [R_2^2](10) ring centred at ([3 \over 2], 0, [1 \over 2]). Propagation by inversion of these two hydrogen bonds then generates a chain running parallel to the [2[\overline 1]0] direction, in which [R_2^2](8) and [R_2^2](10) rings alternate (Fig. 9[link]). Finally, atom C7 in the mol­ecule at (x, y, z), which is part of the [2[\overline 1]0] chain passing through ([1 \over 2], [1 \over 2], [1 \over 2]), acts as a hydrogen-bond donor, via H7A, to the N1/C2/N3/C4/C4A/C8A ring in the mol­ecule at (2 − x, −y, 1 − z), which itself lies in the [2[\overline 1]0] chain passing through (−[1 \over 2], [1 \over 2], [1 \over 2]). The resulting centrosymmetric motif (Fig. 10[link]) thus serves to link [2[\overline 1]0] chains into a (001) sheet. Although the structures of both (I[link]) and (III[link]) contain C—H⋯π hydrogen bonds, they differ in that the donor atoms lie in different rings in the two compounds.

The formation of (I[link]) from the precursor amino­pyrimidine, dimedone and two mol­ecules of form­aldehyde is straightforward, proceeding via the intermediate (IV[link]); we have recently reported the structure of the N3-methyl analogue of (IV[link]) (Low et al., 2004[Low, J. N., Cobo, J., Cruz, S., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o191-o193.]). Further reaction at the secondary amine atom N8 of the primary product of type (A[link]) with another mol­ecule of form­aldehyde in the presence of ethanol can lead, via a hydroxy­methyl derivative, (B[link]) [cf. compound (II[link])], to an ethoxy­methyl product, (C[link]) [cf. compound (III[link])].

[Scheme 2]
[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only one orientation of the disordered –CH2OH substituent is shown.
[Figure 3]
Figure 3
The mol­ecule of (III[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Part of the crystal structure of (I[link]), showing the formation of a (10[\overline 1]) sheet containing four types of centrosymmetric ring. For clarity, H atoms bonded to atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), an ampersand (&), a plus sign (+), an `at' sign (@), a dollar sign ($) or a hash (#) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 + x, y, 1 + z), (1 − x, 2 − y, 1 − z), (x, 1 + y, z), (−x, 2 − y, −z) and (−x, 1 − y, −z), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of (I[link]), showing the centrosymmetric linking of the mol­ecules by pairs of C—H⋯π hydrogen bonds. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, −z).
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of (II[link]), showing the formation of a chain of rings along [101]. For clarity, H atoms bonded to C atoms have been omitted and only one orientation of the disordered –­CH2OH group is shown.
[Figure 7]
Figure 7
Part of the crystal structure of (II[link]), showing the ππ stacking interaction that links the [101] chains into sheets. For clarity, H atoms bonded to C atoms have been omitted, the unit-cell box has been omitted and only one orientation of the disordered –CH2OH group is shown.
[Figure 8]
Figure 8
A stereoview of part of the crystal structure of (II[link]), showing the action of the C—H⋯O hydrogen bond in linking adjacent [101] chains. For clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted, and only one orientation of the disordered –CH2OH group is shown.
[Figure 9]
Figure 9
Part of the crystal structure of (III[link]), showing the formation of a [2[\overline 1]0] chain of centrosymmetric [R_2^2](8) and [R_2^2](10) rings. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (1 − x, 1 − y, 1 − z), (3 − x, −y, 1 − z) and (−2 + x, 1 + y, z), respectively.
[Figure 10]
Figure 10
Part of the crystal structure of (III[link]), showing the centrosymmetric linking of the mol­ecules by pairs of C—H⋯π hydrogen bonds. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (2 − x, −y, 1 − z).

Experimental

For the preparation of (I[link]), dimedone (2 mmol), a large excess of an aqueous solution (37% w/w) of form­aldehyde (30 mmol form­aldehyde) and triethyl­amine (0.5 mmol) were added to a solution of 6-amino-2-methyl­sulfanyl-3,4-di­hydro­pyrimidin-4-one (2 mmol) in ethanol, and this mixture was heated under reflux for 90 min. After cooling the mixture, the resulting white product, (I[link]), was filtered off and washed with ethanol (m.p. 563–567 K). Analysis found: C 55.7, H 5.8, N 12.8, S 10.0%; C15H19N3O3S requires: C 13.1, H 6.0, N 13.1, S 10.0%. Compound (II[link]) was an occasional and erratic by-product of this reaction. For the preparation of (III[link]), dimedone (2 mmol) and a large excess of an aqueous solution (37% w/w) of form­aldehyde (30 mmol) were added to a solution of 6-amino-2-methoxy-3,4-di­hydro­pyrimidin-4-one (2 mmol) in ethanol, and this mixture was heated under reflux for 90 min. After cooling the mixture, the resulting white product, (III[link]), was filtered off and washed with ethanol (m.p. 533–536 K). For (I[link]) and (II[link]), crystals suitable for single-crystal X-ray diffraction were grown from solutions in wet di­methyl sulfoxide; crystals of (III[link]) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

Compound (I)[link]

Crystal data
  • C15H19N3O3S

  • Mr = 321.39

  • Triclinic, [P\overline 1]

  • a = 7.8990 (3) Å

  • b = 10.0386 (3) Å

  • c = 10.0500 (3) Å

  • α = 74.938 (2)°

  • β = 84.271 (2)°

  • γ = 81.842 (2)°

  • V = 760.10 (4) Å3

  • Z = 2

  • Dx = 1.404 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3462 reflections

  • θ = 3.2–27.5°

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.42 × 0.38 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) Tmin = 0.921, Tmax = 0.956

  • 15 364 measured reflections

  • 3462 independent reflections

  • 2923 reflections with I > 2σ(I)

  • Rint = 0.057

  • θmax = 27.5°

  • h = −10 → 10

  • k = −12 → 12

  • l = −12 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.04

  • 3462 reflections

  • 202 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2 + (0.0595P)2 + 0.5301P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

N1—C2 1.300 (2)
C2—N3 1.356 (2)
N3—C4 1.395 (2)
C4—C4A 1.409 (2)
C4A—C8A 1.391 (2)
C8A—N1 1.379 (2)
C4—O4 1.253 (2)
C8A—N8 1.342 (2)
C7—N8 1.455 (2)
C2—S2 1.7547 (18)
S2—C21 1.7983 (19)
C61—O61 1.216 (2)
C65—O65 1.219 (2)
N1—C2—N3 125.04 (16)
N1—C2—S2 121.25 (14)
N3—C2—S2 113.71 (13)
C2—S2—C21 100.96 (9)
C4A—C5—C6—C7 51.41 (18)
C5—C6—C7—N8 −50.4 (2)
C6—C7—N8—C8A 26.8 (3)
C7—N8—C8A—C4A −2.5 (3)
N8—C8A—C4A—C5 4.8 (3)
C8A—C4A—C5—C6 −30.3 (2)
C6—C61—C62—C63 58.5 (2)
C61—C62—C63—C64 −56.58 (18)
C62—C63—C64—C65 54.3 (2)
C63—C64—C65—C6 −53.2 (2)
C64—C65—C6—C61 49.58 (19)
C65—C6—C61—C62 −52.5 (2)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

Cg1 is the centroid of the N1/C2/N3/C4/C4A/C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.88 1.84 2.715 (2) 176
N8—H8⋯O65ii 0.88 2.10 2.965 (2) 166
C5—H5B⋯O61iii 0.99 2.46 3.389 (2) 155
C64—H64ACg1iv 0.99 2.87 3.854 (2) 173
Symmetry codes: (i) 1-x,1-y,1-z; (ii) -x,1-y,-z; (iii) -x,2-y,-z; (iv) 1-x,-y,-z.

Compound (II)[link]

Crystal data
  • C16H21N3O4S

  • Mr = 351.42

  • Triclinic, [P\overline 1]

  • a = 6.6682 (2) Å

  • b = 11.0319 (3) Å

  • c = 12.3449 (4) Å

  • α = 109.2678 (18)°

  • β = 99.8329 (18)°

  • γ = 101.227 (2)°

  • V = 813.32 (5) Å3

  • Z = 2

  • Dx = 1.435 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3737 reflections

  • θ = 3.2–27.5°

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.15 × 0.10 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) Tmin = 0.976, Tmax = 0.994

  • 18 379 measured reflections

  • 3737 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 27.5°

  • h = −8 → 8

  • k = −14 → 14

  • l = −15 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.03

  • 3737 reflections

  • 238 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.066P)2 + 0.2491P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.41 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

N1—C2 1.294 (3) 
C2—N3 1.334 (3)
N3—C4 1.395 (3)
C4—C4A 1.414 (3)
C4A—C8A 1.374 (3)
C8A—N1 1.379 (3)
C4—O4 1.239 (3)
C8A—N8 1.362 (3)
C7—N8 1.456 (2)
C2—S2 1.756 (2)
S2—C21 1.779 (3)
C61—O61 1.212 (2)
C65—O65 1.206 (2)
N1—C2—N3 124.60 (19)
N1—C2—S2 121.14 (19)
N3—C2—S2 114.25 (17)
C2—S2—C21 99.74 (12)
C4A—C5—C6—C7 −46.1 (2)
C5—C6—C7—N8 59.0 (2)
C6—C7—N8—C8A −42.4 (3)
C7—N8—C8A—C4A 12.1 (3)
N8—C8A—C4A—C5 1.0 (3)
C8A—C4A—C5—C6 18.1 (3)
C6—C7—N8—C81A 139.6 (4)
C7—N8—C81A—O8A −61.9 (14) 
C6—C61—C62—C63 −55.9 (2)
C61—C62—C63—C64 56.3 (2)
C62—C63—C64—C65 −55.6 (3)
C63—C64—C65—C6 52.5 (2)
C64—C65—C6—C61 −45.7 (2)
C65—C6—C61—C62 48.1 (2)
C6—C7—N8—C81B 158.5 (4)
C7—N8—C81B—O8B −113.3 (9)

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4v 0.88 1.83 2.709 (3) 176
O8A—H8A⋯O61vi 0.84 2.00 2.767 (3) 152
O8B—H8B⋯O61vi 0.84 2.35 3.036 (4) 139
C62—H62B⋯O8Aii 0.99 2.33 3.314 (4) 173
Symmetry codes: (ii) -x,1-y,-z; (v) 2-x,1-y,1-z; (vi) 1-x,1-y,-z.

Compound (III)[link]

Crystal data
  • C18H25N3O5

  • Mr = 363.41

  • Triclinic, [P\overline 1]

  • a = 8.9219 (5) Å

  • b = 9.9806 (5) Å

  • c = 11.3542 (7) Å

  • α = 75.662 (3)°

  • β = 85.580 (3)°

  • γ = 66.526 (3)°

  • V = 898.22 (9) Å3

  • Z = 2

  • Dx = 1.344 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4082 reflections

  • θ = 2.9–27.6°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Prism, colourless

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]) Tmin = 0.967, Tmax = 0.990

  • 17 797 measured reflections

  • 4082 independent reflections

  • 2026 reflections with I > 2σ(I)

  • Rint = 0.088

  • θmax = 27.6°

  • h = −11 → 11

  • k = −12 → 12

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.164

  • S = 0.95

  • 4082 reflections

  • 239 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0803P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.43 e Å−3

Table 5
Selected geometric parameters (Å, °) for (III)[link]

N1—C2 1.292 (3) 
C2—N3 1.343 (3)
N3—C4 1.388 (3)
C4—C4A 1.412 (3)
C4A—C8A 1.378 (3)
C8A—N1 1.375 (3)
C4—O4 1.250 (3)
C8A—N8 1.370 (3)
C7—N8 1.451 (3)
C2—O2 1.334 (3)
O2—C21 1.447 (3)
C61—O61 1.213 (3)
C65—O65 1.210 (3)
N1—C2—N3 125.1 (2)
N1—C2—O2 121.8 (2)
N3—C2—O2 113.1 (2)
C2—O2—C21 115.51 (18)
C4A—C5—C6—C7 47.6 (3) 
C5—C6—C7—N8 −58.7 (2)
C6—C7—N8—C8A 39.4 (3)
C7—N8—C8A—C4A −7.4 (3)
N8—C8A—C4A—C5 −3.4 (4)
C8A—C4A—C5—C6 −18.9 (3)
C6—C7—N8—C81 −142.4 (2)
C7—N8—C81—O81 74.4 (3)
C6—C61—C62—C63 55.5 (3)
C61—C62—C63—C64 −56.8 (3)
C62—C63—C64—C65 55.1 (3)
C63—C64—C65—C6 −51.0 (3)
C64—C65—C6—C61 44.1 (3)
C65—C6—C61—C62 −46.8 (3)
N8—C81—O81—C82 71.3 (3)
C81—O81—C82—C83 82.4 (3)

Table 6
Hydrogen-bonding geometry (Å, °) for (III)[link]

Cg1 is the centroid of the N1/C2/N3/C4/C4A/C8A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.88 1.89 2.769 (2) 173
C7—H7B⋯O81vii 0.99 2.49 3.414 (3) 155
C7—H7ACg1viii 0.99 2.62 3.535 (3) 155
Symmetry codes: (i) 1-x,1-y,1-z; (vii) 3-x,-y,1-z; (viii) 2-x,-y,1-z.

Crystals of (I[link])–(III[link]) are triclinic; space group [P\overline 1] was selected for each and confirmed by the subsequent structure analyses. In (II[link]), the hydroxy­methyl substituent is disordered; it was modelled using two sets of atom sites (C81A/O8A for one orientation and C81B/O8B for the other), all atoms having an occupancy of 0.50. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.98 (CH3) or 0.99 Å (CH2), N—H distances of 0.88 Å and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2Ueq(X) (X = C, N and O) [1.5Ueq(C) for the methyl groups].

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) [for (I[link]) and (II[link])] and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Dihydropyridine systems are of current interest because of their exceptional properties as calcium antagonists (Bossert & Vater, 1989) and as powerful arteriolar vasodilators (Kazda & Towart, 1981). As part of a search for new fused heterocyclic systems containing dihydropyridine units, we have been exploring the use of three-component cyclocondensation reactions between 4-aminopyrimidin-4(3H)-ones, dimedone (5,5-dimethyl-1,3-cyclohexanedione) and simple aliphatic aldehydes, in the expectation of forming pyrimidinoquinolines. In the event, reactions of this type using an excess of formaldehyde in the presence of triethylamine have led to the formation of spiro compounds rather than the expected pyrimidinoquinolines, and we report here the molecular and supramolecular structures of three such compounds, (I)–(III). All of the molecules are chiral, but the compounds studied all crystallize in the centrosymmetric space group P-1 and hence are racemic. The structure of (II) is complicated by the disorder of the –CH2OH substituent at atom N8, which was modelled using sets of sites, each with an occupancy of 1/2, corresponding to two distinct orientations for this group.

The bond lengths in (I) (Fig. 1 and Table 1) show some unusual values when compared with the typical values for bonds of similar types (Allen et al., 1987). For example, the N3—C4 and C4—-O4 bonds are both long for their types, the C4—C4A and C4A—C8A bonds are too similar in length to be characterized as single and double bonds, respectively, and the C8A—N8 bond, involving a three-coordinate N atom, is much shorter than the C8A—N1 bond, which involves a two-coordinate N atom. These observations, taken together, effectively preclude the polarized form (Ia) as an effective contributor to the overall molecular–electronic structure, instead pointing to the importance of the polarized vinylogous amide form (Ib).

Compounds (II) and (III) (Figs. 2 and 3) both show a much smaller degree of electronic polarization. For example, the difference between the C8A—N1 and C8A—N8 bond lengths (Tables 3 and 5) is much smaller in (II) and (III) than in (I). Hence, for these compounds, the classically localized forms are the most appropriate representations. We also note here the much greater difference between the C2—O2 and O2—C21 distances in (III) (ca 0.11 Å) than between the corresponding C2—S2 and S2—C21 distances in (I) and (II) (ca 0.04 and 0.02 Å, respectively). In each compound, the exocyclic bond angles at atom C2 are very different from 120°.

In each of (I)–(III), the ring containing atoms N1 and N3 is effectively planar, but for the ring containing atom N8, the ring-puckering parameters (Cremer & Pople, 1975) corresponding to the atom sequence N8—C7–C4A—C8A [θ = 129.2 (2)° and ϕ = 304.5 (3)° in (I), θ = 51.3 (3)° and ϕ = 98.5 (3)° in (II), and θ = 126.5 (3)° and ϕ = 283.2 (4)° in (III)] indicate that, in each compound, the conformation of this ring is best described as an envelope form, itself dominated by a combination of boat and chair forms (Evans & Boeyens, 1989). The carbocyclic rings adopt almost perfect chair conformations, with local pseudo-mirror symmetry defined by the plane through the atoms C6, C63, C631 and C632. The conformations of the pendent CH3X– substituents [X = S in (I) and (II), and O in (III)] are similar in (I)–(III), while the –CH2OEt unit in (III) exhibits some unusual torsion angles (Table 5).

The molecules of (I) are linked into a three-dimensional framework by a combination of N—H···O, C—H···O and C—H···π hydrogen bonds (Table 2). Two independent N—H···O hydrogen bonds generate a one-dimensional substructure in the form of a chain of rings; these chains are linked into sheets by the C—H···O hydrogen bonds; and the sheets are linked by C—H···π hydrogen bonds. Atom N3 in the molecule at (x, y, z) acts as a donor to atom O4 in the molecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric R22(8) ring, centred at (1/2, 1/2, 1/2) (Fig. 4). Similarly, atom N8 at (x, y, z) acts as a donor to atom O65 in the molecule at (-x, 1 − y, −z), forming a centrosymmetry R22(12), this time centred at (0, 1/2, 0). The propagation by inversion of these two motifs generates a chain running parallel to the [101] direction. Atom C5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O61 in the molecule at (-x, 2 − y, −z), so forming a third centrosymmetric ring motif, of R22(10) type, centred at (0, 1, 0). The combination of this motif with the [101] chains generates a (10–1) sheet (Fig. 4) containing four distinct types of ring, all centrosymmetric; in addition to the R22(8), R22(10) and R22(12) types already described, the sheet also contains R66(34) rings. Finally, atom C64 in the molecule at (x, y, z), which lies in the sheet passing through (1/2, 1/2, 1/2), acts as a hydrogen-bond donor, via H64A, to the N1/C2/N3/C4/C4A/C8A ring in the molecule at (1 − x, 1 − y, −z), which lies in the sheet passing through (1/2, 1/2, −0.5). The formation of this further centrosymmetric motif (Fig. 5) thus serves to link all of the centrosymmetric sheets into a single framework.

The molecules of (II) are linked by a combination of N—H···O and O—H···O hydrogen bonds (Table 4) into chains, and these chains are linked into sheets by a combination of a C—H···O hydrogen bond and a ππ stacking interaction. The description of the supramolecular aggregation is complicated by the disorder of the pendent –CH2OH unit. Atom N3 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O4 in the molecule at (2 − x, 1 − y, 1 − z), so forming a fully ordered R22(8) motif centred at (1, 1/2, 1/2). In addition, the partially occupied O8A site at (x, y, z) acts as a donor to carboxyl atom O61 in the molecule at (1 − x, 1 − y, −z). There is also a much longer, and hence presumably weaker, O—H···O interactions involving the alternative atom site O8B as donor, and the same O61 atom as acceptor. Hence, regardless of which site, O8A or O8B, is occupied, there will be two O—H···O linkages between the pair of molecules in question, forming an R22(16) ring. If the O8A sites were occupied in both molecules, the ring would be centrosymmetric. At the local level, such pairs of molecules can, in fact, be linked by zero, one or two strong O—H···O hydrogen bonds, with a mean of one such bond. In any event, the combination of the N—H···O and O—H···O hydrogen bonds generates a chain of rings running parallel to the [101] direction (Fig. 6).

Two weaker interactions combine to link the [101] chains into sheets. The N1/C2/N3/C4/C4A/C8A rings in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z) are parallel, with an interplanar spacing of 3.583 (2) Å; the ring-centroid separation is 3.878 (2) Å, corresponding to a centroid offset of 1.484 (2) Å (Fig. 7). The molecules involved lie in adjacent [101] chains, separated by a unit translation along [100]. This interaction is reinforced by a single C—H···O hydrogen bond; atom C62 in the molecule at (x, y, z) acts as a donor, via H62B, to the partially occupied O8A site in the molecule at (-x, 1 − y, −z) (Fig. 8).

In (III), the molecules are linked into sheets by a combination of N—H···O, C—H···O and C—H···π hydrogen bonds (Table 6). Pairs of N—H···O and of C—H···O hydrogen bonds generate a chain containing two types of centrosymmetric ring, and these chains are linked by C—H···π hydrogen bonds. Amine atom N3 in the molecule at (x, y, z) acts as a hydrogen-bond donor to amide atom O4 in the molecule at (1 − x, 1 − y, 1 − z), thereby generating a centrosymmetric R22(8) motif centred at (1/2, 1/2, 1/2). In addition, ring atom C7 at (x, y, z) acts as a donor, via H7B, to the exocyclic atom O81 in the molecule at (3 − x, −y, 1 − z), so forming an R22(10) ring centred at (1.5, 0, 1/2). Propagation by inversion of these two hydrogen bonds then generates a chain running parallel to the [2–10] direction in which R22(8) and R22(10) rings alternate (Fig. 9). Finally, atom C7 in the molecule at (x, y, z), which is part of the [2–10] chain passing through (1/2, 1/2, 1/2), acts as a hydrogen-bond donor, via H7A, to the N1/C2/N3/C4/C4A/C8A ring in the molecule at (2 − x, −y, 1 − z), which itself lies in the [2–10] chain passing through (−0.5, 1/2, 1/2). The resulting centrosymmetric motif (Fig. 10) thus serves to link [2–10] chains into a (001) sheet. Although the structures of both (I) and (III) contain C—H···π hydrogen bonds, they differ in that the donor atoms lie in different rings in the two compounds.

The formation of (I) from the precursor aminopyrimidine, dimedone and two molecules of formaldehyde is straightforward, proceeding via the intermediate (IV) (see the scheme below); we have recently reported the structure of the N3-methyl analogue of (IV) (Low et al., 2004). Further reaction at the secondary amine atom N8 of the primary product of type (A) with another molecule of formaldehyde in the presence of ethanol can lead, via a hydroxymethyl derivative, (B) [cf. compound (II)], to an ethoxymethyl product, (C) [cf. compound (III)].

Experimental top

For the preparation of (I), dimedone (2 mmol), a large excess of an aqueous solution (37% w/w) of formaldehyde (30 mmol formaldehyde) and triethylamine (0.5 mmol) were added to a solution of 6-amino-2-methylsulfanyl-3,4-dihydropyrimidin-4-one (2 mmol) in ethanol, and this mixture was heated under reflux for 90 min. After cooling the mixture, the resulting white product, (I), was filtered off and washed with ethanol (m.p. 563–567 K). Analysis: found: C 55.7, H 5.8, N 12.8, S 10.0%; C15H19N3O3S requires: C 13.1, H 6.0, N 13.1, S 10.0%. Compound (II) was an occasional and erratic by-product of this reaction. For the preparation of (III), dimedone (2 mmol) and a large excess of an aqueous solution (37% w/w) of formaldehyde (30 mmol formaldehyde) were added to a solution of 6-amino-2-methoxy-3,4-dihydropyrimidin-4-one (2 mmol) in ethanol, and this mixture was heated under reflux for 90 min. After cooling the mixture, the resulting white product, (III), was filtered off and washed with ethanol (m.p. 533–536 K). For (I) and (II), crystals suitable for single-crystal X-ray diffraction were grown from solutions in wet dimethyl sulfoxide; crystals of (III) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

Refinement top

Crystals of (I)–(III) are triclinic; space group P-1 was selected for each and confirmed by the subsequent structure analyses. In (II), the hydroxymethyl substituent is disordered; it was modelled using two sets of atom sites (C81A and O8A for one oreintation, and C81B and O8B for the other), all with an occupancy of 0.50. A l l H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.98 (CH3) or 0.99 Å (CH2), N—H distances of 0.88 Å, and O—H distances of 0.84 Å, and with Uiso(H) values of 1.2Ueq(X) (X = C, N, O) [1.5Ueq(C) for the methyl groups].

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN. Program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (I); OSCAIL,(McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (II); SHELXS97 (Sheldrick, 1997) for (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only one orientation of the disordered –CH2OH substituent is shown.
[Figure 3] Fig. 3. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a (10–1) sheet containing four types of centrosymmetric ring. For clarity, H atoms bonded to atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), an ampersand (&), a plus sign (+), an 'at' sign (@), a dollar sign () or a hash (#) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 + x, y, 1 + z), (1 − x, 2 − y, 1 − z), (x, 1 + y, z), (-x, 2 − y, −z) and (-x, 1 − y, −z), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the centrosymmetric linking of the molecules by pairs of C—H···π hydrogen bonds. For clarity, the H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, −z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a chain of rings along [101]. For clarity, H atoms bonded to C atoms have been omitted, and only one orientation of the disordered hydroxymethyl group is shown.
[Figure 7] Fig. 7. Part of the crystal structure of (II), showing the ππ stacking interaction that links the [101] chains into sheets. For clarity, H atoms bonded to C atoms have been omitted, the unit-cell box has been omitted and only one orientation of the disordered hydroxymethyl group is shown.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of (II), showing the action of the C—H···O hydrogen bond in linking adjacent [101] chains. For clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted, and only one orientation of the disordered hydroxymethyl group is shown.
[Figure 9] Fig. 9. Part of the crystal structure of (III), showing the formation of a [2–10] chain of centrosymmetric R22(8) and R22(10) rings. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign () are at the symmetry positions (1 − x, 1 − y, 1 − z), (3 − x, −y, 1 − z) and (−2 + x, 1 + y, z), respectively.
[Figure 10] Fig. 10. Part of the crystal structure of (III), showing the centrosymmetric linking of the molecules by pairs of C—H···π hydrogen bonds. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (2 − x, −y, 1 − z).
(I) 4',4'-Dimethyl-2-methylsulfanyl-3,4,5,6,7,8-hexahydropyrido[2,3-d]pyrimidine- 6-spiro-1'-cyclohexane-2',4,6'-trione top
Crystal data top
C15H19N3O3SZ = 2
Mr = 321.39F(000) = 340
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8990 (3) ÅCell parameters from 3462 reflections
b = 10.0386 (3) Åθ = 3.2–27.5°
c = 10.0500 (3) ŵ = 0.23 mm1
α = 74.938 (2)°T = 120 K
β = 84.271 (2)°Block, colourless
γ = 81.842 (2)°0.42 × 0.38 × 0.20 mm
V = 760.10 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
3462 independent reflections
Radiation source: rotating anode2923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1010
Tmin = 0.921, Tmax = 0.956k = 1212
15364 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.5301P]
where P = (Fo2 + 2Fc2)/3
3462 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H19N3O3Sγ = 81.842 (2)°
Mr = 321.39V = 760.10 (4) Å3
Triclinic, P1Z = 2
a = 7.8990 (3) ÅMo Kα radiation
b = 10.0386 (3) ŵ = 0.23 mm1
c = 10.0500 (3) ÅT = 120 K
α = 74.938 (2)°0.42 × 0.38 × 0.20 mm
β = 84.271 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3462 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2923 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.956Rint = 0.057
15364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 1.00 e Å3
3462 reflectionsΔρmin = 0.42 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.15187 (6)0.24922 (5)0.56484 (5)0.02612 (15)
O40.46653 (17)0.64675 (14)0.36030 (13)0.0279 (3)
O610.05306 (17)0.96763 (14)0.15486 (15)0.0331 (3)
O650.28955 (18)0.55478 (14)0.09297 (15)0.0323 (3)
N10.07802 (19)0.43116 (16)0.32602 (16)0.0244 (3)
N30.31142 (19)0.46290 (15)0.43867 (15)0.0233 (3)
N80.0050 (2)0.58608 (17)0.12273 (16)0.0273 (4)
C20.1785 (2)0.39542 (18)0.42755 (18)0.0222 (4)
C40.3459 (2)0.58565 (18)0.34291 (18)0.0216 (4)
C4A0.2356 (2)0.63152 (18)0.23395 (18)0.0209 (4)
C50.2533 (2)0.76576 (18)0.12915 (18)0.0227 (4)
C60.1928 (2)0.75976 (18)0.01135 (18)0.0223 (4)
C70.0142 (2)0.71174 (19)0.01191 (19)0.0256 (4)
C8A0.1081 (2)0.55127 (19)0.22779 (18)0.0226 (4)
C210.0302 (2)0.1891 (2)0.5149 (2)0.0291 (4)
C610.1869 (2)0.90528 (19)0.10925 (18)0.0240 (4)
C620.3564 (2)0.96031 (18)0.14977 (19)0.0250 (4)
C630.4792 (2)0.86132 (19)0.22051 (19)0.0249 (4)
C640.4979 (2)0.71366 (19)0.1225 (2)0.0260 (4)
C650.3253 (2)0.66308 (18)0.07575 (18)0.0243 (4)
C6310.6538 (3)0.9146 (2)0.2529 (2)0.0335 (4)
C6320.4043 (3)0.8563 (2)0.35318 (19)0.0294 (4)
H21A0.12560.26420.50130.044*
H21B0.06450.10970.58750.044*
H21C0.00020.16060.42850.044*
H30.38060.42960.50620.028*
H5A0.37460.78380.11740.027*
H5B0.18370.84280.16150.027*
H7A0.07030.78680.03430.031*
H7B0.01710.69440.07460.031*
H80.08720.54430.12850.033*
H62A0.40720.96890.06670.030*
H62B0.33971.05380.21390.030*
H63A0.73170.85290.29900.050*
H63B0.70080.91640.16680.050*
H63C0.64121.00870.31360.050*
H63D0.38190.95090.41160.044*
H63E0.29680.81460.33030.044*
H63F0.48600.80030.40280.044*
H64A0.56860.64870.17090.031*
H64B0.55770.71470.04090.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0244 (2)0.0256 (3)0.0252 (2)0.00489 (18)0.00546 (17)0.00175 (17)
O40.0283 (7)0.0269 (7)0.0275 (7)0.0075 (5)0.0132 (5)0.0015 (5)
O610.0260 (7)0.0301 (7)0.0347 (8)0.0065 (6)0.0093 (6)0.0043 (6)
O650.0327 (7)0.0239 (7)0.0405 (8)0.0050 (6)0.0044 (6)0.0069 (6)
N10.0208 (8)0.0267 (8)0.0240 (8)0.0027 (6)0.0058 (6)0.0017 (6)
N30.0221 (7)0.0235 (8)0.0219 (7)0.0023 (6)0.0091 (6)0.0010 (6)
N80.0228 (8)0.0307 (9)0.0263 (8)0.0077 (6)0.0101 (6)0.0022 (6)
C20.0206 (8)0.0219 (9)0.0225 (8)0.0019 (7)0.0035 (7)0.0023 (7)
C40.0203 (8)0.0216 (8)0.0215 (8)0.0007 (6)0.0041 (6)0.0028 (6)
C4A0.0188 (8)0.0222 (8)0.0201 (8)0.0001 (6)0.0052 (6)0.0021 (7)
C50.0220 (8)0.0230 (9)0.0214 (8)0.0004 (7)0.0069 (7)0.0018 (7)
C60.0202 (8)0.0216 (9)0.0225 (9)0.0007 (7)0.0063 (7)0.0008 (7)
C70.0244 (9)0.0254 (9)0.0248 (9)0.0008 (7)0.0096 (7)0.0004 (7)
C8A0.0182 (8)0.0259 (9)0.0218 (8)0.0001 (7)0.0046 (6)0.0026 (7)
C210.0258 (9)0.0288 (10)0.0322 (10)0.0073 (7)0.0007 (8)0.0049 (8)
C610.0256 (9)0.0234 (9)0.0204 (8)0.0032 (7)0.0063 (7)0.0025 (7)
C620.0279 (9)0.0213 (9)0.0238 (9)0.0011 (7)0.0085 (7)0.0002 (7)
C630.0223 (9)0.0266 (9)0.0239 (9)0.0027 (7)0.0049 (7)0.0017 (7)
C640.0216 (9)0.0250 (9)0.0289 (9)0.0017 (7)0.0050 (7)0.0033 (7)
C650.0261 (9)0.0217 (9)0.0219 (8)0.0010 (7)0.0069 (7)0.0003 (7)
C6310.0262 (10)0.0396 (12)0.0349 (11)0.0091 (8)0.0030 (8)0.0064 (9)
C6320.0278 (10)0.0356 (11)0.0239 (9)0.0060 (8)0.0037 (7)0.0041 (8)
Geometric parameters (Å, º) top
N1—C21.300 (2)C6—C611.532 (2)
C2—N31.356 (2)C6—C651.536 (2)
N3—C41.395 (2)C61—C621.499 (3)
C4—C4A1.409 (2)C62—C631.546 (3)
C4A—C8A1.391 (2)C62—H62A0.99
C8A—N11.379 (2)C62—H62B0.99
C4—O41.253 (2)C63—C6311.525 (3)
C8A—N81.342 (2)C63—C6321.527 (3)
C7—N81.455 (2)C63—C641.548 (3)
C2—S21.7547 (18)C631—H63A0.98
S2—C211.7983 (19)C631—H63B0.98
C61—O611.216 (2)C631—H63C0.98
C65—O651.219 (2)C632—H63D0.98
C21—H21A0.98C632—H63E0.98
C21—H21B0.98C632—H63F0.98
C21—H21C0.98C64—C651.511 (3)
N3—H30.88C64—H64A0.99
C4A—C51.494 (2)C64—H64B0.99
C5—C61.554 (2)C7—H7A0.99
C5—H5A0.99C7—H7B0.99
C5—H5B0.99N8—H80.88
C6—C71.532 (2)
C2—N1—C8A115.44 (15)H62A—C62—H62B108.2
N1—C2—N3125.04 (16)C631—C63—C632110.35 (16)
N1—C2—S2121.25 (14)C631—C63—C62109.14 (16)
N3—C2—S2113.71 (13)C632—C63—C62108.96 (15)
C2—S2—C21100.96 (9)C631—C63—C64109.67 (15)
S2—C21—H21A109.5C632—C63—C64109.27 (15)
S2—C21—H21B109.5C62—C63—C64109.43 (15)
H21A—C21—H21B109.5C63—C631—H63A109.5
S2—C21—H21C109.5C63—C631—H63B109.5
H21A—C21—H21C109.5H63A—C631—H63B109.5
H21B—C21—H21C109.5C63—C631—H63C109.5
C2—N3—C4121.61 (15)H63A—C631—H63C109.5
C2—N3—H3120.9H63B—C631—H63C109.5
C4—N3—H3117.5C63—C632—H63D109.5
O4—C4—N3119.22 (15)C63—C632—H63E109.5
O4—C4—C4A125.53 (16)H63D—C632—H63E109.5
N3—C4—C4A115.24 (15)C63—C632—H63F109.5
C8A—C4A—C4118.83 (16)H63D—C632—H63F109.5
C8A—C4A—C5120.88 (15)H63E—C632—H63F109.5
C4—C4A—C5120.27 (15)C65—C64—C63111.36 (14)
C4A—C5—C6110.13 (14)C65—C64—H64A109.4
C4A—C5—H5A109.6C63—C64—H64A109.4
C6—C5—H5A109.6C65—C64—H64B109.4
C4A—C5—H5B109.6C63—C64—H64B109.4
C6—C5—H5B109.6H64A—C64—H64B108.0
H5A—C5—H5B108.1O65—C65—C64122.40 (17)
C7—C6—C61110.16 (14)O65—C65—C6121.37 (17)
C7—C6—C65112.50 (15)C64—C65—C6116.15 (15)
C61—C6—C65107.40 (14)N8—C7—C6112.53 (14)
C7—C6—C5109.13 (14)N8—C7—H7A109.1
C61—C6—C5108.56 (14)C6—C7—H7A109.1
C65—C6—C5109.02 (14)N8—C7—H7B109.1
O61—C61—C62123.16 (17)C6—C7—H7B109.1
O61—C61—C6121.12 (17)H7A—C7—H7B107.8
C62—C61—C6115.64 (14)C8A—N8—C7122.57 (15)
C61—C62—C63110.06 (15)C8A—N8—H8120.0
C61—C62—H62A109.6C7—N8—H8115.9
C63—C62—H62A109.6N8—C8A—N1114.84 (16)
C61—C62—H62B109.6N8—C8A—C4A121.46 (16)
C63—C62—H62B109.6N1—C8A—C4A123.70 (16)
C8A—N1—C2—N33.3 (3)C4A—C5—C6—C6571.82 (18)
C8A—N1—C2—S2177.39 (13)C7—C6—C61—O611.4 (2)
N1—C2—S2—C210.46 (18)C65—C6—C61—O61124.28 (19)
N3—C2—S2—C21179.84 (14)C5—C6—C61—O61117.99 (19)
N1—C2—N3—C44.2 (3)C7—C6—C61—C62175.34 (15)
S2—C2—N3—C4176.43 (13)C5—C6—C61—C6265.23 (19)
C2—N3—C4—O4177.52 (16)O61—C61—C62—C63118.25 (19)
C2—N3—C4—C4A1.3 (2)C61—C62—C63—C631176.60 (15)
O4—C4—C4A—C8A179.34 (17)C61—C62—C63—C63262.84 (19)
N3—C4—C4A—C8A2.0 (2)C631—C63—C64—C65173.96 (16)
O4—C4—C4A—C52.1 (3)C632—C63—C64—C6565.0 (2)
N3—C4—C4A—C5176.63 (15)C63—C64—C65—O65123.80 (19)
C4—C4A—C5—C6151.19 (16)C7—C6—C65—O656.0 (2)
C4A—C5—C6—C751.41 (18)C61—C6—C65—O65127.42 (18)
C5—C6—C7—N850.4 (2)C5—C6—C65—O65115.15 (18)
C6—C7—N8—C8A26.8 (3)C7—C6—C65—C64170.96 (15)
C7—N8—C8A—C4A2.5 (3)C5—C6—C65—C6467.85 (19)
N8—C8A—C4A—C54.8 (3)C61—C6—C7—N8169.50 (15)
C8A—C4A—C5—C630.3 (2)C65—C6—C7—N870.72 (19)
C6—C61—C62—C6358.5 (2)C7—N8—C8A—N1177.95 (16)
C61—C62—C63—C6456.58 (18)C2—N1—C8A—N8179.23 (16)
C62—C63—C64—C6554.3 (2)C2—N1—C8A—C4A0.3 (3)
C63—C64—C65—C653.2 (2)C4—C4A—C8A—N8176.60 (17)
C64—C65—C6—C6149.58 (19)C4—C4A—C8A—N12.9 (3)
C65—C6—C61—C6252.5 (2)C5—C4A—C8A—N1175.72 (16)
C4A—C5—C6—C61171.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.842.715 (2)176
N8—H8···O65ii0.882.102.965 (2)166
C5—H5B···O61iii0.992.463.389 (2)155
C64—H64A···Cg1iv0.992.873.854 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x+1, y, z.
(II) 8-Hydroxymethyl-4',4'-dimethyl-2-methylsulfanyl-3,4,5,6,7,8- hexahydropyrido[2,3-d]pyrimidine-6-spiro-1'-cyclohexane-2',4,6'-trione top
Crystal data top
C16H21N3O4SZ = 2
Mr = 351.42F(000) = 372
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6682 (2) ÅCell parameters from 3737 reflections
b = 11.0319 (3) Åθ = 3.2–27.5°
c = 12.3449 (4) ŵ = 0.23 mm1
α = 109.2678 (18)°T = 120 K
β = 99.8329 (18)°Plate, colourless
γ = 101.227 (2)°0.15 × 0.10 × 0.03 mm
V = 813.32 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3737 independent reflections
Radiation source: rotating anode2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 88
Tmin = 0.976, Tmax = 0.994k = 1414
18379 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.066P)2 + 0.2491P]
where P = (Fo2 + 2Fc2)/3
3737 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.28 e Å3
4 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H21N3O4Sγ = 101.227 (2)°
Mr = 351.42V = 813.32 (5) Å3
Triclinic, P1Z = 2
a = 6.6682 (2) ÅMo Kα radiation
b = 11.0319 (3) ŵ = 0.23 mm1
c = 12.3449 (4) ÅT = 120 K
α = 109.2678 (18)°0.15 × 0.10 × 0.03 mm
β = 99.8329 (18)°
Data collection top
Nonius KappaCCD
diffractometer
3737 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2502 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.047
18379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3737 reflectionsΔρmin = 0.41 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.73487 (11)0.77931 (5)0.56516 (5)0.0559 (2)
O40.8658 (3)0.35113 (16)0.36896 (15)0.0701 (6)
O8A0.0777 (5)0.5505 (3)0.0734 (3)0.0474 (8)0.50
O8B0.1860 (5)0.6134 (4)0.1656 (3)0.0500 (8)0.50
O610.6178 (2)0.37648 (14)0.03689 (14)0.0461 (4)
O650.2484 (2)0.00235 (13)0.00947 (12)0.0382 (4)
N10.4772 (3)0.59074 (17)0.36624 (16)0.0460 (5)
N30.7797 (4)0.54542 (17)0.45024 (15)0.0522 (6)
N80.2429 (3)0.43269 (17)0.19453 (17)0.0472 (5)
C20.6503 (4)0.6233 (2)0.44750 (18)0.0431 (6)
C40.7391 (4)0.4187 (2)0.36314 (19)0.0491 (6)
C4A0.5490 (3)0.37791 (19)0.27379 (17)0.0393 (5)
C50.4922 (3)0.24252 (19)0.17519 (17)0.0374 (5)
C60.3324 (3)0.23534 (18)0.06839 (16)0.0325 (5)
C70.1552 (3)0.29491 (19)0.11179 (18)0.0393 (5)
C8A0.4264 (3)0.4653 (2)0.27876 (18)0.0405 (5)
C210.5183 (5)0.8446 (2)0.5328 (2)0.0681 (8)
C610.4339 (3)0.31261 (18)0.00039 (18)0.0342 (5)
C620.3010 (3)0.29784 (19)0.11717 (18)0.0369 (5)
C630.2179 (4)0.1500 (2)0.19984 (18)0.0427 (6)
C640.0954 (4)0.0723 (2)0.13757 (17)0.0414 (5)
C650.2261 (3)0.09007 (19)0.01856 (17)0.0338 (5)
C81A0.117 (2)0.5262 (14)0.1814 (11)0.0454 (15)0.50
C81B0.106 (2)0.5204 (14)0.2135 (11)0.0454 (15)0.50
C6310.4024 (5)0.0939 (2)0.2260 (2)0.0611 (8)
C6320.0690 (5)0.1399 (2)0.3135 (2)0.0606 (8)
H30.89440.57500.50900.063*
H5A0.43270.17310.20400.045*
H5B0.62140.22460.15160.045*
H7A0.04970.29110.04290.047*
H7B0.08250.24140.15130.047*
H8A0.19240.58800.06430.057*0.50
H8B0.24290.57750.11230.060*0.50
H21A0.49130.83730.45000.102*
H21B0.55190.93850.58520.102*
H21C0.39220.79400.54520.102*
H62A0.38620.34780.15480.044*
H62B0.18030.33580.10420.044*
H63A0.01620.04630.36800.091*
H63B0.14580.19220.35140.091*
H63C0.05030.17450.29390.091*
H63D0.49050.09760.15210.092*
H63E0.48710.14680.26060.092*
H63F0.34890.00110.28200.092*
H64A0.03250.10290.12700.050*
H64B0.04890.02370.18870.050*
H81A0.02220.49380.19490.054*0.50
H81B0.18770.61340.24670.054*0.50
H81C0.04280.47130.17130.054*0.50
H81D0.11630.56460.29900.054*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0910 (5)0.0289 (3)0.0278 (3)0.0058 (3)0.0162 (3)0.0023 (2)
O40.1007 (15)0.0337 (9)0.0459 (10)0.0158 (10)0.0274 (10)0.0014 (8)
O8A0.0405 (18)0.053 (2)0.050 (2)0.0121 (15)0.0125 (16)0.0217 (17)
O8B0.0458 (19)0.052 (2)0.049 (2)0.0127 (16)0.0105 (17)0.0153 (17)
O610.0399 (9)0.0370 (8)0.0523 (9)0.0035 (7)0.0111 (7)0.0135 (7)
O650.0424 (8)0.0238 (7)0.0403 (8)0.0019 (6)0.0094 (6)0.0064 (6)
N10.0558 (12)0.0291 (9)0.0366 (10)0.0028 (8)0.0171 (9)0.0030 (8)
N30.0835 (15)0.0260 (9)0.0257 (9)0.0010 (10)0.0074 (9)0.0025 (7)
N80.0381 (10)0.0312 (9)0.0515 (11)0.0037 (8)0.0110 (9)0.0074 (8)
C20.0669 (15)0.0244 (10)0.0259 (10)0.0048 (10)0.0126 (11)0.0033 (8)
C40.0777 (17)0.0262 (11)0.0285 (11)0.0008 (11)0.0020 (11)0.0069 (9)
C4A0.0529 (13)0.0263 (10)0.0270 (10)0.0017 (9)0.0091 (9)0.0029 (8)
C50.0474 (12)0.0257 (10)0.0285 (10)0.0003 (9)0.0057 (9)0.0042 (8)
C60.0375 (11)0.0226 (9)0.0281 (10)0.0009 (8)0.0084 (8)0.0026 (8)
C70.0401 (12)0.0291 (10)0.0347 (11)0.0021 (9)0.0117 (9)0.0002 (9)
C8A0.0491 (13)0.0275 (10)0.0313 (11)0.0034 (9)0.0142 (10)0.0004 (8)
C210.099 (2)0.0377 (13)0.0507 (15)0.0092 (14)0.0320 (15)0.0057 (11)
C610.0409 (12)0.0189 (9)0.0384 (11)0.0032 (8)0.0149 (9)0.0054 (8)
C620.0459 (12)0.0252 (10)0.0361 (11)0.0023 (9)0.0139 (9)0.0095 (8)
C630.0663 (15)0.0267 (10)0.0290 (10)0.0023 (10)0.0178 (10)0.0057 (8)
C640.0556 (14)0.0267 (10)0.0272 (10)0.0070 (9)0.0069 (9)0.0038 (8)
C650.0379 (11)0.0248 (10)0.0309 (10)0.0023 (8)0.0146 (9)0.0039 (8)
C81A0.0417 (18)0.0393 (16)0.045 (6)0.0019 (15)0.029 (4)0.001 (3)
C81B0.0417 (18)0.0393 (16)0.045 (6)0.0019 (15)0.029 (4)0.001 (3)
C6310.095 (2)0.0367 (12)0.0580 (16)0.0164 (13)0.0463 (15)0.0136 (12)
C6320.096 (2)0.0394 (13)0.0308 (12)0.0069 (13)0.0099 (12)0.0104 (10)
Geometric parameters (Å, º) top
N1—C21.294 (3)C63—C6321.531 (3)
C2—N31.334 (3)C63—C641.540 (3)
N3—C41.395 (3)C631—H63D0.98
C4—C4A1.414 (3)C631—H63E0.98
C4A—C8A1.374 (3)C631—H63F0.98
C8A—N11.379 (3)C632—H63A0.98
C4—O41.239 (3)C632—H63B0.98
C8A—N81.362 (3)C632—H63C0.98
C7—N81.456 (2)C64—C651.504 (3)
C2—S21.756 (2)C64—H64A0.99
S2—C211.779 (3)C64—H64B0.99
C61—O611.212 (2)C7—H7A0.99
C65—O651.206 (2)C7—H7B0.99
C21—H21A0.98N8—C81B1.445 (8)
C21—H21B0.98N8—C81A1.482 (7)
C21—H21C0.98C81A—O8A1.436 (8)
N3—H30.88C81A—H81A0.99
C6—C51.516 (3)C81A—H81B0.99
C6—C611.535 (3)O8A—H8A0.84
C6—C651.544 (2)C81B—O8B1.407 (9)
C6—C71.550 (3)C81B—H81C0.99
C61—C621.498 (3)C81B—H81D0.99
C62—C631.538 (3)O8B—H8B0.84
C62—H62A0.99C4A—C51.509 (3)
C62—H62B0.99C5—H5A0.99
C63—C6311.517 (4)C5—H5B0.99
C2—N1—C8A115.9 (2)H63A—C632—H63C109.5
N1—C2—N3124.60 (19)H63B—C632—H63C109.5
N1—C2—S2121.14 (19)C65—C64—C63112.38 (17)
N3—C2—S2114.25 (17)C65—C64—H64A109.1
C2—S2—C2199.74 (12)C63—C64—H64A109.1
S2—C21—H21A109.5C65—C64—H64B109.1
S2—C21—H21B109.5C63—C64—H64B109.1
H21A—C21—H21B109.5H64A—C64—H64B107.9
S2—C21—H21C109.5O65—C65—C64122.99 (17)
H21A—C21—H21C109.5O65—C65—C6120.79 (18)
H21B—C21—H21C109.5C64—C65—C6116.22 (18)
C2—N3—C4122.2 (2)N8—C7—C6110.54 (16)
C2—N3—H3118.9N8—C7—H7A109.5
C4—N3—H3118.9C6—C7—H7A109.5
O4—C4—N3119.6 (2)N8—C7—H7B109.5
O4—C4—C4A125.2 (2)C6—C7—H7B109.5
N3—C4—C4A115.1 (2)H7A—C7—H7B108.1
C5—C6—C61111.79 (16)C8A—N8—C81B118.4 (7)
C5—C6—C65111.91 (17)C8A—N8—C7119.01 (19)
C61—C6—C65107.97 (15)C81B—N8—C7119.2 (7)
C5—C6—C7108.64 (16)C8A—N8—C81A125.2 (7)
C61—C6—C7109.28 (17)C7—N8—C81A115.8 (7)
C65—C6—C7107.13 (15)O8A—C81A—N8120.5 (6)
O61—C61—C62122.43 (19)O8A—C81A—H81A107.2
O61—C61—C6120.23 (19)N8—C81A—H81A107.2
C62—C61—C6117.22 (16)O8A—C81A—H81B107.2
C61—C62—C63110.53 (17)N8—C81A—H81B107.2
C61—C62—H62A109.5H81A—C81A—H81B106.8
C63—C62—H62A109.5O8B—C81B—N8102.7 (6)
C61—C62—H62B109.5O8B—C81B—H81C111.2
C63—C62—H62B109.5N8—C81B—H81C111.2
H62A—C62—H62B108.1O8B—C81B—H81D111.2
C631—C63—C632111.5 (2)N8—C81B—H81D111.2
C631—C63—C62109.62 (19)H81C—C81B—H81D109.1
C632—C63—C62108.29 (19)C81B—O8B—H8B109.5
C631—C63—C64108.88 (19)C8A—C4A—C4118.29 (19)
C632—C63—C64109.54 (18)C8A—C4A—C5122.70 (19)
C62—C63—C64108.98 (16)C4—C4A—C5119.0 (2)
C63—C631—H63D109.5C4A—C5—C6111.07 (18)
C63—C631—H63E109.5C4A—C5—H5A109.4
H63D—C631—H63E109.5C6—C5—H5A109.4
C63—C631—H63F109.5C4A—C5—H5B109.4
H63D—C631—H63F109.5C6—C5—H5B109.4
H63E—C631—H63F109.5H5A—C5—H5B108.0
C63—C632—H63A109.5N8—C8A—C4A121.15 (18)
C63—C632—H63B109.5N8—C8A—N1115.0 (2)
H63A—C632—H63B109.5C4A—C8A—N1123.9 (2)
C63—C632—H63C109.5
C8A—N1—C2—N31.0 (3)C6—C61—C62—C6355.9 (2)
C8A—N1—C2—S2179.61 (15)C61—C62—C63—C6456.3 (2)
N1—C2—S2—C213.4 (2)C62—C63—C64—C6555.6 (3)
N3—C2—S2—C21177.13 (17)C63—C64—C65—C652.5 (2)
N1—C2—N3—C40.2 (3)C64—C65—C6—C6145.7 (2)
S2—C2—N3—C4179.20 (17)C65—C6—C61—C6248.1 (2)
C2—N3—C4—O4179.0 (2)C6—C7—N8—C81B158.5 (4)
C2—N3—C4—C4A1.4 (3)C7—N8—C81B—O8B113.3 (9)
C5—C6—C61—O614.5 (3)C61—C6—C7—N863.2 (2)
C65—C6—C61—O61128.0 (2)C65—C6—C7—N8179.91 (17)
C7—C6—C61—O61115.8 (2)C8A—N8—C81A—O8A120.2 (11)
C5—C6—C61—C62171.59 (17)C81B—N8—C81A—O8A168 (6)
C7—C6—C61—C6268.1 (2)C8A—N8—C81B—O8B87.5 (8)
O61—C61—C62—C63120.1 (2)C81A—N8—C81B—O8B31 (4)
C61—C62—C63—C63162.7 (2)O4—C4—C4A—C8A179.1 (2)
C61—C62—C63—C632175.42 (18)N3—C4—C4A—C8A1.4 (3)
C631—C63—C64—C6564.0 (2)O4—C4—C4A—C50.9 (4)
C632—C63—C64—C65173.88 (19)N3—C4—C4A—C5179.61 (18)
C63—C64—C65—O65127.7 (2)C4—C4A—C5—C6159.99 (19)
C5—C6—C65—O6511.1 (3)C61—C6—C5—C4A74.5 (2)
C61—C6—C65—O65134.5 (2)C65—C6—C5—C4A164.23 (16)
C7—C6—C65—O65107.9 (2)C81B—N8—C8A—C4A171.3 (5)
C5—C6—C65—C64169.11 (17)C81A—N8—C8A—C4A170.2 (4)
C7—C6—C65—C6471.9 (2)C81B—N8—C8A—N19.2 (5)
C4A—C5—C6—C746.1 (2)C7—N8—C8A—N1168.49 (18)
C5—C6—C7—N859.0 (2)C81A—N8—C8A—N19.3 (5)
C6—C7—N8—C8A42.4 (3)C4—C4A—C8A—N8179.14 (19)
C7—N8—C8A—C4A12.1 (3)C4—C4A—C8A—N10.3 (3)
N8—C8A—C4A—C51.0 (3)C5—C4A—C8A—N1178.39 (18)
C8A—C4A—C5—C618.1 (3)C2—N1—C8A—N8179.60 (18)
C6—C7—N8—C81A139.6 (4)C2—N1—C8A—C4A1.0 (3)
C7—N8—C81A—O8A61.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.832.709 (3)176
O8A—H8A···O61ii0.842.002.767 (3)152
O8B—H8B···O61ii0.842.353.036 (4)139
C62—H62B···O8Aiii0.992.333.314 (4)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.
(III) 8-Ethoxymethyl-4',4'-dimethyl-2-methoxy-3,4,5,6,7,8- hexahydropyrido[2,3-d]pyrimidine-6-spiro-1'-cyclohexane-2',4,6'-trione top
Crystal data top
C18H25N3O5Z = 2
Mr = 363.41F(000) = 388
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9219 (5) ÅCell parameters from 4082 reflections
b = 9.9806 (5) Åθ = 2.9–27.6°
c = 11.3542 (7) ŵ = 0.10 mm1
α = 75.662 (3)°T = 120 K
β = 85.580 (3)°Prism, colourless
γ = 66.526 (3)°0.15 × 0.10 × 0.10 mm
V = 898.22 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
4082 independent reflections
Radiation source: rotating anode2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1111
Tmin = 0.967, Tmax = 0.990k = 1212
17797 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
4082 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C18H25N3O5γ = 66.526 (3)°
Mr = 363.41V = 898.22 (9) Å3
Triclinic, P1Z = 2
a = 8.9219 (5) ÅMo Kα radiation
b = 9.9806 (5) ŵ = 0.10 mm1
c = 11.3542 (7) ÅT = 120 K
α = 75.662 (3)°0.15 × 0.10 × 0.10 mm
β = 85.580 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4082 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2026 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.990Rint = 0.088
17797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 0.95Δρmax = 0.30 e Å3
4082 reflectionsΔρmin = 0.43 e Å3
239 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.76490 (19)0.29677 (18)0.77260 (15)0.0267 (4)
O40.60281 (19)0.42536 (19)0.37935 (16)0.0307 (5)
O611.0648 (2)0.45522 (19)0.30859 (17)0.0341 (5)
O651.0669 (2)0.1427 (2)0.09973 (17)0.0366 (5)
O811.3916 (2)0.11344 (19)0.57305 (17)0.0333 (5)
N10.9621 (2)0.2004 (2)0.63954 (19)0.0220 (5)
N30.6927 (2)0.3582 (2)0.57622 (19)0.0244 (5)
N81.1529 (2)0.1062 (2)0.49992 (18)0.0219 (5)
C20.8137 (3)0.2829 (3)0.6605 (2)0.0222 (6)
C40.7185 (3)0.3526 (3)0.4551 (2)0.0235 (6)
C4A0.8788 (3)0.2631 (3)0.4273 (2)0.0214 (6)
C50.9216 (3)0.2579 (3)0.2974 (2)0.0250 (6)
C61.1047 (3)0.2140 (3)0.2781 (2)0.0226 (6)
C71.1958 (3)0.0750 (3)0.3809 (2)0.0230 (6)
C8A0.9942 (3)0.1920 (3)0.5206 (2)0.0211 (6)
C210.8922 (3)0.2250 (3)0.8662 (2)0.0291 (7)
C611.1592 (3)0.3407 (3)0.2821 (2)0.0237 (6)
C621.3327 (3)0.3162 (3)0.2472 (2)0.0272 (6)
C631.3671 (3)0.2836 (3)0.1202 (2)0.0293 (7)
C641.3292 (3)0.1471 (3)0.1194 (2)0.0284 (6)
C651.1581 (3)0.1657 (3)0.1582 (2)0.0252 (6)
C811.2815 (3)0.0402 (3)0.5923 (2)0.0285 (6)
C821.3228 (3)0.2618 (3)0.5964 (3)0.0355 (7)
C831.3285 (4)0.2592 (3)0.7284 (3)0.0424 (8)
C6311.5468 (3)0.2495 (3)0.0911 (3)0.0453 (8)
C6321.2588 (4)0.4201 (3)0.0250 (3)0.0404 (8)
H30.59810.42090.59600.029*
H5A0.86090.35780.24360.030*
H5B0.88780.18410.27490.030*
H7A1.16790.00970.37480.028*
H7B1.31520.04440.37080.028*
H21A0.94690.11770.86770.044*
H21B0.84400.23690.94540.044*
H21C0.97210.27160.84890.044*
H62A1.40850.23050.30770.033*
H62B1.35240.40680.24790.033*
H63A1.57300.33390.09740.068*
H63B1.56670.23450.00830.068*
H63C1.61580.15810.14890.068*
H63D1.14360.44230.04430.061*
H63E1.27970.39820.05560.061*
H63F1.28370.50710.02540.061*
H64A1.34440.12970.03640.034*
H64B1.40800.05720.17460.034*
H81A1.23200.04570.67290.034*
H81B1.34260.06730.59260.034*
H82A1.20770.31260.56650.043*
H82B1.38350.32140.55020.043*
H83A1.27470.19520.77530.064*
H83B1.27200.36160.73980.064*
H83C1.44270.21920.75640.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0216 (10)0.0335 (10)0.0220 (11)0.0078 (8)0.0001 (8)0.0065 (8)
O40.0180 (10)0.0380 (11)0.0297 (12)0.0032 (8)0.0046 (9)0.0085 (9)
O610.0357 (11)0.0259 (10)0.0400 (13)0.0113 (9)0.0090 (9)0.0104 (9)
O650.0359 (11)0.0463 (12)0.0337 (12)0.0188 (9)0.0001 (9)0.0151 (10)
O810.0216 (10)0.0365 (11)0.0456 (13)0.0103 (8)0.0025 (9)0.0186 (9)
N10.0173 (12)0.0218 (11)0.0253 (13)0.0057 (9)0.0012 (9)0.0065 (9)
N30.0137 (11)0.0269 (12)0.0282 (14)0.0018 (9)0.0016 (10)0.0098 (10)
N80.0150 (11)0.0229 (11)0.0229 (13)0.0025 (9)0.0008 (9)0.0050 (9)
C20.0215 (14)0.0216 (13)0.0246 (16)0.0100 (11)0.0001 (12)0.0044 (11)
C40.0199 (14)0.0253 (14)0.0266 (17)0.0097 (11)0.0012 (13)0.0074 (12)
C4A0.0165 (13)0.0222 (13)0.0246 (15)0.0071 (11)0.0002 (12)0.0050 (11)
C50.0199 (14)0.0251 (13)0.0274 (16)0.0065 (11)0.0035 (12)0.0049 (12)
C60.0189 (13)0.0256 (14)0.0222 (15)0.0077 (11)0.0007 (11)0.0057 (11)
C70.0213 (14)0.0209 (13)0.0253 (16)0.0071 (11)0.0022 (12)0.0055 (11)
C8A0.0170 (13)0.0197 (13)0.0274 (16)0.0080 (11)0.0025 (12)0.0061 (11)
C210.0250 (15)0.0356 (15)0.0249 (16)0.0100 (12)0.0002 (12)0.0070 (12)
C610.0248 (14)0.0248 (14)0.0183 (15)0.0083 (12)0.0002 (12)0.0017 (11)
C620.0260 (15)0.0263 (14)0.0292 (17)0.0113 (11)0.0010 (12)0.0050 (12)
C630.0230 (14)0.0313 (15)0.0307 (17)0.0098 (12)0.0036 (13)0.0044 (12)
C640.0246 (14)0.0290 (14)0.0275 (16)0.0058 (11)0.0045 (12)0.0092 (12)
C650.0255 (15)0.0200 (14)0.0278 (16)0.0079 (11)0.0004 (13)0.0031 (12)
C810.0198 (14)0.0297 (15)0.0327 (17)0.0055 (12)0.0015 (12)0.0083 (12)
C820.0318 (16)0.0331 (16)0.043 (2)0.0120 (13)0.0025 (14)0.0125 (14)
C830.0497 (19)0.0384 (17)0.038 (2)0.0149 (14)0.0004 (15)0.0112 (14)
C6310.0318 (17)0.0550 (19)0.049 (2)0.0189 (15)0.0124 (15)0.0130 (16)
C6320.0432 (18)0.0406 (17)0.0318 (18)0.0149 (14)0.0058 (14)0.0030 (14)
Geometric parameters (Å, º) top
N1—C21.292 (3)C62—H62B0.99
C2—N31.343 (3)C63—C6311.527 (4)
N3—C41.388 (3)C63—C6321.530 (4)
C4—C4A1.412 (3)C63—C641.531 (3)
C4A—C8A1.378 (3)C631—H63A0.98
C8A—N11.375 (3)C631—H63B0.98
C4—O41.250 (3)C631—H63C0.98
C8A—N81.370 (3)C632—H63D0.98
C7—N81.451 (3)C632—H63E0.98
C2—O21.334 (3)C632—H63F0.98
O2—C211.447 (3)C64—C651.507 (3)
C61—O611.213 (3)C64—H64A0.99
C65—O651.210 (3)C64—H64B0.99
C21—H21A0.98C7—H7A0.99
C21—H21B0.98C7—H7B0.99
C21—H21C0.98N8—C811.445 (3)
N3—H30.8798C81—O811.417 (3)
C4A—C51.503 (3)C81—H81A0.99
C5—C61.527 (3)C81—H81B0.99
C5—H5A0.99O81—C821.444 (3)
C5—H5B0.99C82—C831.497 (4)
C6—C651.535 (3)C82—H82A0.99
C6—C611.535 (3)C82—H82B0.99
C6—C71.547 (3)C83—H83A0.98
C61—C621.505 (3)C83—H83B0.98
C62—C631.538 (3)C83—H83C0.98
C62—H62A0.99
C2—N1—C8A115.7 (2)C63—C631—H63C109.5
N1—C2—N3125.1 (2)H63A—C631—H63C109.5
N1—C2—O2121.8 (2)H63B—C631—H63C109.5
N3—C2—O2113.1 (2)C63—C632—H63D109.5
C2—O2—C21115.51 (18)C63—C632—H63E109.5
O2—C21—H21A109.5H63D—C632—H63E109.5
O2—C21—H21B109.5C63—C632—H63F109.5
H21A—C21—H21B109.5H63D—C632—H63F109.5
O2—C21—H21C109.5H63E—C632—H63F109.5
H21A—C21—H21C109.5C65—C64—C63113.06 (19)
H21B—C21—H21C109.5C65—C64—H64A109.0
C2—N3—C4121.5 (2)C63—C64—H64A109.0
C2—N3—H3119.5C65—C64—H64B109.0
C4—N3—H3118.6C63—C64—H64B109.0
O4—C4—N3119.4 (2)H64A—C64—H64B107.8
O4—C4—C4A124.9 (2)O65—C65—C64122.6 (2)
N3—C4—C4A115.7 (2)O65—C65—C6121.0 (2)
C8A—C4A—C4118.0 (2)C64—C65—C6116.4 (2)
C8A—C4A—C5122.1 (2)N8—C7—C6111.47 (18)
C4—C4A—C5119.6 (2)N8—C7—H7A109.3
C4A—C5—C6111.4 (2)C6—C7—H7A109.3
C4A—C5—H5A109.3N8—C7—H7B109.3
C6—C5—H5A109.3C6—C7—H7B109.3
C4A—C5—H5B109.3H7A—C7—H7B108.0
C6—C5—H5B109.3C8A—N8—C81123.4 (2)
H5A—C5—H5B108.0C8A—N8—C7119.2 (2)
C5—C6—C65112.2 (2)C81—N8—C7117.39 (19)
C5—C6—C61112.37 (19)O81—C81—N8112.3 (2)
C65—C6—C61109.2 (2)O81—C81—H81A109.1
C5—C6—C7107.7 (2)N8—C81—H81A109.1
C65—C6—C7106.27 (18)O81—C81—H81B109.1
C61—C6—C7108.9 (2)N8—C81—H81B109.1
O61—C61—C62122.6 (2)H81A—C81—H81B107.9
O61—C61—C6121.1 (2)C81—O81—C82113.65 (19)
C62—C61—C6116.2 (2)O81—C82—C83112.9 (2)
C61—C62—C63111.1 (2)O81—C82—H82A109.0
C61—C62—H62A109.4C83—C82—H82A109.0
C63—C62—H62A109.4O81—C82—H82B109.0
C61—C62—H62B109.4C83—C82—H82B109.0
C63—C62—H62B109.4H82A—C82—H82B107.8
H62A—C62—H62B108.0C82—C83—H83A109.5
C631—C63—C632109.6 (2)C82—C83—H83B109.5
C631—C63—C64109.5 (2)H83A—C83—H83B109.5
C632—C63—C64109.6 (2)C82—C83—H83C109.5
C631—C63—C62109.8 (2)H83A—C83—H83C109.5
C632—C63—C62109.7 (2)H83B—C83—H83C109.5
C64—C63—C62108.7 (2)N8—C8A—N1114.8 (2)
C63—C631—H63A109.5N8—C8A—C4A121.2 (2)
C63—C631—H63B109.5N1—C8A—C4A124.0 (2)
H63A—C631—H63B109.5
C8A—N1—C2—O2177.8 (2)N8—C81—O81—C8271.3 (3)
C8A—N1—C2—N30.2 (3)C81—O81—C82—C8382.4 (3)
N1—C2—O2—C215.5 (3)C5—C6—C61—O615.9 (3)
N3—C2—O2—C21176.61 (19)C65—C6—C61—O61131.1 (2)
N1—C2—N3—C40.3 (4)C7—C6—C61—O61113.3 (3)
O2—C2—N3—C4177.54 (19)C5—C6—C61—C62172.0 (2)
C2—N3—C4—O4179.4 (2)C7—C6—C61—C6268.8 (3)
C2—N3—C4—C4A0.0 (3)O61—C61—C62—C63122.4 (3)
O4—C4—C4A—C8A178.7 (2)C61—C62—C63—C631176.4 (2)
N3—C4—C4A—C8A0.8 (3)C61—C62—C63—C63263.1 (3)
O4—C4—C4A—C53.4 (4)C631—C63—C64—C65174.9 (2)
N3—C4—C4A—C5176.1 (2)C632—C63—C64—C6564.8 (3)
C4—C4A—C5—C6156.1 (2)C63—C64—C65—O65129.8 (3)
C4A—C5—C6—C65164.19 (19)C5—C6—C65—O6511.4 (3)
C4A—C5—C6—C6172.3 (3)C61—C6—C65—O65136.7 (2)
C4A—C5—C6—C747.6 (3)C7—C6—C65—O65106.0 (3)
C5—C6—C7—N858.7 (2)C5—C6—C65—C64169.3 (2)
C6—C7—N8—C8A39.4 (3)C7—C6—C65—C6473.3 (3)
C7—N8—C8A—C4A7.4 (3)C65—C6—C7—N8179.07 (19)
N8—C8A—C4A—C53.4 (4)C61—C6—C7—N863.4 (2)
C8A—C4A—C5—C618.9 (3)C8A—N8—C81—O81107.4 (2)
C6—C7—N8—C81142.4 (2)C81—N8—C8A—N15.5 (3)
C7—N8—C81—O8174.4 (3)C7—N8—C8A—N1172.63 (19)
C6—C61—C62—C6355.5 (3)C81—N8—C8A—C4A174.4 (2)
C61—C62—C63—C6456.8 (3)C2—N1—C8A—N8178.88 (19)
C62—C63—C64—C6555.1 (3)C2—N1—C8A—C4A1.1 (3)
C63—C64—C65—C651.0 (3)C4—C4A—C8A—N8178.56 (19)
C64—C65—C6—C6144.1 (3)C4—C4A—C8A—N11.4 (4)
C65—C6—C61—C6246.8 (3)C5—C4A—C8A—N1176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.892.769 (2)173
C7—H7B···O81ii0.992.493.414 (3)155
C7—H7A···Cg1iii0.992.623.535 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1; (iii) x+2, y, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H19N3O3SC16H21N3O4SC18H25N3O5
Mr321.39351.42363.41
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)120120120
a, b, c (Å)7.8990 (3), 10.0386 (3), 10.0500 (3)6.6682 (2), 11.0319 (3), 12.3449 (4)8.9219 (5), 9.9806 (5), 11.3542 (7)
α, β, γ (°)74.938 (2), 84.271 (2), 81.842 (2)109.2678 (18), 99.8329 (18), 101.227 (2)75.662 (3), 85.580 (3), 66.526 (3)
V3)760.10 (4)813.32 (5)898.22 (9)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.230.230.10
Crystal size (mm)0.42 × 0.38 × 0.200.15 × 0.10 × 0.030.15 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.921, 0.9560.976, 0.9940.967, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15364, 3462, 2923 18379, 3737, 2502 17797, 4082, 2026
Rint0.0570.0470.088
(sin θ/λ)max1)0.6490.6500.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.04 0.051, 0.140, 1.03 0.056, 0.164, 0.95
No. of reflections346237374082
No. of parameters202238239
No. of restraints040
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.420.28, 0.410.30, 0.43

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL,(McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—C21.300 (2)C8A—N81.342 (2)
C2—N31.356 (2)C7—N81.455 (2)
N3—C41.395 (2)C2—S21.7547 (18)
C4—C4A1.409 (2)S2—C211.7983 (19)
C4A—C8A1.391 (2)C61—O611.216 (2)
C8A—N11.379 (2)C65—O651.219 (2)
C4—O41.253 (2)
N1—C2—N3125.04 (16)N3—C2—S2113.71 (13)
N1—C2—S2121.25 (14)C2—S2—C21100.96 (9)
C4A—C5—C6—C751.41 (18)C6—C61—C62—C6358.5 (2)
C5—C6—C7—N850.4 (2)C61—C62—C63—C6456.58 (18)
C6—C7—N8—C8A26.8 (3)C62—C63—C64—C6554.3 (2)
C7—N8—C8A—C4A2.5 (3)C63—C64—C65—C653.2 (2)
N8—C8A—C4A—C54.8 (3)C64—C65—C6—C6149.58 (19)
C8A—C4A—C5—C630.3 (2)C65—C6—C61—C6252.5 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.842.715 (2)176
N8—H8···O65ii0.882.102.965 (2)166
C5—H5B···O61iii0.992.463.389 (2)155
C64—H64A···Cg1iv0.992.873.854 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
N1—C21.294 (3)C8A—N81.362 (3)
C2—N31.334 (3)C7—N81.456 (2)
N3—C41.395 (3)C2—S21.756 (2)
C4—C4A1.414 (3)S2—C211.779 (3)
C4A—C8A1.374 (3)C61—O611.212 (2)
C8A—N11.379 (3)C65—O651.206 (2)
C4—O41.239 (3)
N1—C2—N3124.60 (19)N3—C2—S2114.25 (17)
N1—C2—S2121.14 (19)C2—S2—C2199.74 (12)
C4A—C5—C6—C746.1 (2)C6—C61—C62—C6355.9 (2)
C5—C6—C7—N859.0 (2)C61—C62—C63—C6456.3 (2)
C6—C7—N8—C8A42.4 (3)C62—C63—C64—C6555.6 (3)
C7—N8—C8A—C4A12.1 (3)C63—C64—C65—C652.5 (2)
N8—C8A—C4A—C51.0 (3)C64—C65—C6—C6145.7 (2)
C8A—C4A—C5—C618.1 (3)C65—C6—C61—C6248.1 (2)
C6—C7—N8—C81A139.6 (4)C6—C7—N8—C81B158.5 (4)
C7—N8—C81A—O8A61.9 (14)C7—N8—C81B—O8B113.3 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.832.709 (3)176
O8A—H8A···O61ii0.842.002.767 (3)152
O8B—H8B···O61ii0.842.353.036 (4)139
C62—H62B···O8Aiii0.992.333.314 (4)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (III) top
N1—C21.292 (3)C8A—N81.370 (3)
C2—N31.343 (3)C7—N81.451 (3)
N3—C41.388 (3)C2—O21.334 (3)
C4—C4A1.412 (3)O2—C211.447 (3)
C4A—C8A1.378 (3)C61—O611.213 (3)
C8A—N11.375 (3)C65—O651.210 (3)
C4—O41.250 (3)
N1—C2—N3125.1 (2)N3—C2—O2113.1 (2)
N1—C2—O2121.8 (2)C2—O2—C21115.51 (18)
C4A—C5—C6—C747.6 (3)C6—C61—C62—C6355.5 (3)
C5—C6—C7—N858.7 (2)C61—C62—C63—C6456.8 (3)
C6—C7—N8—C8A39.4 (3)C62—C63—C64—C6555.1 (3)
C7—N8—C8A—C4A7.4 (3)C63—C64—C65—C651.0 (3)
N8—C8A—C4A—C53.4 (4)C64—C65—C6—C6144.1 (3)
C8A—C4A—C5—C618.9 (3)C65—C6—C61—C6246.8 (3)
C6—C7—N8—C81142.4 (2)N8—C81—O81—C8271.3 (3)
C7—N8—C81—O8174.4 (3)C81—O81—C82—C8382.4 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.892.769 (2)173
C7—H7B···O81ii0.992.493.414 (3)155
C7—H7A···Cg1iii0.992.623.535 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3, y, z+1; (iii) x+2, y, z+1.
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC and MN thank the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support, JQ thanks COLCIENCIAS and the Universidad de Valle for financial support, and SC thanks COLCIENCIAS and the Universidad de Nariño for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291–324.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKazda, S. & Towart, R. (1981). Br. J. Pharmacol. 72, P582–583.  Google Scholar
First citationLow, J. N., Cobo, J., Cruz, S., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o191–o193.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds