organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydro­gen-bonded dimers in 2-nitro­benz­aldehyde hydrazone and a three-dimensional hydrogen-bonded framework in 3-nitro­benz­aldehyde hydrazone

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 13 July 2004; accepted 26 July 2004; online 21 August 2004)

Molecules of 2-nitro­benz­aldehyde hydrazone, C7H7N3O2, where Z′ = 2, are linked by two N—H⋯N hydrogen bonds into isolated dimers, whereas in the isomeric 3-nitro­benz­aldehyde hydrazone, where Z′ = 1, the mol­ecules are linked by one N—H⋯O hydrogen bond and one N—H⋯N hydrogen bond into a three-dimensional framework structure.

Comment

We report here the structures of the isomeric title compounds, 2-nitrobenzaldehyde hydrazone, (I[link]) (Fig. 1[link]), and 3-nitrobenzaldehyde hydrazone, (II[link]) (Fig. 2[link]), and compare their supramolecular structures with that of the further isomer 4-­nitro­benz­aldehyde hydrazone, (III[link]), which was reported recently (Glidewell et al., 2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o33-o34.]).

[Scheme 1]

All three isomers crystallize in non-centrosymmetric space groups with unit cells having short a dimensions [in (III[link]), a = 3.7070 (2) Å in space group Pc], and in all three isomers the mol­ecules are essentially planar, with the E configuration at the C=N double bond. The bond lengths and angles are all normal for their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). However, the patterns of the intermolecular hydrogen bonds are all different, with N—H⋯N hydrogen bonds in (I[link]), N—H⋯O hydrogen bonds in (III[link]), and both N—H⋯N and N—H⋯O hydrogen bonds in (II[link]). Moreover, the dimensionality of the resulting supramolecular structures is different for all three isomers, being finite (zero-dimensional) in (I[link]), three-dimensional in (II[link]) and two-dimensional in (III[link]).

In compound (I[link]), the mol­ecules are linked by two independent N—H⋯N hydrogen bonds (Table 1[link]) to form an R22(6) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimer (Fig. 1[link]). The marked differences in the dimensions of the two hydrogen bonds are sufficient to preclude the possibility of any additional symmetry. There are four of these dimeric units in each unit cell, but there are no direction-specific interactions between these units. In view of the excess of potential hydrogen-bond acceptors in this system, in the form of the nitro-group O atoms, the non-participation in the hydrogen bonding of half of the N—H bonds is unexpected.

The mol­ecules of compound (II[link]) (Fig. 2[link]) are linked by two hydrogen bonds, one each of the N—H⋯O and N—H⋯N types (Table 2[link]), into a three-dimensional framework structure, the formation of which is most readily analysed in terms of three distinct one-dimensional substructures. Two of these substructures each utilize just one of the hydrogen bonds, whereas the third utilizes both hydrogen bonds. In the first of the substructures utilizing only one hydrogen bond, atom N12 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via atom H12A, to nitro atom O31 in the mol­ecule at ([{1 \over 2}] − x, 1 − y, [{1 \over 2}] + z), so forming a C(9) chain running parallel to the [001] direction and generated by the 21 screw axis along ([{1 \over 4}], [{1 \over 2}], z) (Fig. 3[link]). In the second substructure of this type, atom N12 at (x, y, z) acts as hydrogen-bond donor, via atom H12B, to atom N12 in the mol­ecule at (x − [{1 \over 2}], [{3 \over 2}] − y, 1 − z), so forming a C(2) chain parallel to the [100] direction and generated by the 21 screw axis along (x, [{3 \over 4}], [{1 \over 2}]) (Fig. 4[link]).

The third one-dimensional substructure in (II[link]) contains alternating N—H⋯O and N—H⋯N hydrogen bonds. Atom N12 in the mol­ecule at ([{1 \over 2}] − x, 1 − y, [{1 \over 2}] + z) acts as donor, via atom H12B, to atom N12 in the mol­ecule at (1 − x, y − [{1 \over 2}], [{3 \over 2}] − z), and atom N12 in this mol­ecule acts as donor, via atom H12A, to nitro atom O31 in the mol­ecule at ([{1 \over 2}] + x, [{1 \over 2}] − y, 1 − z). Finally, atom N12 at ([{1 \over 2}] + x, [{1 \over 2}] − y, 1 − z) acts as donor, via atom H12B, to atom N12 in the mol­ecule at (x, y − 1, z). This combination of the two hydrogen bonds thus generates a C22(11) chain running parallel to the [010] direction (Fig. 5[link]).

The pairwise combination of these one-dimensional substructures generates two-dimensional substructures. For example, the combination of the [010] and [001] chains generates a (100) sheet (Fig. 6[link]) in the form of a (6,3)-net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of R66(40) ring, and the formation of this net in (II[link]) may be contrasted with the formation of a (4,4)-net parallel to (102) in compound (III[link]). The combination of all three of the one-dimensional motifs in (II[link]) suffices to generate a single three-dimensional framework.

Isomers (I[link])–(III[link]) can all be regarded as chain-extended analogues of the simple isomeric nitro­anilines (IV[link])–(VI[link]), and it is of interest to compare the supramolecular structures of (I[link])–(III[link]) with their aniline analogues. In (IV[link]), where Z′ = 2 in space group P21/n (Dhaneshwar et al., 1978[Dhaneshwar, N. N., Tavale, S. S. & Pant, L. M. (1978). Acta Cryst. B34, 2507-2509.]), the mol­ecules are linked by N—H⋯O hydrogen bonds into simple C22(12) chains. In (V[link]) (Ploug-Sørensen & Andersen, 1986[Ploug-Sørensen, G. & Andersen, E. K. (1986). Acta Cryst. C42, 1813-1815.]), a combination of N—H⋯O and N—H⋯N hydrogen bonds generates a (4,4)-net of R44(18) rings, while in (VI[link]) (Tonogaki et al., 1993[Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.]), the mol­ecules are linked by two N—H⋯O hydrogen bonds into (4,4)-nets of R44(22) rings. Hence, the patterns of the hydrogen bonds employed, as well as the resulting supramolecular structures, are different in each of (IV[link])–(VI[link]).

Much effort continues to be expended in attempts to predict the crystal structures of simple organic compounds (Lommerse et al., 2000[Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714.]; Motherwell et al., 2002[Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647-761.]). Variations in supramolecular aggregation behaviour within a series of isomeric compounds, such as those of (I[link])–(III[link]) described here or of (IV[link])–(VI[link]), provide a keen test of computational methods for crystal structure prediction. The accurate prediction of behaviour, especially the correct prediction of space groups and the particular hydrogen bonds involved within such series of isomeric species, would generate real confidence in the efficacy of the predictive methods employed.

[Figure 1]
Figure 1
The two independent mol­ecules of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
Part of the crystal structure of (II[link]), showing the formation of a C(9) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1 \over 2}] − x, 1 − y, [{1 \over 2}] + z) and (x, y, 1 + z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of (II[link]), showing the formation of a C(2) chain along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − [{1 \over 2}], [{3 \over 2}] − y, 1 − z) and ([{1 \over 2}] + x, [{3 \over 2}] − y, 1 − z), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of (II[link]), showing the formation of a C22(11) chain along [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions ([{1 \over 2}] − x, 1 − y, [{1 \over 2}] + z), (1 − x, y − [{1 \over 2}], [{3 \over 2}] − z), ([{1 \over 2}] + x, [{1 \over 2}] − y, 1 − z) and (x, y − 1, z), respectively.
[Figure 6]
Figure 6
Stereoview of part of the crystal structure of (II[link]), showing the formation of a (100) sheet of R66(40) rings by combination of the [010] and [001] chains. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

Compounds (I[link]) and (II[link]) were prepared by heating under reflux for 1 h a solution of the appropriate nitro­benz­aldehyde (5 g) and hydrazine hydrate (10 g) in ethanol (50 ml). After cooling to ambient temperature, the mixtures were diluted with water (50 ml) and then extracted with CHCl3. These extracts were dried and evaporated, and the resulting solids were recrystallized from ethanol to yield (I[link]) (m.p. 348–349 K) and (II[link]) (m.p. 381–383 K). Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.

Compound (I)[link]

Crystal data
  • C7H7N3O2

  • Mr = 165.16

  • Orthorhombic, P212121

  • a = 3.6675 (2) Å

  • b = 13.938 (1) Å

  • c = 28.796 (2) Å

  • V = 1471.98 (17) Å3

  • Z = 8

  • Dx = 1.490 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1913 reflections

  • θ = 3.0–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Needle, yellow

  • 0.25 × 0.04 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.997

  • 11 485 measured reflections

  • 1966 independent reflections

  • 1247 reflections with I > 2σ(I)

  • Rint = 0.089

  • θmax = 27.5°

  • h = −4 → 4

  • k = −18 → 17

  • l = −29 → 37

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.113

  • S = 1.02

  • 1966 reflections

  • 217 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0557P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N212—H21B⋯N111 0.95 2.51 3.307 (4) 141
N112—H11B⋯N211 0.95 2.17 3.027 (4) 150

Compound (II)[link]

Crystal data
  • C7H7N3O2

  • Mr = 165.16

  • Orthorhombic, P212121

  • a = 3.7231 (2) Å

  • b = 10.2200 (7) Å

  • c = 19.4119 (12) Å

  • V = 738.62 (8) Å3

  • Z = 4

  • Dx = 1.485 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1029 reflections

  • θ = 3.7–27.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.42 × 0.32 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.965, Tmax = 0.989

  • 5442 measured reflections

  • 1029 independent reflections

  • 897 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 27.5°

  • h = −4 → 3

  • k = −12 → 13

  • l = −24 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.06

  • 1029 reflections

  • 112 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0869P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.041 (8)

Table 2
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯O31i 0.88 2.34 3.210 (2) 170
N12—H12B⋯N12ii 0.88 2.41 3.245 (3) 158
Symmetry codes: (i) [{\script{1\over 2}}-x,1-y,{\script{1\over 2}}+z]; (ii) [x-{\script{1\over 2}},{\script{3\over 2}}-y,1-z].

For each of compounds (I[link]) and (II[link]), the space group P212121 was uniquely assigned from the systematic absences. All H atoms were located from difference Fourier maps and subsequently treated as riding. H atoms bonded to N atoms were allowed to ride at the N—H distances identified from the difference maps, namely 0.95 Å in (I[link]) and 0.88 Å in (II[link]), with Uiso(H) = 1.2Ueq(N). H atoms bonded to C atoms were constrained to C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous dispersion, the values of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameters were both indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), and hence the correct absolute configuration for the crystals under study could not be established (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]), although this has no chemical significance. Accordingly, Friedel-equivalent reflections were merged prior to the final refinements for both (I[link]) and (II[link]).

For compound (I[link]), data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT. For compound (II[link]), data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOSMN. For both compounds, program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structures of the isomeric title compounds, (I) and (II) (Figs 1 and 2), and we compare their supramolecular structures with that of the further isomer 4-nitrobenzaldehyde hydrazone, (III), which was reported recently (Glidewell et al., 2004). \sch

All three isomers crystallize in non-centrosymmetric space groups with unit cells having short a dimensions [in (III), a = 3.7070 (2) Å in space group Pc], and in all three isomers the molecules are essentially planar, with the E configuration at the CN double bond. The bond lengths and angles are all normal for their types (Allen et al., 1987). However, the patterns of the intermolecular hydrogen bonds are all different, with N—H···N hydrogen bonds in (I), N—H···O hydrogen bonds in (III), and both N—H···N and N—H···O hydrogen bonds in (II). Moreover, the dimensionality of the resulting supramolecular structure is different for all three isomers, being finite (zero-dimensional) in (I), three-dimensional in (II) and two-dimensional in (III).

In compound (I), the molecules are linked by two independent N—H···N hydrogen bonds (Table 1) to form an R22(6) (Bernstein et al., 1995) dimer (Fig. 1). The marked difference in the dimensions of the two hydrogen bonds is sufficient to preclude the possibility of any additional symmetry. There are four of these dimeric units in each unit cell, but there are no direction-specific interactions between these units. In view of the excess of potential hydrogen-bond acceptors in this system, in the form of the nitro-group O atoms, the non-participation in the hydrogen bonding of half of the N—H bonds is unexpected.

The molecules of compound (II) (Fig. 2) are linked by two hydrogen bonds, one each of N—H···O and N—H···N types (Table 2), into a three-dimensional framework structure, the formation of which is most readily analysed in terms of three distinct one-dimensional sub-structures. Two of these sub-structures each utilize just one of the hydrogen bonds, whereas the third utilizes both hydrogen bonds. In the first of the sub-structures utilizing only one hydrogen bond, atom N12 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atom H12A, to nitro atom O31 in the molecule at (1/2 − x, 1 − y, 1/2 + z), so forming a C(9) chain running parallel to the [001] direction and generated by the 21 screw axis along (1/4, 1/2, z) (Fig. 3). In the second sub-structure of this type, atom N12 at (x, y, z) acts as hydrogen-bond donor, via atom H12B, to atom N12 in the molecule at (x − 1/2, 3/2 − y, 1 − z), so forming a C(2) chain parallel to the [100] direction and generated by the 21 screw axis along (x, 3/4, 1/2) (Fig. 4).

The third one-dimensional sub-structure in (II) contains alternating N—H···O and N—H···N hydrogen bonds. Atom N12 in the molecule at (1/2 − x, 1 − y, 1/2 + z) acts as donor, via atom H12B, to atom N12 in the molecule at (1 − x, y − 1/2, 3/2 − z), and atom N12 in this molecule acts as donor, via atom H12A, to nitro atom O31 in the molecule at (1/2 + x, 1/2 − y, 1 − z). Finally, atom N12 at (1/2 + x, 1/2 − y, 1 − z) acts as donor, via atom H12B, to N12 in the molecule at (x, y − 1, z). This combination of the two hydrogen bonds thus generates a C22(11) chain running parallel to the [010] direction (Fig. 5).

The pairwise combination of these one-dimensional sub-structures generates two-dimensional sub-structures. For example, the combination of the [010] and [001] chains generates a (100) sheet (Fig. 6) in the form of a (6,3) net (Batten & Robson, 1998) built from a single type of R66(40) ring, and the formation of this net in (II) may be contrasted with the formation of a (4,4) net parallel to (102) in compound (III). The combination of all three of the one-dimensional motifs in (II) suffices to generate a single three-dimensional framework.

The isomers (I)-(III) can all be regarded as chain-extended analogues of the simple isomeric nitroanilines (IV)-(VI), and it is of interest to compare the supramolecular structures of (I)-(III) with their aniline analogues. In (IV), where Z' = 2 in space group P21/n (Dhaneshwar et al., 1978), the molecules are linked by N—H···O hydrogen bonds into simple C22(12) chains. In (V) (Ploug-Sørensen & Andersen, 1986), a combination of N—H···O and N—H···N hydrogen bonds generates a (4,4) net of R44(18) rings, while in (VI) (Tonogaki et al., 1993), the molecules are linked by two N—H···O hydrogen bonds into (4,4) nets of R44(22) rings. Hence the patterns of the hydrogen bonds employed, as well as the resulting supramolecular structures, are different in each of (IV)-(VI).

Much effort continues to be expended in efforts to predict the crystal structures of simple organic compounds (Lommerse et al., 2000; Motherwell et al., 2002). Variations in supramolecular aggregation behaviour within a series of isomeric compounds, such as those of (I)-(III) described here, or of (IV)-(VI), provide a keen test of computational methods for crystal-structure prediction. The accurate prediction of behaviour, especially the correct prediction of space groups and the particular hydrogen bonds involved within such series of isomeric species, would generate real confidence in the efficacy of the predictive methods employed.

Experimental top

Compounds (I) and (II) were prepared by heating under reflux for 1 h a solution of the appropriate nitrobenzaldehyde (5 g) and hydrazine hydrate (10 g) in ethanol (50 ml). After cooling to ambient temperature, the mixtures were diluted with water (50 ml) and then extracted with CHCl3. These extracts were dried and evaporated, and the resulting solids were recrystallized from ethanol to yield (I) (m.p. 348–349 K) and (II) (m.p. 381–383 K). Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.

Refinement top

For each of compounds (I) and (II), the space group P212121 was uniquely assigned from the systematic absences. All H atoms were located from difference Fourier maps and subsequently treated as riding. H atoms bonded to N atoms were allowed to ride at the N—H distances identified from the difference maps, namely 0.95 in (I) and 0.88 Å in (II), with Uiso(H) = 1.2Ueq(N). H atoms bonded to C atoms were constrained to C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous dispersion, the values of the Flack parameters (Flack, 1983) were both indeterminate (Flack & Bernardinelli, 2000), and hence the correct absolute configuration for the crystals under study could not be established (Jones, 1986), although this has no chemical significance. Accordingly, Friedel-equivalent reflections were merged prior to the final refinements for both (I) and (II).

Computing details top

Data collection: COLLECT (Nonius, 1998) for (I); KappaCCD Server Software (Nonius, 1997) for (II). Cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT for (I); DENZO-SMN (Otwinowski & Minor, 1997) for (II). Data reduction: DENZO and COLLECT for (I); DENZO-SMN for (II). For both compounds, program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (II), showing the formation of a C(9) chain along [001]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1/2 − x, 1 − y, 1/2 + z) and (x, y, 1 + z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a C(2) chain along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1/2, 3/2 − y, 1 − z) and (1/2 + x, 3/2 − y, 1 − z), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a C22(11) chain along [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign () or an ampersand () are at the symmetry positions (1/2 − x, 1 − y, 1/2 + z), (1 − x, y − 1/2, 3/2 − z), (1/2 + x, 1/2 − y, 1 − z) and (x, y − 1, z), respectively.
[Figure 6] Fig. 6. Stereoview of part of the crystal structure of (II), showing the formation of a (100) sheet of R66(40) rings by combination of the [010] and [001] chains. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) 2-Nitrobenzaldehyde hydrazone top
Crystal data top
C7H7N3O2F(000) = 688
Mr = 165.16Dx = 1.490 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1913 reflections
a = 3.6675 (2) Åθ = 3.0–27.5°
b = 13.938 (1) ŵ = 0.11 mm1
c = 28.796 (2) ÅT = 120 K
V = 1471.98 (17) Å3Needle, yellow
Z = 80.25 × 0.04 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1966 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1817
Tmin = 0.957, Tmax = 0.997l = 2937
11485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
1966 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C7H7N3O2V = 1471.98 (17) Å3
Mr = 165.16Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 3.6675 (2) ŵ = 0.11 mm1
b = 13.938 (1) ÅT = 120 K
c = 28.796 (2) Å0.25 × 0.04 × 0.03 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1966 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1247 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.997Rint = 0.089
11485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
1966 reflectionsΔρmin = 0.30 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1210.3788 (8)0.57305 (19)0.21737 (8)0.0363 (7)
O1220.1489 (7)0.43544 (18)0.19754 (8)0.0351 (7)
N120.3021 (8)0.4885 (2)0.22558 (10)0.0273 (8)
N1110.3380 (8)0.6613 (2)0.34288 (9)0.0239 (7)
N1120.1967 (9)0.7536 (2)0.34051 (10)0.0272 (7)
C110.3873 (9)0.5054 (2)0.31038 (12)0.0211 (8)
C120.4042 (9)0.4481 (3)0.27080 (12)0.0218 (9)
C130.5208 (10)0.3539 (2)0.27126 (12)0.0246 (9)
C140.6352 (10)0.3139 (3)0.31273 (13)0.0263 (9)
C150.6296 (9)0.3696 (3)0.35277 (12)0.0253 (9)
C160.5031 (10)0.4625 (2)0.35167 (12)0.0230 (8)
C1110.2417 (9)0.6037 (2)0.31072 (11)0.0197 (8)
O2210.5167 (8)0.97131 (18)0.54339 (8)0.0335 (7)
O2220.7442 (7)1.11511 (18)0.54211 (8)0.0324 (7)
N220.5886 (8)1.0468 (2)0.52335 (10)0.0265 (8)
N2110.5040 (9)0.8109 (2)0.43403 (9)0.0230 (7)
N2120.6363 (9)0.7219 (2)0.44723 (9)0.0271 (8)
C210.4771 (9)0.9795 (2)0.44440 (11)0.0196 (8)
C220.4795 (10)1.0581 (2)0.47445 (11)0.0200 (8)
C230.3720 (9)1.1491 (3)0.46149 (12)0.0237 (8)
C240.2427 (9)1.1631 (3)0.41685 (11)0.0252 (9)
C250.2295 (9)1.0874 (3)0.38627 (12)0.0245 (9)
C260.3488 (9)0.9972 (3)0.39936 (11)0.0232 (9)
C2110.6137 (9)0.8837 (3)0.45700 (11)0.0208 (8)
H1110.07750.62410.28720.024*
H11A0.04020.75070.32720.033*
H11B0.21280.78440.36990.033*
H130.52240.31710.24350.030*
H140.71650.24930.31380.032*
H150.71410.34330.38120.030*
H160.49440.49840.37970.028*
H2110.78130.87610.48190.025*
H21A0.86640.72660.46220.033*
H21B0.62260.67860.42180.033*
H230.38641.20110.48280.028*
H240.16321.22490.40730.030*
H250.13741.09710.35580.029*
H260.34380.94630.37740.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1210.0566 (18)0.0234 (16)0.0289 (14)0.0054 (14)0.0039 (14)0.0057 (13)
O1220.0365 (15)0.0414 (18)0.0272 (14)0.0043 (14)0.0088 (13)0.0046 (13)
N120.0255 (17)0.034 (2)0.0228 (16)0.0021 (16)0.0032 (14)0.0003 (17)
N1110.0243 (15)0.0180 (18)0.0294 (16)0.0022 (15)0.0040 (15)0.0010 (15)
N1120.0320 (17)0.0214 (18)0.0282 (16)0.0019 (15)0.0025 (15)0.0027 (14)
C110.0172 (18)0.020 (2)0.0262 (19)0.0006 (16)0.0020 (15)0.0013 (17)
C120.020 (2)0.024 (2)0.0220 (18)0.0026 (16)0.0019 (16)0.0008 (18)
C130.0239 (18)0.024 (2)0.0261 (19)0.0033 (18)0.0060 (17)0.0035 (18)
C140.0238 (18)0.017 (2)0.038 (2)0.0024 (17)0.0011 (19)0.0022 (18)
C150.0194 (18)0.031 (2)0.0259 (19)0.0005 (17)0.0008 (16)0.0035 (18)
C160.0227 (17)0.022 (2)0.0244 (19)0.0009 (18)0.0002 (16)0.0019 (17)
C1110.0190 (19)0.023 (2)0.0171 (16)0.0015 (16)0.0005 (15)0.0020 (17)
O2210.0520 (17)0.0234 (16)0.0250 (13)0.0048 (14)0.0017 (14)0.0043 (13)
O2220.0428 (16)0.0253 (16)0.0290 (13)0.0094 (13)0.0083 (14)0.0079 (13)
N220.0269 (18)0.028 (2)0.0248 (16)0.0034 (15)0.0009 (14)0.0021 (17)
N2110.0294 (16)0.0166 (17)0.0229 (15)0.0046 (16)0.0000 (14)0.0007 (14)
N2120.0333 (17)0.0198 (19)0.0283 (17)0.0039 (15)0.0029 (15)0.0008 (14)
C210.0144 (16)0.021 (2)0.0235 (18)0.0057 (16)0.0022 (15)0.0030 (16)
C220.0221 (18)0.018 (2)0.0200 (17)0.0024 (16)0.0015 (16)0.0032 (17)
C230.0227 (18)0.018 (2)0.0299 (19)0.0011 (17)0.0030 (17)0.0030 (18)
C240.0223 (19)0.022 (2)0.032 (2)0.0026 (17)0.0000 (17)0.0049 (19)
C250.0216 (19)0.029 (2)0.0227 (18)0.0032 (17)0.0011 (16)0.0044 (18)
C260.0220 (18)0.024 (2)0.0236 (19)0.0000 (18)0.0002 (17)0.0036 (17)
C2110.0215 (18)0.022 (2)0.0192 (17)0.0005 (17)0.0003 (16)0.0022 (18)
Geometric parameters (Å, º) top
C11—C121.393 (5)C21—C221.396 (4)
C11—C161.397 (4)C21—C261.402 (4)
C11—C1111.471 (4)C21—C2111.472 (5)
C111—N1111.276 (4)C211—N2111.276 (4)
C111—H1110.95C211—H2110.95
N111—N1121.388 (4)N211—N2121.385 (4)
N112—H11A0.95N212—H21A0.95
N112—H11B0.95N212—H21B0.95
C12—C131.380 (5)C22—C231.380 (4)
C12—N121.468 (4)C22—N221.472 (4)
N12—O1221.231 (4)N22—O2211.228 (3)
N12—O1211.234 (4)N22—O2221.235 (3)
C13—C141.383 (5)C23—C241.384 (5)
C13—H130.95C23—H230.95
C14—C151.390 (5)C24—C251.375 (5)
C14—H140.95C24—H240.95
C15—C161.375 (5)C25—C261.383 (5)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C12—C11—C16115.9 (3)C22—C21—C26115.9 (3)
C12—C11—C111123.8 (3)C22—C21—C211123.9 (3)
C16—C11—C111120.2 (3)C26—C21—C211120.1 (3)
N111—C111—C11119.4 (3)N211—C211—C21119.1 (3)
N111—C111—H111120.3N211—C211—H211120.5
C11—C111—H111120.3C21—C211—H211120.5
C111—N111—N112116.4 (3)C211—N211—N212117.3 (3)
N111—N112—H11A108.8N211—N212—H21A112.0
N111—N112—H11B110.6N211—N212—H21B109.8
H11A—N112—H11B115.7H21A—N212—H21B116.1
C13—C12—C11123.4 (3)C23—C22—C21123.5 (3)
C13—C12—N12116.9 (3)C23—C22—N22115.8 (3)
C11—C12—N12119.6 (3)C21—C22—N22120.7 (3)
O122—N12—O121123.5 (3)O221—N22—O222123.6 (3)
O122—N12—C12117.9 (3)O221—N22—C22118.9 (3)
O121—N12—C12118.6 (3)O222—N22—C22117.5 (3)
C12—C13—C14119.0 (3)C22—C23—C24118.6 (3)
C12—C13—H13120.5C22—C23—H23120.7
C14—C13—H13120.5C24—C23—H23120.7
C13—C14—C15119.1 (3)C25—C24—C23119.9 (3)
C13—C14—H14120.4C25—C24—H24120.0
C15—C14—H14120.4C23—C24—H24120.0
C16—C15—C14120.8 (3)C24—C25—C26120.8 (3)
C16—C15—H15119.6C24—C25—H25119.6
C14—C15—H15119.6C26—C25—H25119.6
C15—C16—C11121.7 (3)C25—C26—C21121.2 (3)
C15—C16—H16119.2C25—C26—H26119.4
C11—C16—H16119.2C21—C26—H26119.4
C12—C11—C111—N111157.6 (3)C22—C21—C211—N211158.7 (3)
C16—C11—C111—N11125.4 (5)C26—C21—C211—N21124.1 (5)
C11—C111—N111—N112178.6 (3)C21—C211—N211—N212179.4 (3)
C16—C11—C12—C131.1 (5)C26—C21—C22—C231.4 (5)
C111—C11—C12—C13176.0 (3)C211—C21—C22—C23175.8 (3)
C16—C11—C12—N12177.5 (3)C26—C21—C22—N22176.5 (3)
C111—C11—C12—N125.4 (5)C211—C21—C22—N226.3 (5)
C13—C12—N12—O12236.2 (4)C23—C22—N22—O221144.6 (3)
C11—C12—N12—O122145.0 (3)C21—C22—N22—O22133.4 (5)
C13—C12—N12—O121142.6 (3)C23—C22—N22—O22234.4 (5)
C11—C12—N12—O12136.1 (4)C21—C22—N22—O222147.6 (3)
C11—C12—C13—C141.5 (5)C21—C22—C23—C242.3 (5)
N12—C12—C13—C14177.2 (3)N22—C22—C23—C24175.7 (3)
C12—C13—C14—C150.0 (5)C22—C23—C24—C251.1 (5)
C13—C14—C15—C161.7 (5)C23—C24—C25—C260.9 (5)
C14—C15—C16—C112.1 (5)C24—C25—C26—C211.8 (5)
C12—C11—C16—C150.7 (5)C22—C21—C26—C250.6 (5)
C111—C11—C16—C15177.9 (3)C211—C21—C26—C25178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N212—H21B···N1110.952.513.307 (4)141
N112—H11B···N2110.952.173.027 (4)150
(II) 3-Nitrobenzaldehyde hydrazone top
Crystal data top
C7H7N3O2F(000) = 344
Mr = 165.16Dx = 1.485 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1029 reflections
a = 3.7231 (2) Åθ = 3.7–27.5°
b = 10.2200 (7) ŵ = 0.11 mm1
c = 19.4119 (12) ÅT = 120 K
V = 738.62 (8) Å3Block, yellow
Z = 40.42 × 0.32 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1029 independent reflections
Radiation source: rotating anode897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 43
Tmin = 0.965, Tmax = 0.989k = 1213
5442 measured reflectionsl = 2420
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0869P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1029 reflectionsΔρmax = 0.20 e Å3
112 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (8)
Crystal data top
C7H7N3O2V = 738.62 (8) Å3
Mr = 165.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.7231 (2) ŵ = 0.11 mm1
b = 10.2200 (7) ÅT = 120 K
c = 19.4119 (12) Å0.42 × 0.32 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1029 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
897 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.989Rint = 0.037
5442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
1029 reflectionsΔρmin = 0.18 e Å3
112 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.0097 (4)0.40565 (13)0.19783 (6)0.0319 (4)
O320.1823 (5)0.20713 (13)0.18010 (6)0.0378 (4)
N30.1550 (5)0.30367 (14)0.21710 (7)0.0239 (4)
N110.5447 (5)0.52039 (17)0.49804 (7)0.0290 (4)
N120.5347 (6)0.63742 (19)0.53425 (8)0.0364 (5)
C10.4233 (5)0.40460 (18)0.39441 (9)0.0223 (4)
C20.2855 (5)0.40998 (18)0.32747 (8)0.0212 (4)
C30.2997 (5)0.29776 (17)0.28743 (8)0.0213 (4)
C40.4377 (5)0.18055 (18)0.31065 (9)0.0249 (4)
C50.5711 (5)0.17631 (19)0.37728 (9)0.0273 (4)
C60.5652 (5)0.28659 (18)0.41810 (9)0.0249 (4)
C110.4112 (6)0.5220 (2)0.43755 (9)0.0254 (4)
H20.18470.48860.30990.025*
H40.44120.10530.28200.030*
H50.66720.09700.39490.033*
H60.66020.28210.46350.030*
H110.30350.59970.42040.031*
H12A0.55160.62150.57870.046 (7)*
H12B0.35070.68620.52200.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0433 (9)0.0279 (7)0.0245 (7)0.0067 (7)0.0038 (7)0.0019 (6)
O320.0546 (11)0.0283 (7)0.0305 (7)0.0008 (8)0.0044 (8)0.0079 (6)
N30.0267 (10)0.0231 (8)0.0219 (8)0.0023 (7)0.0022 (7)0.0014 (6)
N110.0293 (9)0.0360 (9)0.0218 (8)0.0044 (9)0.0009 (7)0.0002 (7)
N120.0468 (12)0.0402 (10)0.0222 (8)0.0029 (10)0.0031 (9)0.0055 (7)
C10.0176 (9)0.0274 (9)0.0218 (8)0.0010 (8)0.0031 (7)0.0035 (7)
C20.0193 (9)0.0223 (8)0.0219 (9)0.0003 (8)0.0028 (8)0.0054 (7)
C30.0203 (9)0.0237 (9)0.0201 (8)0.0022 (8)0.0025 (7)0.0028 (7)
C40.0244 (9)0.0220 (8)0.0283 (9)0.0008 (8)0.0053 (8)0.0016 (7)
C50.0218 (10)0.0271 (9)0.0329 (10)0.0038 (9)0.0037 (9)0.0106 (8)
C60.0197 (9)0.0331 (10)0.0221 (8)0.0012 (9)0.0021 (8)0.0069 (8)
C110.0247 (10)0.0286 (9)0.0230 (9)0.0008 (9)0.0006 (8)0.0023 (8)
Geometric parameters (Å, º) top
C1—C61.395 (3)C3—C41.379 (3)
C1—C21.398 (2)C3—N31.469 (2)
C1—C111.464 (2)N3—O321.2246 (19)
C11—N111.275 (2)N3—O311.232 (2)
C11—H110.95C4—C51.386 (3)
N11—N121.388 (2)C4—H40.95
N12—H12A0.88C5—C61.378 (3)
N12—H12B0.88C5—H50.95
C2—C31.386 (2)C6—H60.95
C2—H20.95
C6—C1—C2118.65 (16)C4—C3—N3118.43 (14)
C6—C1—C11122.13 (15)C2—C3—N3118.23 (14)
C2—C1—C11119.22 (15)O32—N3—O31122.68 (14)
N11—C11—C1120.26 (17)O32—N3—C3118.78 (14)
N11—C11—H11119.9O31—N3—C3118.54 (13)
C1—C11—H11119.9C3—C4—C5117.75 (16)
C11—N11—N12116.39 (16)C3—C4—H4121.1
N11—N12—H12A109.6C5—C4—H4121.1
N11—N12—H12B111.9C6—C5—C4120.35 (16)
H12A—N12—H12B115.1C6—C5—H5119.8
C3—C2—C1118.33 (15)C4—C5—H5119.8
C3—C2—H2120.8C5—C6—C1121.59 (16)
C1—C2—H2120.8C5—C6—H6119.2
C4—C3—C2123.33 (15)C1—C6—H6119.2
C6—C1—C11—N112.6 (3)C4—C3—N3—O31175.18 (17)
C2—C1—C11—N11177.96 (19)C2—C3—N3—O313.9 (3)
C1—C11—N11—N12177.46 (17)C2—C3—C4—C50.6 (3)
C6—C1—C2—C30.6 (3)N3—C3—C4—C5179.60 (17)
C11—C1—C2—C3179.95 (17)C3—C4—C5—C60.3 (3)
C1—C2—C3—C41.0 (3)C4—C5—C6—C10.7 (3)
C1—C2—C3—N3179.95 (17)C2—C1—C6—C50.2 (3)
C4—C3—N3—O324.6 (3)C11—C1—C6—C5179.20 (17)
C2—C3—N3—O32176.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O31i0.882.343.210 (2)170
N12—H12B···N12ii0.882.413.245 (3)158
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y+3/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC7H7N3O2C7H7N3O2
Mr165.16165.16
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)120120
a, b, c (Å)3.6675 (2), 13.938 (1), 28.796 (2)3.7231 (2), 10.2200 (7), 19.4119 (12)
V3)1471.98 (17)738.62 (8)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.25 × 0.04 × 0.030.42 × 0.32 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.957, 0.9970.965, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11485, 1966, 1247 5442, 1029, 897
Rint0.0890.037
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.113, 1.02 0.037, 0.092, 1.06
No. of reflections19661029
No. of parameters217112
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.300.20, 0.18

Computer programs: COLLECT (Nonius, 1998), KappaCCD Server Software (Nonius, 1997), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO-SMN (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N212—H21B···N1110.952.513.307 (4)141
N112—H11B···N2110.952.173.027 (4)150
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···O31i0.882.343.210 (2)170
N12—H12B···N12ii0.882.413.245 (3)158
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDhaneshwar, N. N., Tavale, S. S. & Pant, L. M. (1978). Acta Cryst. B34, 2507–2509.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o33–o34.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationLommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMotherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–761.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPloug-Sørensen, G. & Andersen, E. K. (1986). Acta Cryst. C42, 1813–1815.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds