organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Orthorhombic and monoclinic polymorphs of 1,3,5-tri­phenyl­per­hydro-1,3,5-triazine-2,4,6-trione at 120 K: chains and sheets formed by C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 13 July 2004; accepted 15 July 2004; online 21 August 2004)

The title compound, C21H15N3O3, crystallizes in two polymorphic forms. In the orthorhombic polymorph, (I[link]), in space group Fdd2 with Z′ = 1, the mol­ecules lie in general positions, while in the monoclinic polymorph, (II[link]), in space group C2/c with Z′ = [{1 \over 2}], the mol­ecules lie across twofold rotation axes. In each polymorph, the mol­ecules are linked by a single C—H⋯π(arene) hydrogen bond, forming chains in polymorph (I[link]) and sheets in (II[link]).

Comment

We report here the molecular and supramolecular structures at 120 K of two polymorphic forms of 1,3,5-tri­phenyl-1,3,5-per­hydro­triazine-2,4,6-trione, the cyclic trimer of phenyl isocyanate, PhNCO. The orthorhombic polymorph, (I[link]) (Fig. 1[link]), crystallizes in space group Fdd2 with Z′ = 1, and the monoclinic polymorph, (II[link]) (Fig. 2[link]), crystallizes in space group C2/c, with Z′ = [{1 \over 2}]. The mol­ecules in (II[link]) lie across twofold rotation axes, with the reference mol­ecule lying across the axis along ([{1 \over 2}], y, [{1 \over 4}]). The structure of (II[link]) was reported from ambient-temperature data some years ago (Usanmaz, 1979[Usanmaz, A. (1979). Acta Cryst. B35, 1117-1119.]) and it is clear from the cell dimensions and space group that this earlier structure was of the same phase as (II[link]), thus suggesting that the monoclinic phase does not undergo any temperature-dependent change, at least within the range 120–300 K.

The bond lengths and angles in (I[link]) and (II[link]) (Tables 1[link] and 3[link]) are very similar, and the distances show evidence of strong bond fixation. Within the heterocyclic rings, the internal bond angles at the N atoms are consistently some 10° larger than the internal angles at the C atoms. In polymorph (II[link]), the heterocyclic ring is slightly puckered. The ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1353-1359.]) for the atom sequence N1—C2—N3—C4—N3i—C2i [symmetry code: (i) 1 − x, y, [{1 \over 2}] − z] of θ = 90.0 (7)° and φ = 270.0 (6)° indicate a twist-boat ring conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]), although the puckering amplitude Q is fairly small, at 0.104 (2) Å. The conformations defined by the phenyl rings (Figs. 1[link] and 2[link], and Tables 1[link] and 3[link]) are very similar.

[Scheme 1]

In the crystal structure of (I[link]), there are no C—H⋯O or C—H⋯N hydrogen bonds and no aromatic ππ stacking interactions. However, the mol­ecules are linked into chains by a single C—H⋯π(arene) interaction (Table 2[link]). Aromatic atom C14 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to phenyl ring C31–C36 in the mol­ecule at ([{5 \over 4}] − x, y − [{1 \over 4}], [{3 \over 4}] + z), while atom C14 at ([{5 \over 4}] − x, y − [{1 \over 4}], [{3 \over 4}] + z) in turn acts as donor to the C31–C36 ring at (x, y − [{1 \over 2}], [{3 \over 2}] + z), so producing a chain running parallel to the [0[\overline 1]3] direction and generated by the d-glide plane at x = [{5 \over 8}] (Fig. 3[link]). There are no direction-specific interactions between adjacent chains.

The original report (Usanmaz, 1979[Usanmaz, A. (1979). Acta Cryst. B35, 1117-1119.]) on the monoclinic phase, (II[link]), did not identify any direction-specific interactions between the mol­ecules. However, the intermolecular interactions present in (II[link]) are, in fact, very similar to those in orthorhombic phase (I[link]). While C—H⋯O and C—H⋯N hydrogen bonds and aromatic ππ stacking interactions are all absent, the mol­ecules are linked by a single C—H⋯π(arene) hydrogen bond (Table 4[link]), but now forming sheets as opposed to the simple chain in (I[link]). The ring containing atom C11, which lies across a twofold rotation axis, acts as a double acceptor of C—H⋯π(arene) hydrogen bonds, one on each face. This ring in the reference mol­ecule accepts such hydrogen bonds from atoms C33 at (x − [{1 \over 2}], [{1 \over 2}] + y, z − 1) and ([{3 \over 2}] − x, [{1 \over 2}] + y, [{3 \over 2}] − z), while atoms C33 at (x, y, z) and (1 − x, y, [{1 \over 2}] − z) in the reference mol­ecule act as donors to the ring faces at ([{3 \over 2}] − x, y − [{1 \over 2}], [{3 \over 2}] − z) and (x − [{1 \over 2}], y − [{1 \over 2}], z − 1), respectively. Thus, with the reference mol­ecule lying across the axis along ([{1 \over 2}], y, [{1 \over 4}]), the donor and acceptor mol­ecules lie across the axes (0, y, [-{3 \over 4}]) and (1, y, [{5 \over 4}]), so that each mol­ecule is linked to four others, forming a ([\overline 2]01) sheet (Fig. 4[link]).

We have not investigated the relative thermodynamic stability of the two polymorphs. Their densities are almost identical, so that no useful deductions concerning stability (Burger & Ramberger, 1979[Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259-271.]) can be made here.

[Figure 1]
Figure 1
The mol­ecule in the orthorhombic polymorph, (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule in the monoclinic polymorph, (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 1 −x, y, [{1 \over 2}] − z.]
[Figure 3]
Figure 3
Part of the crystal structure of polymorph (I[link]), showing a hydrogen-bonded chain running along the [0[\overline 1]3] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Cg3 is the centroid of ring C31–C36. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{5 \over 4}] − x, y − [{1 \over 4}], [{3 \over 4}] + z) and ([{5 \over 4}] − x, [{1 \over 4}] + y, z − [{3 \over 4}]), respectively.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of polymorph (II[link]), showing a hydrogen-bonded ([\overline 2]01) sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Experimental

The orthorhombic polymorph, (I[link]), was obtained as an adventitious product from the attempted preparation of the heterocumulene Ph3P=C=C=O via reaction of Ph3P=CHCOOCH2CH3 with n-butyl­lithium and excess phenyl isocyanate (m.p. 544–545 K). The monoclinic polymorph, (II[link]), was obtained from a methanol solution containing (I[link]) and uranyl nitrate hexahydrate [m.p. > 550 K; literature m.p. for (II[link]): 553–555 K (Usanmaz, 1979[Usanmaz, A. (1979). Acta Cryst. B35, 1117-1119.])]. However, similar crystallization from a methanol solution containing mercury(II) chloride gave polymorph (I[link]) rather than polymorph (II[link]).

Polymorph (I)[link]

Crystal data
  • C21H15N3O3

  • Mr = 357.36

  • Orthorhombic, Fdd2

  • a = 23.3764 (8) Å

  • b = 37.1079 (12) Å

  • c = 7.7091 (2) Å

  • V = 6687.3 (4) Å3

  • Z = 16

  • Dx = 1.420 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2065 reflections

  • θ = 3.2–27.6°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.50 × 0.24 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.990

  • 22 356 measured reflections

  • 2065 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 27.6°

  • h = −30 → 29

  • k = −48 → 48

  • l = −9 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.08

  • 2065 reflections

  • 244 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0501P)2 + 2.7798P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected geometric parameters (Å, °) for orthorhombic polymorph (I)[link]

N1—C2 1.389 (3) 
C2—N3 1.388 (2)
N3—C4 1.395 (2)
C4—N5 1.395 (3)
N5—C6 1.394 (2)
C6—N1 1.389 (2)
N1—C11 1.448 (2)
N3—C31 1.448 (3)
N5—C51 1.452 (2)
C2—O2 1.208 (2)
C4—O4 1.204 (2)
C6—O6 1.210 (2)
C6—N1—C2 125.11 (16)
C2—N3—C4 124.97 (17)
C4—N5—C6 124.38 (16)
N1—C2—N3 115.05 (16)
N3—C4—N5 115.01 (16)
N5—C6—N1 115.19 (17)
C2—N1—C11—C12 103.9 (2) 
C4—N3—C31—C32 −101.5 (2)
C6—N5—C51—C52 −119.9 (2)

Table 2
Hydrogen-bonding geometry (Å, °) for orthorhombic polymorph (I)[link]

Cg3 is the centroid of ring C31–C36.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg3i 0.95 2.71 3.541 (2) 146
Symmetry code: (i) [{\script{5\over 4}}-x,y-{\script{1\over 4}},{\script{3\over 4}}+z].

Polymorph (II)[link]

Crystal data
  • C21H15N3O3

  • Mr = 357.36

  • Monoclinic, C2/c

  • a = 15.6526 (3) Å

  • b = 13.6819 (3) Å

  • c = 9.6454 (2) Å

  • β = 126.035 (2)°

  • V = 1670.39 (7) Å3

  • Z = 4

  • Dx = 1.421 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1927 reflections

  • θ = 3.2–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.50 × 0.40 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.988

  • 13 735 measured reflections

  • 1927 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.5°

  • h = −20 → 20

  • k = −17 → 17

  • l = −11 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 1.17

  • 1927 reflections

  • 126 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.073P)2 + 0.412P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.43 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.034 (3)

Table 3
Selected geometric parameters (Å, °) for monoclinic polymorph (II)[link]

N1—C2 1.3940 (13)
C2—N3 1.3949 (16)
N3—C4 1.3914 (13)
N1—C11 1.455 (2)
N3—C31 1.4516 (14)
C2—O2 1.2035 (14)
C4—O4 1.204 (2)
C2i—N1—C2 124.59 (14)
C2—N3—C4 124.80 (10)
N1—C2—N3 114.92 (10)
N3—C4—N3i 114.86 (14)
C2—N1—C11—C12 69.56 (8)
C4—N3—C31—C32 −100.07 (12)
Symmetry code: (i) [1-x,y,{\script{1\over 2}}-z].

Table 4
Hydrogen-bonding geometry (Å, °) for monoclinic polymorph (II)[link]

Cg2 is the centroid of ring C11–C14/C13i/C12i.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯Cg2ii 0.95 2.95 3.678 (2) 134
Symmetry codes: (i) [1-x,y,{\script{1\over 2}}-z]; (ii) [{\script{1\over 2}}+x,y-{\script{1\over 2}},1+z].

For polymorph (I[link]), the space group Fdd2 was uniquely assigned from the systematic absences. For polymorph (II[link]), the systematic absences permitted C2/c or Cc as possible space groups; C2/c was selected and confirmed by the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter for (I[link]) was indeterminate (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.], 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. It was thus not possible to establish the correct orientation of the structure of (I[link]) relative to the polar-axis direction (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]).

For both polymorphs, data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 3-17.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the molecular and supramolecular structures at 120 K of two polymorphic forms of 1,3,5-triphenyl-1,3,5-perhydrotriazine-2,4,6-trione, the cyclic trimer of phenyl isocyanate, PhNCO. The orthorhombic polymorph, (I) (Fig. 1), crystallizes in space group Fdd2 with Z' = 1, and the monoclinic polymorph, (II) (Fig. 2), crystallizes in space group C2/c, with Z' = 1/2. The molecules in (II) lie across twofold rotation axes, with the reference molecule lying across the axis along (1/2, y, 1/4). The structure of (II) was reported from ambient-temperature data some years ago (Usanmaz, 1979), and it is clear from the cell dimensions and space group that this earlier structure was of the same phase as (II), thus suggesting that the monoclinic phase does not undergo any temperature-dependent change, at least within the range 120–300 K. \sch

The bond lengths and angles in (I) and (II) (Tables 1 and 3) are very similar, and the distances show evidence of strong bond fixation. Within the heterocyclic rings, the internal bond angles at N are consistently some 10° larger than the internal angles at C. In polymorph (II), the heterocyclic ring is slightly puckered. The ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence N1/C2—C4/N3i/C2i [symmetry code: (i) 1 − x, y, 1/2 − z] of θ = 90.0 (7)° and ϕ = 270.0 (6)° indicate a twist-boat ring conformation (Boeyens, 1978), although the puckering amplitude Q is fairly small, at 0.104 (2) Å. The conformations defined by the phenyl rings (Figs. 1 and 2, and Tables 1 and 3) are very similar.

In the crystal structure of (I), there are no C—H···O or C—H···N hydrogen bonds and no aromatic ππ stacking interactions. However, the molecules are linked into chains by a single C—H···π(arene) interaction (Table 2). The aromatic atom C14 in the molecule at (x, y, z) acts as hydrogen-bond donor to the phenyl ring C31—C36 in the molecule at (5/4 − x, y − 1/4, 3/4 + z), while atom C14 at (5/4 − x, y − 1/4, 3/4 + z) in turn acts as donor to the C31—C36 ring at (x, y − 1/2, 3/2 + z), so producing a chain running parallel to the [013] direction and generated by the d-glide plane at x = 5/8 (Fig. 3). There are no direction-specific interactions between adjacent chains.

The original report (Usanmaz, 1979) on the monoclinic phase, (II), did not identify any direction-specific interactions between the molecules. However, the intermolecular interactions present in (II) are, in fact, very similar to those in the orthorhombic phase, (I). While C—H···O and C—H···N hydrogen bonds and aromatic ππ stacking interactions are all absent, the molecules are linked by a single C—H···π(arene) hydrogen bond (Table 4), but now forming sheets as opposed to the simple chain in (I). The ring containing atom C11, which lies across a twofold rotation axis, acts as a double acceptor of C—H···π(arene) hydrogen bonds, one on each face. This ring in the reference molecule accepts such hydrogen bonds from atoms C33 at (x − 1/2, 1/2 + y, z − 1) and (3/2 − x, 1/2 + y, 3/2 − z), while the atoms C33 at (x, y, z) and (1 − x, y, 1/2 − z) in the reference molecule act as donors to the ring faces at (3/2 − x, y − 1/2, 3/2 − z) and (x − 1/2, y − 1/2, z − 1), respectively. Thus, with the reference molecule lying across the axis along (1/2, y, 1/4), the donor and acceptor molecules lie across across the axes (0, y, −3/4) and (1, y, 5/4), so that each molecule is linked to four others forming a (201) sheet (Fig. 4).

We have not investigated the relative thermodynamic stability of the two polymorphs. Their densities are almost identical, so that no useful deductions concerning stability (Burger & Ramberger, 1979) can be made here.

Table 2. Hydrogen-bond parameters (Å, °) for polymorph (I). Cg3 is the centroid of ring C31—C36.

Table 4. Hydrogen-bond parameters (Å, °) for polymorph (II). Cg2 is the centroid of ring C11—C14/C13i/C12i [symmetry code:(i) 1 − x, y, 1/2 − z].

Experimental top

The orthorhombic polymorph, (I), was obtained as an adventitious product from the attempted preparation of the heterocumulene Ph3PCCO via reaction of Ph3PCHCOOCH2CH3 with n-butyllithium and excess of phenyl isocyanate (m. p. 544–545 K). The monoclinic polymorph, (II), was obtained from a methanolic solution containing (I) and uranyl nitrate hexahydrate [m. p. > 550 K; literature m. p. for (II): 553–555 K (Usanmaz, 1979)]. However, similar crystallization from a methanolic solution containing mercury(II) chloride gave polymorph (I), rather than polymorph (II).

Refinement top

For polymorph (I), the space group Fdd2 was uniquely assigned from the systematic absences. For polymorph (II), the systematic absences permitted C2/c or Cc as possible space groups; C2/c was selected and confirmed by the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering, the Flack parameter (Flack, 1983) for (I) was indeterminate (Flack & Bernardinelli, 1999, 2000). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. It was thus not possible to establish the correct orientation of the structure of (I) relative to the polar axis direction (Jones, 1986).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT (Otwinowski & Minor, 1997); data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule in the orthorhombic polymorph, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule in the monoclinic polymorph, (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The atoms marked with the suffix 'a' are at the symmetry position (1 − x, y, 1/2 − z).
[Figure 3] Fig. 3. Part of the crystal structure of polymorph (I), showing a hydrogen-bonded chain running along the [013] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Cg3 is the centroid of ring C31—C36. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (5/4 − x, y − 1/4, 3/4 + z) and (5/4 − x, 1/4 + y, z − 3/4), respectively.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of polymorph (II), showing a hydrogen-bonded (201) sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
(I) 1,3,5-triphenylperhydro-1,3,5-triazine-2,4,6-trione, orthorhombic polymorph top
Crystal data top
C21H15N3O3F(000) = 2976
Mr = 357.36Dx = 1.420 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2065 reflections
a = 23.3764 (8) Åθ = 3.2–27.6°
b = 37.1079 (12) ŵ = 0.10 mm1
c = 7.7091 (2) ÅT = 120 K
V = 6687.3 (4) Å3Block, yellow
Z = 160.5 × 0.24 × 0.1 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2065 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 3029
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 4848
Tmin = 0.966, Tmax = 0.990l = 910
22356 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0501P)2 + 2.7798P]
where P = (Fo2 + 2Fc2)/3
2065 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C21H15N3O3V = 6687.3 (4) Å3
Mr = 357.36Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 23.3764 (8) ŵ = 0.10 mm1
b = 37.1079 (12) ÅT = 120 K
c = 7.7091 (2) Å0.5 × 0.24 × 0.1 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2065 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1859 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.990Rint = 0.045
22356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.082H-atom parameters constrained
S = 1.08Δρmax = 0.17 e Å3
2065 reflectionsΔρmin = 0.24 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.59934 (6)0.46727 (4)0.6011 (2)0.0259 (3)
O40.67073 (6)0.58096 (4)0.5631 (2)0.0241 (3)
O60.73397 (6)0.50498 (4)0.9884 (2)0.0251 (3)
N10.66767 (7)0.48505 (4)0.7945 (2)0.0182 (3)
N30.63468 (7)0.52415 (4)0.5780 (2)0.0191 (4)
N50.70165 (7)0.54461 (4)0.7836 (2)0.0180 (3)
C20.63165 (8)0.49025 (5)0.6535 (3)0.0194 (4)
C40.66991 (8)0.55213 (5)0.6347 (3)0.0184 (4)
C60.70397 (8)0.51096 (5)0.8638 (3)0.0185 (4)
C110.66554 (8)0.44999 (5)0.8767 (3)0.0187 (4)
C120.70869 (9)0.42549 (5)0.8476 (3)0.0229 (4)
C130.70482 (9)0.39154 (5)0.9220 (3)0.0251 (4)
C140.65788 (9)0.38223 (5)1.0203 (3)0.0242 (4)
C150.61465 (9)0.40724 (5)1.0501 (3)0.0249 (4)
C160.61874 (8)0.44142 (5)0.9796 (3)0.0224 (4)
C310.59919 (8)0.53105 (5)0.4277 (3)0.0181 (4)
C320.54180 (9)0.53877 (5)0.4513 (3)0.0219 (4)
C330.50794 (8)0.54602 (6)0.3077 (3)0.0237 (4)
C340.53164 (9)0.54582 (5)0.1436 (3)0.0233 (4)
C350.58931 (10)0.53800 (5)0.1218 (3)0.0251 (4)
C360.62337 (9)0.53040 (5)0.2642 (3)0.0227 (4)
C510.73447 (8)0.57402 (5)0.8579 (3)0.0186 (4)
C520.70574 (9)0.60461 (5)0.9137 (3)0.0231 (4)
C530.73669 (9)0.63366 (6)0.9758 (3)0.0263 (5)
C540.79557 (9)0.63153 (6)0.9865 (3)0.0251 (5)
C550.82382 (9)0.60053 (6)0.9361 (3)0.0251 (4)
C560.79332 (8)0.57165 (5)0.8687 (3)0.0214 (4)
H120.74070.43170.77770.027*
H130.73480.37460.90500.030*
H140.65500.35871.06790.029*
H150.58240.40091.11860.030*
H160.58980.45881.00130.027*
H320.52580.53910.56450.026*
H330.46840.55110.32220.028*
H340.50850.55100.04560.028*
H350.60550.53790.00870.030*
H360.66270.52480.24960.027*
H520.66520.60560.90940.028*
H530.71750.65501.01090.032*
H540.81680.65151.02880.030*
H550.86420.59900.94760.030*
H560.81260.55060.83050.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0284 (8)0.0189 (7)0.0305 (8)0.0030 (6)0.0088 (6)0.0015 (6)
O40.0260 (7)0.0194 (7)0.0270 (8)0.0024 (6)0.0035 (6)0.0052 (6)
O60.0253 (8)0.0241 (7)0.0259 (8)0.0015 (6)0.0067 (6)0.0030 (6)
N10.0187 (8)0.0156 (8)0.0203 (8)0.0001 (6)0.0011 (7)0.0020 (6)
N30.0190 (8)0.0171 (8)0.0211 (9)0.0009 (6)0.0041 (6)0.0017 (6)
N50.0178 (8)0.0168 (7)0.0195 (8)0.0012 (6)0.0012 (7)0.0005 (6)
C20.0181 (9)0.0192 (9)0.0210 (10)0.0017 (8)0.0007 (8)0.0004 (8)
C40.0156 (9)0.0194 (9)0.0203 (10)0.0002 (7)0.0003 (8)0.0012 (8)
C60.0180 (9)0.0176 (9)0.0199 (9)0.0001 (7)0.0019 (8)0.0014 (8)
C110.0207 (9)0.0156 (9)0.0198 (10)0.0011 (7)0.0019 (8)0.0012 (7)
C120.0221 (10)0.0231 (10)0.0235 (10)0.0005 (8)0.0016 (8)0.0007 (8)
C130.0290 (11)0.0197 (10)0.0266 (10)0.0051 (8)0.0003 (9)0.0002 (8)
C140.0327 (11)0.0183 (10)0.0216 (10)0.0040 (8)0.0041 (9)0.0026 (8)
C150.0236 (10)0.0254 (10)0.0257 (11)0.0045 (8)0.0008 (9)0.0026 (9)
C160.0186 (9)0.0215 (10)0.0272 (10)0.0005 (8)0.0005 (8)0.0009 (8)
C310.0186 (9)0.0139 (9)0.0219 (10)0.0007 (7)0.0041 (8)0.0007 (7)
C320.0225 (10)0.0205 (9)0.0227 (10)0.0006 (8)0.0012 (8)0.0009 (8)
C330.0176 (10)0.0228 (10)0.0308 (11)0.0005 (8)0.0023 (9)0.0045 (8)
C340.0237 (10)0.0217 (10)0.0243 (11)0.0011 (8)0.0065 (8)0.0021 (8)
C350.0302 (11)0.0248 (10)0.0204 (10)0.0002 (8)0.0000 (9)0.0004 (8)
C360.0202 (10)0.0222 (10)0.0256 (11)0.0030 (8)0.0017 (8)0.0013 (8)
C510.0207 (10)0.0167 (9)0.0184 (9)0.0049 (7)0.0017 (8)0.0011 (7)
C520.0180 (9)0.0234 (10)0.0278 (11)0.0002 (8)0.0010 (9)0.0007 (8)
C530.0301 (11)0.0193 (10)0.0295 (11)0.0006 (8)0.0005 (9)0.0028 (9)
C540.0294 (11)0.0223 (10)0.0235 (11)0.0072 (9)0.0016 (9)0.0016 (8)
C550.0201 (10)0.0295 (11)0.0256 (10)0.0043 (8)0.0017 (9)0.0009 (9)
C560.0196 (10)0.0224 (10)0.0222 (10)0.0005 (8)0.0009 (8)0.0004 (8)
Geometric parameters (Å, º) top
N1—C21.389 (3)C31—C361.382 (3)
C2—N31.388 (2)C31—C321.384 (3)
N3—C41.395 (2)C32—C331.387 (3)
C4—N51.395 (3)C32—H320.95
N5—C61.394 (2)C33—C341.381 (3)
C6—N11.389 (2)C33—H330.95
N1—C111.448 (2)C34—C351.389 (3)
N3—C311.448 (3)C34—H340.95
N5—C511.452 (2)C35—C361.385 (3)
C2—O21.208 (2)C35—H350.95
C4—O41.204 (2)C36—H360.95
C6—O61.210 (2)C51—C561.381 (3)
C11—C121.376 (3)C51—C521.387 (3)
C11—C161.388 (3)C52—C531.384 (3)
C12—C131.387 (3)C52—H520.95
C12—H120.95C53—C541.381 (3)
C13—C141.378 (3)C53—H530.95
C13—H130.95C54—C551.382 (3)
C14—C151.391 (3)C54—H540.95
C14—H140.95C55—C561.388 (3)
C15—C161.383 (3)C55—H550.95
C15—H150.95C56—H560.95
C16—H160.95
C2—N1—C11116.52 (15)C34—C33—C32120.06 (18)
C6—N1—C11118.35 (16)C34—C33—H33120.0
C12—C11—C16121.28 (17)C32—C33—H33120.0
C12—C11—N1119.82 (18)C33—C34—C35120.1 (2)
C16—C11—N1118.88 (17)C33—C34—H34119.9
C11—C12—C13119.01 (19)C35—C34—H34119.9
C11—C12—H12120.5C36—C35—C34120.3 (2)
C13—C12—H12120.5C36—C35—H35119.9
C14—C13—C12120.5 (2)C34—C35—H35119.9
C14—C13—H13119.8C31—C36—C35118.96 (18)
C12—C13—H13119.8C31—C36—H36120.5
C13—C14—C15120.13 (19)C35—C36—H36120.5
C13—C14—H14119.9O4—C4—N5123.12 (17)
C15—C14—H14119.9O4—C4—N3121.80 (18)
C16—C15—C14119.8 (2)C6—N5—C51118.56 (16)
C16—C15—H15120.1C4—N5—C51117.07 (15)
C14—C15—H15120.1C56—C51—C52121.06 (18)
C15—C16—C11119.29 (18)C56—C51—N5120.14 (17)
C15—C16—H16120.4C52—C51—N5118.79 (17)
C11—C16—H16120.4C53—C52—C51119.44 (19)
O2—C2—N3122.08 (18)C53—C52—H52120.3
O2—C2—N1122.87 (18)C51—C52—H52120.3
C6—N1—C2125.11 (16)C54—C53—C52119.82 (19)
C2—N3—C4124.97 (17)C54—C53—H53120.1
C4—N5—C6124.38 (16)C52—C53—H53120.1
N1—C2—N3115.05 (16)C53—C54—C55120.46 (19)
N3—C4—N5115.01 (16)C53—C54—H54119.8
N5—C6—N1115.19 (17)C55—C54—H54119.8
C2—N3—C31117.82 (15)C54—C55—C56120.16 (19)
C4—N3—C31117.20 (15)C54—C55—H55119.9
C36—C31—C32121.37 (18)C56—C55—H55119.9
C36—C31—N3119.51 (17)C51—C56—C55119.00 (19)
C32—C31—N3119.11 (18)C51—C56—H56120.5
C31—C32—C33119.22 (19)C55—C56—H56120.5
C31—C32—H32120.4O6—C6—N1122.17 (17)
C33—C32—H32120.4O6—C6—N5122.60 (17)
C2—N1—C11—C12103.9 (2)N3—C31—C36—C35178.28 (18)
C6—N1—C11—C1277.6 (2)C34—C35—C36—C310.6 (3)
C2—N1—C11—C1674.1 (2)C2—N3—C4—O4179.75 (19)
C6—N1—C11—C16104.3 (2)C31—N3—C4—O40.5 (3)
C16—C11—C12—C130.5 (3)C2—N3—C4—N53.1 (3)
N1—C11—C12—C13177.51 (18)C31—N3—C4—N5177.72 (16)
C11—C12—C13—C141.4 (3)O4—C4—N5—C6176.37 (19)
C12—C13—C14—C151.9 (3)N3—C4—N5—C66.5 (3)
C13—C14—C15—C160.5 (3)O4—C4—N5—C513.3 (3)
C14—C15—C16—C111.4 (3)N3—C4—N5—C51173.89 (17)
C12—C11—C16—C151.9 (3)C6—N5—C51—C5661.5 (2)
N1—C11—C16—C15176.14 (19)C4—N5—C51—C56118.2 (2)
C6—N1—C2—O2177.5 (2)C6—N5—C51—C52119.9 (2)
C11—N1—C2—O20.9 (3)C4—N5—C51—C5260.5 (2)
C6—N1—C2—N31.5 (3)C56—C51—C52—C532.2 (3)
C11—N1—C2—N3179.90 (17)N5—C51—C52—C53176.41 (19)
O2—C2—N3—C4178.34 (19)C51—C52—C53—C542.0 (3)
N1—C2—N3—C40.7 (3)C52—C53—C54—C550.2 (4)
O2—C2—N3—C312.4 (3)C53—C54—C55—C562.2 (3)
N1—C2—N3—C31178.54 (16)C52—C51—C56—C550.2 (3)
C2—N3—C31—C36101.8 (2)N5—C51—C56—C55178.4 (2)
C4—N3—C31—C3677.5 (2)C54—C55—C56—C511.9 (3)
C2—N3—C31—C3279.2 (2)C2—N1—C6—O6179.14 (18)
C4—N3—C31—C32101.5 (2)C11—N1—C6—O60.8 (3)
C36—C31—C32—C330.1 (3)C2—N1—C6—N51.5 (3)
N3—C31—C32—C33178.87 (18)C11—N1—C6—N5176.87 (16)
C31—C32—C33—C340.6 (3)C4—N5—C6—O6176.58 (18)
C32—C33—C34—C350.6 (3)C51—N5—C6—O63.0 (3)
C33—C34—C35—C360.1 (3)C4—N5—C6—N15.8 (3)
C32—C31—C36—C350.6 (3)C51—N5—C6—N1174.62 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg3i0.952.713.541 (2)146
Symmetry code: (i) x+5/4, y1/4, z+3/4.
(II) 1,3,5-triphenylperhydro-1,3,5-triazine-2,4,6-trione, monoclinic polymorph top
Crystal data top
C21H15N3O3F(000) = 744
Mr = 357.36Dx = 1.421 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1927 reflections
a = 15.6526 (3) Åθ = 3.2–27.5°
b = 13.6819 (3) ŵ = 0.10 mm1
c = 9.6454 (2) ÅT = 120 K
β = 126.035 (2)°Block, yellow
V = 1670.39 (7) Å30.50 × 0.40 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1927 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1717
Tmin = 0.945, Tmax = 0.988l = 1112
13735 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.073P)2 + 0.412P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1927 reflectionsΔρmax = 0.60 e Å3
126 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (3)
Crystal data top
C21H15N3O3V = 1670.39 (7) Å3
Mr = 357.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.6526 (3) ŵ = 0.10 mm1
b = 13.6819 (3) ÅT = 120 K
c = 9.6454 (2) Å0.50 × 0.40 × 0.12 mm
β = 126.035 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1927 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1620 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.988Rint = 0.031
13735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.17Δρmax = 0.60 e Å3
1927 reflectionsΔρmin = 0.43 e Å3
126 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.66010 (7)0.63216 (7)0.51159 (11)0.0261 (3)
O40.50000.34468 (9)0.25000.0267 (3)
N10.50000.63634 (10)0.25000.0182 (3)
N30.58646 (7)0.48741 (7)0.37623 (12)0.0179 (3)
C20.58763 (9)0.58898 (9)0.38977 (14)0.0182 (3)
C40.50000.43267 (12)0.25000.0184 (4)
C110.50000.74266 (12)0.25000.0191 (4)
C120.56906 (10)0.79229 (9)0.22977 (16)0.0237 (3)
C130.56885 (10)0.89359 (10)0.23030 (18)0.0280 (3)
C140.50000.94402 (14)0.25000.0284 (4)
C310.68035 (9)0.43351 (8)0.50611 (15)0.0178 (3)
C320.70066 (10)0.41796 (9)0.66448 (16)0.0222 (3)
C330.78925 (11)0.36537 (10)0.78823 (17)0.0263 (3)
C340.85598 (10)0.32776 (10)0.75138 (16)0.0255 (3)
C350.83488 (10)0.34338 (9)0.59244 (17)0.0241 (3)
C360.74678 (10)0.39654 (9)0.46805 (16)0.0212 (3)
H120.61600.75740.21570.028*
H130.61610.92850.21710.034*
H140.50001.01350.25000.034*
H320.65410.44320.68840.027*
H330.80420.35510.89790.032*
H240.91640.29110.83560.031*
H350.88110.31750.56820.029*
H360.73220.40740.35880.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0234 (5)0.0184 (5)0.0238 (5)0.0009 (4)0.0068 (4)0.0022 (3)
O40.0202 (7)0.0154 (7)0.0338 (7)0.0000.0099 (6)0.000
N10.0178 (7)0.0135 (7)0.0200 (7)0.0000.0093 (6)0.000
N30.0168 (5)0.0139 (5)0.0202 (5)0.0007 (4)0.0094 (5)0.0003 (4)
C20.0191 (6)0.0165 (6)0.0200 (6)0.0001 (4)0.0120 (5)0.0002 (4)
C40.0170 (8)0.0166 (8)0.0224 (8)0.0000.0120 (7)0.000
C110.0182 (8)0.0143 (8)0.0178 (8)0.0000.0067 (7)0.000
C120.0220 (6)0.0203 (7)0.0266 (6)0.0008 (5)0.0131 (5)0.0006 (5)
C130.0238 (7)0.0206 (7)0.0328 (7)0.0034 (5)0.0129 (6)0.0031 (5)
C140.0229 (9)0.0134 (8)0.0314 (10)0.0000.0063 (8)0.000
C310.0166 (6)0.0124 (6)0.0199 (6)0.0020 (4)0.0082 (5)0.0002 (4)
C320.0233 (6)0.0206 (6)0.0239 (6)0.0013 (5)0.0146 (5)0.0008 (5)
C330.0293 (7)0.0247 (7)0.0197 (6)0.0015 (5)0.0115 (6)0.0013 (5)
C340.0197 (6)0.0193 (7)0.0242 (7)0.0006 (5)0.0057 (5)0.0021 (5)
C350.0196 (6)0.0206 (7)0.0307 (7)0.0009 (5)0.0140 (6)0.0006 (5)
C360.0219 (6)0.0190 (6)0.0227 (6)0.0007 (5)0.0131 (5)0.0008 (5)
Geometric parameters (Å, º) top
N1—C21.3940 (13)C14—H140.95
C2—N31.3949 (16)C31—C321.3815 (18)
N3—C41.3914 (13)C31—C361.3859 (17)
N1—C111.455 (2)C32—C331.3850 (18)
N3—C311.4516 (14)C32—H320.95
C2—O21.2035 (14)C33—C341.3851 (19)
C4—O41.204 (2)C33—H330.95
C11—C121.3841 (15)C34—C351.3818 (19)
C12—C131.3860 (18)C34—H240.95
C12—H120.95C35—C361.3869 (17)
C13—C141.3836 (17)C35—H350.95
C13—H130.95C36—H360.95
C2i—N1—C2124.59 (14)C32—C31—C36121.08 (11)
C2—N3—C4124.80 (10)C32—C31—N3119.34 (10)
N1—C2—N3114.92 (10)C36—C31—N3119.56 (10)
N3—C4—N3i114.86 (14)C31—C32—C33119.69 (12)
C2—N1—C11117.70 (7)C31—C32—H32120.2
C12—C11—C12i121.24 (16)C33—C32—H32120.2
C12—C11—N1119.38 (8)C32—C33—C34119.72 (12)
C11—C12—C13119.10 (12)C32—C33—H33120.1
C11—C12—H12120.4C34—C33—H33120.1
C13—C12—H12120.4C35—C34—C33120.20 (12)
C14—C13—C12120.19 (12)C35—C34—H24119.9
C14—C13—H13119.9C33—C34—H24119.9
C12—C13—H13119.9C34—C35—C36120.53 (12)
C13i—C14—C13120.18 (17)C34—C35—H35119.7
C13—C14—H14119.9C36—C35—H35119.7
O2—C2—N1122.83 (12)C31—C36—C35118.77 (11)
O2—C2—N3122.24 (11)C31—C36—H36120.6
C4—N3—C31116.84 (10)C35—C36—H36120.6
C2—N3—C31118.32 (9)O4—C4—N3122.57 (7)
C2i—N1—C11—C12110.44 (8)C4—N3—C31—C3678.41 (12)
C2—N1—C11—C1269.56 (8)C2—N3—C31—C36103.88 (13)
C12i—C11—C12—C130.15 (8)C36—C31—C32—C330.59 (19)
N1—C11—C12—C13179.85 (8)N3—C31—C32—C33179.05 (10)
C11—C12—C13—C140.31 (16)C31—C32—C33—C340.83 (19)
C2i—N1—C2—O2176.93 (12)C32—C33—C34—C350.61 (19)
C11—N1—C2—O23.07 (12)C33—C34—C35—C360.2 (2)
C11—N1—C2—N3175.41 (6)C32—C31—C36—C350.13 (18)
O2—C2—N3—C4171.57 (9)N3—C31—C36—C35178.59 (10)
N1—C2—N3—C49.94 (14)C34—C35—C36—C310.09 (19)
O2—C2—N3—C315.94 (16)C2—N3—C4—O4174.67 (7)
N1—C2—N3—C31172.55 (8)C31—N3—C4—O42.87 (10)
C4—N3—C31—C32100.07 (12)C31—N3—C4—N3i177.13 (10)
C2—N3—C31—C3277.63 (14)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Cg2ii0.952.953.678 (2)134
Symmetry code: (ii) x+1/2, y1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H15N3O3C21H15N3O3
Mr357.36357.36
Crystal system, space groupOrthorhombic, Fdd2Monoclinic, C2/c
Temperature (K)120120
a, b, c (Å)23.3764 (8), 37.1079 (12), 7.7091 (2)15.6526 (3), 13.6819 (3), 9.6454 (2)
α, β, γ (°)90, 90, 9090, 126.035 (2), 90
V3)6687.3 (4)1670.39 (7)
Z164
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.5 × 0.24 × 0.10.50 × 0.40 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.966, 0.9900.945, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
22356, 2065, 1859 13735, 1927, 1620
Rint0.0450.031
(sin θ/λ)max1)0.6510.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.08 0.050, 0.124, 1.17
No. of reflections20651927
No. of parameters244126
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.240.60, 0.43

Computer programs: COLLECT (Nonius, 1998), DENZO and COLLECT (Otwinowski & Minor, 1997), DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—C21.389 (3)N1—C111.448 (2)
C2—N31.388 (2)N3—C311.448 (3)
N3—C41.395 (2)N5—C511.452 (2)
C4—N51.395 (3)C2—O21.208 (2)
N5—C61.394 (2)C4—O41.204 (2)
C6—N11.389 (2)C6—O61.210 (2)
C6—N1—C2125.11 (16)N1—C2—N3115.05 (16)
C2—N3—C4124.97 (17)N3—C4—N5115.01 (16)
C4—N5—C6124.38 (16)N5—C6—N1115.19 (17)
C2—N1—C11—C12103.9 (2)C6—N5—C51—C52119.9 (2)
C4—N3—C31—C32101.5 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg3i0.952.713.541 (2)146
Symmetry code: (i) x+5/4, y1/4, z+3/4.
Selected geometric parameters (Å, º) for (II) top
N1—C21.3940 (13)N3—C311.4516 (14)
C2—N31.3949 (16)C2—O21.2035 (14)
N3—C41.3914 (13)C4—O41.204 (2)
N1—C111.455 (2)
C2i—N1—C2124.59 (14)N1—C2—N3114.92 (10)
C2—N3—C4124.80 (10)N3—C4—N3i114.86 (14)
C2—N1—C11—C1269.56 (8)C4—N3—C31—C32100.07 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C33—H33···Cg2ii0.952.953.678 (2)134
Symmetry code: (ii) x+1/2, y1/2, z+1.
 

Footnotes

Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBurger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259–271.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1353–1359.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 3–17.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUsanmaz, A. (1979). Acta Cryst. B35, 1117–1119.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds