organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

3-tert-Butyl-7,7-di­methyl-1-phenyl-5,6,7,8-tetra­hydro­imidazo­[3,4-b]­quinolin-5-one and 2,8,8-tri­methyl-5-phenyl-6,7,8,9-tetra­hydroimidazo­[2,3-a]­quinolin-6-one: chains generated by C—H⋯N hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, ­Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 5 May 2004; accepted 10 May 2004; online 22 June 2004)

In both 3-tert-butyl-7,7-di­methyl-1-phenyl-5,6,7,8-tetra­hydro­imidazo­[3,4-b]­quinolin-5-one, C22H25N3O, (I[link]), and 2,8,8-tri­methyl-5-phenyl-6,7,8,9-tetra­hydro­imidazo­[2,3-a]­quinolin-6-one, C19H19N3O, (II[link]), the heterobicyclic portions of the mol­ecules are planar, with naphthalene-type delocalization in (II[link]), while the carbocyclic ring in each compound adopts an envelope conformation. In both (I[link]) and (II[link]), the mol­ecules are linked weakly into chains by a single C—H⋯N hydrogen bond.

Comment

As part of a program for the synthesis of fused pyrazole derivatives (Quiroga et al., 1998[Quiroga, J., Horm­aza, A., Insuasty, B., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575-578.], 2001[Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947-6953.]; Cannon et al., 2001a[Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151-o153.],b[Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, o157-o159.]; Low et al., 2001[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Quiroga, J. & Mejía, D. (2001). Acta Cryst. C57, 1356-1358.]), we have been investigating three-component cyclo­condensation reactions induced by microwave irradiation. We report here the molecular and supramolecular structures of two compounds, (I[link]) and (II[link]), obtained from condensation reactions between a substituted amino­pyrazole, 5,5-di­methyl­cyclo­hexane-1,3-dione (dimedone) and a simple carbonyl compound or its equivalent. Thus, from the reaction involving 5-amino-3-tert-butyl-1-phenylpyrazole and form­aldehyde, we have now obtained 3-tert-butyl-7,7-di­methyl-1-phenyl-5,6,7,8-tetra­hydro­imidazo­[3,4-b]­quinolin-5-one, (I[link]), in which a single form­aldehyde unit has been utilized in the construction of the fused ring system. When two such units are incorporated, spiro compound (III[link]) results (Low et al., 2004[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265-o269.]). When 5-amino-3-methyl-1H-pyrazole is used in combination with orthobenzoic acid trimethyl ester, the product is (II[link]), analogous to the compound, (IV[link]), formed from this pyrazole in the presence of form­aldehyde (Low et al., 2004[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265-o269.]).

[Scheme 1]

In both (I[link]) (Fig. 1[link]) and (II[link]) (Fig. 2[link]), the heterobicyclic portions of the fused ring systems are planar, but the carbocyclic rings are puckered. The ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for (I[link]) [θ = 127.4 (3)° and φ = 353.8 (3)° for the atom sequence C4a—C5—C6—C7—C8—C8a] and (II[link]) [θ = 65.2 (2)° and φ = 174.3 (3)° for the atom sequence C5a—C6—C7—C8—C9—C9a] indicate envelope conformations for both these rings (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]), consistent with the enforced coplanarity of atoms C5, C4a, C8a and C8 in (I[link]), and of atoms C6, C5a, C9a and C9 in (II[link]).

In (I[link]), the C3a—C4 and C4—C4a bonds are of very similar length (Table 1[link]), as are the C8a—N9 and N9—C9a bonds, consistent with aromatic delocalization within the central ring of (I[link]). The formally single C3a—N4 and C9a—N9b bonds in (II[link]) (Table 3[link]) are only slightly longer than the formal double bond N1=C2, although each is significantly longer than the cross-ring C3a—N9b bond, also formally a single bond. The lengths of the C2—C3 and C3=C3a bonds, formally single and double, respectively, differ by less than 0.03 Å. These observations suggest that this heterocyclic system exhibits a degree of naphthalene-type delocalization, involving a peripheral system of ten π electrons but with only modest participation by the cross-ring bond (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. M. G. (1984). Tetrahedron, 40, 4455-4472.]).

In each of (I[link]) and (II[link]), the mol­ecules are linked weakly into chains by means of a single C—H⋯N hydrogen bond (Tables 2[link] and 4[link]); the structure of neither compound exhibits any C—H⋯π(arene) hydrogen bonds or aromatic ππ stacking interactions. In (I[link]), atom C6 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via atom H6B, to pyridine ring atom N9 in the mol­ecule at (1 + x, y, z), so generating by translation a C(6) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [100] direction (Fig. 3[link]). In (II[link]), aryl atom C54 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to pyrazole-ring atom N1 in the mol­ecule at (1 + x, [3 \over 2] − y, −[1 \over 2] + z), so producing a zigzag C(10) chain running parallel to the [20[\overline 1]] direction and generated by the c-glide plane at y = [3 \over 4] (Fig. 4[link]).

The constitutions of (II[link]) and (IV[link]) differ only by the presence of the phenyl substituent in (II[link]); however, this difference profoundly influences the differences in the supramolecular structures of these compounds. In (IV[link]), the C—H bond that is replaced by the C–phenyl bond in (II[link]) acts as the sole hydrogen-bond donor, forming, by means of paired C—H⋯N hydrogen bonds, a centrosymmetric R22(6) dimer. Dimers of this type are then linked into chains by a single ππ stacking interaction (Low et al., 2004[Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265-o269.]).

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of a C(6) chain along [100]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (−1 + x, y, z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of (II[link]), showing the formation of a C(10) chain along [20[\overline 1]]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, [3 \over 2] − y, −[1 \over 2] + z) and (−1 + x, [3 \over 2] − y, [1 \over 2] + z), respectively.

Experimental

For the synthesis of (I[link]), a mixture of 5-amino-3-tert-butyl-1-phenyl­pyrazole (1 mmol), dimedone (1 mmol) and form­aldehyde (3 mmol) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 4 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (I[link]), was isolated by column chromatography on silica gel, using CHCl3 as eluant, and crystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction (m.p. 413 K; yield 41%). Analysis found: C 75.5, H 7.3, N 12.1%; C22H25N3O requires: C 76.0, H 7.3, N 12.1%. For the synthesis of (II[link]), an equimolar mixture of 5-amino-3-methyl-1H-pyrazole, dimedone and orthobenzoic acid trimethyl ester (1 mmol of each) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 2 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (II[link]), was crystallized from ethanol, producing crystals suitable for single-crystal X-ray diffraction (m.p. 533 K; yield 55%). MS EI (70 eV) m/z (%): 306 (23), 305 (100, M+), 304 (60), 291 (13), 290 (54), 250 (14), 249 (73), 248 (14), 220 (13), 153 (11), 127 (16), 126 (10), 77 (29), 66 (10), 55 (10), 53 (16), 52 (13), 351 (17), 42 (20), 41 (34), 39 (35).

Compound (I)[link]

Crystal data
  • C22H25N3O

  • Mr = 347.45

  • Triclinic, [P\overline 1]

  • a = 6.1514 (2) Å

  • b = 10.3171 (5) Å

  • c = 15.7351 (8) Å

  • α = 71.722 (2)°

  • β = 85.780 (3)°

  • γ = 85.306 (3)°

  • V = 943.84 (7) Å3

  • Z = 2

  • Dx = 1.223 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4348 reflections

  • θ = 3.3–27.6°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.18 × 0.08 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.964, Tmax = 0.994

  • 21 211 measured reflections

  • 4348 independent reflections

  • 2666 reflections with I > 2σ(I)

  • Rint = 0.105

  • θmax = 27.6°

  • h = −7 → 8

  • k = −13 → 13

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.02

  • 4348 reflections

  • 240 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0633P)2 + 0.3463P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected interatomic distances (Å) for (I)[link]

N1—N2 1.384 (2)
N2—C3 1.320 (3)
C3—C3a 1.438 (3)
C3a—C4 1.386 (3)
C4—C4a 1.386 (3)
C4a—C5 1.482 (3)
C5—C6 1.500 (3)
C6—C7 1.532 (3)
C7—C8 1.529 (3)
C8—C8a 1.500 (3)
C8a—N9 1.338 (3)
N9—C9a 1.340 (3)
C9a—N1 1.368 (3)
C3a—C9a 1.408 (3)
C4a—C8a 1.416 (3)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯a D—H H⋯A DA D—H⋯A
C6—H6B⋯N9i 0.99 2.56 3.512 (3) 161
Symmetry code: (i) 1+x,y,z.

Compound (II)[link]

Crystal data
  • C19H19N3O

  • Mr = 305.37

  • Monoclinic, P21/c

  • a = 7.7988 (3) Å

  • b = 17.0950 (6) Å

  • c = 12.0231 (3) Å

  • β = 108.8000 (18)°

  • V = 1517.41 (9) Å3

  • Z = 4

  • Dx = 1.337 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3477 reflections

  • θ = 3.0–27.6°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.40 × 0.20 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.974, Tmax = 0.993

  • 21 719 measured reflections

  • 3477 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.060

  • θmax = 27.6°

  • h = −9 → 10

  • k = −21 → 22

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.134

  • S = 1.03

  • 3477 reflections

  • 212 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3887P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.027 (3)

Table 3
Selected interatomic distances (Å) for (II)[link]

N1—C2 1.340 (2)
C2—C3 1.407 (2)
C3—C3a 1.383 (2)
C3a—N4 1.358 (2)
N4—C5 1.325 (2)
C5—C5a 1.446 (2)
C5a—C6 1.495 (2)
C6—C7 1.513 (2)
C8—C9 1.535 (2)
C9—C9a 1.493 (2)
C9a—N9b 1.355 (2)
N9b—N1 1.3625 (18)
C3a—N9b 1.393 (2)
C5a—C9a 1.379 (2)
C7—C8 1.523 (2)

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C54—H54⋯N1ii 0.95 2.58 3.492 (2) 162
Symmetry code: (ii) [1+x,{\script{3\over 2}}-y,z-{\script{1\over 2}}].

Crystals of (I[link]) are triclinic; space group P[\overline 1] was selected and confirmed by the successful structure analysis. For (II[link]), space group P21/c was uniquely determined from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C) [1.5Ueq(C) for the methyl groups].

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Program for Structure Solution. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As part of a program for the synthesis of fused pyrazolo derivatives (Quiroga, Hormaza et al., 1998; Quiroga, Mejía et al., 2001; Cannon et al., 2001a,b; Low et al., 2001) we have been investigating three-component cyclocondensations induced by microwave irradiation. We report here the molecular and supramolecular structures of two compounds, (I) and (II), obtained from condensation reactions between a substituted aminopyrazole, 5,5-dimethylcyclohexane-1,3-dione (dimedone), and a simple carbonyl compound or its equivalent. Thus, from the reaction involving 5-amino-3-tert-butyl-1-phenyl pyrazole and formaldehyde, we have now obtained 3-tert-butyl-7,7-dimethyl-1-phenyl-5,6,7,8- tetrahydroimidazo[3,4-b]quinolin-5-one (I), where a single formaldehyde unit has been utilized in the construction of the fused ring system. When two such units are incorporated, the spiro compound (III) results (Low et al., 2004). When 5-amino-3-methyl-1H-pyrazole is used in combination with trimethyl orthobenzoate, the product is (II), analogous to the compound, (IV), formed from this pyrazole in the presence of formaldehyde (Low et al., 2004).

In both (I) (Fig. 1) and (II) (Fig. 2), the heterobicyclic portions of the fused ring systems are planar, but the carbocyclic rings are puckered. The ring-puckering parameters (Cremer & Pople, 1975) for (I) [θ = 127.4 (3)° and ϕ = 353.8 (3) for the atom sequence C4A—C5–C8—C8A] and (II) [θ = 65.2 (2)° and ϕ = 174.3 (3)° for the atom sequence C5A—C6–C9—C9A] indicate envelope conformations for both these rings (Evans & Boeyens, 1989), consistent with the enforced coplanarity of atoms C5, C4A, C8A and C8 in (I), and of atoms C6, C5A, C9A and C9 in (II).

In (I), the C3A—C4 and C4—C4A bonds are of very similar length (Table 1), as are C8A—N9 and N9—C9A, consistent with aromatic delocalization within the central ring of (I). The formally single C3A—N4 and C9A—N9B bonds in (II) (Table 3) are only slightly longer than the formal double bond N1—N2, although each is significantly longer than the cross-ring C3A—N9B bond, also formally a single bond. The lengths of the C2—C3 and C3—C3A bonds, formally single and double, respectively, differ by less than 0.03 Å. These observations suggest than this heterocyclic system exhibits a degree of naphthalene-type delocalization, involving a peripheral system of ten π electrons but with only modest participation by the cross-ring bond (Glidewell & Lloyd, 1984).

In each of (I) and (II), the molecules are linked weakly into chains by means of a single C—H···N hydrogen bond (Tables 2 and 4); the structure of neither compound exhibits any C—H···π(arene) hydrogen bonds or aromatic ππ stacking interactions. In (I), atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H6B, to pyridine ring atom N9 in the molecule at (1 + x, y, z), so generating by translation a C(6) chain (Bernstein et al., 1995) running parallel to the [100] direction (Fig. 3). In (II), aryl atom C54 in the molecule at (x, y, z) acts as a hydrogen-bond donor to pyrazole ring atom N1 in the molecule at (1 + x, 1.5 − y, −0.5 + z), so producing a zigzag C(10) chain running parallel to the [20–1] direction and generated by the c-glide plane at y = 0.75 (Fig. 4).

The constitutions of (II) and (IV) differ only by the presence of the phenyl substituent in (II); however, this difference profoundly influences the differences in the supramolecular structures of these compounds. In (IV), the C—H bond that is replaced by C–phenyl in (II) acts as the sole hydrogen-bond donor, forming, by means of paired C—H···N hydrogen bonds, a centrosymmetric R22(6) dimer. Dimers of this type are then linked into chains by a single ππ stacking interaction (Low et al., 2004).

Experimental top

For the synthesis of (I), a mixture of 5-amino-3-tert-butyl-1-phenylpyrazole (1 mmol), dimedone (1 mmol) and formaldehyde (3 mmol) was placed into Pyrex-glass open vessels and irradiated in a domestic microwave oven for 4 min (at 600 W). The reaction mixture was extracted with ethanol, and the product, (I), was isolated by column chromatography on silica gel, using CHCl3 as eluent, and crystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction. M.p. 413 K; yield 41%. Analysis found: C 75.5, H 7.3, N 12.1%; C22H25N3O requires: C 76.0, H 7.3, N 12.1%. For the synthesis of (II), an equimolar mixture of 5-amino-3-methyl-1H-pyrazole, dimedone and trimethyl orthobenzoate (1 mmol of each) was placed into Pyrex-glass open vessels and irradiated in a domestic microwave oven for 2 min (at 600 W). The reaction mixture was extracted with ethanol, and the product, (II), was crystallized from ethanol, producing crystals suitable for single-crystal X-ray diffraction. M.p. 533 K; yield 55%. MS EI (70 eV) m/z (%), 306 (23), 305 (100, M+), 304 (60), 291 (13), 290 (54), 250 (14), 249 (73), 248 (14), 220 (13), 153 (11), 127 (16), 126 (10), 77 (29), 66 (10), 55 (10), 53 (16), 52 (13), 351 (17), 42 (20), 41 (34), 39 (35).

Refinement top

Crystals of (I) are triclinic; space group P1 was selected and confirmed by the successful structure analysis. For (II), space group P21/c was uniquely determined from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C) [1.5Ueq(C) for the methyl groups].

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXS97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a C(6) chain along [100]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (−1 + x, y, z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a C(10) chain along [20–1]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, 1.5 − y, −0.5 + z) and (−1 + x, 1.5 − y, 0.5 + z), respectively.
(I) 3-tert-Butyl-7,7-dimethyl-1-phenyl-5,6,7,8- tetrahydroimidazo[3,4-b]quinolin-5-one top
Crystal data top
C22H25N3OZ = 2
Mr = 347.45F(000) = 372
Triclinic, P1Dx = 1.223 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 6.1514 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3171 (5) ÅCell parameters from 4348 reflections
c = 15.7351 (8) Åθ = 3.3–27.6°
α = 71.722 (2)°µ = 0.08 mm1
β = 85.780 (3)°T = 120 K
γ = 85.306 (3)°Needle, colourless
V = 943.84 (7) Å30.18 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4348 independent reflections
Radiation source: rotating anode2666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 78
Tmin = 0.964, Tmax = 0.994k = 1313
21211 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.3463P]
where P = (Fo2 + 2Fc2)/3
4348 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H25N3Oγ = 85.306 (3)°
Mr = 347.45V = 943.84 (7) Å3
Triclinic, P1Z = 2
a = 6.1514 (2) ÅMo Kα radiation
b = 10.3171 (5) ŵ = 0.08 mm1
c = 15.7351 (8) ÅT = 120 K
α = 71.722 (2)°0.18 × 0.08 × 0.08 mm
β = 85.780 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4348 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2666 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.994Rint = 0.105
21211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
4348 reflectionsΔρmin = 0.25 e Å3
240 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4926 (3)0.63590 (17)0.29289 (11)0.0294 (4)
C110.3406 (3)0.7490 (2)0.28932 (14)0.0300 (5)
C120.3974 (4)0.8816 (2)0.24695 (15)0.0352 (5)
C130.2449 (4)0.9890 (2)0.24520 (16)0.0401 (6)
C140.0383 (4)0.9640 (3)0.28538 (16)0.0408 (6)
C150.0151 (4)0.8318 (2)0.32808 (15)0.0381 (5)
C160.1342 (3)0.7228 (2)0.33087 (15)0.0342 (5)
N20.4543 (3)0.51076 (18)0.35583 (12)0.0318 (4)
C30.6170 (3)0.4233 (2)0.34732 (14)0.0295 (5)
C310.6163 (3)0.2757 (2)0.40451 (14)0.0326 (5)
C320.4554 (4)0.2600 (3)0.48550 (16)0.0427 (6)
C330.5456 (4)0.1925 (2)0.34698 (17)0.0427 (6)
C340.8452 (4)0.2235 (3)0.43831 (17)0.0465 (6)
C4A1.0614 (3)0.5607 (2)0.16742 (13)0.0269 (5)
C3A0.7706 (3)0.4904 (2)0.27701 (13)0.0279 (5)
C40.9659 (3)0.4585 (2)0.23619 (13)0.0285 (5)
C51.2720 (3)0.5296 (2)0.12364 (14)0.0294 (5)
O51.3606 (2)0.41429 (16)0.14590 (10)0.0391 (4)
C61.3728 (3)0.6460 (2)0.05286 (14)0.0330 (5)
C71.2080 (3)0.7542 (2)0.00153 (14)0.0310 (5)
C711.0758 (4)0.6924 (2)0.05632 (15)0.0381 (5)
C721.3302 (4)0.8716 (2)0.06540 (16)0.0429 (6)
C81.0557 (3)0.8051 (2)0.06407 (14)0.0322 (5)
C8A0.9560 (3)0.6933 (2)0.13889 (14)0.0281 (5)
N90.7658 (3)0.72708 (17)0.17598 (11)0.0290 (4)
C9A0.6834 (3)0.6263 (2)0.24410 (14)0.0281 (5)
H120.53920.89900.21940.042*
H130.28261.08040.21620.048*
H140.06601.03800.28340.049*
H150.15660.81490.35610.046*
H160.09630.63160.36070.041*
H32A0.49680.31630.52090.064*
H32B0.45860.16390.52260.064*
H32C0.30770.28970.46480.064*
H33A0.39610.22290.32880.064*
H33B0.55120.09530.38180.064*
H33C0.64430.20620.29350.064*
H34A0.94780.22640.38710.070*
H34B0.84060.12920.47820.070*
H34C0.89330.28170.47120.070*
H41.03300.36850.25490.034*
H6A1.46700.60870.01120.040*
H6B1.46750.69100.08190.040*
H71A0.97690.76370.09330.057*
H71B0.99050.61970.01570.057*
H71C1.17550.65410.09510.057*
H72A1.41730.91100.03100.064*
H72B1.22510.94200.09920.064*
H72C1.42690.83740.10700.064*
H8A1.13880.86030.09020.039*
H8B0.93690.86580.03050.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (9)0.0301 (10)0.0288 (10)0.0010 (7)0.0018 (7)0.0089 (8)
C110.0303 (11)0.0353 (12)0.0266 (11)0.0046 (9)0.0054 (8)0.0133 (10)
C120.0328 (12)0.0357 (13)0.0364 (13)0.0024 (9)0.0001 (9)0.0119 (10)
C130.0425 (14)0.0372 (13)0.0396 (14)0.0068 (10)0.0008 (10)0.0132 (11)
C140.0386 (13)0.0461 (15)0.0409 (14)0.0124 (11)0.0029 (10)0.0215 (12)
C150.0295 (12)0.0505 (15)0.0378 (13)0.0041 (10)0.0005 (9)0.0211 (12)
C160.0305 (12)0.0399 (13)0.0348 (12)0.0000 (10)0.0001 (9)0.0159 (10)
N20.0304 (10)0.0340 (10)0.0299 (10)0.0015 (8)0.0013 (7)0.0084 (8)
C30.0280 (11)0.0344 (12)0.0278 (11)0.0008 (9)0.0029 (8)0.0121 (9)
C310.0303 (11)0.0343 (12)0.0293 (12)0.0003 (9)0.0011 (9)0.0047 (9)
C320.0394 (13)0.0441 (14)0.0367 (14)0.0045 (11)0.0056 (10)0.0026 (11)
C330.0480 (14)0.0329 (13)0.0457 (15)0.0006 (10)0.0054 (11)0.0099 (11)
C340.0377 (13)0.0521 (16)0.0377 (14)0.0019 (11)0.0042 (10)0.0026 (12)
C4A0.0262 (10)0.0310 (11)0.0259 (11)0.0005 (8)0.0018 (8)0.0126 (9)
C3A0.0272 (10)0.0313 (11)0.0259 (11)0.0009 (8)0.0037 (8)0.0096 (9)
C40.0292 (11)0.0292 (11)0.0276 (11)0.0032 (9)0.0048 (8)0.0100 (9)
C50.0291 (11)0.0369 (13)0.0245 (11)0.0012 (9)0.0035 (8)0.0131 (10)
O50.0382 (9)0.0386 (9)0.0342 (9)0.0096 (7)0.0027 (7)0.0064 (7)
C60.0292 (11)0.0376 (12)0.0328 (12)0.0021 (9)0.0021 (9)0.0127 (10)
C70.0369 (12)0.0251 (11)0.0321 (12)0.0050 (9)0.0037 (9)0.0109 (9)
C710.0507 (14)0.0336 (12)0.0295 (12)0.0035 (10)0.0047 (10)0.0085 (10)
C720.0518 (15)0.0335 (13)0.0423 (14)0.0092 (11)0.0136 (11)0.0122 (11)
C80.0353 (12)0.0273 (11)0.0347 (12)0.0023 (9)0.0026 (9)0.0114 (10)
C8A0.0291 (11)0.0304 (11)0.0274 (11)0.0033 (9)0.0018 (8)0.0123 (9)
N90.0301 (9)0.0292 (10)0.0292 (10)0.0009 (7)0.0008 (7)0.0117 (8)
C9A0.0267 (11)0.0334 (11)0.0267 (11)0.0016 (9)0.0025 (8)0.0127 (9)
Geometric parameters (Å, º) top
N1—N21.384 (2)C3—C311.506 (3)
N2—C31.320 (3)C31—C321.530 (3)
C3—C3A1.438 (3)C31—C331.534 (3)
C3A—C41.386 (3)C31—C341.537 (3)
C4—C4A1.386 (3)C32—H32A0.98
C4A—C51.482 (3)C32—H32B0.98
C5—C61.500 (3)C32—H32C0.98
C6—C71.532 (3)C33—H33A0.98
C7—C81.529 (3)C33—H33B0.98
C8—C8A1.500 (3)C33—H33C0.98
C8A—N91.338 (3)C34—H34A0.98
N9—C9A1.340 (3)C34—H34B0.98
C9A—N11.368 (3)C34—H34C0.98
C3A—C9A1.408 (3)C4—H40.95
C4A—C8A1.416 (3)C5—O51.223 (2)
N1—C111.424 (3)C6—H6A0.99
C11—C121.383 (3)C6—H6B0.99
C11—C161.391 (3)C7—C721.522 (3)
C12—C131.386 (3)C7—C711.531 (3)
C12—H120.95C71—H71A0.98
C13—C141.383 (3)C71—H71B0.98
C13—H130.95C71—H71C0.98
C14—C151.373 (3)C72—H72A0.98
C14—H140.95C72—H72B0.98
C15—C161.384 (3)C72—H72C0.98
C15—H150.95C8—H8A0.99
C16—H160.95C8—H8B0.99
C9A—N1—N2110.12 (16)C4—C4A—C8A119.88 (18)
C9A—N1—C11131.16 (18)C4—C4A—C5119.54 (18)
N2—N1—C11118.72 (16)C8A—C4A—C5120.58 (18)
C12—C11—C16120.7 (2)C4—C3A—C9A116.53 (19)
C12—C11—N1120.93 (19)C4—C3A—C3138.5 (2)
C16—C11—N1118.3 (2)C9A—C3A—C3104.99 (17)
C11—C12—C13119.2 (2)C4A—C4—C3A118.51 (19)
C11—C12—H12120.4C4A—C4—H4120.7
C13—C12—H12120.4C3A—C4—H4120.7
C14—C13—C12120.6 (2)O5—C5—C4A121.01 (19)
C14—C13—H13119.7O5—C5—C6121.91 (19)
C12—C13—H13119.7C4A—C5—C6117.06 (18)
C15—C14—C13119.6 (2)C5—C6—C7114.52 (17)
C15—C14—H14120.2C5—C6—H6A108.6
C13—C14—H14120.2C7—C6—H6A108.6
C14—C15—C16121.0 (2)C5—C6—H6B108.6
C14—C15—H15119.5C7—C6—H6B108.6
C16—C15—H15119.5H6A—C6—H6B107.6
C15—C16—C11118.9 (2)C72—C7—C8110.44 (17)
C15—C16—H16120.5C72—C7—C71108.81 (18)
C11—C16—H16120.5C8—C7—C71109.99 (18)
C3—N2—N1107.77 (17)C72—C7—C6109.24 (18)
N2—C3—C3A109.97 (19)C8—C7—C6108.03 (18)
N2—C3—C31120.21 (19)C71—C7—C6110.32 (17)
C3A—C3—C31129.76 (18)C7—C71—H71A109.5
C3—C31—C32110.35 (18)C7—C71—H71B109.5
C3—C31—C33107.90 (18)H71A—C71—H71B109.5
C32—C31—C33109.42 (19)C7—C71—H71C109.5
C3—C31—C34110.33 (18)H71A—C71—H71C109.5
C32—C31—C34108.67 (18)H71B—C71—H71C109.5
C33—C31—C34110.15 (19)C7—C72—H72A109.5
C31—C32—H32A109.5C7—C72—H72B109.5
C31—C32—H32B109.5H72A—C72—H72B109.5
H32A—C32—H32B109.5C7—C72—H72C109.5
C31—C32—H32C109.5H72A—C72—H72C109.5
H32A—C32—H32C109.5H72B—C72—H72C109.5
H32B—C32—H32C109.5C8A—C8—C7114.17 (17)
C31—C33—H33A109.5C8A—C8—H8A108.7
C31—C33—H33B109.5C7—C8—H8A108.7
H33A—C33—H33B109.5C8A—C8—H8B108.7
C31—C33—H33C109.5C7—C8—H8B108.7
H33A—C33—H33C109.5H8A—C8—H8B107.6
H33B—C33—H33C109.5N9—C8A—C4A123.13 (19)
C31—C34—H34A109.5N9—C8A—C8116.16 (18)
C31—C34—H34B109.5C4A—C8A—C8120.71 (18)
H34A—C34—H34B109.5C8A—N9—C9A114.87 (18)
C31—C34—H34C109.5N9—C9A—N1125.79 (19)
H34A—C34—H34C109.5N9—C9A—C3A127.03 (18)
H34B—C34—H34C109.5N1—C9A—C3A107.15 (18)
C9A—N1—C11—C1217.0 (3)C4—C4A—C5—O51.7 (3)
N2—N1—C11—C12161.83 (19)C8A—C4A—C5—O5177.62 (19)
C9A—N1—C11—C16164.1 (2)C4—C4A—C5—C6176.99 (18)
N2—N1—C11—C1617.1 (3)C8A—C4A—C5—C63.7 (3)
C16—C11—C12—C130.9 (3)O5—C5—C6—C7148.82 (19)
N1—C11—C12—C13179.79 (19)C4A—C5—C6—C732.5 (3)
C11—C12—C13—C140.1 (3)C5—C6—C7—C72175.44 (18)
C12—C13—C14—C150.6 (3)C5—C6—C7—C855.3 (2)
C13—C14—C15—C160.6 (3)C5—C6—C7—C7165.0 (2)
C14—C15—C16—C110.2 (3)C72—C7—C8—C8A170.53 (18)
C12—C11—C16—C150.9 (3)C71—C7—C8—C8A69.4 (2)
N1—C11—C16—C15179.86 (18)C6—C7—C8—C8A51.1 (2)
C9A—N1—N2—C30.0 (2)C4—C4A—C8A—N90.7 (3)
C11—N1—N2—C3179.07 (17)C5—C4A—C8A—N9179.98 (18)
N1—N2—C3—C3A0.2 (2)C4—C4A—C8A—C8179.51 (18)
N1—N2—C3—C31177.34 (17)C5—C4A—C8A—C80.2 (3)
N2—C3—C31—C3217.7 (3)C7—C8—C8A—N9154.76 (18)
C3A—C3—C31—C32165.3 (2)C7—C8—C8A—C4A25.5 (3)
N2—C3—C31—C33101.8 (2)C4A—C8A—N9—C9A1.4 (3)
C3A—C3—C31—C3375.2 (3)C8—C8A—N9—C9A178.38 (17)
N2—C3—C31—C34137.9 (2)C8A—N9—C9A—N1179.57 (18)
C3A—C3—C31—C3445.2 (3)C8A—N9—C9A—C3A2.8 (3)
N2—C3—C3A—C4179.8 (2)N2—N1—C9A—N9177.88 (18)
C31—C3—C3A—C42.6 (4)C11—N1—C9A—N93.2 (3)
N2—C3—C3A—C9A0.3 (2)N2—N1—C9A—C3A0.1 (2)
C31—C3—C3A—C9A176.94 (19)C11—N1—C9A—C3A178.75 (19)
C8A—C4A—C4—C3A1.6 (3)C4—C3A—C9A—N91.9 (3)
C5—C4A—C4—C3A179.07 (18)C3—C3A—C9A—N9177.76 (19)
C9A—C3A—C4—C4A0.4 (3)C4—C3A—C9A—N1179.92 (17)
C3—C3A—C4—C4A180.0 (2)C3—C3A—C9A—N10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···N9i0.992.563.512 (3)161
Symmetry code: (i) x+1, y, z.
(II) 2,8,8-Trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-a]quinolin-6-one top
Crystal data top
C19H19N3OF(000) = 648
Mr = 305.37Dx = 1.337 Mg m3
Monoclinic, P21/cMelting point: 533 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7988 (3) ÅCell parameters from 3477 reflections
b = 17.0950 (6) Åθ = 3.0–27.6°
c = 12.0231 (3) ŵ = 0.09 mm1
β = 108.8000 (18)°T = 120 K
V = 1517.41 (9) Å3Plate, colourless
Z = 40.40 × 0.20 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3477 independent reflections
Radiation source: rotating anode2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 910
Tmin = 0.974, Tmax = 0.993k = 2122
21719 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3887P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3477 reflectionsΔρmax = 0.28 e Å3
212 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
C19H19N3OV = 1517.41 (9) Å3
Mr = 305.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7988 (3) ŵ = 0.09 mm1
b = 17.0950 (6) ÅT = 120 K
c = 12.0231 (3) Å0.40 × 0.20 × 0.08 mm
β = 108.8000 (18)°
Data collection top
Nonius KappaCCD
diffractometer
3477 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2503 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.993Rint = 0.060
21719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3477 reflectionsΔρmin = 0.38 e Å3
212 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20587 (18)0.84734 (8)0.64251 (12)0.0212 (3)
C20.2151 (2)0.92440 (9)0.62466 (14)0.0208 (4)
C30.3362 (2)0.94346 (10)0.56381 (14)0.0223 (4)
C3A0.4062 (2)0.87260 (9)0.54327 (14)0.0204 (4)
N40.52405 (18)0.85190 (8)0.48631 (12)0.0211 (3)
C50.5692 (2)0.77709 (9)0.48729 (14)0.0201 (4)
C5A0.4993 (2)0.71800 (9)0.54723 (13)0.0195 (4)
C60.5815 (2)0.63875 (9)0.57918 (14)0.0217 (4)
O60.72358 (17)0.61996 (7)0.56513 (11)0.0311 (3)
C70.4900 (2)0.58442 (9)0.64206 (15)0.0244 (4)
C80.2888 (2)0.59886 (9)0.61866 (14)0.0223 (4)
C90.2671 (2)0.68471 (9)0.64919 (15)0.0223 (4)
C9A0.3664 (2)0.73904 (9)0.59422 (13)0.0189 (4)
N9B0.32353 (18)0.81598 (7)0.59205 (11)0.0192 (3)
C210.0981 (2)0.97774 (9)0.66769 (15)0.0249 (4)
C510.6914 (2)0.75871 (10)0.41790 (14)0.0208 (4)
C520.8311 (2)0.81025 (10)0.42116 (15)0.0239 (4)
C530.9428 (2)0.79628 (10)0.35357 (15)0.0271 (4)
C540.9150 (2)0.73119 (10)0.28171 (15)0.0273 (4)
C550.7744 (2)0.68033 (10)0.27692 (14)0.0253 (4)
C560.6630 (2)0.69345 (10)0.34422 (14)0.0232 (4)
C810.2181 (3)0.54709 (10)0.69784 (16)0.0298 (4)
C820.1801 (2)0.58207 (10)0.49040 (15)0.0283 (4)
H21A0.01511.00600.60100.037*
H21B0.17451.01530.72360.037*
H91C0.02820.94690.70670.037*
H30.36390.99400.54160.027*
H520.85030.85530.46990.029*
H531.03840.83150.35680.032*
H540.99170.72140.23590.033*
H550.75440.63590.22680.030*
H560.56720.65810.34030.028*
H7A0.55300.58900.72760.029*
H7B0.50600.53000.61900.029*
H81A0.23140.49200.67980.045*
H81B0.08990.55870.68430.045*
H81C0.28750.55740.78030.045*
H82A0.22320.61590.43910.042*
H82B0.05150.59240.47740.042*
H82C0.19610.52720.47250.042*
H9A0.13690.69850.62200.027*
H9B0.31320.69130.73560.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0201 (7)0.0215 (7)0.0249 (7)0.0016 (6)0.0112 (6)0.0020 (6)
C20.0203 (8)0.0194 (8)0.0223 (8)0.0005 (6)0.0061 (7)0.0002 (6)
C30.0239 (9)0.0177 (8)0.0274 (8)0.0014 (6)0.0113 (7)0.0018 (7)
C3A0.0200 (8)0.0209 (8)0.0217 (8)0.0016 (7)0.0086 (7)0.0019 (6)
N40.0213 (7)0.0198 (7)0.0244 (7)0.0018 (6)0.0106 (6)0.0012 (6)
C50.0189 (8)0.0214 (8)0.0197 (8)0.0006 (6)0.0058 (7)0.0000 (6)
C5A0.0190 (8)0.0196 (8)0.0202 (8)0.0013 (6)0.0069 (7)0.0017 (6)
C60.0224 (9)0.0210 (8)0.0219 (8)0.0005 (7)0.0072 (7)0.0030 (7)
O60.0319 (7)0.0291 (7)0.0385 (7)0.0095 (6)0.0202 (6)0.0059 (5)
C70.0272 (9)0.0196 (8)0.0273 (9)0.0013 (7)0.0100 (7)0.0034 (7)
C80.0246 (9)0.0169 (8)0.0268 (9)0.0008 (7)0.0102 (7)0.0004 (7)
C90.0247 (9)0.0196 (8)0.0259 (8)0.0028 (7)0.0126 (7)0.0017 (7)
C9A0.0199 (8)0.0162 (8)0.0203 (8)0.0011 (6)0.0059 (7)0.0003 (6)
N9B0.0185 (7)0.0183 (7)0.0230 (7)0.0004 (5)0.0101 (6)0.0004 (5)
C210.0260 (9)0.0220 (8)0.0294 (9)0.0014 (7)0.0129 (8)0.0012 (7)
C510.0192 (9)0.0223 (8)0.0214 (8)0.0029 (7)0.0070 (7)0.0031 (6)
C520.0242 (9)0.0225 (9)0.0267 (9)0.0001 (7)0.0104 (7)0.0006 (7)
C530.0210 (9)0.0297 (9)0.0336 (10)0.0003 (7)0.0132 (8)0.0039 (8)
C540.0286 (10)0.0302 (10)0.0284 (9)0.0073 (8)0.0163 (8)0.0077 (7)
C550.0304 (10)0.0242 (9)0.0222 (8)0.0055 (7)0.0100 (8)0.0013 (7)
C560.0221 (9)0.0239 (9)0.0238 (8)0.0007 (7)0.0078 (7)0.0028 (7)
C810.0343 (10)0.0232 (9)0.0349 (10)0.0028 (7)0.0155 (8)0.0039 (7)
C820.0299 (10)0.0245 (9)0.0292 (9)0.0051 (7)0.0076 (8)0.0029 (7)
Geometric parameters (Å, º) top
N1—C21.340 (2)C52—H520.95
C2—C31.407 (2)C53—C541.382 (3)
C3—C3A1.383 (2)C53—H530.95
C3A—N41.358 (2)C54—C551.385 (3)
N4—C51.325 (2)C54—H540.95
C5—C5A1.446 (2)C55—C561.383 (2)
C5A—C61.495 (2)C55—H550.95
C6—C71.513 (2)C56—H560.95
C8—C91.535 (2)C6—O61.217 (2)
C9—C9A1.493 (2)C7—C81.523 (2)
C9A—N9B1.355 (2)C7—H7A0.99
N9B—N11.3625 (18)C7—H7B0.99
C3A—N9B1.393 (2)C8—C811.527 (2)
C5A—C9A1.379 (2)C8—C821.528 (2)
C2—C211.495 (2)C81—H81A0.98
C21—H21A0.98C81—H81B0.98
C21—H21B0.98C81—H81C0.98
C21—H91C0.98C82—H82A0.98
C3—H30.95C82—H82B0.98
C5—C511.488 (2)C82—H82C0.98
C51—C521.392 (2)C9—H9A0.99
C51—C561.397 (2)C9—H9B0.99
C52—C531.390 (2)
C2—N1—N9B103.69 (12)C5—C5A—C6124.20 (14)
N1—C2—C3113.00 (14)O6—C6—C5A122.53 (15)
N1—C2—C21118.27 (14)O6—C6—C7120.29 (15)
C3—C2—C21128.72 (15)C5A—C6—C7116.90 (14)
C2—C21—H21A109.5C6—C7—C8115.59 (14)
C2—C21—H21B109.5C6—C7—H7A108.4
H21A—C21—H21B109.5C8—C7—H7A108.4
C2—C21—H91C109.5C6—C7—H7B108.4
H21A—C21—H91C109.5C8—C7—H7B108.4
H21B—C21—H91C109.5H7A—C7—H7B107.4
C3A—C3—C2105.04 (14)C7—C8—C81110.40 (14)
C3A—C3—H3127.5C7—C8—C82111.05 (14)
C2—C3—H3127.5C81—C8—C82109.03 (14)
N4—C3A—C3133.49 (15)C7—C8—C9107.28 (13)
N4—C3A—N9B120.76 (14)C81—C8—C9108.38 (13)
C3—C3A—N9B105.71 (13)C82—C8—C9110.66 (14)
C5—N4—C3A117.91 (13)C8—C81—H81A109.5
N4—C5—C5A122.46 (14)C8—C81—H81B109.5
N4—C5—C51114.53 (14)H81A—C81—H81B109.5
C5A—C5—C51122.97 (14)C8—C81—H81C109.5
C52—C51—C56119.07 (15)H81A—C81—H81C109.5
C52—C51—C5119.17 (15)H81B—C81—H81C109.5
C56—C51—C5121.66 (14)C8—C82—H82A109.5
C53—C52—C51120.47 (16)C8—C82—H82B109.5
C53—C52—H52119.8H82A—C82—H82B109.5
C51—C52—H52119.8C8—C82—H82C109.5
C54—C53—C52120.12 (16)H82A—C82—H82C109.5
C54—C53—H53119.9H82B—C82—H82C109.5
C52—C53—H53119.9C9A—C9—C8112.09 (13)
C53—C54—C55119.61 (15)C9A—C9—H9A109.2
C53—C54—H54120.2C8—C9—H9A109.2
C55—C54—H54120.2C9A—C9—H9B109.2
C56—C55—C54120.76 (16)C8—C9—H9B109.2
C56—C55—H55119.6H9A—C9—H9B107.9
C54—C55—H55119.6N9B—C9A—C5A117.30 (14)
C55—C56—C51119.95 (16)N9B—C9A—C9116.90 (13)
C55—C56—H56120.0C5A—C9A—C9125.79 (14)
C51—C56—H56120.0C9A—N9B—N1124.80 (13)
C9A—C5A—C5118.42 (14)C9A—N9B—C3A122.53 (13)
C9A—C5A—C6116.60 (14)N1—N9B—C3A112.55 (13)
N9B—N1—C2—C30.02 (18)C5—C5A—C6—O66.0 (2)
N9B—N1—C2—C21178.86 (14)C9A—C5A—C6—C710.2 (2)
N1—C2—C3—C3A0.11 (19)C5—C5A—C6—C7179.90 (15)
C21—C2—C3—C3A178.85 (16)O6—C6—C7—C8159.59 (15)
C2—C3—C3A—N4177.79 (17)C5A—C6—C7—C826.4 (2)
C2—C3—C3A—N9B0.18 (18)C6—C7—C8—C81173.26 (14)
C3—C3A—N4—C5177.12 (18)C6—C7—C8—C8265.68 (18)
N9B—C3A—N4—C55.6 (2)C6—C7—C8—C955.35 (18)
C3A—N4—C5—C5A0.7 (2)C7—C8—C9—C9A49.05 (18)
C3A—N4—C5—C51177.04 (14)C81—C8—C9—C9A168.26 (14)
N4—C5—C51—C5239.9 (2)C82—C8—C9—C9A72.23 (18)
C5A—C5—C51—C52142.40 (16)C5—C5A—C9A—N9B6.9 (2)
N4—C5—C51—C56136.28 (16)C6—C5A—C9A—N9B163.46 (14)
C5A—C5—C51—C5641.4 (2)C5—C5A—C9A—C9174.13 (15)
C56—C51—C52—C531.1 (2)C6—C5A—C9A—C915.5 (2)
C5—C51—C52—C53177.37 (15)C8—C9—C9A—N9B165.06 (14)
C51—C52—C53—C540.5 (3)C8—C9—C9A—C5A16.0 (2)
C52—C53—C54—C550.4 (3)C5A—C9A—N9B—N1174.75 (14)
C53—C54—C55—C560.7 (3)C9—C9A—N9B—N14.3 (2)
C54—C55—C56—C510.1 (3)C5A—C9A—N9B—C3A1.0 (2)
C52—C51—C56—C550.8 (2)C9—C9A—N9B—C3A179.96 (14)
C5—C51—C56—C55176.97 (15)C2—N1—N9B—C9A176.24 (14)
N4—C5—C5A—C9A7.1 (2)C2—N1—N9B—C3A0.14 (17)
C51—C5—C5A—C9A170.43 (15)N4—C3A—N9B—C9A5.6 (2)
N4—C5—C5A—C6162.50 (15)C3—C3A—N9B—C9A176.41 (14)
C51—C5—C5A—C620.0 (2)N4—C3A—N9B—N1178.19 (14)
C9A—C5A—C6—O6163.75 (16)C3—C3A—N9B—N10.21 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C54—H54···N1i0.952.583.492 (2)162
Symmetry code: (i) x+1, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H25N3OC19H19N3O
Mr347.45305.37
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)6.1514 (2), 10.3171 (5), 15.7351 (8)7.7988 (3), 17.0950 (6), 12.0231 (3)
α, β, γ (°)71.722 (2), 85.780 (3), 85.306 (3)90, 108.8000 (18), 90
V3)943.84 (7)1517.41 (9)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.080.09
Crystal size (mm)0.18 × 0.08 × 0.080.40 × 0.20 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.964, 0.9940.974, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
21211, 4348, 2666 21719, 3477, 2503
Rint0.1050.060
(sin θ/λ)max1)0.6520.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.02 0.051, 0.134, 1.03
No. of reflections43483477
No. of parameters240212
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.250.28, 0.38

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) for (I) top
N1—N21.384 (2)C7—C81.529 (3)
N2—C31.320 (3)C8—C8A1.500 (3)
C3—C3A1.438 (3)C8A—N91.338 (3)
C3A—C41.386 (3)N9—C9A1.340 (3)
C4—C4A1.386 (3)C9A—N11.368 (3)
C4A—C51.482 (3)C3A—C9A1.408 (3)
C5—C61.500 (3)C4A—C8A1.416 (3)
C6—C71.532 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···N9i0.992.563.512 (3)161
Symmetry code: (i) x+1, y, z.
Selected bond lengths (Å) for (II) top
N1—C21.340 (2)C8—C91.535 (2)
C2—C31.407 (2)C9—C9A1.493 (2)
C3—C3A1.383 (2)C9A—N9B1.355 (2)
C3A—N41.358 (2)N9B—N11.3625 (18)
N4—C51.325 (2)C3A—N9B1.393 (2)
C5—C5A1.446 (2)C5A—C9A1.379 (2)
C5A—C61.495 (2)C7—C81.523 (2)
C6—C71.513 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C54—H54···N1i0.952.583.492 (2)162
Symmetry code: (i) x+1, y+3/2, z1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) for financial support. JM and JQ thank COLCIENCIAS and the Universidad de Valle for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151–o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, o157–o159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C. & Lloyd, D. M. G. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationLow, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265–o269.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Quiroga, J. & Mejía, D. (2001). Acta Cryst. C57, 1356–1358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Program for Structure Solution. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuiroga, J., Horm­aza, A., Insuasty, B., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575–578.  CrossRef CAS Google Scholar
First citationQuiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947–6953.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds