organic compounds
3-tert-Butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-b]quinolin-5-one and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-a]quinolin-6-one: chains generated by C—H⋯N hydrogen bonds
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
In both 3-tert-butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-b]quinolin-5-one, C22H25N3O, (I), and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-a]quinolin-6-one, C19H19N3O, (II), the heterobicyclic portions of the molecules are planar, with naphthalene-type delocalization in (II), while the carbocyclic ring in each compound adopts an In both (I) and (II), the molecules are linked weakly into chains by a single C—H⋯N hydrogen bond.
Comment
As part of a program for the synthesis of fused pyrazole derivatives (Quiroga et al., 1998, 2001; Cannon et al., 2001a,b; Low et al., 2001), we have been investigating three-component cyclocondensation reactions induced by microwave irradiation. We report here the molecular and supramolecular structures of two compounds, (I) and (II), obtained from condensation reactions between a substituted aminopyrazole, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and a simple carbonyl compound or its equivalent. Thus, from the reaction involving 5-amino-3-tert-butyl-1-phenylpyrazole and formaldehyde, we have now obtained 3-tert-butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-b]quinolin-5-one, (I), in which a single formaldehyde unit has been utilized in the construction of the fused ring system. When two such units are incorporated, spiro compound (III) results (Low et al., 2004). When 5-amino-3-methyl-1H-pyrazole is used in combination with orthobenzoic acid trimethyl ester, the product is (II), analogous to the compound, (IV), formed from this pyrazole in the presence of formaldehyde (Low et al., 2004).
In both (I) (Fig. 1) and (II) (Fig. 2), the heterobicyclic portions of the fused ring systems are planar, but the carbocyclic rings are puckered. The ring-puckering parameters (Cremer & Pople, 1975) for (I) [θ = 127.4 (3)° and φ = 353.8 (3)° for the atom sequence C4a—C5—C6—C7—C8—C8a] and (II) [θ = 65.2 (2)° and φ = 174.3 (3)° for the atom sequence C5a—C6—C7—C8—C9—C9a] indicate envelope conformations for both these rings (Evans & Boeyens, 1989), consistent with the enforced coplanarity of atoms C5, C4a, C8a and C8 in (I), and of atoms C6, C5a, C9a and C9 in (II).
In (I), the C3a—C4 and C4—C4a bonds are of very similar length (Table 1), as are the C8a—N9 and N9—C9a bonds, consistent with aromatic delocalization within the central ring of (I). The formally single C3a—N4 and C9a—N9b bonds in (II) (Table 3) are only slightly longer than the formal double bond N1=C2, although each is significantly longer than the cross-ring C3a—N9b bond, also formally a single bond. The lengths of the C2—C3 and C3=C3a bonds, formally single and double, respectively, differ by less than 0.03 Å. These observations suggest that this heterocyclic system exhibits a degree of naphthalene-type delocalization, involving a peripheral system of ten π electrons but with only modest participation by the cross-ring bond (Glidewell & Lloyd, 1984).
In each of (I) and (II), the molecules are linked weakly into chains by means of a single C—H⋯N hydrogen bond (Tables 2 and 4); the structure of neither compound exhibits any C—H⋯π(arene) hydrogen bonds or aromatic π–π stacking interactions. In (I), atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H6B, to pyridine ring atom N9 in the molecule at (1 + x, y, z), so generating by translation a C(6) chain (Bernstein et al., 1995) running parallel to the [100] direction (Fig. 3). In (II), aryl atom C54 in the molecule at (x, y, z) acts as a hydrogen-bond donor to pyrazole-ring atom N1 in the molecule at (1 + x, − y, − + z), so producing a zigzag C(10) chain running parallel to the [20] direction and generated by the c-glide plane at y = (Fig. 4).
The constitutions of (II) and (IV) differ only by the presence of the phenyl substituent in (II); however, this difference profoundly influences the differences in the supramolecular structures of these compounds. In (IV), the C—H bond that is replaced by the C–phenyl bond in (II) acts as the sole hydrogen-bond donor, forming, by means of paired C—H⋯N hydrogen bonds, a centrosymmetric R22(6) dimer. Dimers of this type are then linked into chains by a single π–π stacking interaction (Low et al., 2004).
Experimental
For the synthesis of (I), a mixture of 5-amino-3-tert-butyl-1-phenylpyrazole (1 mmol), dimedone (1 mmol) and formaldehyde (3 mmol) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 4 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (I), was isolated by on silica gel, using CHCl3 as eluant, and crystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction (m.p. 413 K; yield 41%). Analysis found: C 75.5, H 7.3, N 12.1%; C22H25N3O requires: C 76.0, H 7.3, N 12.1%. For the synthesis of (II), an equimolar mixture of 5-amino-3-methyl-1H-pyrazole, dimedone and orthobenzoic acid trimethyl ester (1 mmol of each) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 2 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (II), was crystallized from ethanol, producing crystals suitable for single-crystal X-ray diffraction (m.p. 533 K; yield 55%). MS EI (70 eV) m/z (%): 306 (23), 305 (100, M+), 304 (60), 291 (13), 290 (54), 250 (14), 249 (73), 248 (14), 220 (13), 153 (11), 127 (16), 126 (10), 77 (29), 66 (10), 55 (10), 53 (16), 52 (13), 351 (17), 42 (20), 41 (34), 39 (35).
Compound (I)
Crystal data
|
Data collection
Refinement
|
|
Compound (II)
Crystal data
|
Data collection
Refinement
|
|
Crystals of (I) are triclinic; P was selected and confirmed by the successful structure analysis. For (II), P21/c was uniquely determined from the All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C) [1.5Ueq(C) for the methyl groups].
For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXS97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
10.1107/S0108270104011291/gg1220sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270104011291/gg1220Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270104011291/gg1220IIsup3.hkl
For the synthesis of (I), a mixture of 5-amino-3-tert-butyl-1-phenylpyrazole (1 mmol), dimedone (1 mmol) and formaldehyde (3 mmol) was placed into Pyrex-glass open vessels and irradiated in a domestic microwave oven for 4 min (at 600 W). The reaction mixture was extracted with ethanol, and the product, (I), was isolated by
on silica gel, using CHCl3 as and crystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction. M.p. 413 K; yield 41%. Analysis found: C 75.5, H 7.3, N 12.1%; C22H25N3O requires: C 76.0, H 7.3, N 12.1%. For the synthesis of (II), an equimolar mixture of 5-amino-3-methyl-1H-pyrazole, dimedone and trimethyl orthobenzoate (1 mmol of each) was placed into Pyrex-glass open vessels and irradiated in a domestic microwave oven for 2 min (at 600 W). The reaction mixture was extracted with ethanol, and the product, (II), was crystallized from ethanol, producing crystals suitable for single-crystal X-ray diffraction. M.p. 533 K; yield 55%. MS EI (70 eV) m/z (%), 306 (23), 305 (100, M+), 304 (60), 291 (13), 290 (54), 250 (14), 249 (73), 248 (14), 220 (13), 153 (11), 127 (16), 126 (10), 77 (29), 66 (10), 55 (10), 53 (16), 52 (13), 351 (17), 42 (20), 41 (34), 39 (35).Crystals of (I) are triclinic; 1 was selected and confirmed by the successful structure analysis. For (II), P21/c was uniquely determined from the All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C) [1.5Ueq(C) for the methyl groups].
PFor both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell
DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXS97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C22H25N3O | Z = 2 |
Mr = 347.45 | F(000) = 372 |
Triclinic, P1 | Dx = 1.223 Mg m−3 |
Hall symbol: -P 1 | Melting point: 413 K |
a = 6.1514 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3171 (5) Å | Cell parameters from 4348 reflections |
c = 15.7351 (8) Å | θ = 3.3–27.6° |
α = 71.722 (2)° | µ = 0.08 mm−1 |
β = 85.780 (3)° | T = 120 K |
γ = 85.306 (3)° | Needle, colourless |
V = 943.84 (7) Å3 | 0.18 × 0.08 × 0.08 mm |
Nonius KappaCCD diffractometer | 4348 independent reflections |
Radiation source: rotating anode | 2666 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.105 |
ϕ scans, and ω scans with κ offsets | θmax = 27.6°, θmin = 3.3° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) | h = −7→8 |
Tmin = 0.964, Tmax = 0.994 | k = −13→13 |
21211 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.3463P] where P = (Fo2 + 2Fc2)/3 |
4348 reflections | (Δ/σ)max < 0.001 |
240 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C22H25N3O | γ = 85.306 (3)° |
Mr = 347.45 | V = 943.84 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.1514 (2) Å | Mo Kα radiation |
b = 10.3171 (5) Å | µ = 0.08 mm−1 |
c = 15.7351 (8) Å | T = 120 K |
α = 71.722 (2)° | 0.18 × 0.08 × 0.08 mm |
β = 85.780 (3)° |
Nonius KappaCCD diffractometer | 4348 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) | 2666 reflections with I > 2σ(I) |
Tmin = 0.964, Tmax = 0.994 | Rint = 0.105 |
21211 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.21 e Å−3 |
4348 reflections | Δρmin = −0.25 e Å−3 |
240 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4926 (3) | 0.63590 (17) | 0.29289 (11) | 0.0294 (4) | |
C11 | 0.3406 (3) | 0.7490 (2) | 0.28932 (14) | 0.0300 (5) | |
C12 | 0.3974 (4) | 0.8816 (2) | 0.24695 (15) | 0.0352 (5) | |
C13 | 0.2449 (4) | 0.9890 (2) | 0.24520 (16) | 0.0401 (6) | |
C14 | 0.0383 (4) | 0.9640 (3) | 0.28538 (16) | 0.0408 (6) | |
C15 | −0.0151 (4) | 0.8318 (2) | 0.32808 (15) | 0.0381 (5) | |
C16 | 0.1342 (3) | 0.7228 (2) | 0.33087 (15) | 0.0342 (5) | |
N2 | 0.4543 (3) | 0.51076 (18) | 0.35583 (12) | 0.0318 (4) | |
C3 | 0.6170 (3) | 0.4233 (2) | 0.34732 (14) | 0.0295 (5) | |
C31 | 0.6163 (3) | 0.2757 (2) | 0.40451 (14) | 0.0326 (5) | |
C32 | 0.4554 (4) | 0.2600 (3) | 0.48550 (16) | 0.0427 (6) | |
C33 | 0.5456 (4) | 0.1925 (2) | 0.34698 (17) | 0.0427 (6) | |
C34 | 0.8452 (4) | 0.2235 (3) | 0.43831 (17) | 0.0465 (6) | |
C4A | 1.0614 (3) | 0.5607 (2) | 0.16742 (13) | 0.0269 (5) | |
C3A | 0.7706 (3) | 0.4904 (2) | 0.27701 (13) | 0.0279 (5) | |
C4 | 0.9659 (3) | 0.4585 (2) | 0.23619 (13) | 0.0285 (5) | |
C5 | 1.2720 (3) | 0.5296 (2) | 0.12364 (14) | 0.0294 (5) | |
O5 | 1.3606 (2) | 0.41429 (16) | 0.14590 (10) | 0.0391 (4) | |
C6 | 1.3728 (3) | 0.6460 (2) | 0.05286 (14) | 0.0330 (5) | |
C7 | 1.2080 (3) | 0.7542 (2) | −0.00153 (14) | 0.0310 (5) | |
C71 | 1.0758 (4) | 0.6924 (2) | −0.05632 (15) | 0.0381 (5) | |
C72 | 1.3302 (4) | 0.8716 (2) | −0.06540 (16) | 0.0429 (6) | |
C8 | 1.0557 (3) | 0.8051 (2) | 0.06407 (14) | 0.0322 (5) | |
C8A | 0.9560 (3) | 0.6933 (2) | 0.13889 (14) | 0.0281 (5) | |
N9 | 0.7658 (3) | 0.72708 (17) | 0.17598 (11) | 0.0290 (4) | |
C9A | 0.6834 (3) | 0.6263 (2) | 0.24410 (14) | 0.0281 (5) | |
H12 | 0.5392 | 0.8990 | 0.2194 | 0.042* | |
H13 | 0.2826 | 1.0804 | 0.2162 | 0.048* | |
H14 | −0.0660 | 1.0380 | 0.2834 | 0.049* | |
H15 | −0.1566 | 0.8149 | 0.3561 | 0.046* | |
H16 | 0.0963 | 0.6316 | 0.3607 | 0.041* | |
H32A | 0.4968 | 0.3163 | 0.5209 | 0.064* | |
H32B | 0.4586 | 0.1639 | 0.5226 | 0.064* | |
H32C | 0.3077 | 0.2897 | 0.4648 | 0.064* | |
H33A | 0.3961 | 0.2229 | 0.3288 | 0.064* | |
H33B | 0.5512 | 0.0953 | 0.3818 | 0.064* | |
H33C | 0.6443 | 0.2062 | 0.2935 | 0.064* | |
H34A | 0.9478 | 0.2264 | 0.3871 | 0.070* | |
H34B | 0.8406 | 0.1292 | 0.4782 | 0.070* | |
H34C | 0.8933 | 0.2817 | 0.4712 | 0.070* | |
H4 | 1.0330 | 0.3685 | 0.2549 | 0.034* | |
H6A | 1.4670 | 0.6087 | 0.0112 | 0.040* | |
H6B | 1.4675 | 0.6910 | 0.0819 | 0.040* | |
H71A | 0.9769 | 0.7637 | −0.0933 | 0.057* | |
H71B | 0.9905 | 0.6197 | −0.0157 | 0.057* | |
H71C | 1.1755 | 0.6541 | −0.0951 | 0.057* | |
H72A | 1.4173 | 0.9110 | −0.0310 | 0.064* | |
H72B | 1.2251 | 0.9420 | −0.0992 | 0.064* | |
H72C | 1.4269 | 0.8374 | −0.1070 | 0.064* | |
H8A | 1.1388 | 0.8603 | 0.0902 | 0.039* | |
H8B | 0.9369 | 0.8658 | 0.0305 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0281 (9) | 0.0301 (10) | 0.0288 (10) | 0.0010 (7) | 0.0018 (7) | −0.0089 (8) |
C11 | 0.0303 (11) | 0.0353 (12) | 0.0266 (11) | 0.0046 (9) | −0.0054 (8) | −0.0133 (10) |
C12 | 0.0328 (12) | 0.0357 (13) | 0.0364 (13) | 0.0024 (9) | −0.0001 (9) | −0.0119 (10) |
C13 | 0.0425 (14) | 0.0372 (13) | 0.0396 (14) | 0.0068 (10) | −0.0008 (10) | −0.0132 (11) |
C14 | 0.0386 (13) | 0.0461 (15) | 0.0409 (14) | 0.0124 (11) | −0.0029 (10) | −0.0215 (12) |
C15 | 0.0295 (12) | 0.0505 (15) | 0.0378 (13) | 0.0041 (10) | 0.0005 (9) | −0.0211 (12) |
C16 | 0.0305 (12) | 0.0399 (13) | 0.0348 (12) | 0.0000 (10) | −0.0001 (9) | −0.0159 (10) |
N2 | 0.0304 (10) | 0.0340 (10) | 0.0299 (10) | −0.0015 (8) | −0.0013 (7) | −0.0084 (8) |
C3 | 0.0280 (11) | 0.0344 (12) | 0.0278 (11) | −0.0008 (9) | −0.0029 (8) | −0.0121 (9) |
C31 | 0.0303 (11) | 0.0343 (12) | 0.0293 (12) | −0.0003 (9) | −0.0011 (9) | −0.0047 (9) |
C32 | 0.0394 (13) | 0.0441 (14) | 0.0367 (14) | −0.0045 (11) | 0.0056 (10) | −0.0026 (11) |
C33 | 0.0480 (14) | 0.0329 (13) | 0.0457 (15) | 0.0006 (10) | −0.0054 (11) | −0.0099 (11) |
C34 | 0.0377 (13) | 0.0521 (16) | 0.0377 (14) | 0.0019 (11) | −0.0042 (10) | 0.0026 (12) |
C4A | 0.0262 (10) | 0.0310 (11) | 0.0259 (11) | −0.0005 (8) | −0.0018 (8) | −0.0126 (9) |
C3A | 0.0272 (10) | 0.0313 (11) | 0.0259 (11) | −0.0009 (8) | −0.0037 (8) | −0.0096 (9) |
C4 | 0.0292 (11) | 0.0292 (11) | 0.0276 (11) | 0.0032 (9) | −0.0048 (8) | −0.0100 (9) |
C5 | 0.0291 (11) | 0.0369 (13) | 0.0245 (11) | 0.0012 (9) | −0.0035 (8) | −0.0131 (10) |
O5 | 0.0382 (9) | 0.0386 (9) | 0.0342 (9) | 0.0096 (7) | 0.0027 (7) | −0.0064 (7) |
C6 | 0.0292 (11) | 0.0376 (12) | 0.0328 (12) | −0.0021 (9) | 0.0021 (9) | −0.0127 (10) |
C7 | 0.0369 (12) | 0.0251 (11) | 0.0321 (12) | −0.0050 (9) | 0.0037 (9) | −0.0109 (9) |
C71 | 0.0507 (14) | 0.0336 (12) | 0.0295 (12) | −0.0035 (10) | −0.0047 (10) | −0.0085 (10) |
C72 | 0.0518 (15) | 0.0335 (13) | 0.0423 (14) | −0.0092 (11) | 0.0136 (11) | −0.0122 (11) |
C8 | 0.0353 (12) | 0.0273 (11) | 0.0347 (12) | −0.0023 (9) | 0.0026 (9) | −0.0114 (10) |
C8A | 0.0291 (11) | 0.0304 (11) | 0.0274 (11) | −0.0033 (9) | −0.0018 (8) | −0.0123 (9) |
N9 | 0.0301 (9) | 0.0292 (10) | 0.0292 (10) | −0.0009 (7) | −0.0008 (7) | −0.0117 (8) |
C9A | 0.0267 (11) | 0.0334 (11) | 0.0267 (11) | −0.0016 (9) | −0.0025 (8) | −0.0127 (9) |
N1—N2 | 1.384 (2) | C3—C31 | 1.506 (3) |
N2—C3 | 1.320 (3) | C31—C32 | 1.530 (3) |
C3—C3A | 1.438 (3) | C31—C33 | 1.534 (3) |
C3A—C4 | 1.386 (3) | C31—C34 | 1.537 (3) |
C4—C4A | 1.386 (3) | C32—H32A | 0.98 |
C4A—C5 | 1.482 (3) | C32—H32B | 0.98 |
C5—C6 | 1.500 (3) | C32—H32C | 0.98 |
C6—C7 | 1.532 (3) | C33—H33A | 0.98 |
C7—C8 | 1.529 (3) | C33—H33B | 0.98 |
C8—C8A | 1.500 (3) | C33—H33C | 0.98 |
C8A—N9 | 1.338 (3) | C34—H34A | 0.98 |
N9—C9A | 1.340 (3) | C34—H34B | 0.98 |
C9A—N1 | 1.368 (3) | C34—H34C | 0.98 |
C3A—C9A | 1.408 (3) | C4—H4 | 0.95 |
C4A—C8A | 1.416 (3) | C5—O5 | 1.223 (2) |
N1—C11 | 1.424 (3) | C6—H6A | 0.99 |
C11—C12 | 1.383 (3) | C6—H6B | 0.99 |
C11—C16 | 1.391 (3) | C7—C72 | 1.522 (3) |
C12—C13 | 1.386 (3) | C7—C71 | 1.531 (3) |
C12—H12 | 0.95 | C71—H71A | 0.98 |
C13—C14 | 1.383 (3) | C71—H71B | 0.98 |
C13—H13 | 0.95 | C71—H71C | 0.98 |
C14—C15 | 1.373 (3) | C72—H72A | 0.98 |
C14—H14 | 0.95 | C72—H72B | 0.98 |
C15—C16 | 1.384 (3) | C72—H72C | 0.98 |
C15—H15 | 0.95 | C8—H8A | 0.99 |
C16—H16 | 0.95 | C8—H8B | 0.99 |
C9A—N1—N2 | 110.12 (16) | C4—C4A—C8A | 119.88 (18) |
C9A—N1—C11 | 131.16 (18) | C4—C4A—C5 | 119.54 (18) |
N2—N1—C11 | 118.72 (16) | C8A—C4A—C5 | 120.58 (18) |
C12—C11—C16 | 120.7 (2) | C4—C3A—C9A | 116.53 (19) |
C12—C11—N1 | 120.93 (19) | C4—C3A—C3 | 138.5 (2) |
C16—C11—N1 | 118.3 (2) | C9A—C3A—C3 | 104.99 (17) |
C11—C12—C13 | 119.2 (2) | C4A—C4—C3A | 118.51 (19) |
C11—C12—H12 | 120.4 | C4A—C4—H4 | 120.7 |
C13—C12—H12 | 120.4 | C3A—C4—H4 | 120.7 |
C14—C13—C12 | 120.6 (2) | O5—C5—C4A | 121.01 (19) |
C14—C13—H13 | 119.7 | O5—C5—C6 | 121.91 (19) |
C12—C13—H13 | 119.7 | C4A—C5—C6 | 117.06 (18) |
C15—C14—C13 | 119.6 (2) | C5—C6—C7 | 114.52 (17) |
C15—C14—H14 | 120.2 | C5—C6—H6A | 108.6 |
C13—C14—H14 | 120.2 | C7—C6—H6A | 108.6 |
C14—C15—C16 | 121.0 (2) | C5—C6—H6B | 108.6 |
C14—C15—H15 | 119.5 | C7—C6—H6B | 108.6 |
C16—C15—H15 | 119.5 | H6A—C6—H6B | 107.6 |
C15—C16—C11 | 118.9 (2) | C72—C7—C8 | 110.44 (17) |
C15—C16—H16 | 120.5 | C72—C7—C71 | 108.81 (18) |
C11—C16—H16 | 120.5 | C8—C7—C71 | 109.99 (18) |
C3—N2—N1 | 107.77 (17) | C72—C7—C6 | 109.24 (18) |
N2—C3—C3A | 109.97 (19) | C8—C7—C6 | 108.03 (18) |
N2—C3—C31 | 120.21 (19) | C71—C7—C6 | 110.32 (17) |
C3A—C3—C31 | 129.76 (18) | C7—C71—H71A | 109.5 |
C3—C31—C32 | 110.35 (18) | C7—C71—H71B | 109.5 |
C3—C31—C33 | 107.90 (18) | H71A—C71—H71B | 109.5 |
C32—C31—C33 | 109.42 (19) | C7—C71—H71C | 109.5 |
C3—C31—C34 | 110.33 (18) | H71A—C71—H71C | 109.5 |
C32—C31—C34 | 108.67 (18) | H71B—C71—H71C | 109.5 |
C33—C31—C34 | 110.15 (19) | C7—C72—H72A | 109.5 |
C31—C32—H32A | 109.5 | C7—C72—H72B | 109.5 |
C31—C32—H32B | 109.5 | H72A—C72—H72B | 109.5 |
H32A—C32—H32B | 109.5 | C7—C72—H72C | 109.5 |
C31—C32—H32C | 109.5 | H72A—C72—H72C | 109.5 |
H32A—C32—H32C | 109.5 | H72B—C72—H72C | 109.5 |
H32B—C32—H32C | 109.5 | C8A—C8—C7 | 114.17 (17) |
C31—C33—H33A | 109.5 | C8A—C8—H8A | 108.7 |
C31—C33—H33B | 109.5 | C7—C8—H8A | 108.7 |
H33A—C33—H33B | 109.5 | C8A—C8—H8B | 108.7 |
C31—C33—H33C | 109.5 | C7—C8—H8B | 108.7 |
H33A—C33—H33C | 109.5 | H8A—C8—H8B | 107.6 |
H33B—C33—H33C | 109.5 | N9—C8A—C4A | 123.13 (19) |
C31—C34—H34A | 109.5 | N9—C8A—C8 | 116.16 (18) |
C31—C34—H34B | 109.5 | C4A—C8A—C8 | 120.71 (18) |
H34A—C34—H34B | 109.5 | C8A—N9—C9A | 114.87 (18) |
C31—C34—H34C | 109.5 | N9—C9A—N1 | 125.79 (19) |
H34A—C34—H34C | 109.5 | N9—C9A—C3A | 127.03 (18) |
H34B—C34—H34C | 109.5 | N1—C9A—C3A | 107.15 (18) |
C9A—N1—C11—C12 | −17.0 (3) | C4—C4A—C5—O5 | 1.7 (3) |
N2—N1—C11—C12 | 161.83 (19) | C8A—C4A—C5—O5 | −177.62 (19) |
C9A—N1—C11—C16 | 164.1 (2) | C4—C4A—C5—C6 | −176.99 (18) |
N2—N1—C11—C16 | −17.1 (3) | C8A—C4A—C5—C6 | 3.7 (3) |
C16—C11—C12—C13 | −0.9 (3) | O5—C5—C6—C7 | 148.82 (19) |
N1—C11—C12—C13 | −179.79 (19) | C4A—C5—C6—C7 | −32.5 (3) |
C11—C12—C13—C14 | 0.1 (3) | C5—C6—C7—C72 | 175.44 (18) |
C12—C13—C14—C15 | 0.6 (3) | C5—C6—C7—C8 | 55.3 (2) |
C13—C14—C15—C16 | −0.6 (3) | C5—C6—C7—C71 | −65.0 (2) |
C14—C15—C16—C11 | −0.2 (3) | C72—C7—C8—C8A | −170.53 (18) |
C12—C11—C16—C15 | 0.9 (3) | C71—C7—C8—C8A | 69.4 (2) |
N1—C11—C16—C15 | 179.86 (18) | C6—C7—C8—C8A | −51.1 (2) |
C9A—N1—N2—C3 | 0.0 (2) | C4—C4A—C8A—N9 | 0.7 (3) |
C11—N1—N2—C3 | −179.07 (17) | C5—C4A—C8A—N9 | −179.98 (18) |
N1—N2—C3—C3A | 0.2 (2) | C4—C4A—C8A—C8 | −179.51 (18) |
N1—N2—C3—C31 | −177.34 (17) | C5—C4A—C8A—C8 | −0.2 (3) |
N2—C3—C31—C32 | −17.7 (3) | C7—C8—C8A—N9 | −154.76 (18) |
C3A—C3—C31—C32 | 165.3 (2) | C7—C8—C8A—C4A | 25.5 (3) |
N2—C3—C31—C33 | 101.8 (2) | C4A—C8A—N9—C9A | 1.4 (3) |
C3A—C3—C31—C33 | −75.2 (3) | C8—C8A—N9—C9A | −178.38 (17) |
N2—C3—C31—C34 | −137.9 (2) | C8A—N9—C9A—N1 | 179.57 (18) |
C3A—C3—C31—C34 | 45.2 (3) | C8A—N9—C9A—C3A | −2.8 (3) |
N2—C3—C3A—C4 | −179.8 (2) | N2—N1—C9A—N9 | 177.88 (18) |
C31—C3—C3A—C4 | −2.6 (4) | C11—N1—C9A—N9 | −3.2 (3) |
N2—C3—C3A—C9A | −0.3 (2) | N2—N1—C9A—C3A | −0.1 (2) |
C31—C3—C3A—C9A | 176.94 (19) | C11—N1—C9A—C3A | 178.75 (19) |
C8A—C4A—C4—C3A | −1.6 (3) | C4—C3A—C9A—N9 | 1.9 (3) |
C5—C4A—C4—C3A | 179.07 (18) | C3—C3A—C9A—N9 | −177.76 (19) |
C9A—C3A—C4—C4A | 0.4 (3) | C4—C3A—C9A—N1 | 179.92 (17) |
C3—C3A—C4—C4A | 180.0 (2) | C3—C3A—C9A—N1 | 0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···N9i | 0.99 | 2.56 | 3.512 (3) | 161 |
Symmetry code: (i) x+1, y, z. |
C19H19N3O | F(000) = 648 |
Mr = 305.37 | Dx = 1.337 Mg m−3 |
Monoclinic, P21/c | Melting point: 533 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7988 (3) Å | Cell parameters from 3477 reflections |
b = 17.0950 (6) Å | θ = 3.0–27.6° |
c = 12.0231 (3) Å | µ = 0.09 mm−1 |
β = 108.8000 (18)° | T = 120 K |
V = 1517.41 (9) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.20 × 0.08 mm |
Nonius KappaCCD diffractometer | 3477 independent reflections |
Radiation source: rotating anode | 2503 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ϕ scans, and ω scans with κ offsets | θmax = 27.6°, θmin = 3.0° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) | h = −9→10 |
Tmin = 0.974, Tmax = 0.993 | k = −21→22 |
21719 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3887P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3477 reflections | Δρmax = 0.28 e Å−3 |
212 parameters | Δρmin = −0.38 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.027 (3) |
C19H19N3O | V = 1517.41 (9) Å3 |
Mr = 305.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7988 (3) Å | µ = 0.09 mm−1 |
b = 17.0950 (6) Å | T = 120 K |
c = 12.0231 (3) Å | 0.40 × 0.20 × 0.08 mm |
β = 108.8000 (18)° |
Nonius KappaCCD diffractometer | 3477 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) | 2503 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.993 | Rint = 0.060 |
21719 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.28 e Å−3 |
3477 reflections | Δρmin = −0.38 e Å−3 |
212 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.20587 (18) | 0.84734 (8) | 0.64251 (12) | 0.0212 (3) | |
C2 | 0.2151 (2) | 0.92440 (9) | 0.62466 (14) | 0.0208 (4) | |
C3 | 0.3362 (2) | 0.94346 (10) | 0.56381 (14) | 0.0223 (4) | |
C3A | 0.4062 (2) | 0.87260 (9) | 0.54327 (14) | 0.0204 (4) | |
N4 | 0.52405 (18) | 0.85190 (8) | 0.48631 (12) | 0.0211 (3) | |
C5 | 0.5692 (2) | 0.77709 (9) | 0.48729 (14) | 0.0201 (4) | |
C5A | 0.4993 (2) | 0.71800 (9) | 0.54723 (13) | 0.0195 (4) | |
C6 | 0.5815 (2) | 0.63875 (9) | 0.57918 (14) | 0.0217 (4) | |
O6 | 0.72358 (17) | 0.61996 (7) | 0.56513 (11) | 0.0311 (3) | |
C7 | 0.4900 (2) | 0.58442 (9) | 0.64206 (15) | 0.0244 (4) | |
C8 | 0.2888 (2) | 0.59886 (9) | 0.61866 (14) | 0.0223 (4) | |
C9 | 0.2671 (2) | 0.68471 (9) | 0.64919 (15) | 0.0223 (4) | |
C9A | 0.3664 (2) | 0.73904 (9) | 0.59422 (13) | 0.0189 (4) | |
N9B | 0.32353 (18) | 0.81598 (7) | 0.59205 (11) | 0.0192 (3) | |
C21 | 0.0981 (2) | 0.97774 (9) | 0.66769 (15) | 0.0249 (4) | |
C51 | 0.6914 (2) | 0.75871 (10) | 0.41790 (14) | 0.0208 (4) | |
C52 | 0.8311 (2) | 0.81025 (10) | 0.42116 (15) | 0.0239 (4) | |
C53 | 0.9428 (2) | 0.79628 (10) | 0.35357 (15) | 0.0271 (4) | |
C54 | 0.9150 (2) | 0.73119 (10) | 0.28171 (15) | 0.0273 (4) | |
C55 | 0.7744 (2) | 0.68033 (10) | 0.27692 (14) | 0.0253 (4) | |
C56 | 0.6630 (2) | 0.69345 (10) | 0.34422 (14) | 0.0232 (4) | |
C81 | 0.2181 (3) | 0.54709 (10) | 0.69784 (16) | 0.0298 (4) | |
C82 | 0.1801 (2) | 0.58207 (10) | 0.49040 (15) | 0.0283 (4) | |
H21A | 0.0151 | 1.0060 | 0.6010 | 0.037* | |
H21B | 0.1745 | 1.0153 | 0.7236 | 0.037* | |
H91C | 0.0282 | 0.9469 | 0.7067 | 0.037* | |
H3 | 0.3639 | 0.9940 | 0.5416 | 0.027* | |
H52 | 0.8503 | 0.8553 | 0.4699 | 0.029* | |
H53 | 1.0384 | 0.8315 | 0.3568 | 0.032* | |
H54 | 0.9917 | 0.7214 | 0.2359 | 0.033* | |
H55 | 0.7544 | 0.6359 | 0.2268 | 0.030* | |
H56 | 0.5672 | 0.6581 | 0.3403 | 0.028* | |
H7A | 0.5530 | 0.5890 | 0.7276 | 0.029* | |
H7B | 0.5060 | 0.5300 | 0.6190 | 0.029* | |
H81A | 0.2314 | 0.4920 | 0.6798 | 0.045* | |
H81B | 0.0899 | 0.5587 | 0.6843 | 0.045* | |
H81C | 0.2875 | 0.5574 | 0.7803 | 0.045* | |
H82A | 0.2232 | 0.6159 | 0.4391 | 0.042* | |
H82B | 0.0515 | 0.5924 | 0.4774 | 0.042* | |
H82C | 0.1961 | 0.5272 | 0.4725 | 0.042* | |
H9A | 0.1369 | 0.6985 | 0.6220 | 0.027* | |
H9B | 0.3132 | 0.6913 | 0.7356 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0201 (7) | 0.0215 (7) | 0.0249 (7) | 0.0016 (6) | 0.0112 (6) | −0.0020 (6) |
C2 | 0.0203 (8) | 0.0194 (8) | 0.0223 (8) | 0.0005 (6) | 0.0061 (7) | −0.0002 (6) |
C3 | 0.0239 (9) | 0.0177 (8) | 0.0274 (8) | 0.0014 (6) | 0.0113 (7) | 0.0018 (7) |
C3A | 0.0200 (8) | 0.0209 (8) | 0.0217 (8) | −0.0016 (7) | 0.0086 (7) | 0.0019 (6) |
N4 | 0.0213 (7) | 0.0198 (7) | 0.0244 (7) | 0.0018 (6) | 0.0106 (6) | 0.0012 (6) |
C5 | 0.0189 (8) | 0.0214 (8) | 0.0197 (8) | −0.0006 (6) | 0.0058 (7) | 0.0000 (6) |
C5A | 0.0190 (8) | 0.0196 (8) | 0.0202 (8) | −0.0013 (6) | 0.0069 (7) | −0.0017 (6) |
C6 | 0.0224 (9) | 0.0210 (8) | 0.0219 (8) | 0.0005 (7) | 0.0072 (7) | −0.0030 (7) |
O6 | 0.0319 (7) | 0.0291 (7) | 0.0385 (7) | 0.0095 (6) | 0.0202 (6) | 0.0059 (5) |
C7 | 0.0272 (9) | 0.0196 (8) | 0.0273 (9) | 0.0013 (7) | 0.0100 (7) | 0.0034 (7) |
C8 | 0.0246 (9) | 0.0169 (8) | 0.0268 (9) | −0.0008 (7) | 0.0102 (7) | 0.0004 (7) |
C9 | 0.0247 (9) | 0.0196 (8) | 0.0259 (8) | −0.0028 (7) | 0.0126 (7) | −0.0017 (7) |
C9A | 0.0199 (8) | 0.0162 (8) | 0.0203 (8) | −0.0011 (6) | 0.0059 (7) | −0.0003 (6) |
N9B | 0.0185 (7) | 0.0183 (7) | 0.0230 (7) | −0.0004 (5) | 0.0101 (6) | −0.0004 (5) |
C21 | 0.0260 (9) | 0.0220 (8) | 0.0294 (9) | 0.0014 (7) | 0.0129 (8) | −0.0012 (7) |
C51 | 0.0192 (9) | 0.0223 (8) | 0.0214 (8) | 0.0029 (7) | 0.0070 (7) | 0.0031 (6) |
C52 | 0.0242 (9) | 0.0225 (9) | 0.0267 (9) | −0.0001 (7) | 0.0104 (7) | −0.0006 (7) |
C53 | 0.0210 (9) | 0.0297 (9) | 0.0336 (10) | −0.0003 (7) | 0.0132 (8) | 0.0039 (8) |
C54 | 0.0286 (10) | 0.0302 (10) | 0.0284 (9) | 0.0073 (8) | 0.0163 (8) | 0.0077 (7) |
C55 | 0.0304 (10) | 0.0242 (9) | 0.0222 (8) | 0.0055 (7) | 0.0100 (8) | 0.0013 (7) |
C56 | 0.0221 (9) | 0.0239 (9) | 0.0238 (8) | 0.0007 (7) | 0.0078 (7) | 0.0028 (7) |
C81 | 0.0343 (10) | 0.0232 (9) | 0.0349 (10) | −0.0028 (7) | 0.0155 (8) | 0.0039 (7) |
C82 | 0.0299 (10) | 0.0245 (9) | 0.0292 (9) | −0.0051 (7) | 0.0076 (8) | −0.0029 (7) |
N1—C2 | 1.340 (2) | C52—H52 | 0.95 |
C2—C3 | 1.407 (2) | C53—C54 | 1.382 (3) |
C3—C3A | 1.383 (2) | C53—H53 | 0.95 |
C3A—N4 | 1.358 (2) | C54—C55 | 1.385 (3) |
N4—C5 | 1.325 (2) | C54—H54 | 0.95 |
C5—C5A | 1.446 (2) | C55—C56 | 1.383 (2) |
C5A—C6 | 1.495 (2) | C55—H55 | 0.95 |
C6—C7 | 1.513 (2) | C56—H56 | 0.95 |
C8—C9 | 1.535 (2) | C6—O6 | 1.217 (2) |
C9—C9A | 1.493 (2) | C7—C8 | 1.523 (2) |
C9A—N9B | 1.355 (2) | C7—H7A | 0.99 |
N9B—N1 | 1.3625 (18) | C7—H7B | 0.99 |
C3A—N9B | 1.393 (2) | C8—C81 | 1.527 (2) |
C5A—C9A | 1.379 (2) | C8—C82 | 1.528 (2) |
C2—C21 | 1.495 (2) | C81—H81A | 0.98 |
C21—H21A | 0.98 | C81—H81B | 0.98 |
C21—H21B | 0.98 | C81—H81C | 0.98 |
C21—H91C | 0.98 | C82—H82A | 0.98 |
C3—H3 | 0.95 | C82—H82B | 0.98 |
C5—C51 | 1.488 (2) | C82—H82C | 0.98 |
C51—C52 | 1.392 (2) | C9—H9A | 0.99 |
C51—C56 | 1.397 (2) | C9—H9B | 0.99 |
C52—C53 | 1.390 (2) | ||
C2—N1—N9B | 103.69 (12) | C5—C5A—C6 | 124.20 (14) |
N1—C2—C3 | 113.00 (14) | O6—C6—C5A | 122.53 (15) |
N1—C2—C21 | 118.27 (14) | O6—C6—C7 | 120.29 (15) |
C3—C2—C21 | 128.72 (15) | C5A—C6—C7 | 116.90 (14) |
C2—C21—H21A | 109.5 | C6—C7—C8 | 115.59 (14) |
C2—C21—H21B | 109.5 | C6—C7—H7A | 108.4 |
H21A—C21—H21B | 109.5 | C8—C7—H7A | 108.4 |
C2—C21—H91C | 109.5 | C6—C7—H7B | 108.4 |
H21A—C21—H91C | 109.5 | C8—C7—H7B | 108.4 |
H21B—C21—H91C | 109.5 | H7A—C7—H7B | 107.4 |
C3A—C3—C2 | 105.04 (14) | C7—C8—C81 | 110.40 (14) |
C3A—C3—H3 | 127.5 | C7—C8—C82 | 111.05 (14) |
C2—C3—H3 | 127.5 | C81—C8—C82 | 109.03 (14) |
N4—C3A—C3 | 133.49 (15) | C7—C8—C9 | 107.28 (13) |
N4—C3A—N9B | 120.76 (14) | C81—C8—C9 | 108.38 (13) |
C3—C3A—N9B | 105.71 (13) | C82—C8—C9 | 110.66 (14) |
C5—N4—C3A | 117.91 (13) | C8—C81—H81A | 109.5 |
N4—C5—C5A | 122.46 (14) | C8—C81—H81B | 109.5 |
N4—C5—C51 | 114.53 (14) | H81A—C81—H81B | 109.5 |
C5A—C5—C51 | 122.97 (14) | C8—C81—H81C | 109.5 |
C52—C51—C56 | 119.07 (15) | H81A—C81—H81C | 109.5 |
C52—C51—C5 | 119.17 (15) | H81B—C81—H81C | 109.5 |
C56—C51—C5 | 121.66 (14) | C8—C82—H82A | 109.5 |
C53—C52—C51 | 120.47 (16) | C8—C82—H82B | 109.5 |
C53—C52—H52 | 119.8 | H82A—C82—H82B | 109.5 |
C51—C52—H52 | 119.8 | C8—C82—H82C | 109.5 |
C54—C53—C52 | 120.12 (16) | H82A—C82—H82C | 109.5 |
C54—C53—H53 | 119.9 | H82B—C82—H82C | 109.5 |
C52—C53—H53 | 119.9 | C9A—C9—C8 | 112.09 (13) |
C53—C54—C55 | 119.61 (15) | C9A—C9—H9A | 109.2 |
C53—C54—H54 | 120.2 | C8—C9—H9A | 109.2 |
C55—C54—H54 | 120.2 | C9A—C9—H9B | 109.2 |
C56—C55—C54 | 120.76 (16) | C8—C9—H9B | 109.2 |
C56—C55—H55 | 119.6 | H9A—C9—H9B | 107.9 |
C54—C55—H55 | 119.6 | N9B—C9A—C5A | 117.30 (14) |
C55—C56—C51 | 119.95 (16) | N9B—C9A—C9 | 116.90 (13) |
C55—C56—H56 | 120.0 | C5A—C9A—C9 | 125.79 (14) |
C51—C56—H56 | 120.0 | C9A—N9B—N1 | 124.80 (13) |
C9A—C5A—C5 | 118.42 (14) | C9A—N9B—C3A | 122.53 (13) |
C9A—C5A—C6 | 116.60 (14) | N1—N9B—C3A | 112.55 (13) |
N9B—N1—C2—C3 | −0.02 (18) | C5—C5A—C6—O6 | 6.0 (2) |
N9B—N1—C2—C21 | 178.86 (14) | C9A—C5A—C6—C7 | 10.2 (2) |
N1—C2—C3—C3A | −0.11 (19) | C5—C5A—C6—C7 | 179.90 (15) |
C21—C2—C3—C3A | −178.85 (16) | O6—C6—C7—C8 | −159.59 (15) |
C2—C3—C3A—N4 | 177.79 (17) | C5A—C6—C7—C8 | 26.4 (2) |
C2—C3—C3A—N9B | 0.18 (18) | C6—C7—C8—C81 | −173.26 (14) |
C3—C3A—N4—C5 | 177.12 (18) | C6—C7—C8—C82 | 65.68 (18) |
N9B—C3A—N4—C5 | −5.6 (2) | C6—C7—C8—C9 | −55.35 (18) |
C3A—N4—C5—C5A | −0.7 (2) | C7—C8—C9—C9A | 49.05 (18) |
C3A—N4—C5—C51 | 177.04 (14) | C81—C8—C9—C9A | 168.26 (14) |
N4—C5—C51—C52 | 39.9 (2) | C82—C8—C9—C9A | −72.23 (18) |
C5A—C5—C51—C52 | −142.40 (16) | C5—C5A—C9A—N9B | −6.9 (2) |
N4—C5—C51—C56 | −136.28 (16) | C6—C5A—C9A—N9B | 163.46 (14) |
C5A—C5—C51—C56 | 41.4 (2) | C5—C5A—C9A—C9 | 174.13 (15) |
C56—C51—C52—C53 | −1.1 (2) | C6—C5A—C9A—C9 | −15.5 (2) |
C5—C51—C52—C53 | −177.37 (15) | C8—C9—C9A—N9B | 165.06 (14) |
C51—C52—C53—C54 | 0.5 (3) | C8—C9—C9A—C5A | −16.0 (2) |
C52—C53—C54—C55 | 0.4 (3) | C5A—C9A—N9B—N1 | −174.75 (14) |
C53—C54—C55—C56 | −0.7 (3) | C9—C9A—N9B—N1 | 4.3 (2) |
C54—C55—C56—C51 | 0.1 (3) | C5A—C9A—N9B—C3A | 1.0 (2) |
C52—C51—C56—C55 | 0.8 (2) | C9—C9A—N9B—C3A | −179.96 (14) |
C5—C51—C56—C55 | 176.97 (15) | C2—N1—N9B—C9A | 176.24 (14) |
N4—C5—C5A—C9A | 7.1 (2) | C2—N1—N9B—C3A | 0.14 (17) |
C51—C5—C5A—C9A | −170.43 (15) | N4—C3A—N9B—C9A | 5.6 (2) |
N4—C5—C5A—C6 | −162.50 (15) | C3—C3A—N9B—C9A | −176.41 (14) |
C51—C5—C5A—C6 | 20.0 (2) | N4—C3A—N9B—N1 | −178.19 (14) |
C9A—C5A—C6—O6 | −163.75 (16) | C3—C3A—N9B—N1 | −0.21 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C54—H54···N1i | 0.95 | 2.58 | 3.492 (2) | 162 |
Symmetry code: (i) x+1, −y+3/2, z−1/2. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C22H25N3O | C19H19N3O |
Mr | 347.45 | 305.37 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 6.1514 (2), 10.3171 (5), 15.7351 (8) | 7.7988 (3), 17.0950 (6), 12.0231 (3) |
α, β, γ (°) | 71.722 (2), 85.780 (3), 85.306 (3) | 90, 108.8000 (18), 90 |
V (Å3) | 943.84 (7) | 1517.41 (9) |
Z | 2 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.08 | 0.09 |
Crystal size (mm) | 0.18 × 0.08 × 0.08 | 0.40 × 0.20 × 0.08 |
Data collection | ||
Diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995, 1997) | Multi-scan (SORTAV; Blessing, 1995, 1997) |
Tmin, Tmax | 0.964, 0.994 | 0.974, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21211, 4348, 2666 | 21719, 3477, 2503 |
Rint | 0.105 | 0.060 |
(sin θ/λ)max (Å−1) | 0.652 | 0.651 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.160, 1.02 | 0.051, 0.134, 1.03 |
No. of reflections | 4348 | 3477 |
No. of parameters | 240 | 212 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.25 | 0.28, −0.38 |
Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
N1—N2 | 1.384 (2) | C7—C8 | 1.529 (3) |
N2—C3 | 1.320 (3) | C8—C8A | 1.500 (3) |
C3—C3A | 1.438 (3) | C8A—N9 | 1.338 (3) |
C3A—C4 | 1.386 (3) | N9—C9A | 1.340 (3) |
C4—C4A | 1.386 (3) | C9A—N1 | 1.368 (3) |
C4A—C5 | 1.482 (3) | C3A—C9A | 1.408 (3) |
C5—C6 | 1.500 (3) | C4A—C8A | 1.416 (3) |
C6—C7 | 1.532 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···N9i | 0.99 | 2.56 | 3.512 (3) | 161 |
Symmetry code: (i) x+1, y, z. |
N1—C2 | 1.340 (2) | C8—C9 | 1.535 (2) |
C2—C3 | 1.407 (2) | C9—C9A | 1.493 (2) |
C3—C3A | 1.383 (2) | C9A—N9B | 1.355 (2) |
C3A—N4 | 1.358 (2) | N9B—N1 | 1.3625 (18) |
N4—C5 | 1.325 (2) | C3A—N9B | 1.393 (2) |
C5—C5A | 1.446 (2) | C5A—C9A | 1.379 (2) |
C5A—C6 | 1.495 (2) | C7—C8 | 1.523 (2) |
C6—C7 | 1.513 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C54—H54···N1i | 0.95 | 2.58 | 3.492 (2) | 162 |
Symmetry code: (i) x+1, −y+3/2, z−1/2. |
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) for financial support. JM and JQ thank COLCIENCIAS and the Universidad de Valle for financial support.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–37. CrossRef CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151–o153. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, o157–o159. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Glidewell, C. & Lloyd, D. M. G. (1984). Tetrahedron, 40, 4455–4472. CrossRef CAS Web of Science Google Scholar
Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265–o269. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Quiroga, J. & Mejía, D. (2001). Acta Cryst. C57, 1356–1358. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Program for Structure Solution. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Quiroga, J., Hormaza, A., Insuasty, B., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575–578. CrossRef CAS Google Scholar
Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947–6953. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
As part of a program for the synthesis of fused pyrazolo derivatives (Quiroga, Hormaza et al., 1998; Quiroga, Mejía et al., 2001; Cannon et al., 2001a,b; Low et al., 2001) we have been investigating three-component cyclocondensations induced by microwave irradiation. We report here the molecular and supramolecular structures of two compounds, (I) and (II), obtained from condensation reactions between a substituted aminopyrazole, 5,5-dimethylcyclohexane-1,3-dione (dimedone), and a simple carbonyl compound or its equivalent. Thus, from the reaction involving 5-amino-3-tert-butyl-1-phenyl pyrazole and formaldehyde, we have now obtained 3-tert-butyl-7,7-dimethyl-1-phenyl-5,6,7,8- tetrahydroimidazo[3,4-b]quinolin-5-one (I), where a single formaldehyde unit has been utilized in the construction of the fused ring system. When two such units are incorporated, the spiro compound (III) results (Low et al., 2004). When 5-amino-3-methyl-1H-pyrazole is used in combination with trimethyl orthobenzoate, the product is (II), analogous to the compound, (IV), formed from this pyrazole in the presence of formaldehyde (Low et al., 2004).
In both (I) (Fig. 1) and (II) (Fig. 2), the heterobicyclic portions of the fused ring systems are planar, but the carbocyclic rings are puckered. The ring-puckering parameters (Cremer & Pople, 1975) for (I) [θ = 127.4 (3)° and ϕ = 353.8 (3) for the atom sequence C4A—C5–C8—C8A] and (II) [θ = 65.2 (2)° and ϕ = 174.3 (3)° for the atom sequence C5A—C6–C9—C9A] indicate envelope conformations for both these rings (Evans & Boeyens, 1989), consistent with the enforced coplanarity of atoms C5, C4A, C8A and C8 in (I), and of atoms C6, C5A, C9A and C9 in (II).
In (I), the C3A—C4 and C4—C4A bonds are of very similar length (Table 1), as are C8A—N9 and N9—C9A, consistent with aromatic delocalization within the central ring of (I). The formally single C3A—N4 and C9A—N9B bonds in (II) (Table 3) are only slightly longer than the formal double bond N1—N2, although each is significantly longer than the cross-ring C3A—N9B bond, also formally a single bond. The lengths of the C2—C3 and C3—C3A bonds, formally single and double, respectively, differ by less than 0.03 Å. These observations suggest than this heterocyclic system exhibits a degree of naphthalene-type delocalization, involving a peripheral system of ten π electrons but with only modest participation by the cross-ring bond (Glidewell & Lloyd, 1984).
In each of (I) and (II), the molecules are linked weakly into chains by means of a single C—H···N hydrogen bond (Tables 2 and 4); the structure of neither compound exhibits any C—H···π(arene) hydrogen bonds or aromatic π–π stacking interactions. In (I), atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H6B, to pyridine ring atom N9 in the molecule at (1 + x, y, z), so generating by translation a C(6) chain (Bernstein et al., 1995) running parallel to the [100] direction (Fig. 3). In (II), aryl atom C54 in the molecule at (x, y, z) acts as a hydrogen-bond donor to pyrazole ring atom N1 in the molecule at (1 + x, 1.5 − y, −0.5 + z), so producing a zigzag C(10) chain running parallel to the [20–1] direction and generated by the c-glide plane at y = 0.75 (Fig. 4).
The constitutions of (II) and (IV) differ only by the presence of the phenyl substituent in (II); however, this difference profoundly influences the differences in the supramolecular structures of these compounds. In (IV), the C—H bond that is replaced by C–phenyl in (II) acts as the sole hydrogen-bond donor, forming, by means of paired C—H···N hydrogen bonds, a centrosymmetric R22(6) dimer. Dimers of this type are then linked into chains by a single π–π stacking interaction (Low et al., 2004).