organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

S-Ethyl N-benzoyl­di­thio­carbamate: two independent hydrogen-bonded R[_{\bf 2}^{\bf 2}](8) dimers of different symmetry linked into chains by a C—H⋯π(arene) interaction

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, ­Universidad de Jaén, 23071 Jaén, Spain, cDepartamento de Química, Universidad de Nariño, Cuidad Universitaria, Torobajo, AA1175 Pasto, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 May 2004; accepted 18 May 2004; online 22 June 2004)

The title compound, C10H11NOS2, crystallizes with Z′ = 2 in space group C2/c. The mol­ecules are linked by two N—H⋯S hydrogen bonds [H⋯S = 2.60 and 2.62 Å, N⋯S = 3.350 (2) and 3.490 (2) Å, and N—H⋯S = 143 and 172°] into two distinct types of [R_2^2](8) dimer, viz. one generated by inversion and the other by a twofold rotation axis. A single C—H⋯π(arene) hydrogen bond links the two types of dimer into chains.

Comment

It has been shown (Elmore et al., 1956[Elmore, D. T., Ogle, J. R., Fletcher, W. & Toseland, P. A. (1956). J. Chem. Soc. pp. 4458-4463.]; Nash et al., 1969[Nash, B. W., Newberry, R. A., Pickles, R. & Warburton, W. K. (1969). J. Chem. Soc. C, pp. 2794-2799.]) that alkane­thiols, RSH, react smoothly with aroyl­iso­thio­cyanates, ArCONCS, to give S-alkyl N-aroyldi­thio­carbamates, (ArCO)NHC(=S)SR, in good yields. We report here the molecular and supramolecular structures of the title compound, (PhCO)NHC(=S)SEt, (I[link]), which is an important intermediate in the preparation of S,S-di­alkyl N-aroyl­imino­di­thio­carbonates used in the synthesis of many organic compounds (Augustín et al., 1980[Augustín, M., Richter, M. & Salas, S. (1980). J. Prakt. Chem. 322, 55-68.]). We have modified the reported method for the synthesis of S-methyl N-benzoyl­di­thio­carbamate (Elmore et al., 1956[Elmore, D. T., Ogle, J. R., Fletcher, W. & Toseland, P. A. (1956). J. Chem. Soc. pp. 4458-4463.]), so enhancing the yield from 49 to 87%.

The title compound crystallizes in space group C2/c, with Z′ = 2 (Fig. 1[link]). The bond lengths (Table 1[link]), which are normal for their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), are, in general, almost identical in the two independent mol­ecules, as are the overall molecular conformations. However, the two torsion angles defining the orientation of the benzene rings relative to the rest of the nearly planar molecular skeletons differ by 22°. This fact alone suffices to preclude the possibility of any additional symmetry.

[Scheme 1]

Such a possibility is also ruled out by the observation that each type of mol­ecule forms a hydrogen-bonded dimer but that these have different symmetries. For mol­ecules of type 1 (Fig. 1[link]a), atom N12 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to thione atom S13 in the mol­ecule at (1 −  x, 1 − y, 1 − z), so generating a centrosymmetric [R_2^2](8) dimer (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) centred at ([1 \over 2], [1 \over 2], [1 \over 2]) (Fig. 2[link]a). However, for mol­ecules of type 2 (Fig. 1[link]b), atom N22 at (x, y, z) acts as a donor to thione atom S23 at (1 − x, y, [3 \over 2] − z), so that this [R_2^2](8) dimer (Fig. 2[link]b) lies across the twofold rotation axis along ([1 \over 2], y, [3 \over 4]). The dimensions of the two independent N—H⋯S hydrogen bonds (Table 2[link]) are markedly different.

Although the N⋯S distance is above the sum of the conventional van der Waals radii (3.3 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), an analysis (Allen et al., 1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680-695.]) of hydrogen bonds having a secondary amine donor and a thione-type S atom as the acceptor, using data retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), indicated mean H⋯S, N⋯S and N—H⋯S parameters of 2.46 (1) Å, 3.40 (1) Å and 158 (1)°, respectively, in such bonds involving the neutral species R1R2C=S as an acceptor, and 2.51 (1) Å, 3.44 (1) Å and 158 (1)°, respectively, in such bonds involving neutral thio­ureas as an acceptor. Accordingly, the N—H⋯S interactions in (I[link]) appear to be fairly typical of such hydrogen bonds.

Each unit cell contains four dimers of each type, and the two types are linked into chains by a single C—H⋯π(arene) hydrogen bond. Atoms C46 in the type 2 mol­ecules at (x, y, z) and (1 − x, y, [3 \over 2] − z) lie in the dimer across the twofold axis along ([1\over 2], y, [3 \over 4]). These atoms act as hydrogen-bond donors, respectively, to the C31–C36 rings in the type 1 mol­ecules at (−[1 \over 2 ] + x, [1 \over 2 ] + y, z) and ([3 \over 2] − x, [1 \over 2] + y, [3 \over 2] − z), which are themselves components of the type 1 dimers centred at (0, 1, [1 \over 2]) and (1, 1, 1), respectively. Within these type 1 dimers, the mol­ecules at ([1 \over 2] − x, [3 \over 2] − y, 1 − z) and ([1 \over 2] + x, [3 \over 2] − y, [1 \over 2] + z) similarly accept hydrogen bonds from atoms C46 in the type 2 mol­ecules at (1 − x, 2 − y, 1 − z) and (1 + x, 2 − y, [1 \over 2] + z), respectively, which themselves lie in the type 2 dimers across the rotation axes along ([1 \over 2], −y, [1 \over 4]) and ([3 \over 2], −y, [5 \over 4]). Propagation of this single C—H⋯π(arene) hydrogen bond by inversion and rotation thus links dimers of the two types into a chain of rings running parallel to the [201] direction (Fig. 3[link]). Four chains pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

[Figure 1]
Figure 1
The two independent mol­ecules in (I[link]), showing the atom-labelling scheme in (a) the type 1 mol­ecule and (b) the type 2 mol­ecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The two independent hydrogen-bonded dimers in the structure of (I[link]), showing (a) that generated by inversion, where atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z), and (b) that generated by rotation, where atoms marked with an asterisk (*) are at the symmetry position (1 − x, y, [3 \over 2] − z).
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of (I[link]), showing the formation of the [201] chain of rings linking the two types of [R_2^2](8) dimer.

Experimental

Benzoyl chloride (5 ml, 0.043 mol) was added to a solution of potassium thio­cyanate (4.1 g, 0.043 mol) in aceto­nitrile (75 ml) and this mixture was heated under reflux for 15 min to afford benzoyl iso­thio­cyanate. The mixture was cooled to 273 K under an inert atmosphere; ethane­thiol (35 ml, 0.47 mol) was added, and this mixture was then stirred at room temperature for 27 h. Ice-water was added and the title compound was extracted with ethyl acetate (3 × 25 ml). The combined organic extracts were dried over an­hydrous sodium sulfate and the solvent was removed under reduced pressure. The resulting yellow solid was recrystallized from ethanol to give crystals of (I[link]) suitable for single-crystal X-ray diffraction [yield 87%, m.p. 348 K; literature (Nash et al., 1969[Nash, B. W., Newberry, R. A., Pickles, R. & Warburton, W. K. (1969). J. Chem. Soc. C, pp. 2794-2799.]) m.p. 352–353 K, yield 49%].

Crystal data
  • C10H11NOS2

  • Mr = 225.34

  • Monoclinic, C2/c

  • a = 21.8190 (5) Å

  • b = 8.4596 (2) Å

  • c = 23.1792 (5) Å

  • β = 94.5140 (14)°

  • V = 4265.15 (17) Å3

  • Z = 16

  • Dx = 1.404 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4840 reflections

  • θ = 3.1–27.5°

  • μ = 0.46 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.20 × 0.20 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.902, Tmax = 0.929

  • 33 304 measured reflections

  • 4840 independent reflections

  • 3569 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 27.5°

  • h = −28 → 28

  • k = −10 → 10

  • l = −30 → 29

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.01

  • 4840 reflections

  • 255 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0447P)2 + 0.8703P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

C11—O11 1.214 (2)
C11—N12 1.394 (2)
N12—C13 1.376 (2)
C13—S13 1.6586 (18)
C13—S14 1.7414 (19)
S14—C15 1.8103 (18)
C21—O21 1.214 (2)
C21—N22 1.394 (2)
N22—C23 1.379 (2)
C23—S23 1.6552 (18)
C23—S24 1.7333 (19)
S24—C25 1.8116 (18)
C31—C11—N12—C13 175.14 (16)
C11—N12—C13—S14 −1.6 (2)
N12—C13—S14—C15 −173.39 (13)
C13—S14—C15—C16 −174.12 (13)
N12—C11—C31—C32 −45.0 (2)
C41—C21—N22—C23 −177.70 (16)
C21—N22—C23—S24 −4.1 (2)
N22—C23—S24—C25 176.92 (14)
C23—S24—C25—C26 −173.31 (13)
N22—C21—C41—C42 −22.7 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯S13i 0.88 2.62 3.490 (2) 172
N22—H22⋯S23ii 0.88 2.60 3.350 (2) 143
C46—H46⋯Cg1iii 0.95 2.85 3.678 (2) 146
Symmetry codes: (i) 1-x,1-y,1-z; (ii) [1-x,y,{\script{3\over 2}}-z]; (iii) [x-{\script{1\over 2}},{\script{1\over 2}}+y,z].

The systematic absences permitted C2/c and Cc as possible space groups; C2/c was selected and confirmed by the structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), an N—H distance of 0.88 Å, and Uiso(H) values of 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

It has been shown (Elmore et al., 1956; Nash et al., 1969) that alkanethiols, RSH, react smoothly with aroylisothiocyanates, ArCONCS, to give S-alkyl N-aroyldithiocarbamates, (ArCO)NHC(=S)SR, in good yields. We report here the molecular and supramolecular structures of the title compound, (PhCO)NHC(=S)SEt, which is an important intermediate for the preparation of S,S-dialkyl N-aroyliminodithiocarbonates used in the synthesis of many organic compounds (Augustín et al., 1980). We have modified the reported method for the synthesis of S-methyl N-benzoyldithiocarbamate (Elmore et al., 1956), so enhancing the yield from 49 to 87%.

The title compound crystallizes in space group C2/c, with Z' = 2 (Fig. 1). The bond lengths (Table 1), which are normal for their types (Allen et al., 1987), are, in general, almost identical in the two independent molecules, as are the overall molecular conformations. However, the two torsion angles defining the orientation of the phenyl rings relative to the rest of the nearly planar molecular skeletons differ by 22°. This fact alone suffices to preclude the possibility of any additional symmetry.

Such a possibility is also ruled out by the observation that each type of molecule forms a hydrogen-bonded dimer but that these have different symmetries. For molecules of type 1 (Fig. 1a), atom N12 in the molecule at (x, y, z) acts as a hydrogen-bond donor to thione atom S13 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(8) dimer (Bernstein et al., 1995) centred at (1/2, 1/2, 1/2) (Fig. 2a). However, for molecules of type 2 (Fig. 1 b), atom N22 at (x, y, z) acts as a donor to thione atom S23 at (1 − x, y, 1.5 − z), so that this R22(8) dimer (Fig. 2 b) lies across the twofold rotation axis along (1/2,y, 3/4). The dimensions of the two independent N—H···S hydrogen bonds (Table 2) are markedly different.

Although the N···S distance is above the sum, 3.3 Å, of the conventional van der Waals radii (Bondi, 1964), an analysis (Allen et al., 1997) of hydrogen bonds having a secondary amine donor and a thione-type S atom as the acceptor, using data retrieved from the Cambridge Structural Database (Allen, 2002), indicated mean H···S, N···S and N—H···S parameters of 2.46 (1) Å, 3.40 (1) Å and 158 (1)° in such bonds involving the neutral species R1R2C=S as an acceptor, and 2.51 (1) Å, 3.44 (1) Å and 158 (1)° in such bonds involving neutral thioureas as an acceptor. Accordingly, the N—H···S interactions in (I) appear to be fairly typical of such hydrogen bonds.

Each unit cell contains four dimers of each type and the two types are linked into chains by a single C—H···π(arene) hydrogen bond. Atoms C46 in the type 2 molecules at (x, y, z) and (1 − x, y, 1.5 − z) lie in the dimer across the twofold axis along (1/2, y, 3/4). These atoms act as hydrogen-bond donors, respectively, to the C31—C36 rings in the type 1 molecules at (−0.5 + x, 0.5 + y, z) and (1.5 − x, 0.5 + y, 1.5 − z), which are themselves components of the type 1 dimers centred at (0, 1, 1/2) and (1, 1, 1), respectively. Within these type 1 dimers, the molecules at (0.5 − x, 1.5 − y, 1 − z) and (0.5 + x, 1.5 − y, 0.5 + z) similarly accept hydrogen bonds from atoms C46 in the type 2 molecules at (1 − x, 2 − y, 1 − z) and (1 + x, 2 − y, 0.5 + z), respectively, which themselves lie in the type 2 dimers acoss the rotation axes along (−0.5, −y, 1/4) and (1.5, −y, 1.25). Propagation of this single C—H..π(arene) hydrogen bond by inversion and rotation thus links dimers of the two types into a chain of rings running parallel to the [201] direction (Fig. 3). Four chains pass through each unit cell, but there are no direction-specific interactions betweeen adjacent chains.

Experimental top

Benzoyl chloride (5 ml, 0.043 mol) was added to a solution of potassium thiocyanate (4.1 g, 0.043 mol) in acetonitrile (75 ml) and this mixture was heated under reflux for 15 min to afford benzoyl isothiocyanate. The mixture was cooled to 273 K under an inert atmosphere; ethanethiol (35 ml, 0.47 mol) was added, and this mixture was then stirred at room temperature for 27 h. Ice-water was added and the title compound was extracted with ethyl acetate (3 x 25 ml). The combined organic extracts were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The resulting yellow solid was recrystallized from ethanol to give crystals of (I) suitable for single-crystal X-ray diffraction. Yield 87%, m.p. 348 K. Literature (Nash et al., 1969) m.p. 352–353 K, yield 49%.

Refinement top

The systematic absences permitted C2/c and Cc as possible space groups: C2/c was selected and confirmed by the structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), an N—H distance of 0.88 Å, and Uiso(H) values of 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules in (I), showing the atom-labelling scheme: (a) the type 1 molecule and (b) the type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent hydrogen-bonded dimers in the structure of (I): (a) that generated by inversion, where atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z), and (b) that generated by rotation, where atoms marked with an asterisk (*) are at the symmetry position (1 − x, y, 1.5 − z).
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of the [201] chain of rings linking the two types of R22(8) dimer.
S-Ethyl N-benzoyldithiocarbamate top
Crystal data top
C10H11NOS2F(000) = 1888
Mr = 225.34Dx = 1.404 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4840 reflections
a = 21.8190 (5) Åθ = 3.1–27.5°
b = 8.4596 (2) ŵ = 0.46 mm1
c = 23.1792 (5) ÅT = 120 K
β = 94.5140 (14)°Block, colourless
V = 4265.15 (17) Å30.20 × 0.20 × 0.16 mm
Z = 16
Data collection top
Nonius KappaCCD
diffractometer
4840 independent reflections
Radiation source: rotating anode3569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 2828
Tmin = 0.902, Tmax = 0.929k = 1010
33304 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.8703P]
where P = (Fo2 + 2Fc2)/3
4840 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H11NOS2V = 4265.15 (17) Å3
Mr = 225.34Z = 16
Monoclinic, C2/cMo Kα radiation
a = 21.8190 (5) ŵ = 0.46 mm1
b = 8.4596 (2) ÅT = 120 K
c = 23.1792 (5) Å0.20 × 0.20 × 0.16 mm
β = 94.5140 (14)°
Data collection top
Nonius KappaCCD
diffractometer
4840 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3569 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.929Rint = 0.067
33304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4840 reflectionsΔρmin = 0.38 e Å3
255 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S130.43471 (2)0.36946 (6)0.54420 (2)0.02042 (12)
S140.49163 (2)0.24080 (5)0.65662 (2)0.01954 (12)
O110.60744 (6)0.34703 (16)0.66461 (6)0.0243 (3)
N120.55035 (6)0.40915 (17)0.58096 (6)0.0175 (3)
C110.60505 (8)0.4030 (2)0.61624 (8)0.0188 (4)
C130.49451 (8)0.3452 (2)0.59213 (8)0.0163 (4)
C150.41451 (8)0.1605 (2)0.64882 (8)0.0208 (4)
C160.40314 (9)0.0795 (2)0.70572 (9)0.0276 (5)
C310.65977 (8)0.4715 (2)0.59075 (8)0.0180 (4)
C320.67309 (8)0.4399 (2)0.53411 (8)0.0212 (4)
C330.72637 (8)0.5011 (2)0.51352 (8)0.0252 (4)
C340.76538 (9)0.5960 (2)0.54910 (9)0.0266 (4)
C350.75195 (8)0.6278 (2)0.60514 (9)0.0260 (5)
C360.69969 (8)0.5635 (2)0.62660 (8)0.0219 (4)
S230.56865 (2)0.73412 (6)0.69753 (2)0.02289 (13)
S240.51204 (2)0.84877 (6)0.58307 (2)0.02053 (12)
O210.39103 (6)0.77129 (15)0.58351 (6)0.0244 (3)
N220.45330 (6)0.69264 (18)0.66186 (6)0.0184 (3)
C210.39665 (8)0.7034 (2)0.62979 (8)0.0188 (4)
C230.50920 (8)0.7543 (2)0.64916 (8)0.0174 (4)
C250.59095 (8)0.9172 (2)0.58779 (9)0.0253 (4)
C260.59880 (9)1.0212 (2)0.53514 (8)0.0253 (4)
C410.34413 (8)0.6283 (2)0.65692 (8)0.0185 (4)
C420.35075 (8)0.5093 (2)0.69847 (8)0.0206 (4)
C430.29949 (8)0.4416 (2)0.71982 (8)0.0232 (4)
C440.24097 (8)0.4920 (2)0.70002 (9)0.0254 (4)
C450.23416 (9)0.6117 (2)0.65953 (9)0.0274 (5)
C460.28515 (9)0.6793 (2)0.63742 (9)0.0239 (4)
H120.55070.46060.54800.021*
H15A0.38420.24620.64050.025*
H15B0.41060.08350.61660.025*
H16A0.43560.00150.71520.041*
H16B0.36310.02620.70190.041*
H16C0.40340.15860.73660.041*
H320.64590.37690.50970.025*
H330.73620.47810.47520.030*
H340.80140.63910.53470.032*
H350.77850.69370.62910.031*
H360.69120.58220.66560.026*
H220.45250.65580.69730.022*
H25A0.60010.97850.62380.030*
H25B0.61950.82610.58810.030*
H26A0.59040.95880.49980.038*
H26B0.64101.06150.53680.038*
H26C0.57001.11020.53500.038*
H420.39070.47450.71220.025*
H430.30430.36040.74810.028*
H440.20580.44420.71430.031*
H450.19420.64790.64670.033*
H460.28010.76020.60900.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S130.0160 (2)0.0259 (3)0.0189 (3)0.00182 (18)0.00175 (18)0.00254 (19)
S140.0168 (2)0.0220 (3)0.0197 (3)0.00085 (18)0.00062 (18)0.00365 (19)
O110.0206 (7)0.0314 (8)0.0203 (7)0.0020 (6)0.0019 (5)0.0058 (6)
N120.0163 (7)0.0184 (8)0.0176 (8)0.0008 (6)0.0004 (6)0.0032 (6)
C110.0172 (9)0.0181 (9)0.0208 (10)0.0030 (7)0.0005 (7)0.0022 (8)
C130.0175 (8)0.0131 (9)0.0187 (9)0.0004 (7)0.0033 (7)0.0030 (7)
C150.0188 (9)0.0233 (10)0.0206 (10)0.0025 (8)0.0033 (8)0.0001 (8)
C160.0284 (10)0.0289 (12)0.0263 (11)0.0041 (9)0.0073 (9)0.0049 (9)
C310.0149 (8)0.0173 (9)0.0215 (10)0.0023 (7)0.0000 (7)0.0032 (8)
C320.0184 (9)0.0239 (10)0.0206 (10)0.0004 (8)0.0016 (7)0.0009 (8)
C330.0237 (10)0.0326 (12)0.0199 (11)0.0022 (8)0.0052 (8)0.0011 (8)
C340.0185 (9)0.0287 (11)0.0330 (12)0.0014 (8)0.0050 (8)0.0043 (9)
C350.0168 (9)0.0268 (11)0.0339 (12)0.0033 (8)0.0007 (8)0.0044 (9)
C360.0173 (9)0.0264 (11)0.0221 (10)0.0020 (8)0.0011 (8)0.0029 (8)
S230.0169 (2)0.0346 (3)0.0169 (3)0.00119 (19)0.00015 (18)0.0016 (2)
S240.0201 (2)0.0246 (3)0.0168 (2)0.00065 (18)0.00092 (18)0.00270 (19)
O210.0258 (7)0.0264 (7)0.0202 (7)0.0023 (6)0.0023 (6)0.0047 (6)
N220.0176 (7)0.0219 (8)0.0156 (8)0.0004 (6)0.0008 (6)0.0008 (6)
C210.0203 (9)0.0167 (9)0.0188 (10)0.0017 (7)0.0026 (7)0.0049 (8)
C230.0204 (9)0.0159 (9)0.0159 (9)0.0018 (7)0.0011 (7)0.0032 (7)
C250.0190 (9)0.0292 (11)0.0276 (11)0.0015 (8)0.0013 (8)0.0031 (9)
C260.0272 (10)0.0235 (11)0.0258 (11)0.0014 (8)0.0060 (8)0.0018 (8)
C410.0193 (9)0.0181 (10)0.0178 (10)0.0002 (7)0.0012 (7)0.0042 (7)
C420.0201 (9)0.0208 (10)0.0200 (10)0.0007 (8)0.0043 (8)0.0039 (8)
C430.0268 (10)0.0222 (10)0.0201 (10)0.0018 (8)0.0002 (8)0.0005 (8)
C440.0201 (9)0.0289 (11)0.0281 (11)0.0033 (8)0.0065 (8)0.0062 (9)
C450.0196 (10)0.0282 (11)0.0339 (12)0.0043 (8)0.0006 (8)0.0019 (9)
C460.0236 (10)0.0226 (10)0.0247 (11)0.0011 (8)0.0034 (8)0.0001 (8)
Geometric parameters (Å, º) top
C11—O111.214 (2)C21—O211.214 (2)
C11—N121.394 (2)C21—N221.394 (2)
C11—C311.491 (3)C21—C411.492 (3)
N12—C131.376 (2)N22—C231.379 (2)
N12—H120.88N22—H220.88
C13—S131.6586 (18)C23—S231.6552 (18)
C13—S141.7414 (19)C23—S241.7333 (19)
S14—C151.8103 (18)S24—C251.8116 (18)
C15—C161.524 (3)C25—C261.525 (3)
C15—H15A0.99C25—H25A0.99
C15—H15B0.99C25—H25B0.99
C16—H16A0.98C26—H26A0.98
C16—H16B0.98C26—H26B0.98
C16—H16C0.98C26—H26C0.98
C31—C321.393 (3)C41—C421.393 (3)
C31—C361.393 (3)C41—C461.398 (3)
C32—C331.391 (3)C42—C431.383 (3)
C32—H320.95C42—H420.95
C33—C341.393 (3)C43—C441.389 (3)
C33—H330.95C43—H430.95
C34—C351.380 (3)C44—C451.381 (3)
C34—H340.95C44—H440.95
C35—C361.390 (3)C45—C461.385 (3)
C35—H350.95C45—H450.95
C36—H360.95C46—H460.95
O11—C11—N12121.93 (17)O21—C21—N22121.70 (17)
O11—C11—C31122.69 (16)O21—C21—C41123.10 (16)
N12—C11—C31115.37 (16)N22—C21—C41115.19 (16)
C13—N12—C11127.21 (15)C23—N22—C21128.55 (16)
C13—N12—H12115.2C23—N22—H22114.6
C11—N12—H12117.6C21—N22—H22116.0
N12—C13—S13119.11 (13)N22—C23—S23118.39 (13)
N12—C13—S14116.96 (13)N22—C23—S24117.17 (13)
S13—C13—S14123.93 (10)S23—C23—S24124.44 (11)
C13—S14—C15101.57 (8)C23—S24—C25101.18 (9)
C16—C15—S14107.20 (13)C26—C25—S24107.59 (13)
C16—C15—H15A110.3C26—C25—H25A110.2
S14—C15—H15A110.3S24—C25—H25A110.2
C16—C15—H15B110.3C26—C25—H25B110.2
S14—C15—H15B110.3S24—C25—H25B110.2
H15A—C15—H15B108.5H25A—C25—H25B108.5
C15—C16—H16A109.5C25—C26—H26A109.5
C15—C16—H16B109.5C25—C26—H26B109.5
H16A—C16—H16B109.5H26A—C26—H26B109.5
C15—C16—H16C109.5C25—C26—H26C109.5
H16A—C16—H16C109.5H26A—C26—H26C109.5
H16B—C16—H16C109.5H26B—C26—H26C109.5
C32—C31—C36120.16 (17)C42—C41—C46119.29 (17)
C32—C31—C11122.14 (16)C42—C41—C21123.90 (16)
C36—C31—C11117.62 (17)C46—C41—C21116.77 (17)
C33—C32—C31119.60 (17)C43—C42—C41120.27 (17)
C33—C32—H32120.2C43—C42—H42119.9
C31—C32—H32120.2C41—C42—H42119.9
C32—C33—C34120.00 (18)C42—C43—C44120.19 (18)
C32—C33—H33120.0C42—C43—H43119.9
C34—C33—H33120.0C44—C43—H43119.9
C35—C34—C33120.29 (18)C45—C44—C43119.78 (18)
C35—C34—H34119.9C45—C44—H44120.1
C33—C34—H34119.9C43—C44—H44120.1
C34—C35—C36120.08 (18)C44—C45—C46120.52 (18)
C34—C35—H35120.0C44—C45—H45119.7
C36—C35—H35120.0C46—C45—H45119.7
C35—C36—C31119.82 (18)C45—C46—C41119.93 (18)
C35—C36—H36120.1C45—C46—H46120.0
C31—C36—H36120.1C41—C46—H46120.0
O11—C11—N12—C135.6 (3)O21—C21—N22—C231.4 (3)
C31—C11—N12—C13175.14 (16)C41—C21—N22—C23177.70 (16)
C11—N12—C13—S13178.96 (14)C21—N22—C23—S23175.75 (14)
C11—N12—C13—S141.6 (2)C21—N22—C23—S244.1 (2)
N12—C13—S14—C15173.39 (13)N22—C23—S24—C25176.92 (14)
S13—C13—S14—C156.04 (14)S23—C23—S24—C252.88 (15)
C13—S14—C15—C16174.12 (13)C23—S24—C25—C26173.31 (13)
O11—C11—C31—C32135.8 (2)O21—C21—C41—C42158.22 (18)
N12—C11—C31—C3245.0 (2)N22—C21—C41—C4222.7 (3)
O11—C11—C31—C3641.0 (3)O21—C21—C41—C4619.8 (3)
N12—C11—C31—C36138.22 (17)N22—C21—C41—C46159.28 (16)
C36—C31—C32—C330.2 (3)C46—C41—C42—C430.5 (3)
C11—C31—C32—C33176.96 (17)C21—C41—C42—C43177.46 (17)
C31—C32—C33—C341.3 (3)C41—C42—C43—C440.1 (3)
C32—C33—C34—C351.1 (3)C42—C43—C44—C451.0 (3)
C33—C34—C35—C360.8 (3)C43—C44—C45—C461.6 (3)
C34—C35—C36—C312.3 (3)C44—C45—C46—C411.2 (3)
C32—C31—C36—C352.0 (3)C42—C41—C46—C450.1 (3)
C11—C31—C36—C35178.91 (17)C21—C41—C46—C45178.24 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···S13i0.882.623.490 (2)172
N22—H22···S23ii0.882.603.350 (2)143
C46—H46···Cg1iii0.952.853.678 (2)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H11NOS2
Mr225.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)21.8190 (5), 8.4596 (2), 23.1792 (5)
β (°) 94.5140 (14)
V3)4265.15 (17)
Z16
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.20 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.902, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
33304, 4840, 3569
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.01
No. of reflections4840
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
C11—O111.214 (2)C21—O211.214 (2)
C11—N121.394 (2)C21—N221.394 (2)
N12—C131.376 (2)N22—C231.379 (2)
C13—S131.6586 (18)C23—S231.6552 (18)
C13—S141.7414 (19)C23—S241.7333 (19)
S14—C151.8103 (18)S24—C251.8116 (18)
C31—C11—N12—C13175.14 (16)C41—C21—N22—C23177.70 (16)
C11—N12—C13—S141.6 (2)C21—N22—C23—S244.1 (2)
N12—C13—S14—C15173.39 (13)N22—C23—S24—C25176.92 (14)
C13—S14—C15—C16174.12 (13)C23—S24—C25—C26173.31 (13)
N12—C11—C31—C3245.0 (2)N22—C21—C41—C4222.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···S13i0.882.623.490 (2)172
N22—H22···S23ii0.882.603.350 (2)143
C46—H46···Cg1iii0.952.853.678 (2)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x1/2, y+1/2, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. HI, ME and EC thank COLCIENCIAS and UDENAR (Universidad de Nariño) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAugustín, M., Richter, M. & Salas, S. (1980). J. Prakt. Chem. 322, 55–68.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationElmore, D. T., Ogle, J. R., Fletcher, W. & Toseland, P. A. (1956). J. Chem. Soc. pp. 4458–4463.  CrossRef Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNash, B. W., Newberry, R. A., Pickles, R. & Warburton, W. K. (1969). J. Chem. Soc. C, pp. 2794–2799.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds