organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

rac-3-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-phenyl­thia­zolidin-4-one: sheets built from N—H⋯N and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 10 May 2004; accepted 12 May 2004; online 22 June 2004)

The title compound, C19H18N4OS, crystallizes in space group P[\overline 1] with Z′ = 2. The two mol­ecules in the selected asymmetric unit are nearly enantiomorphous. The mol­ecules are linked by two N—H⋯N hydrogen bonds [H⋯N both 2.20 Å, N⋯N = 3.064 (3) and 3.077 (3) Å, and N—H⋯N = 165 and 172°] into C[{_2^2}](10) chains, and these chains are linked into sheets by two independent C—H⋯π(arene) hydrogen bonds.

Comment

The three-component cyclo­condensation reaction between 4,5-di­amino-3-methyl-1-phenyl-1H-pyrazole, benz­aldehyde and 2-mercapto­acetic acid provides the title compound, (I[link]), rather than the expected pyrazolodiazepine (Low et al., 2003[Low, J. N., Insuasty, B., Mosquera, M. & Cobo, J. (2003). Acta Cryst. E59, o614-o615.]).

[Scheme 1]

Compound (I[link]) crystallizes in the centrosymmetric space group P[\overline 1], with Z′ = 2. The asymmetric unit was selected to provide the simplest description of the N—H⋯N hydrogen bonds and in these circumstances the two independent mol­ecules (Fig. 1[link]) are of opposite configuration. Molecule 1, containing atom S11, has the S configuration at the stereogenic centre C12, while mol­ecule 2, containing atom S21, has the R configuration at C22. The space group accommodates equal numbers of both configurations of both mol­ecules. The two independent mol­ecules are themselves close to being enantiomers, as shown qualitatively by Fig. 1[link] and quantitatively by the key torsion angles (Table 1[link]). Atoms N13 and N23 are both effectively planar, while atoms N15 and N25 are both markedly pyramidal. In each mol­ecule, the two S—C distances show distinctly different values (Table 1[link]), but all of the other distances are typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

The mol­ecules of (I[link]) are linked into sheets by a combination of N—H⋯N and C—H⋯π(arene) hydrogen bonds (Table 2[link]). Within the selected asymmetric unit, amino atom N15 acts as hydrogen-bond donor, via atom H15A, to ring atom N22. Similarly, amino atom N25 in the type 2 mol­ecule at (x, y, z) acts as hydrogen-bond donor, via atom H25A, to ring atom N12 in the type 1 mol­ecule at (x − 1, y, z), so generating by translation a C[{_2^2}](10) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [100] direction (Fig. 2[link]). This chain lies wholly in the domain −0.03 < z < 0.51, and a second antiparallel chain, related to the first by inversion, lies in the domain 0.49 < z < 1.03.

Within each domain, the [100] chains are linked by a pair of C—H⋯π(arene) hydrogen bonds. Atom C115 in the type 1 mol­ecule at (x, y, z) acts as hydrogen-bond donor to ring C121–C126 in the type 1 mol­ecule at (x, 1 + y, z), so forming by translation a chain running parallel to the [010] direction (Fig. 3[link]a). In an entirely similar manner, atom C215 in the type 2 mol­ecule at (x, y, z) acts as donor to ring C221–C226 in the type 2 mol­ecule at (x, y − 1, z) (Fig. 3[link]b). These two independent [010] chains thus link all of the [100] chains within a given domain of z into an (001) sheet (Fig. 4[link]). Two sheets, related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets. It is notable that each of the amino groups acts only as a single donor of hydrogen bonds; there are no other potential acceptors within suitable hydrogen-bonding distance of either N15 or N25.

[Figure 1]
Figure 1
The two independent mol­ecules, viz. (a) the S enantiomer and (b) the R enantiomer, in the structure of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I[link]), showing the formation of a C[{_2^2}](10) chain along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of the C—H⋯π(arene) chains along [010]. (a) A chain formed by the type 1 mol­ecules; atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 + y, z) and (x, y − 1, z), respectively. (b) A chain formed by the type 2 mol­ecules; atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y − 1, z) and (x, 1 + y, z), respectively. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (I[link]), showing the formation of an (001) sheet by the combination of the [100] and [010] chains. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.

Experimental

For the preparation of (I), a solution of 4,5-di­amino-3-methyl-1-phenyl-1H-pyrazole (1.0 mmol), benz­aldehyde (1.0 mmol) and 2-mercapto­acetic acid (2.0 mmol) in anhydrous benzene (10 ml) was heated under reflux for 17 h; the progress of the reaction was monitored by thin-layer chromatography. When the reaction was complete, the mixture was cooled and the solvent was evaporated. The resulting solid residue was recrystallized from di­methyl­form­amide giving crystals of (I[link]) suitable for single-crystal X-ray diffraction (m.p. 437 K, yield 65%). MS (EI, 70 eV) m/z (%): 350 (M+, 100), 245 (80), 200 (44), 173 (32), 135 (49), 119 (39), 91 (23), 77 (70), 51 (19), 46 (15).

Crystal data
  • C19H18N4OS

  • Mr = 350.44

  • Triclinic, [P\overline 1]

  • a = 10.7937 (4) Å

  • b = 11.3989 (2) Å

  • c = 14.2448 (5) Å

  • α = 79.993 (2)°

  • β = 83.3490 (14)°

  • γ = 89.852 (2)°

  • V = 1714.07 (9) Å3

  • Z = 4

  • Dx = 1.358 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7923 reflections

  • θ = 2.9–27.6°

  • μ = 0.20 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.18 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.945, Tmax = 0.990

  • 7923 measured reflections

  • 7923 independent reflections

  • 5732 reflections with I > 2σ(I)

  • Rint = 0.154

  • θmax = 27.6°

  • h = −14 → 14

  • k = −14 → 14

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.184

  • S = 1.03

  • 7923 reflections

  • 453 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0822P)2 + 0.9869P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

S11—C12 1.830 (2) 
S11—C151 1.796 (3)
S21—C22 1.828 (2)
S21—C251 1.795 (3)
C12—N13—C141 117.5 (2)
C12—N13—C14 119.13 (19)
C14—N13—C141 122.9 (2)
C22—N23—C241 117.5 (2)
C22—N23—C24 118.13 (19)
C24—N23—C241 124.1 (2)
C13—C14—N13—C12 121.7 (3) 
N12—N11—C111—C112 −115.9 (3)
N13—C12—C121—C122 131.5 (3)
C23—C24—N23—C22 −117.7 (3)
N22—N21—C211—C212 109.5 (3)
N23—C22—C221—C222 −119.1 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg1 is the centroid of ring C161–C166 and Cg2 is the centroid of ring C261–C266.

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15A⋯N22 0.88 2.20 3.077 (3) 172
N25—H25A⋯N12i 0.88 2.20 3.064 (3) 165
C125—H125⋯Cg1ii 0.95 2.88 3.691 (3) 144
C225—H225⋯Cg2iii 0.95 2.93 3.794 (4) 152
Symmetry code: (i) x-1, y, z; (ii) x, 1+y, z; (iii) x, y-1, z.

Crystals of compound (I[link]) are triclinic and space group P[\overline 1] was selected and confirmed by the structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with distances C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH) and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The three-component cyclocondensation reaction between 4,5-diamino-3-methyl-1-phenyl-1H-pyrazole, benzaldehyde and 2-mercaptoacetic acid provides the title compound, (I), rather than the expected pyrazolodiazepine (Low et al., 2003). We present here the crystal structure of (I). \sch

Compound (I) crystallizes in the centrosymmetric space group P1, with Z' = 2. The asymmetric unit was selected to provide the simplest description of the N—H···N hydrogen bonds, and in these circumstances the two independent molecules (Fig. 1) are of opposite configuration. Molecule 1, containing atom S11, has the (S) configuration at the stereogenic centre C12, while molecule 2, containing atom S21, has the (R) configuration at C22. The space group accommodates equal numbers of both configurations of both molecules. The two independent molecules are themselves close to being enantiomers, as shown qualitatively by Fig. 1 and quantitatively by the key torsion angles (Table 1). Atoms N13 and N23 are both effectively planar, while atoms N15 and N25 are both markedly pyramidal. In each molecule, the two S—C distances show distinctly different values (Table 1), but all of the other distances are typical of their types (Allen et al., 1987).

The molecules of (I) are linked into sheets by a combination of N—H···N and C—H···π(arene) hydrogen bonds (Table 2). Within the selected asymmetric unit, amino atom N15 acts as hydrogen-bond donor, via atom H15A, to ring atom N22. Similarly, amino atom N25 in the type 2 molecule at (x, y, z) acts as hydrogen-bond donor, via atom H25A, to ring atom N12 in the type 1 molecule at (x − 1, y, z), so generating by translation a C22(10) chain (Bernstein et al., 1995) running parallel to the [100] direction (Fig. 2). This chain lies wholly in the domain −0.03 < z < 0.51, and a second antiparallel chain, related to the first by inversion, lies in the domain 0.49 < z < 1.03.

Within each domain, the [100] chains are linked by a pair of C—H···π(arene) hydrogen bonds. Atom C115 in the type 1 molecule at (x, y, z) acts as hydrogen-bond donor to ring C121—C126 in the type 1 molecule at (x, 1 + y, z), so forming by translation a chain running parallel to the [010] direction (Fig. 3a). In an entirely similar manner, atom C215 in the type 2 molecule at (x, y, z) acts as donor to ring C221—C226 in the type 2 molecule at (x, y − 1, z) (Fig. 3 b). These two independent [010] chains thus link all of the [100] chains within a given domain of z into an (001) sheet (Fig. 4). Two sheets, related to one another by inversion, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets. It is notable that each of the amino groups acts only as a single donor of hydrogen bonds; there are no other potential acceptors within suitable hydrogen-bonding distance of either N15 or N25.

Experimental top

A solution of 4,5-diamino-3-methyl-1-phenyl-1H-pyrazole (1.0 mmol), benzaldehyde (1.0 mmol) and 2-mercaptoacetic acid (2.0 mmol) in anhydrous benzene (10 ml) was heated under reflux for 17 h; the progress of the reaction was monitored by thin-layer chromatography. When the reaction was complete, the mixture was cooled and the solvent was evaporated. The resulting solid residue was recrystallized from dimethylformamide giving crystals of (I) suitable for single-crystal X-ray diffraction (m.p. 437 K, yield 65%). MS (EI, 70 eV) m/z (%): 350 (M+, 100), 245 (80), 200 (44), 173 (32), 135 (49), 119 (39), 91 (23), 77 (70), 51 (19), 46 (15).

Refinement top

Crystals of compound (I) are triclinic, and the space group P1 was selected and confirmed by the structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with distances C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules in the structure of (I), showing the atom-labelling scheme. (a) The (S) enantiomer of molecule 1. (b) The (R) enantiomer of molecule 2. Displacement ellipsoids are drawn at the ??% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing formation of a C22(10) chain along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing formation of the C—H···π(arene) chains along [010]. (a) A chain formed by the type 1 molecules. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 + y, z) and (x, y − 1, z), respectively. (b) A chain formed by the type 2 molecules. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y − 1, z) and (x, 1 + y, z), respectively. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing formation of an (001) sheet by the combination of the [100] and [010] chains. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.
rac-3-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-phenyl-thiazolidin-4-one top
Crystal data top
C19H18N4OSZ = 4
Mr = 350.44F(000) = 736
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7937 (4) ÅCell parameters from 7923 reflections
b = 11.3989 (2) Åθ = 2.9–27.6°
c = 14.2448 (5) ŵ = 0.20 mm1
α = 79.993 (2)°T = 120 K
β = 83.3490 (14)°Plate, colourless
γ = 89.852 (2)°0.18 × 0.10 × 0.05 mm
V = 1714.07 (9) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
7923 independent reflections
Radiation source: rotating anode5732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.154
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1414
Tmin = 0.945, Tmax = 0.990k = 1414
7923 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.9869P]
where P = (Fo2 + 2Fc2)/3
7923 reflections(Δ/σ)max < 0.001
453 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C19H18N4OSγ = 89.852 (2)°
Mr = 350.44V = 1714.07 (9) Å3
Triclinic, P1Z = 4
a = 10.7937 (4) ÅMo Kα radiation
b = 11.3989 (2) ŵ = 0.20 mm1
c = 14.2448 (5) ÅT = 120 K
α = 79.993 (2)°0.18 × 0.10 × 0.05 mm
β = 83.3490 (14)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7923 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
5732 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.990Rint = 0.154
7923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
7923 reflectionsΔρmin = 0.63 e Å3
453 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.85511 (18)0.79824 (17)0.22013 (14)0.0185 (4)
C1110.8604 (2)0.8800 (2)0.28480 (17)0.0196 (5)
C1120.8536 (3)0.8364 (2)0.38289 (19)0.0275 (6)
C1130.8631 (3)0.9152 (3)0.4453 (2)0.0347 (7)
C1140.8805 (3)1.0359 (3)0.4102 (2)0.0337 (7)
C1150.8866 (3)1.0781 (2)0.3125 (2)0.0305 (6)
C1160.8757 (2)1.0001 (2)0.24911 (19)0.0228 (5)
N120.95853 (18)0.78939 (18)0.15424 (14)0.0198 (4)
C130.9313 (2)0.6970 (2)0.11393 (17)0.0196 (5)
C1311.0205 (3)0.6601 (3)0.0366 (2)0.0302 (6)
C140.8142 (2)0.6467 (2)0.15270 (17)0.0171 (5)
S110.69650 (6)0.31661 (6)0.15698 (5)0.02537 (17)
C120.7213 (2)0.4446 (2)0.21477 (17)0.0204 (5)
C1210.8213 (2)0.4181 (2)0.28088 (18)0.0230 (5)
C1220.7904 (3)0.4077 (3)0.3795 (2)0.0393 (7)
C1230.8823 (4)0.3820 (3)0.4408 (3)0.0567 (10)
C1241.0028 (4)0.3672 (3)0.4042 (3)0.0551 (11)
C1251.0342 (3)0.3755 (3)0.3057 (3)0.0430 (8)
C1260.9437 (3)0.4011 (2)0.2449 (2)0.0310 (6)
N130.75797 (19)0.54165 (18)0.13443 (14)0.0190 (4)
C1410.7223 (2)0.5319 (2)0.04727 (18)0.0224 (5)
O140.73897 (19)0.60938 (17)0.02410 (13)0.0311 (4)
C1510.6592 (3)0.4129 (2)0.05056 (19)0.0260 (6)
C150.7672 (2)0.7136 (2)0.22053 (17)0.0185 (5)
N150.65687 (19)0.70138 (19)0.28103 (14)0.0214 (4)
N210.35762 (19)0.60474 (18)0.21808 (14)0.0195 (4)
C2110.3629 (2)0.4962 (2)0.28478 (18)0.0211 (5)
C2120.3645 (3)0.5013 (3)0.38099 (19)0.0307 (6)
C2130.3727 (3)0.3963 (3)0.4460 (2)0.0431 (8)
C2140.3814 (3)0.2894 (3)0.4132 (2)0.0443 (8)
C2150.3808 (3)0.2851 (3)0.3175 (2)0.0403 (8)
C2160.3710 (3)0.3895 (2)0.2517 (2)0.0284 (6)
N220.46191 (19)0.64247 (18)0.15401 (14)0.0209 (4)
C230.4336 (2)0.7510 (2)0.11225 (17)0.0207 (5)
C2310.5229 (3)0.8226 (3)0.0369 (2)0.0319 (6)
C240.3137 (2)0.7832 (2)0.14798 (17)0.0183 (5)
S210.19369 (6)1.11124 (6)0.15142 (5)0.02540 (18)
C220.2224 (2)0.9589 (2)0.20869 (17)0.0209 (5)
C2210.3273 (2)0.9564 (2)0.27099 (17)0.0207 (5)
C2220.3079 (3)0.9035 (3)0.36676 (18)0.0303 (6)
C2230.4051 (3)0.9002 (3)0.4239 (2)0.0401 (8)
C2240.5200 (3)0.9498 (3)0.3846 (2)0.0367 (7)
C2250.5400 (3)1.0021 (2)0.2887 (2)0.0298 (6)
C2260.4437 (2)1.0053 (2)0.23233 (19)0.0254 (6)
N230.25669 (19)0.89500 (17)0.12829 (14)0.0203 (4)
C2410.2220 (2)0.9432 (2)0.04141 (18)0.0252 (6)
O240.2395 (2)0.89702 (17)0.03008 (13)0.0334 (5)
C2510.1597 (3)1.0617 (2)0.04410 (19)0.0277 (6)
C250.2672 (2)0.6865 (2)0.21657 (17)0.0187 (5)
N250.15642 (19)0.67233 (19)0.27590 (15)0.0238 (5)
H1120.84270.75340.40660.033*
H1130.85760.88650.51240.042*
H1140.88831.08980.45320.040*
H1150.89841.16100.28870.037*
H1160.87861.02890.18220.027*
H13A1.09370.71360.02340.045*
H13B0.97960.66420.02180.045*
H13C1.04670.57820.05750.045*
H120.64170.46430.25170.025*
H1220.70670.41810.40510.047*
H1230.86110.37490.50820.068*
H1241.06540.35110.44610.066*
H1251.11780.36370.28050.052*
H1260.96530.40710.17760.037*
H15C0.68980.37900.00710.031*
H15D0.56780.42220.05260.031*
H15A0.59580.68280.25010.026*
H15B0.63020.76320.30640.026*
H2120.36000.57580.40240.037*
H2130.37240.39820.51240.052*
H2140.38790.21770.45750.053*
H2150.38700.21060.29620.048*
H2160.37000.38710.18550.034*
H23A0.59590.77470.02250.048*
H23B0.54930.89380.05980.048*
H23C0.48230.84660.02140.048*
H220.14470.92280.24810.025*
H2220.22870.86940.39360.036*
H2230.39210.86380.48960.048*
H2240.58580.94810.42360.044*
H2250.61951.03550.26180.036*
H2260.45721.04130.16660.030*
H25C0.06841.05270.04450.033*
H25D0.19211.12040.01310.033*
H25A0.09590.71290.24980.029*
H25B0.13070.59910.30050.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0176 (10)0.0172 (10)0.0205 (10)0.0003 (8)0.0005 (8)0.0039 (8)
C1110.0149 (12)0.0223 (12)0.0225 (12)0.0007 (9)0.0035 (9)0.0056 (10)
C1120.0318 (15)0.0236 (13)0.0274 (14)0.0046 (11)0.0087 (11)0.0017 (11)
C1130.0401 (17)0.0415 (17)0.0236 (14)0.0068 (13)0.0041 (12)0.0085 (12)
C1140.0332 (16)0.0344 (16)0.0370 (16)0.0059 (13)0.0003 (13)0.0180 (13)
C1150.0300 (15)0.0218 (14)0.0399 (16)0.0046 (11)0.0005 (12)0.0079 (12)
C1160.0195 (13)0.0216 (13)0.0264 (13)0.0019 (10)0.0005 (10)0.0032 (10)
N120.0164 (10)0.0220 (11)0.0200 (10)0.0007 (8)0.0003 (8)0.0023 (8)
C130.0208 (12)0.0176 (12)0.0197 (12)0.0032 (9)0.0023 (10)0.0016 (9)
C1310.0266 (14)0.0278 (14)0.0348 (15)0.0023 (11)0.0078 (12)0.0093 (12)
C140.0162 (11)0.0161 (11)0.0195 (11)0.0016 (9)0.0043 (9)0.0031 (9)
S110.0275 (4)0.0201 (3)0.0296 (4)0.0031 (3)0.0046 (3)0.0065 (3)
C120.0208 (12)0.0190 (12)0.0204 (12)0.0007 (10)0.0011 (10)0.0025 (9)
C1210.0289 (14)0.0156 (12)0.0249 (13)0.0014 (10)0.0056 (11)0.0026 (10)
C1220.055 (2)0.0350 (17)0.0283 (15)0.0055 (14)0.0086 (14)0.0050 (12)
C1230.085 (3)0.052 (2)0.0357 (18)0.002 (2)0.029 (2)0.0012 (16)
C1240.070 (3)0.0323 (18)0.068 (3)0.0026 (17)0.050 (2)0.0030 (16)
C1250.0321 (17)0.0238 (15)0.073 (2)0.0030 (12)0.0221 (16)0.0022 (15)
C1260.0293 (15)0.0206 (13)0.0419 (16)0.0032 (11)0.0067 (12)0.0001 (11)
N130.0217 (11)0.0180 (10)0.0178 (10)0.0003 (8)0.0023 (8)0.0041 (8)
C1410.0214 (13)0.0246 (13)0.0222 (13)0.0036 (10)0.0034 (10)0.0063 (10)
O140.0417 (12)0.0292 (10)0.0228 (9)0.0017 (9)0.0083 (8)0.0033 (8)
C1510.0251 (14)0.0289 (14)0.0269 (13)0.0005 (11)0.0067 (11)0.0104 (11)
C150.0155 (11)0.0209 (12)0.0191 (11)0.0007 (9)0.0043 (9)0.0023 (9)
N150.0190 (11)0.0240 (11)0.0227 (10)0.0004 (8)0.0005 (8)0.0092 (8)
N210.0168 (10)0.0188 (10)0.0211 (10)0.0010 (8)0.0006 (8)0.0005 (8)
C2110.0177 (12)0.0180 (12)0.0253 (13)0.0004 (9)0.0016 (10)0.0016 (10)
C2120.0356 (16)0.0287 (15)0.0263 (14)0.0005 (12)0.0065 (12)0.0013 (11)
C2130.049 (2)0.0452 (19)0.0296 (16)0.0060 (15)0.0076 (14)0.0109 (14)
C2140.0395 (18)0.0333 (17)0.050 (2)0.0082 (14)0.0018 (15)0.0176 (14)
C2150.0339 (17)0.0204 (14)0.060 (2)0.0030 (12)0.0092 (15)0.0008 (13)
C2160.0256 (14)0.0230 (14)0.0350 (15)0.0005 (11)0.0045 (12)0.0054 (11)
N220.0165 (10)0.0232 (11)0.0215 (10)0.0014 (8)0.0014 (8)0.0022 (8)
C230.0227 (13)0.0210 (13)0.0183 (12)0.0032 (10)0.0035 (10)0.0020 (9)
C2310.0284 (15)0.0287 (15)0.0326 (15)0.0004 (12)0.0076 (12)0.0042 (12)
C240.0206 (12)0.0161 (11)0.0180 (11)0.0010 (9)0.0047 (9)0.0006 (9)
S210.0251 (4)0.0200 (3)0.0306 (4)0.0028 (3)0.0061 (3)0.0013 (3)
C220.0192 (12)0.0198 (12)0.0224 (12)0.0016 (10)0.0002 (10)0.0016 (10)
C2210.0242 (13)0.0178 (12)0.0208 (12)0.0034 (10)0.0029 (10)0.0053 (9)
C2220.0354 (16)0.0360 (16)0.0195 (13)0.0008 (12)0.0023 (11)0.0050 (11)
C2230.055 (2)0.0411 (18)0.0273 (15)0.0046 (15)0.0163 (14)0.0060 (13)
C2240.0421 (18)0.0310 (16)0.0435 (17)0.0071 (13)0.0230 (14)0.0128 (13)
C2250.0208 (13)0.0246 (14)0.0464 (17)0.0017 (11)0.0083 (12)0.0101 (12)
C2260.0231 (13)0.0244 (13)0.0278 (14)0.0020 (10)0.0036 (11)0.0018 (10)
N230.0243 (11)0.0165 (10)0.0197 (10)0.0008 (8)0.0054 (8)0.0003 (8)
C2410.0268 (14)0.0244 (13)0.0228 (13)0.0052 (11)0.0075 (11)0.0031 (10)
O240.0496 (13)0.0284 (11)0.0227 (10)0.0004 (9)0.0117 (9)0.0009 (8)
C2510.0274 (14)0.0245 (14)0.0310 (14)0.0018 (11)0.0116 (11)0.0013 (11)
C250.0176 (12)0.0188 (12)0.0196 (12)0.0020 (9)0.0050 (9)0.0010 (9)
N250.0190 (11)0.0205 (11)0.0284 (11)0.0004 (8)0.0012 (9)0.0042 (9)
Geometric parameters (Å, º) top
N11—C151.353 (3)N21—C251.346 (3)
N11—N121.388 (3)N21—N221.383 (3)
N11—C1111.425 (3)N21—C2111.428 (3)
C111—C1161.378 (3)C211—C2161.378 (4)
C111—C1121.393 (3)C211—C2121.384 (4)
C112—C1131.381 (4)C212—C2131.390 (4)
C112—H1120.95C212—H2120.95
C113—C1141.386 (4)C213—C2141.377 (5)
C113—H1130.95C213—H2130.95
C114—C1151.386 (4)C214—C2151.373 (5)
C114—H1140.95C214—H2140.95
C115—C1161.387 (4)C215—C2161.393 (4)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
N12—C131.333 (3)N22—C231.327 (3)
C13—C141.401 (3)C23—C241.407 (4)
C13—C1311.494 (4)C23—C2311.486 (3)
C131—H13A0.98C231—H23A0.98
C131—H13B0.98C231—H23B0.98
C131—H13C0.98C231—H23C0.98
C14—C151.383 (3)C24—C251.392 (3)
C14—N131.421 (3)C24—N231.411 (3)
S11—C121.830 (2)S21—C221.828 (2)
S11—C1511.796 (3)S21—C2511.795 (3)
C12—N131.465 (3)C22—N231.473 (3)
C12—C1211.509 (3)C22—C2211.514 (3)
C12—H121.00C22—H221.00
C121—C1261.387 (4)C221—C2221.385 (3)
C121—C1221.390 (4)C221—C2261.389 (4)
C122—C1231.393 (5)C222—C2231.397 (4)
C122—H1220.95C222—H2220.95
C123—C1241.365 (6)C223—C2241.380 (5)
C123—H1230.95C223—H2230.95
C124—C1251.391 (5)C224—C2251.384 (4)
C124—H1240.95C224—H2240.95
C125—C1261.377 (4)C225—C2261.382 (4)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
N13—C1411.364 (3)N23—C2411.358 (3)
C141—O141.221 (3)C241—O241.221 (3)
C141—C1511.510 (4)C241—C2511.512 (4)
C151—H15C0.99C251—H25C0.99
C151—H15D0.99C251—H25D0.99
C15—N151.379 (3)C25—N251.375 (3)
N15—H15A0.88N25—H25A0.88
N15—H15B0.88N25—H25B0.88
C15—N11—N12112.16 (19)C25—N21—N22112.92 (19)
C15—N11—C111128.6 (2)C25—N21—C211127.6 (2)
N12—N11—C111118.62 (19)N22—N21—C211118.9 (2)
C116—C111—C112121.3 (2)C216—C211—C212121.5 (2)
C116—C111—N11119.5 (2)C216—C211—N21119.5 (2)
C112—C111—N11119.2 (2)C212—C211—N21119.0 (2)
C113—C112—C111119.2 (3)C211—C212—C213119.3 (3)
C113—C112—H112120.4C211—C212—H212120.4
C111—C112—H112120.4C213—C212—H212120.4
C112—C113—C114120.1 (3)C214—C213—C212119.4 (3)
C112—C113—H113120.0C214—C213—H213120.3
C114—C113—H113120.0C212—C213—H213120.3
C115—C114—C113120.1 (3)C215—C214—C213121.0 (3)
C115—C114—H114120.0C215—C214—H214119.5
C113—C114—H114120.0C213—C214—H214119.5
C114—C115—C116120.4 (3)C214—C215—C216120.2 (3)
C114—C115—H115119.8C214—C215—H215119.9
C116—C115—H115119.8C216—C215—H215119.9
C111—C116—C115119.0 (2)C211—C216—C215118.6 (3)
C111—C116—H116120.5C211—C216—H216120.7
C115—C116—H116120.5C215—C216—H216120.7
C13—N12—N11104.19 (19)C23—N22—N21104.13 (19)
N12—C13—C14111.5 (2)N22—C23—C24111.5 (2)
N12—C13—C131120.4 (2)N22—C23—C231120.9 (2)
C14—C13—C131128.1 (2)C24—C23—C231127.5 (2)
C13—C131—H13A109.5C23—C231—H23A109.5
C13—C131—H13B109.5C23—C231—H23B109.5
H13A—C131—H13B109.5H23A—C231—H23B109.5
C13—C131—H13C109.5C23—C231—H23C109.5
H13A—C131—H13C109.5H23A—C231—H23C109.5
H13B—C131—H13C109.5H23B—C231—H23C109.5
C15—C14—C13106.1 (2)C25—C24—C23105.8 (2)
C15—C14—N13125.7 (2)C25—C24—N23126.0 (2)
C13—C14—N13128.0 (2)C23—C24—N23127.8 (2)
C151—S11—C1291.17 (11)C251—S21—C2291.52 (12)
N13—C12—C121112.4 (2)N23—C22—C221111.0 (2)
N13—C12—S11104.04 (15)N23—C22—S21104.60 (15)
C121—C12—S11110.20 (17)C221—C22—S21110.85 (17)
N13—C12—H12110.0N23—C22—H22110.1
C121—C12—H12110.0C221—C22—H22110.1
S11—C12—H12110.0S21—C22—H22110.1
C126—C121—C122119.2 (3)C222—C221—C226119.6 (2)
C126—C121—C12120.9 (2)C222—C221—C22120.0 (2)
C122—C121—C12119.9 (3)C226—C221—C22120.4 (2)
C121—C122—C123120.0 (3)C221—C222—C223119.9 (3)
C121—C122—H122120.0C221—C222—H222120.1
C123—C122—H122120.0C223—C222—H222120.1
C124—C123—C122120.1 (3)C224—C223—C222119.8 (3)
C124—C123—H123119.9C224—C223—H223120.1
C122—C123—H123119.9C222—C223—H223120.1
C123—C124—C125120.3 (3)C223—C224—C225120.5 (3)
C123—C124—H124119.8C223—C224—H224119.8
C125—C124—H124119.8C225—C224—H224119.8
C126—C125—C124119.7 (3)C226—C225—C224119.6 (3)
C126—C125—H125120.1C226—C225—H225120.2
C124—C125—H125120.1C224—C225—H225120.2
C125—C126—C121120.6 (3)C225—C226—C221120.6 (2)
C125—C126—H126119.7C225—C226—H226119.7
C121—C126—H126119.7C221—C226—H226119.7
C12—N13—C141117.5 (2)C22—N23—C241117.5 (2)
C12—N13—C14119.13 (19)C22—N23—C24118.13 (19)
C14—N13—C141122.9 (2)C24—N23—C241124.1 (2)
O14—C141—N13124.4 (2)O24—C241—N23124.3 (2)
O14—C141—C151124.4 (2)O24—C241—C251124.2 (2)
N13—C141—C151111.2 (2)N23—C241—C251111.5 (2)
C141—C151—S11107.23 (17)C241—C251—S21107.60 (17)
C141—C151—H15C110.3C241—C251—H25C110.2
S11—C151—H15C110.3S21—C251—H25C110.2
C141—C151—H15D110.3C241—C251—H25D110.2
S11—C151—H15D110.3S21—C251—H25D110.2
H15C—C151—H15D108.5H25C—C251—H25D108.5
N11—C15—N15123.6 (2)N21—C25—N25124.2 (2)
N11—C15—C14106.1 (2)N21—C25—C24105.6 (2)
N15—C15—C14130.3 (2)N25—C25—C24130.1 (2)
C15—N15—H15A109.7C25—N25—H25A112.2
C15—N15—H15B118.1C25—N25—H25B117.4
H15A—N15—H15B104.9H25A—N25—H25B110.2
C15—N11—C111—C116127.2 (3)C25—N21—C211—C216121.4 (3)
N12—N11—C111—C11662.2 (3)N22—N21—C211—C21668.1 (3)
C15—N11—C111—C11254.6 (4)C25—N21—C211—C21261.0 (4)
C13—C14—N13—C12121.7 (3)C23—C24—N23—C22117.7 (3)
N12—N11—C111—C112115.9 (3)N22—N21—C211—C212109.5 (3)
C116—C111—C112—C1130.3 (4)C216—C211—C212—C2130.9 (4)
N11—C111—C112—C113177.8 (2)N21—C211—C212—C213178.4 (3)
C111—C112—C113—C1140.7 (4)C211—C212—C213—C2141.2 (5)
C112—C113—C114—C1151.0 (5)C212—C213—C214—C2150.6 (5)
C113—C114—C115—C1160.1 (4)C213—C214—C215—C2160.1 (5)
C112—C111—C116—C1151.1 (4)C212—C211—C216—C2150.2 (4)
N11—C111—C116—C115177.0 (2)N21—C211—C216—C215177.6 (2)
C114—C115—C116—C1110.9 (4)C214—C215—C216—C2110.4 (4)
C15—N11—N12—C130.2 (3)C25—N21—N22—C230.0 (3)
C111—N11—N12—C13172.3 (2)C211—N21—N22—C23171.8 (2)
N11—N12—C13—C140.4 (3)N21—N22—C23—C240.1 (3)
N11—N12—C13—C131178.9 (2)N21—N22—C23—C231179.5 (2)
N12—C13—C14—C150.4 (3)N22—C23—C24—C250.2 (3)
C131—C13—C14—C15178.8 (2)C231—C23—C24—C25179.5 (2)
N12—C13—C14—N13174.0 (2)N22—C23—C24—N23173.1 (2)
C131—C13—C14—N136.8 (4)C231—C23—C24—N237.6 (4)
C151—S11—C12—N1326.86 (18)C251—S21—C22—N2324.17 (18)
C151—S11—C12—C121147.52 (18)C251—S21—C22—C221143.82 (19)
N13—C12—C121—C12649.9 (3)N23—C22—C221—C222119.1 (3)
S11—C12—C121—C12665.6 (3)S21—C22—C221—C222125.1 (2)
N13—C12—C121—C122131.5 (3)N23—C22—C221—C22659.9 (3)
S11—C12—C121—C122112.9 (2)S21—C22—C221—C22655.9 (3)
C126—C121—C122—C1230.8 (4)C226—C221—C222—C2230.4 (4)
C12—C121—C122—C123179.4 (3)C22—C221—C222—C223179.3 (3)
C121—C122—C123—C1240.1 (5)C221—C222—C223—C2240.1 (4)
C122—C123—C124—C1251.1 (5)C222—C223—C224—C2250.5 (4)
C123—C124—C125—C1261.2 (5)C223—C224—C225—C2260.6 (4)
C124—C125—C126—C1210.3 (4)C224—C225—C226—C2210.1 (4)
C122—C121—C126—C1250.7 (4)C222—C221—C226—C2250.3 (4)
C12—C121—C126—C125179.3 (2)C22—C221—C226—C225179.3 (2)
C15—C14—N13—C141120.1 (3)C25—C24—N23—C241120.6 (3)
C13—C14—N13—C14166.6 (3)C23—C24—N23—C24167.9 (3)
C15—C14—N13—C1251.6 (3)C25—C24—N23—C2253.7 (3)
C121—C12—N13—C141142.5 (2)C221—C22—N23—C241140.1 (2)
S11—C12—N13—C14123.3 (3)S21—C22—N23—C24120.5 (3)
C121—C12—N13—C1445.3 (3)C221—C22—N23—C2445.2 (3)
S11—C12—N13—C14164.52 (17)S21—C22—N23—C24164.80 (17)
C14—N13—C141—O142.9 (4)C24—N23—C241—O242.3 (4)
C12—N13—C141—O14174.8 (2)C22—N23—C241—O24176.6 (2)
C14—N13—C141—C151176.9 (2)C24—N23—C241—C251178.1 (2)
C12—N13—C141—C1515.1 (3)C22—N23—C241—C2513.7 (3)
O14—C141—C151—S11163.8 (2)O24—C241—C251—S21164.2 (2)
N13—C141—C151—S1116.4 (3)N23—C241—C251—S2115.5 (3)
C12—S11—C151—C14125.16 (19)C22—S21—C251—C24123.0 (2)
N12—N11—C15—N15178.5 (2)N22—N21—C25—N25177.5 (2)
C111—N11—C15—N157.4 (4)C211—N21—C25—N256.5 (4)
N12—N11—C15—C140.0 (3)N22—N21—C25—C240.1 (3)
C111—N11—C15—C14171.0 (2)C211—N21—C25—C24171.1 (2)
C13—C14—C15—N110.2 (3)C23—C24—C25—N210.2 (3)
N13—C14—C15—N11174.3 (2)N23—C24—C25—N21173.2 (2)
C13—C14—C15—N15178.5 (2)C23—C24—C25—N25177.2 (2)
N13—C14—C15—N154.0 (4)N23—C24—C25—N254.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···N220.882.203.077 (3)172
N25—H25A···N12i0.882.203.064 (3)165
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H18N4OS
Mr350.44
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.7937 (4), 11.3989 (2), 14.2448 (5)
α, β, γ (°)79.993 (2), 83.3490 (14), 89.852 (2)
V3)1714.07 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.18 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.945, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7923, 7923, 5732
Rint0.154
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.184, 1.03
No. of reflections7923
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.63

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
S11—C121.830 (2)S21—C221.828 (2)
S11—C1511.796 (3)S21—C2511.795 (3)
C12—N13—C141117.5 (2)C22—N23—C241117.5 (2)
C12—N13—C14119.13 (19)C22—N23—C24118.13 (19)
C14—N13—C141122.9 (2)C24—N23—C241124.1 (2)
C13—C14—N13—C12121.7 (3)C23—C24—N23—C22117.7 (3)
N12—N11—C111—C112115.9 (3)N22—N21—C211—C212109.5 (3)
N13—C12—C121—C122131.5 (3)N23—C22—C221—C222119.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···N220.882.203.077 (3)172
N25—H25A···N12i0.882.203.064 (3)165
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaen for financial support. BI and FO thank COLCIENCIAS and the Universidad de Valle for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationLow, J. N., Insuasty, B., Mosquera, M. & Cobo, J. (2003). Acta Cryst. E59, o614–o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds