organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The 2:1 adducts of (benzoyl­methyl­ene)­tri­phenyl­phospho­rane with fumaric and terephthalic acids

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Durham University, Durham DH1 3LE, England, and bDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
*Correspondence e-mail: j.a.k.howard@dur.ac.uk

(Received 16 August 2004; accepted 22 September 2004; online 31 October 2004)

Co-crystals of the yl­ide (benzoyl­methyl­ene)­tri­phenyl­phospho­rane (BPPY) with either fumaric acid, viz. (benzoyl­methyl­ene)­tri­phenyl­phospho­rane–fumaric acid (2/1), C26H21OP·0.5C4H4O4, or terephthalic acid, viz. (benzoyl­methyl­ene)­tri­phenyl­phospho­rane–terephthalic acid (2/1), C26H21OP·0.5C8H6O4, have a stoichiometric ratio of 2:1 between the yl­ide and the corresponding di­carboxyl­ic acid. In both adducts, the acid component lies across a centre of inversion. In neither case is the yl­ide protonated by the organic acid; instead the H atoms of the non-ionized di­carboxyl­ic acid mol­ecules participate in the formation of strong O—H⋯O hydrogen bonds with the benzoyl O atom of the yl­ide species. These structures are the first reported examples of co-crystals containing non-protonated BPPY.

Comment

Resonance-stabilized phospho­rus yl­ides are a class of compounds that have attracted considerable interest in the field of synthetic organometallic chemistry. Their popularity arises from their high stability, their reactivity towards a diverse range of metal salts and their ability to be tailored chemically to allow a variety of coordination modes to be accessed (Falvello et al., 1996[Falvello, L. R., Fernández, S., Navarro, R. & Urriolabeitia, E. P. (1996). Inorg. Chem. 35, 3064-3066.], 1997[Falvello, L. R., Fernández, S., Navarro, R. & Urriolabeitia, E. P. (1997). Inorg. Chem. 36, 1136-1142.], 1998[Falvello, L. R., Fernández, S., Navarro, R., Rueda, A. & Urriolabeitia, E. P. (1998). Inorg. Chem. 37, 6007-6013.]; Kalyanasundari et al., 1995[Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103-109.], 2004[Kalyanasundari, B., Baby Mariyatra, M., Panchanatheswaran, K., Spencer, E. C. & Howard, J. A. K. (2004). In preparation.]; Vicente et al., 1988[Vicente, J., Chicote, M. T., Saura-Liamas, I., Jones, P. G., Meyer-Bäse, K., Freire, C. & Erdbrügger, C. F. (1988). Organometallics, 7, 997-1006.]).

The manner of protonation of the resonance-stabilized yl­ide (benzoyl­methyl­ene)tri­phenyl­phospho­rane (BPPY) has been the focus of our most recent studies. A search of the Cambridge Structural Database (Version 5.25; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for the BPPY moiety yielded six cases of protonated BPPY (only structures in which BPPY featured as a discrete molecular entity, i.e. uncomplexed, were considered). All six structures exhibited C-protonation (Antipin & Struchkov, 1984[Antipin, M. Yu. & Struchkov, Yu. T. (1984). Zh. Strukt. Khim. 25, 122-131.]; Baby Mariyatra et al., 2002a[Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002a). Acta Cryst. E58, o807-o809.],b[Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002b). Acta Cryst. E58, m694-m696.], 2003[Baby Mariyatra, M., Kalyanasundari, B., Panchanatheswaran, K. & Goeta, A. E. (2003). Acta Cryst. E59, o255-o257.]; Albanese et al., 1989[Albanese, J. A., Staley, D. L., Rheingold, A. L. & Burmeister, J. L. (1989). Acta Cryst. C45, 1128-1131.]); no examples of O-protonated BPPY were found. These results are surprising, as PM3 calculations of the proton affinities for the yl­ide C and the benzoyl O atoms give values that differ by only 13 kJ mol−1 (Laavanya, 2002[Laavanya, P. (2002). PhD thesis, Bharathidasan University, India.]), implying that although C-protonation is energetically more favourable both O- and C-protonation of BPPY are feasible.

In our previous work, we have observed that the C-protonated cation of BPPY is produced by the action of picric and maleic acids (Baby Mariyatra et al., 2004a[Baby Mariyatra, M., Spencer, E. C., Panchanatheswaran, K. & Howard, J. A. K. (2004a). Acta Cryst. E60, o123-o125.],b[Baby Mariyatra, M., Spencer, E. C., Panchanatheswaran, K. & Howard, J. A. K. (2004b). Acta Cryst. E60, o162-o164.]). In order to investigate the influence of organic di­carboxyl­ic acids on the mode of protonation of BPPY, the reactions of this yl­ide with fumaric and terephthalic acid, yielding compounds (I[link]) and (II[link]), respectively, have been undertaken. The first-step pKa value in aqueous solution is 3.03 for fumaric acid and 3.51 for terephthalic acid, and the second-step values are 4.44 and 4.82, respectively (Lide, 1994[Lide, D. R. (1994). CRC Handbook of Chemistry and Physics, 74th ed., pp. 8.43-8.44.E. Boca Raton, Florida, USA: CRC Press.]). These figures suggest that both of these acids are sufficiently strong to protonate BPPY (pKa of 6.0; Speziale & Ratts, 1963[Speziale, A. J. & Ratts, K. W. (1963). J. Am. Chem. Soc. 85, 2790-2795.]).

[Scheme 1]

Figs. 1[link] and 2[link] display the molecular structures of (I[link]) and (II[link]), respectively. In both cases, the di­carboxyl­ic acid mol­ecule resides on a site of inversion symmetry, and consequently each of the asymmetric units of (I[link]) and (II[link]) comprises a single BPPY mol­ecule and half an acid mol­ecule.

Tables 1[link] and 3[link] list selected geometries for (I[link]) and (II[link]), respectively. The inequality of the O2—C27 and O3—C27 bond lengths in (I[link]), and the O2—C30 and O3—C30 bond lengths in (II[link]), is indicative of the di­carboxyl­ic acid mol­ecules in both co-crystals existing in the un-ionized form.

The O1—C7 bond lengths are longer than the value of 1.210 Å expected for ketones, and the C7—C8 distances are greater than the expected C=C distance (1.331 Å; Wilson, 1992[Wilson, A. J. C. (1992). International Tables for Crystallography, Vol. C, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]). These facts are strongly suggestive of resonance delocalization within the yl­ide mol­ecules. The torsion angles surrounding atom C8 in both structures signify that the environment about this carbanion is distorted trigonal planar. These bond lengths and angles provide conclusive evidence of the presence of unprotonated BPPY in the structures of (I[link]) and (II[link]). Corroborating evidence for the absence of the phospho­nium cation has been provided by the 1H NMR spectra of (I[link]) and (II[link]).

In both cases, the P1—C8 and O1—C7 bonds are slightly elongated with respect to the equivalent bonds in the parent yl­ide, where the P—C bond lengths are 1.716 (5) and 1.725 (4) Å, and the O—C bond lengths are 1.265 (7) and 1.247 (7) Å (two yl­ide mol­ecules in the asymmetric unit; Kalyanasundari & Panchanatheswaran, 1994[Kalyanasundari, M. & Panchanatheswaran, K. (1994). Acta Cryst. C50, 1738-1741.]). The presence of an exceptionally strong hydrogen bond between the O atoms of the benzoyl groups and an acid H atom of the relevant acid mol­ecule in (I) and (II) (Tables 2[link] and 4[link]) may account for this disparity.

The non-bonded P1⋯O1 distances [2.991 (1) Å in (I[link]) and 2.907 (1) Å in (II[link])] are considerably shorter than the sum of the van der Waals radii of phospho­rus and oxy­gen (3.3 Å; Dunitz, 1979[Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 339. Ithaca: Cornell University Press.]), indicating the presence of strong intramol­ecular interactions between the charged P+ and O centres of the yl­ide mol­ecules; these interactions explain the observed cis orientation about the partial C=C double bond in (I[link]) and (II[link]).

A strong hydrogen bond exists between the O2—H2A donor group of the fumaric acid mol­ecule and atom O1 of the yl­ide mol­ecule (see Table 2[link]). This bond and its symmetry equivalent at (1 − x, 1 − y, 1 − z) link the fumaric acid and yl­ide mol­ecules, as shown in Fig. 3[link].

The secondary interactions for (I[link]) include several C—H⋯π contacts (Table 2[link]). Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C21–C26, C15–C20 and C1–C6. Two ππ interactions complete the complex network of secondary interactions present in the crystal packing of (I[link]) (Fig. 4[link]). Both interactions are 3.99 Å in length, and the β angles are 28 and 23° for the Cg3⋯Cg2iv and Cg2⋯Cg3v interactions, respectively [symmetry codes: (iv) [1-x, -{1\over2}+y, {1\over2}-z]; (v) [1-x, {1\over2}+y, {1\over2}-z]].

Table 4[link] provides details of all the secondary interactions observed in the crystal structure of (II[link]). The strong O2—H1⋯O1vi hydrogen bond and its symmetry equivalent O2xi—H1xi⋯O1x generate a unit comprising a single terephthalic acid mol­ecule and two BPPY mol­ecules (symmetry codes as in Fig. 5[link]). The similarity of this unit to that observed in (I[link]) (Fig. 3[link]) is immediately apparent.

The structure of (II[link]) is further stabilized by several C—H⋯π interactions (Table 4[link]).

In conclusion, the co-crystals (I[link]) and (II[link]) of BPPY with fumaric acid and terephthalic acid, respectively, are the first reported examples in which BPPY remains unprotonated. We attribute this phenomenon to the preferential formation of a strong O—H⋯O hydrogen bond between the benzoyl O atom of the yl­ide mol­ecule and the acid H atom of the relevant un-ionized di­carboxyl­ic acid group. These short strong hydrogen bonds result in the formation of units with a 2:1 stoichiometric ratio of BPPY to di­carboxyl­ic acid.

[Figure 1]
Figure 1
The molecular structure of the co-crystal, (I[link]), of BPPY with fumaric acid. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-generated atoms C28A, C27A, O2A, O3A and H2AA have been included for completeness [symmetry code: (A) 1 − x, 1 − y, 1 − z].
[Figure 2]
Figure 2
The molecular structure of the co-crystal, (II[link]), of BPPY with terephthalic acid. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-generated atoms C28A, C27A, C29A, C30A, O2A, O3A and H1A have been included for completeness [symmetry code: (A) 1 − x, 1 − y, 1 − z].
[Figure 3]
Figure 3
The unit formed by the O2—H2A⋯O1 hydrogen bond in (I[link]) and its symmetry equivalent at (1 − x, 1 − y, 1 − z) (viz. symmetry code iv).
[Figure 4]
Figure 4
The ππ interactions present in the crystal structure of (I[link]) [symmetry codes: (iv) [1-x, -{1\over2}+y, {1\over2}-z]; (v) [1-x, {1\over2}+y, {1\over2}-z]].
[Figure 5]
Figure 5
The unit formed by the O2—H1⋯O1vi hydrogen bond and its symmetry equivalent O2xi—H1xi⋯O1x [symmetry codes: (vi) [1\over 2] + x, [1\over 2] − y, z − [1\over 2]; (x) [1 \over 2] − x, −[1 \over 2] + y, [1 \over2] − z; (xi) 1 − x, −y, −z].

Experimental

Crystals of (I[link]) were prepared by stirring BPPY and fumaric acid together in a 1:2 molar ratio in 95% ethanol. Colourless diffraction-quality crystals were obtained on allowing the solution to stand for a week (m.p. 423–425 K). Crystals of (II[link]) were prepared by refluxing BPPY in 95% ethanol with terephthalic acid in a 1:2 molar ratio for 20 h. On cooling the solution to room temperature, colourless crystals of diffraction quality were obtained (m.p. 498–500 K).

Compound (I)[link]

Crystal data
  • C26H21OP·0.5C4H4O4

  • Mr = 438.43

  • Monoclinic, P21/c

  • a = 13.0883 (6) Å

  • b = 9.7883 (5) Å

  • c = 17.9970 (9) Å

  • β = 102.500 (2)°

  • V = 2250.98 (19) Å3

  • Z = 4

  • Dx = 1.294 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 984 reflections

  • θ = 2.4–27.5°

  • μ = 0.15 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.39 × 0.27 × 0.22 mm

Data collection
  • Bruker SMART CCD 6K area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.756, Tmax = 0.968

  • 17 181 measured reflections

  • 5164 independent reflections

  • 4281 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −16 → 16

  • k = −11 → 12

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.02

  • 5164 reflections

  • 381 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0512P)2 + 0.8208P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

P1—C8 1.739 (1) 
P1—C21 1.803 (1)
P1—C9 1.805 (1)
P1—C15 1.807 (1)
O1—C7 1.280 (2)
O2—C27 1.311 (2)
O3—C27 1.214 (2)
C7—C8 1.386 (2)
C8—P1—C21 114.40 (7)
C8—P1—C9 105.92 (6)
C8—P1—C15 114.83 (6)
O1—C7—C8 122.0 (1)
C7—C8—P1 121.1 (1)
C7—C8—H8 124 (1)
P1—C8—H8 115 (1)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C21–C26, C15–C20 and C1–C6, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.99 (3) 1.52 (3) 2.509 (2) 176 (3)
C14—H14⋯Cg1 0.92 (2) 3.00 3.72 136
C12—H12⋯Cg1i 0.98 (2) 2.61 3.50 152
C13—H13⋯Cg2ii 0.98 (2) 2.96 3.69 133
C24—H24⋯Cg3iii 0.96 (2) 2.98 3.87 155
Symmetry codes: (i) [x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (ii) [-x,{\script{3\over 2}}+y,{\script{1\over 2}}-z]; (iii) -x,-y,-z.

Compound (II)[link]

Crystal data
  • C26H21OP·0.5C8H6O4

  • Mr = 463.46

  • Monoclinic, P21/n

  • a = 10.0900 (6) Å

  • b = 17.9737 (9) Å

  • c = 13.1613 (7) Å

  • β = 92.048 (2)°

  • V = 2385.3 (2) Å3

  • Z = 4

  • Dx = 1.291 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 948 reflections

  • θ = 2.8–27.3°

  • μ = 0.15 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.30 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART CCD 6K area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.983

  • 18 211 measured reflections

  • 5463 independent reflections

  • 4288 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.5°

  • h = −13 → 10

  • k = −23 → 21

  • l = −17 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.03

  • 5463 reflections

  • 403 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0387P)2 + 1.0579P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

P1—C8 1.729 (2) 
P1—C9 1.806 (2)
P1—C15 1.810 (2)
P1—C21 1.810 (2)
C7—O1 1.277 (2)
C7—C8 1.388 (2)
C30—O3 1.205 (2)
C30—O2 1.319 (2)
C8—P1—C9 114.72 (8)
C8—P1—C15 112.28 (7)
C8—P1—C21 106.63 (7)
O1—C7—C8 121.1 (1)
C7—C8—P1 118.4 (1)
C7—C8—H8 124 (1)
P1—C8—H8 118 (1)

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C9–C14, C21–C26 and C1–C6, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1vi 0.92 (3) 1.64 (3) 2.526 (2) 161 (3)
C3—H3⋯Cg1vi 0.96 (2) 2.84 3.59 135
C19—H19⋯Cg2vii 0.99 (2) 3.00 3.79 137
C13—H13⋯Cg2viii 0.93 (2) 2.73 3.59 156
C18—H18⋯Cg3ix 0.94 (2) 2.71 3.53 146
Symmetry codes: (vi) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,z-{\script{1\over 2}}]; (vii) -x, -y, 1-z; (viii) -x, -y, 2-z; (ix) x-1,y,z.

All H atoms were located in difference Fourier maps, and their positional and Uiso parameters were refined. The refined C—H distances for (I[link]) are in the range 0.920 (17)–0.995 (19) Å; for (II[link]), the range is 0.92 (2)–0.99 (2) Å. The secondary interaction analysis was performed using a combination of MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

For both compounds, data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0), SAINT (Version 6.04) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0), SAINT (Version 6.04) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0), SAINT (Version 6.04) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Resonance-stabilized phosphorus ylides are a class of compounds that have attracted considerable interest in the field of synthetic organometallic chemistry. Their popularity arises from their high stability, their reactivity towards a diverse range of metal salts and their ability to be tailored chemically to allow for a variety of coordination modes to be accessed (Falvello et al., 1996, 1997, 1998; M. Kalyanasundari et al., 1995; Vicente et al., 1988; B. Kalyanasundari et al., 2004).

The manner of protonation of the resonance-stabilized ylide benzoylmethylenetriphenylphosphorane (BPPY) has been the focus of our most recent studies. A search of the Cambridge Structural Database (Version 5.25; Allen, 2002) for the BPPY moiety yielded six cases of protonated BPPY (only structures in which BPPY featured as a discrete molecular entity, i.e. un-complexed, were considered). All six structures exhibited C-protonation (Antipin et al., 1984; Baby Mariyatra, Kalyanasundari et al., 2002; Baby Mariyatra, Panchanatheswaran & Goeta, 2002a,2002b; Albanese et al., 1989); no examples of O-protonated BPPY were found. These results are surprising, as PM3 calculations of the proton affinities for the ylide C and the benzoyl O atoms give values that differ by only 13 kJ mol−1 (Laavanya, 2002), implying that although C-protonation is energetically more favourable, both O– and C-protonation of BPPY are feasible.

In our previous work, we have observed that the C-protonated cation of BPPY is produced by the action of picric and maleic acid (Baby Mariyatra, Spencer et al., 2004a,2004b). In order to investigate the influence of organic dicarboxylic acids on the mode of protonation of BPPY, the reactions of this ylide with fumaric and terephthalic acid, yieldng compounds (I) and (II), respectively, have been undertaken. The first-step pKa values in aqueous solution are 3.03 for fumaric acid and 3.51 for terephthalic acid, and the second-step values are 4.44 and 4.82, respectively (Lide, 1994). These figures suggest that both these acids are sufficiently strong to protonate BPPY (pKa of 6.0) (Speziale et al., 1963).

Figs. 1 and 2 display the molecular structures of (I) and (II), respectively. In both case the dicarboxylic acid molecule resides on a site of inversion symmetry, and consequently each of the asymmetric units of (I) and (II) comprises a single BPPY molecule and half an acid molecule.

Tables 1 and 3 list selected bond geometries for (I) and (II), respectively. The inequality of the O2—C27 and O3—C27 bond lengths in (I), and the O2—C30 and O3—C30 bond lengths in (II), is indicative of the dicarboxylic acid molecules in both cocrystals existing in the un-ionized form.

The O1—C7 bond lengths are longer than the 1.210 Å expected for ketones, and the C7—C8 distances are greater than the expected C=C distance of 1.331 Å (Wilson, 1992). These facts are strongly suggestive of resonance delocalization within the ylide molecules. The torsion angles surrounding atom C8 in both structures signify that the environment about this carbanion is distorted trigonal planar. These bond lengths and angles provide conclusive evidence of the presence of unprotonated BPPY in the structures of (I) and (II). Corroborating evidence for the absence of the phosphonium cation has been provided by the 1H NMR spectra of (I) and (II).

In both cases, the P1—C8 and O1—C7 bonds are slightly elongated with respect to the equivalent bonds in the parent ylide, where the P—C bond lengths are 1.716 (5) and 1.725 (4) Å, and the O—C bond lengths are 1.265 (7) and 1.247 (7) Å (two ylide molecules in the asymmetric unit; Kalyanasundari & Panchanatheswaran, 1994). The presence of an exceptionally strong hydrogen bond between the O atoms of the benzoyl groups and an acid H atom of relevant acid molecule (Tables 2 and 4) may account for this disparity.

The non-bonded P1···O1 distances of 2.991 (1) [in (I)] and 2.907 (1) Å [in (II)] are considerably shorter than the sum of the van der Waals radii of phosphorus and oxygen (3.3 Å; Dunitz, 1979), indicating the presence of strong intramolecular interactions between the charged P+ and O centres of the ylide molecules; this explains the observed cis orientation about the partial C=C double bond in (I) and (II).

A strong hydrogen bond exists between the O2/H2A donor group of the fumaric acid molecule and atom O1 of the ylide molecule (see Table 2). This bond and its symmetry equivalent at (1 − x, 1 − y, 1 − z) link the fumaric acid and ylide molecules as demonstrated in Fig.3.

The secondary interactions for (I) include several C—H···π contacts, the details of which are listed in Table 2. Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C9–C14??, C15–C20 and C1–C6. Two ππ interactions complete the complex network of secondary interactions present in the crystal packing of (I) (Fig.4). Both interactions are 3.994 Å in length and the β angles are 28.09 and 22.59° for the Cg3···Cg2iii and Cg2···Cg3v interactions, respectively.

Table 4 provides details of all the secondary interactions observed in the crystal structure of (II). The strong O2—H1···O1v hydrogen bond and its symmetry equivalent (O2vi—H1vi···O1v) generate a unit comprising a single terephthalic acid molecule and two BPPY molecules (Fig. 6). The similarity of this unit to that observed in (I) (Fig.3) is immediately apparent.

The structure of (II) is further stabilized by several C—H···π interactions, details of which are provided in Table 4. Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C9—C14, C21–C26 and C1–C6, respectively.

In conclusion, the cocrystals, (I) and (II), of benzoylmethylenetriphenylphosphorane (BPPY) with fumaric acid and terephthalic acid, respectively, are the first reported examples in which the BPPY ligand remains unprotonated. We attribute this phenomenon to the preferential formation of a strong O—H···O hydrogen bond between the benzoyl O atom of the ylide molecule and the acid H atom of the relevant un-ionized dicarboxylic acid group. These short strong hydrogen bonds result in the formation of units with a 2:1 stoichiometric ratio of BPPY to dicarboxylic acid.

Experimental top

Crystals of (I) were prepared by stirring BPPY and fumaric acid together in a 1:2 molar ratio in 95% ethanol. Colourless diffraction-quality crystals were obtained on allowing the solution to stand for a week (m.p. 423–425 K). Crystals of (II) were prepared by refluxing BPPY in 95% ethanol with terephthalic acid in a 1:2 molar ratio for 20 h. On cooling the solution to room temperature, colourless crystals of diffraction quality were obtained (m.p. 498–500 K).

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. All H atoms were located in difference Fourier maps, and their positional and Uiso parameters were refined. The refined C—H distances for (I) are in the range 0.920 (17)–0.995 (19) Å. For (II), the range is 0.92 (2)–0.99 (2) Å. The secondary interaction analysis was performed using a combination of Mercury (Bruno et al., 2002) and PLATON (Spek, 2003).

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the cocrystal, (I), of BPPY with fumaric acid. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-generated atoms C28A, C27A, 02 A and H2AA have been included for completeness (symmetry code: 1 − x, 1 − y,1 − z).
[Figure 2] Fig. 2. The molecular structure of the cocrystal, (II), of BPPY with terephthalic acid. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-generated atoms C28A, C27A, C29A, O2A, O3A and H1A have been included for completeness (symmetry code: 1 − x, 1 − y,1 − z).
[Figure 3] Fig. 3. The unit formed by the O2—H2A···O1 bond in (I) and its symmetry equivalent at (1 − x, 1 − y, 1 − z) (symmetry code iv).
[Figure 4] Fig. 4. The ππ interactions present in the crystal structure of (I). [See Table 2 for symmetry codes; (v) −x, 0.5 + y, 0.5 − z.]
[Figure 5] Fig. 5. The unit form by the O2—H1···O1i bond and its symmetry equivalent O2vi—H1vi···O1v. [Symmetry codes: (i) 0.5 + x, 0.5 − y, z − 0.5; (v) 0.5 − x, −0.5 + y, 0.5 − z; (vi) 1 − x, −y, −z.]
(I) (benzoylmethylene)triphenylphosphorane–fumaric acid (2/1) top
Crystal data top
C26H21OP·0.5C4H4O4F(000) = 920
Mr = 438.43Dx = 1.294 Mg m3
Monoclinic, P21/cMelting point: 424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.0883 (6) ÅCell parameters from 984 reflections
b = 9.7883 (5) Åθ = 2.4–27.5°
c = 17.9970 (9) ŵ = 0.15 mm1
β = 102.500 (2)°T = 120 K
V = 2250.98 (19) Å3Block, colourless
Z = 40.39 × 0.27 × 0.22 mm
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
5164 independent reflections
Radiation source: fine-focus sealed tube4281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 1112
Tmin = 0.756, Tmax = 0.968l = 2323
17181 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.104All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.8208P]
where P = (Fo2 + 2Fc2)/3
5164 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C26H21OP·0.5C4H4O4V = 2250.98 (19) Å3
Mr = 438.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0883 (6) ŵ = 0.15 mm1
b = 9.7883 (5) ÅT = 120 K
c = 17.9970 (9) Å0.39 × 0.27 × 0.22 mm
β = 102.500 (2)°
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
5164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4281 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.968Rint = 0.033
17181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.02Δρmax = 0.41 e Å3
5164 reflectionsΔρmin = 0.36 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.15578 (3)0.29489 (4)0.116942 (19)0.01919 (10)
O10.26748 (8)0.28033 (10)0.28037 (5)0.0240 (2)
O20.39840 (9)0.36099 (11)0.39512 (6)0.0321 (3)
H2A0.345 (2)0.332 (3)0.3504 (17)0.079 (8)*
O30.33980 (9)0.57307 (12)0.36341 (6)0.0346 (3)
C10.36392 (10)0.07388 (13)0.27647 (8)0.0207 (3)
C20.37744 (11)0.04920 (15)0.35455 (8)0.0249 (3)
H20.3391 (13)0.0998 (18)0.3831 (10)0.027 (4)*
C30.44652 (12)0.05154 (16)0.38948 (9)0.0303 (3)
H30.4539 (14)0.0720 (19)0.4445 (11)0.038 (5)*
C40.50331 (12)0.12699 (16)0.34732 (10)0.0319 (3)
H40.5498 (16)0.198 (2)0.3708 (12)0.041 (5)*
C50.49199 (11)0.10129 (16)0.27023 (10)0.0307 (3)
H50.5312 (16)0.153 (2)0.2408 (11)0.042 (5)*
C60.42279 (11)0.00159 (15)0.23484 (9)0.0247 (3)
H60.4166 (13)0.0192 (18)0.1821 (11)0.030 (4)*
C70.28756 (10)0.18112 (14)0.23947 (8)0.0198 (3)
C80.23982 (10)0.16899 (14)0.16312 (8)0.0219 (3)
H80.2484 (13)0.0898 (18)0.1320 (10)0.028 (4)*
C90.10647 (11)0.23261 (14)0.02154 (7)0.0215 (3)
C100.17593 (12)0.17661 (17)0.01932 (8)0.0285 (3)
H100.2505 (16)0.167 (2)0.0042 (11)0.040 (5)*
C110.13933 (12)0.13232 (17)0.09370 (9)0.0301 (3)
H110.1874 (14)0.0918 (19)0.1210 (11)0.036 (5)*
C120.03405 (12)0.14494 (15)0.12742 (8)0.0275 (3)
H120.0073 (14)0.1153 (19)0.1801 (11)0.036 (5)*
C130.03549 (12)0.19860 (15)0.08729 (9)0.0285 (3)
H130.1103 (15)0.2057 (18)0.1094 (11)0.035 (5)*
C140.00079 (11)0.24256 (15)0.01250 (8)0.0247 (3)
H140.0461 (13)0.2814 (17)0.0127 (10)0.024 (4)*
C150.21684 (10)0.45832 (14)0.10913 (8)0.0214 (3)
C160.22401 (11)0.51085 (16)0.03789 (8)0.0269 (3)
H160.1928 (13)0.4625 (17)0.0081 (10)0.027 (4)*
C170.27617 (12)0.63307 (17)0.03339 (9)0.0314 (3)
H170.2823 (14)0.6684 (19)0.0157 (11)0.034 (5)*
C180.32162 (12)0.70341 (16)0.09927 (10)0.0316 (3)
H180.3594 (16)0.787 (2)0.0937 (11)0.043 (5)*
C190.31347 (11)0.65289 (15)0.17001 (9)0.0280 (3)
H190.3450 (15)0.7014 (19)0.2178 (11)0.037 (5)*
C200.26091 (11)0.53168 (15)0.17519 (8)0.0242 (3)
H200.2561 (13)0.4959 (18)0.2240 (10)0.028 (4)*
C210.04178 (10)0.32295 (14)0.15598 (7)0.0202 (3)
C220.00575 (11)0.45062 (15)0.15439 (8)0.0222 (3)
H220.0272 (13)0.5299 (18)0.1397 (10)0.026 (4)*
C230.10330 (11)0.46180 (16)0.17353 (8)0.0250 (3)
H230.1343 (13)0.5530 (18)0.1714 (9)0.028 (4)*
C240.15317 (11)0.34601 (16)0.19273 (8)0.0269 (3)
H240.2207 (14)0.3555 (18)0.2041 (10)0.030 (4)*
C250.10496 (12)0.21935 (16)0.19535 (9)0.0281 (3)
H250.1388 (15)0.137 (2)0.2096 (11)0.038 (5)*
C260.00729 (11)0.20790 (15)0.17754 (8)0.0241 (3)
H260.0256 (13)0.1199 (19)0.1801 (10)0.030 (4)*
C270.39633 (11)0.49353 (15)0.40497 (8)0.0257 (3)
C280.47073 (11)0.54169 (16)0.47523 (8)0.0255 (3)
H280.4751 (13)0.6381 (18)0.4814 (10)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01824 (17)0.02249 (18)0.01583 (17)0.00028 (12)0.00146 (13)0.00248 (12)
O10.0236 (5)0.0254 (5)0.0207 (5)0.0016 (4)0.0001 (4)0.0053 (4)
O20.0333 (6)0.0298 (6)0.0273 (5)0.0021 (4)0.0068 (5)0.0083 (4)
O30.0350 (6)0.0322 (6)0.0304 (6)0.0001 (5)0.0065 (5)0.0003 (5)
C10.0173 (6)0.0205 (6)0.0225 (6)0.0035 (5)0.0006 (5)0.0007 (5)
C20.0227 (6)0.0274 (7)0.0232 (7)0.0024 (5)0.0020 (6)0.0009 (5)
C30.0279 (7)0.0303 (8)0.0291 (8)0.0051 (6)0.0016 (6)0.0070 (6)
C40.0228 (7)0.0273 (8)0.0423 (9)0.0006 (6)0.0004 (6)0.0079 (6)
C50.0229 (7)0.0273 (8)0.0418 (9)0.0020 (6)0.0072 (6)0.0007 (7)
C60.0213 (6)0.0254 (7)0.0268 (7)0.0014 (5)0.0042 (6)0.0004 (5)
C70.0164 (6)0.0223 (7)0.0202 (6)0.0021 (5)0.0029 (5)0.0013 (5)
C80.0204 (6)0.0236 (7)0.0202 (6)0.0015 (5)0.0014 (5)0.0038 (5)
C90.0233 (6)0.0232 (7)0.0167 (6)0.0001 (5)0.0017 (5)0.0009 (5)
C100.0232 (7)0.0397 (8)0.0222 (7)0.0001 (6)0.0042 (6)0.0057 (6)
C110.0332 (8)0.0360 (9)0.0219 (7)0.0004 (6)0.0078 (6)0.0055 (6)
C120.0381 (8)0.0240 (7)0.0178 (7)0.0032 (6)0.0005 (6)0.0018 (5)
C130.0270 (7)0.0301 (8)0.0232 (7)0.0011 (6)0.0057 (6)0.0023 (6)
C140.0231 (7)0.0283 (7)0.0213 (7)0.0031 (5)0.0018 (6)0.0026 (6)
C150.0174 (6)0.0243 (7)0.0222 (7)0.0012 (5)0.0035 (5)0.0009 (5)
C160.0272 (7)0.0309 (8)0.0221 (7)0.0014 (6)0.0047 (6)0.0001 (6)
C170.0332 (8)0.0329 (8)0.0298 (8)0.0016 (6)0.0105 (6)0.0038 (6)
C180.0293 (8)0.0269 (8)0.0399 (9)0.0047 (6)0.0102 (7)0.0010 (6)
C190.0247 (7)0.0266 (7)0.0314 (8)0.0008 (6)0.0031 (6)0.0035 (6)
C200.0220 (6)0.0258 (7)0.0238 (7)0.0011 (5)0.0029 (5)0.0015 (5)
C210.0185 (6)0.0252 (7)0.0158 (6)0.0003 (5)0.0014 (5)0.0024 (5)
C220.0241 (6)0.0234 (7)0.0183 (6)0.0000 (5)0.0033 (5)0.0005 (5)
C230.0252 (7)0.0279 (7)0.0212 (7)0.0062 (6)0.0032 (5)0.0007 (5)
C240.0207 (7)0.0378 (8)0.0222 (7)0.0020 (6)0.0046 (5)0.0002 (6)
C250.0261 (7)0.0294 (8)0.0287 (7)0.0040 (6)0.0060 (6)0.0018 (6)
C260.0253 (7)0.0227 (7)0.0241 (7)0.0004 (5)0.0046 (6)0.0007 (5)
C270.0238 (7)0.0303 (8)0.0219 (7)0.0012 (5)0.0024 (6)0.0032 (6)
C280.0247 (7)0.0274 (8)0.0232 (7)0.0030 (5)0.0024 (6)0.0048 (6)
Geometric parameters (Å, º) top
P1—C81.739 (1)C12—H120.980 (19)
P1—C211.803 (1)C13—C141.395 (2)
P1—C91.805 (1)C13—H130.976 (19)
P1—C151.807 (1)C14—H140.920 (17)
O1—C71.280 (2)C15—C201.4018 (19)
O2—C271.311 (2)C15—C161.403 (2)
O2—H2A0.99 (3)C16—C171.388 (2)
O3—C271.214 (2)C16—H160.963 (18)
C1—C61.397 (2)C17—C181.389 (2)
C1—C21.3988 (19)C17—H170.968 (19)
C1—C71.5020 (18)C18—C191.391 (2)
C2—C31.392 (2)C18—H180.97 (2)
C2—H20.934 (18)C19—C201.385 (2)
C3—C41.385 (2)C19—H190.991 (19)
C3—H30.995 (19)C20—H200.960 (18)
C4—C51.386 (2)C21—C261.393 (2)
C4—H40.96 (2)C21—C221.3934 (19)
C5—C61.389 (2)C22—C231.397 (2)
C5—H50.96 (2)C22—H220.952 (18)
C6—H60.957 (18)C23—C241.388 (2)
C7—C81.386 (2)C23—H230.977 (17)
C8—H80.977 (18)C24—C251.387 (2)
C9—C141.3897 (19)C24—H240.955 (18)
C9—C101.399 (2)C25—C261.388 (2)
C10—C111.390 (2)C25—H250.98 (2)
C10—H100.98 (2)C26—H260.959 (18)
C11—C121.386 (2)C27—C281.4953 (19)
C11—H110.963 (19)C28—C28i1.324 (3)
C12—C131.382 (2)C28—H280.951 (18)
C8—P1—C21114.40 (7)C9—C14—C13120.14 (14)
C8—P1—C9105.92 (6)C9—C14—H14121.2 (10)
C21—P1—C9105.46 (6)C13—C14—H14118.6 (10)
C8—P1—C15114.83 (6)C20—C15—C16119.38 (13)
C21—P1—C15108.23 (6)C20—C15—P1119.68 (11)
C9—P1—C15107.34 (6)C16—C15—P1120.90 (11)
C27—O2—H2A111.3 (16)C17—C16—C15120.00 (14)
C6—C1—C2118.89 (13)C17—C16—H16119.7 (10)
C6—C1—C7121.55 (12)C15—C16—H16120.3 (10)
C2—C1—C7119.56 (12)C16—C17—C18120.17 (15)
C3—C2—C1120.29 (14)C16—C17—H17120.0 (11)
C3—C2—H2120.0 (10)C18—C17—H17119.8 (11)
C1—C2—H2119.7 (10)C17—C18—C19120.11 (15)
C4—C3—C2120.22 (15)C17—C18—H18117.6 (12)
C4—C3—H3119.4 (11)C19—C18—H18122.3 (12)
C2—C3—H3120.4 (11)C20—C19—C18120.25 (14)
C3—C4—C5119.86 (14)C20—C19—H19118.1 (11)
C3—C4—H4120.6 (12)C18—C19—H19121.6 (11)
C5—C4—H4119.5 (12)C19—C20—C15120.07 (14)
C4—C5—C6120.30 (15)C19—C20—H20120.4 (10)
C4—C5—H5120.3 (12)C15—C20—H20119.5 (10)
C6—C5—H5119.4 (12)C26—C21—C22120.01 (13)
C5—C6—C1120.42 (14)C26—C21—P1117.13 (10)
C5—C6—H6120.7 (11)C22—C21—P1122.16 (11)
C1—C6—H6118.8 (11)C21—C22—C23119.54 (13)
O1—C7—C8122.0 (1)C21—C22—H22120.6 (10)
O1—C7—C1118.37 (12)C23—C22—H22119.8 (10)
C8—C7—C1119.58 (12)C24—C23—C22120.09 (14)
C7—C8—P1121.1 (1)C24—C23—H23122.8 (10)
C7—C8—H8124 (1)C22—C23—H23117.1 (10)
P1—C8—H8115 (1)C25—C24—C23120.21 (14)
C14—C9—C10119.59 (13)C25—C24—H24121.0 (11)
C14—C9—P1120.84 (11)C23—C24—H24118.8 (10)
C10—C9—P1119.55 (10)C24—C25—C26119.94 (14)
C11—C10—C9120.05 (14)C24—C25—H25120.9 (11)
C11—C10—H10119.4 (12)C26—C25—H25119.2 (11)
C9—C10—H10120.5 (12)C25—C26—C21120.16 (13)
C12—C11—C10119.78 (14)C25—C26—H26119.1 (10)
C12—C11—H11120.7 (11)C21—C26—H26120.7 (10)
C10—C11—H11119.5 (11)O3—C27—O2125.40 (13)
C13—C12—C11120.66 (13)O3—C27—C28121.16 (14)
C13—C12—H12118.7 (11)O2—C27—C28113.43 (13)
C11—C12—H12120.7 (11)C28i—C28—C27123.46 (18)
C12—C13—C14119.76 (14)C28i—C28—H28121.4 (10)
C12—C13—H13122.0 (11)C27—C28—H28115.1 (10)
C14—C13—H13118.3 (11)
C6—C1—C2—C31.7 (2)C8—P1—C15—C2063.51 (13)
C7—C1—C2—C3178.84 (12)C21—P1—C15—C2065.66 (12)
C1—C2—C3—C40.8 (2)C9—P1—C15—C20179.04 (11)
C2—C3—C4—C50.6 (2)C8—P1—C15—C16114.28 (12)
C3—C4—C5—C61.0 (2)C21—P1—C15—C16116.55 (12)
C4—C5—C6—C10.0 (2)C9—P1—C15—C163.18 (13)
C2—C1—C6—C51.3 (2)C20—C15—C16—C171.3 (2)
C7—C1—C6—C5179.25 (13)P1—C15—C16—C17176.54 (11)
C6—C1—C7—O1152.84 (13)C15—C16—C17—C180.2 (2)
C2—C1—C7—O126.64 (18)C16—C17—C18—C191.1 (2)
C6—C1—C7—C828.28 (19)C17—C18—C19—C200.6 (2)
C2—C1—C7—C8152.25 (13)C18—C19—C20—C150.9 (2)
O1—C7—C8—P14.27 (19)C16—C15—C20—C191.8 (2)
C1—C7—C8—P1176.89 (10)P1—C15—C20—C19176.03 (11)
C21—P1—C8—C760.94 (13)C8—P1—C21—C2640.91 (13)
C9—P1—C8—C7176.64 (11)C9—P1—C21—C2675.07 (12)
C15—P1—C8—C765.10 (13)C15—P1—C21—C26170.31 (10)
C8—P1—C9—C14135.22 (12)C8—P1—C21—C22148.72 (11)
C21—P1—C9—C1413.58 (14)C9—P1—C21—C2295.31 (12)
C15—P1—C9—C14101.66 (13)C15—P1—C21—C2219.31 (13)
C8—P1—C9—C1046.33 (14)C26—C21—C22—C230.9 (2)
C21—P1—C9—C10167.97 (12)P1—C21—C22—C23169.22 (10)
C15—P1—C9—C1076.79 (13)C21—C22—C23—C241.1 (2)
C14—C9—C10—C110.5 (2)C22—C23—C24—C252.0 (2)
P1—C9—C10—C11177.95 (12)C23—C24—C25—C261.0 (2)
C9—C10—C11—C120.6 (2)C24—C25—C26—C210.9 (2)
C10—C11—C12—C131.3 (2)C22—C21—C26—C251.9 (2)
C11—C12—C13—C141.0 (2)P1—C21—C26—C25168.70 (11)
C10—C9—C14—C130.8 (2)O3—C27—C28—C28i175.71 (19)
P1—C9—C14—C13177.61 (12)O2—C27—C28—C28i3.2 (3)
C12—C13—C14—C90.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.99 (3)1.52 (3)2.509 (2)176 (3)
C14—H14···Cg10.92 (2)3.003.72136
C12—H12···Cg1ii0.98 (2)2.613.50152
C13—H13···Cg2iii0.98 (2)2.963.69133
C24—H24···Cg3iv0.96 (2)2.983.87155
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x, y, z.
(II) (benzoylmethylene)triphenylphosphorane–terephthalic acid (2/1) top
Crystal data top
C26H21OP·0.5C8H6O4F(000) = 972
Mr = 463.46Dx = 1.291 Mg m3
Monoclinic, P21/nMelting point: 499 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.0900 (6) ÅCell parameters from 948 reflections
b = 17.9737 (9) Åθ = 2.8–27.3°
c = 13.1613 (7) ŵ = 0.15 mm1
β = 92.048 (2)°T = 120 K
V = 2385.3 (2) Å3Block, colourless
Z = 40.30 × 0.25 × 0.12 mm
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
5463 independent reflections
Radiation source: fine-focus sealed tube4288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω scansh = 1310
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 2321
Tmin = 0.940, Tmax = 0.983l = 1716
18211 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.0579P]
where P = (Fo2 + 2Fc2)/3
5463 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H21OP·0.5C8H6O4V = 2385.3 (2) Å3
Mr = 463.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0900 (6) ŵ = 0.15 mm1
b = 17.9737 (9) ÅT = 120 K
c = 13.1613 (7) Å0.30 × 0.25 × 0.12 mm
β = 92.048 (2)°
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
5463 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4288 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.983Rint = 0.039
18211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.03Δρmax = 0.44 e Å3
5463 reflectionsΔρmin = 0.27 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.09257 (4)0.05436 (2)0.71012 (3)0.01656 (11)
C10.33402 (15)0.13224 (9)0.49083 (12)0.0189 (3)
C20.37333 (16)0.20261 (9)0.45790 (13)0.0220 (3)
H20.3422 (17)0.2460 (10)0.4919 (13)0.018 (4)*
C30.45588 (17)0.20968 (10)0.37613 (13)0.0262 (4)
H30.4796 (19)0.2588 (11)0.3544 (15)0.029 (5)*
C40.50052 (17)0.14705 (11)0.32640 (14)0.0284 (4)
H40.559 (2)0.1529 (11)0.2686 (15)0.029 (5)*
C50.46312 (18)0.07680 (11)0.35881 (13)0.0276 (4)
H50.493 (2)0.0322 (12)0.3221 (16)0.033 (5)*
C60.38014 (16)0.06933 (9)0.44016 (12)0.0219 (3)
H60.3561 (19)0.0225 (11)0.4609 (15)0.027 (5)*
C70.24066 (15)0.12721 (8)0.57705 (12)0.0180 (3)
C80.21723 (16)0.05936 (9)0.62356 (12)0.0192 (3)
H80.260 (2)0.0158 (11)0.6075 (15)0.029 (5)*
C90.13250 (16)0.09662 (8)0.83188 (12)0.0185 (3)
C100.23301 (16)0.15013 (9)0.83917 (13)0.0228 (3)
H100.2821 (19)0.1634 (10)0.7795 (15)0.023 (5)*
C110.26251 (18)0.18462 (10)0.93167 (14)0.0257 (4)
H110.331 (2)0.2200 (11)0.9359 (15)0.029 (5)*
C120.19370 (19)0.16559 (10)1.01722 (14)0.0282 (4)
H120.214 (2)0.1894 (12)1.0817 (17)0.040 (6)*
C130.09436 (19)0.11226 (10)1.01027 (13)0.0273 (4)
H130.0484 (19)0.0994 (11)1.0672 (16)0.027 (5)*
C140.06388 (17)0.07749 (9)0.91848 (13)0.0238 (3)
H140.007 (2)0.0395 (12)0.9128 (15)0.032 (5)*
C150.06206 (15)0.09309 (8)0.66028 (12)0.0182 (3)
C160.16209 (17)0.11541 (9)0.72397 (13)0.0233 (3)
H160.1490 (19)0.1149 (10)0.7982 (16)0.027 (5)*
C170.28252 (18)0.14004 (10)0.68204 (14)0.0270 (4)
H170.348 (2)0.1548 (11)0.7269 (16)0.031 (5)*
C180.30315 (17)0.14351 (9)0.57738 (14)0.0257 (4)
H180.3827 (19)0.1626 (10)0.5477 (14)0.024 (5)*
C190.20305 (17)0.12233 (9)0.51410 (13)0.0239 (3)
H190.217 (2)0.1253 (11)0.4392 (17)0.035 (6)*
C200.08320 (17)0.09651 (9)0.55514 (12)0.0211 (3)
H200.014 (2)0.0816 (11)0.5110 (15)0.028 (5)*
C210.06361 (15)0.04351 (8)0.73310 (11)0.0178 (3)
C220.05286 (17)0.07811 (9)0.69852 (12)0.0215 (3)
H220.1223 (18)0.0492 (9)0.6688 (13)0.015 (4)*
C230.06747 (18)0.15489 (9)0.70885 (13)0.0256 (4)
H230.150 (2)0.1799 (12)0.6856 (17)0.040 (6)*
C240.03421 (18)0.19636 (9)0.75375 (13)0.0254 (4)
H240.023 (2)0.2502 (12)0.7627 (15)0.034 (5)*
C250.14995 (17)0.16218 (9)0.78929 (14)0.0251 (4)
H250.218 (2)0.1899 (12)0.8219 (16)0.036 (6)*
C260.16525 (16)0.08581 (9)0.77951 (12)0.0214 (3)
H260.246 (2)0.0618 (10)0.8043 (14)0.024 (5)*
C270.46622 (18)0.05034 (10)0.07495 (13)0.0258 (4)
H270.4424 (19)0.0853 (11)0.1239 (15)0.027 (5)*
C280.54177 (17)0.07348 (9)0.00534 (13)0.0236 (3)
C290.57538 (19)0.02301 (10)0.08039 (14)0.0281 (4)
H290.628 (2)0.0397 (11)0.1369 (16)0.032 (5)*
C300.58964 (18)0.15223 (9)0.01359 (13)0.0257 (4)
O10.18317 (11)0.18648 (6)0.60581 (9)0.0221 (3)
O20.56381 (13)0.19272 (7)0.06691 (9)0.0285 (3)
H10.605 (3)0.2385 (16)0.066 (2)0.064 (8)*
O30.64555 (17)0.17524 (7)0.08662 (11)0.0431 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0177 (2)0.01564 (19)0.0164 (2)0.00082 (15)0.00153 (14)0.00079 (14)
C10.0159 (7)0.0225 (8)0.0183 (8)0.0006 (6)0.0003 (6)0.0028 (6)
C20.0194 (8)0.0216 (8)0.0251 (8)0.0007 (6)0.0009 (6)0.0041 (7)
C30.0223 (8)0.0299 (9)0.0265 (9)0.0047 (7)0.0003 (7)0.0090 (7)
C40.0222 (9)0.0410 (10)0.0224 (9)0.0040 (7)0.0054 (7)0.0042 (7)
C50.0258 (9)0.0337 (9)0.0238 (9)0.0001 (7)0.0062 (7)0.0035 (7)
C60.0223 (8)0.0226 (8)0.0210 (8)0.0002 (6)0.0020 (6)0.0015 (6)
C70.0163 (7)0.0189 (7)0.0188 (8)0.0007 (6)0.0004 (6)0.0003 (6)
C80.0205 (8)0.0173 (7)0.0201 (8)0.0015 (6)0.0041 (6)0.0005 (6)
C90.0204 (8)0.0173 (7)0.0177 (7)0.0027 (6)0.0007 (6)0.0005 (6)
C100.0214 (8)0.0216 (8)0.0253 (9)0.0004 (6)0.0003 (7)0.0006 (6)
C110.0248 (9)0.0224 (8)0.0295 (9)0.0018 (7)0.0044 (7)0.0035 (7)
C120.0375 (10)0.0247 (8)0.0219 (9)0.0030 (7)0.0052 (7)0.0044 (7)
C130.0378 (10)0.0258 (9)0.0185 (8)0.0012 (7)0.0057 (7)0.0007 (7)
C140.0280 (9)0.0213 (8)0.0223 (8)0.0018 (7)0.0018 (7)0.0009 (6)
C150.0207 (8)0.0159 (7)0.0181 (7)0.0004 (6)0.0007 (6)0.0001 (6)
C160.0242 (8)0.0253 (8)0.0203 (8)0.0035 (7)0.0012 (7)0.0002 (6)
C170.0228 (9)0.0297 (9)0.0288 (9)0.0070 (7)0.0044 (7)0.0006 (7)
C180.0210 (8)0.0236 (8)0.0320 (9)0.0037 (7)0.0045 (7)0.0025 (7)
C190.0281 (9)0.0211 (8)0.0222 (8)0.0007 (7)0.0039 (7)0.0017 (6)
C200.0239 (8)0.0207 (8)0.0189 (8)0.0008 (6)0.0021 (6)0.0006 (6)
C210.0208 (8)0.0163 (7)0.0166 (7)0.0003 (6)0.0036 (6)0.0002 (6)
C220.0223 (8)0.0218 (8)0.0205 (8)0.0006 (6)0.0006 (6)0.0008 (6)
C230.0276 (9)0.0227 (8)0.0265 (9)0.0063 (7)0.0006 (7)0.0002 (7)
C240.0303 (9)0.0173 (8)0.0289 (9)0.0017 (7)0.0056 (7)0.0006 (6)
C250.0249 (9)0.0222 (8)0.0284 (9)0.0044 (7)0.0014 (7)0.0056 (7)
C260.0207 (8)0.0208 (8)0.0228 (8)0.0004 (6)0.0015 (6)0.0011 (6)
C270.0317 (9)0.0222 (8)0.0235 (8)0.0040 (7)0.0026 (7)0.0045 (7)
C280.0263 (8)0.0207 (8)0.0236 (8)0.0036 (6)0.0024 (7)0.0009 (6)
C290.0340 (10)0.0254 (9)0.0254 (9)0.0063 (7)0.0062 (7)0.0019 (7)
C300.0311 (9)0.0217 (8)0.0242 (9)0.0043 (7)0.0009 (7)0.0018 (7)
O10.0260 (6)0.0172 (5)0.0233 (6)0.0027 (4)0.0031 (5)0.0009 (4)
O20.0381 (7)0.0196 (6)0.0277 (7)0.0080 (5)0.0023 (5)0.0036 (5)
O30.0690 (10)0.0290 (7)0.0321 (8)0.0188 (7)0.0154 (7)0.0036 (6)
Geometric parameters (Å, º) top
P1—C81.729 (2)C15—C201.394 (2)
P1—C91.806 (2)C16—C171.389 (2)
P1—C151.810 (2)C16—H160.98 (2)
P1—C211.810 (2)C17—C181.387 (3)
C1—C21.399 (2)C17—H170.94 (2)
C1—C61.401 (2)C18—C191.385 (2)
C1—C71.503 (2)C18—H180.94 (2)
C2—C31.390 (2)C19—C201.387 (2)
C2—H20.958 (18)C19—H190.99 (2)
C3—C41.385 (3)C20—H200.97 (2)
C3—H30.96 (2)C21—C221.392 (2)
C4—C51.389 (3)C21—C261.399 (2)
C4—H40.99 (2)C22—C231.395 (2)
C5—C61.389 (2)C22—H220.946 (18)
C5—H50.99 (2)C23—C241.384 (3)
C6—H60.92 (2)C23—H230.99 (2)
C7—O11.277 (2)C24—C251.386 (3)
C7—C81.388 (2)C24—H240.98 (2)
C8—H80.92 (2)C25—C261.388 (2)
C9—C141.398 (2)C25—H250.94 (2)
C9—C101.399 (2)C26—H260.97 (2)
C10—C111.389 (2)C27—C29i1.386 (2)
C10—H100.973 (19)C27—C281.389 (2)
C11—C121.387 (3)C27—H270.94 (2)
C11—H110.94 (2)C28—C291.392 (2)
C12—C131.388 (3)C28—C301.501 (2)
C12—H120.97 (2)C29—C27i1.386 (2)
C13—C141.385 (2)C29—H290.98 (2)
C13—H130.93 (2)C30—O31.205 (2)
C14—H140.99 (2)C30—O21.319 (2)
C15—C161.394 (2)O2—H10.92 (3)
C8—P1—C9114.72 (8)C16—C15—P1121.74 (12)
C8—P1—C15112.28 (7)C20—C15—P1118.43 (12)
C9—P1—C15108.78 (7)C17—C16—C15119.66 (16)
C8—P1—C21106.63 (7)C17—C16—H16118.9 (11)
C9—P1—C21107.02 (7)C15—C16—H16121.4 (12)
C15—P1—C21106.98 (7)C18—C17—C16120.46 (16)
C2—C1—C6118.66 (15)C18—C17—H17121.8 (13)
C2—C1—C7118.72 (14)C16—C17—H17117.7 (13)
C6—C1—C7122.60 (14)C19—C18—C17119.86 (16)
C3—C2—C1120.46 (16)C19—C18—H18118.6 (12)
C3—C2—H2120.1 (10)C17—C18—H18121.5 (12)
C1—C2—H2119.4 (10)C18—C19—C20120.15 (16)
C4—C3—C2120.35 (16)C18—C19—H19120.4 (12)
C4—C3—H3121.1 (12)C20—C19—H19119.5 (12)
C2—C3—H3118.5 (12)C19—C20—C15120.12 (16)
C3—C4—C5119.80 (16)C19—C20—H20120.1 (12)
C3—C4—H4119.5 (12)C15—C20—H20119.7 (12)
C5—C4—H4120.7 (12)C22—C21—C26119.81 (15)
C6—C5—C4120.15 (17)C22—C21—P1121.27 (12)
C6—C5—H5120.1 (12)C26—C21—P1118.73 (12)
C4—C5—H5119.7 (12)C21—C22—C23120.08 (16)
C5—C6—C1120.58 (16)C21—C22—H22119.6 (10)
C5—C6—H6119.3 (12)C23—C22—H22120.4 (10)
C1—C6—H6120.1 (12)C24—C23—C22119.68 (16)
O1—C7—C8121.1 (1)C24—C23—H23119.5 (13)
O1—C7—C1118.50 (13)C22—C23—H23120.8 (13)
C8—C7—C1120.45 (14)C23—C24—C25120.56 (16)
C7—C8—P1118.4 (1)C23—C24—H24119.9 (12)
C7—C8—H8124 (1)C25—C24—H24119.5 (12)
P1—C8—H8118 (1)C24—C25—C26120.15 (16)
C14—C9—C10119.50 (15)C24—C25—H25120.9 (13)
C14—C9—P1121.26 (12)C26—C25—H25119.0 (13)
C10—C9—P1119.23 (12)C25—C26—C21119.71 (15)
C11—C10—C9119.95 (16)C25—C26—H26120.3 (11)
C11—C10—H10119.9 (11)C21—C26—H26120.0 (11)
C9—C10—H10120.2 (11)C29i—C27—C28119.98 (16)
C12—C11—C10120.25 (16)C29i—C27—H27121.1 (12)
C12—C11—H11120.5 (12)C28—C27—H27118.9 (12)
C10—C11—H11119.3 (12)C27—C28—C29119.94 (16)
C11—C12—C13119.90 (16)C27—C28—C30121.63 (15)
C11—C12—H12120.7 (13)C29—C28—C30118.43 (15)
C13—C12—H12119.4 (13)C27i—C29—C28120.08 (16)
C14—C13—C12120.43 (16)C27i—C29—H29120.4 (12)
C14—C13—H13119.5 (13)C28—C29—H29119.5 (12)
C12—C13—H13120.1 (12)O3—C30—O2124.26 (16)
C13—C14—C9119.96 (16)O3—C30—C28122.85 (16)
C13—C14—H14121.1 (12)O2—C30—C28112.89 (15)
C9—C14—H14119.0 (12)C30—O2—H1112.3 (16)
C16—C15—C20119.73 (15)
C6—C1—C2—C30.4 (2)C8—P1—C15—C2023.26 (15)
C7—C1—C2—C3177.77 (15)C9—P1—C15—C20151.33 (12)
C1—C2—C3—C40.2 (3)C21—P1—C15—C2093.39 (13)
C2—C3—C4—C50.3 (3)C20—C15—C16—C170.8 (2)
C3—C4—C5—C60.6 (3)P1—C15—C16—C17175.59 (13)
C4—C5—C6—C10.4 (3)C15—C16—C17—C180.9 (3)
C2—C1—C6—C50.1 (2)C16—C17—C18—C190.0 (3)
C7—C1—C6—C5178.00 (15)C17—C18—C19—C201.1 (3)
C2—C1—C7—O111.6 (2)C18—C19—C20—C151.2 (2)
C6—C1—C7—O1166.45 (15)C16—C15—C20—C190.3 (2)
C2—C1—C7—C8168.82 (15)P1—C15—C20—C19176.75 (12)
C6—C1—C7—C813.1 (2)C8—P1—C21—C22110.36 (14)
O1—C7—C8—P18.3 (2)C9—P1—C21—C22126.42 (13)
C1—C7—C8—P1171.30 (11)C15—P1—C21—C229.96 (15)
C9—P1—C8—C774.53 (14)C8—P1—C21—C2664.58 (14)
C15—P1—C8—C750.33 (15)C9—P1—C21—C2658.64 (14)
C21—P1—C8—C7167.19 (12)C15—P1—C21—C26175.10 (12)
C8—P1—C9—C14159.29 (13)C26—C21—C22—C230.9 (2)
C15—P1—C9—C1474.03 (15)P1—C21—C22—C23174.00 (13)
C21—P1—C9—C1441.23 (15)C21—C22—C23—C240.1 (3)
C8—P1—C9—C1021.47 (16)C22—C23—C24—C250.5 (3)
C15—P1—C9—C10105.21 (14)C23—C24—C25—C260.4 (3)
C21—P1—C9—C10139.54 (13)C24—C25—C26—C210.4 (2)
C14—C9—C10—C111.0 (2)C22—C21—C26—C251.0 (2)
P1—C9—C10—C11178.26 (13)P1—C21—C26—C25174.01 (13)
C9—C10—C11—C120.8 (3)C29i—C27—C28—C290.1 (3)
C10—C11—C12—C130.4 (3)C29i—C27—C28—C30179.51 (17)
C11—C12—C13—C140.4 (3)C27—C28—C29—C27i0.1 (3)
C12—C13—C14—C90.6 (3)C30—C28—C29—C27i179.53 (17)
C10—C9—C14—C130.9 (2)C27—C28—C30—O3173.53 (18)
P1—C9—C14—C13178.31 (13)C29—C28—C30—O36.8 (3)
C8—P1—C15—C16160.36 (13)C27—C28—C30—O26.4 (2)
C9—P1—C15—C1632.28 (15)C29—C28—C30—O2173.26 (16)
C21—P1—C15—C1683.00 (14)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1ii0.92 (3)1.64 (3)2.526 (2)161 (3)
C3—H3···Cg1ii0.96 (2)2.843.59135
C19—H19···Cg2iii0.99 (2)3.003.79137
C13—H13···Cg2iv0.93 (2)2.733.59156
C18—H18···Cg3v0.94 (2)2.713.53146
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z+1; (iv) x, y, z+2; (v) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H21OP·0.5C4H4O4C26H21OP·0.5C8H6O4
Mr438.43463.46
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)120120
a, b, c (Å)13.0883 (6), 9.7883 (5), 17.9970 (9)10.0900 (6), 17.9737 (9), 13.1613 (7)
β (°) 102.500 (2) 92.048 (2)
V3)2250.98 (19)2385.3 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.150.15
Crystal size (mm)0.39 × 0.27 × 0.220.30 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART CCD 6K area-detector
diffractometer
Bruker SMART CCD 6K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Multi-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.756, 0.9680.940, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
17181, 5164, 4281 18211, 5463, 4288
Rint0.0330.039
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.02 0.041, 0.111, 1.03
No. of reflections51645463
No. of parameters381403
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.360.44, 0.27

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
P1—C81.739 (1)O1—C71.280 (2)
P1—C211.803 (1)O2—C271.311 (2)
P1—C91.805 (1)O3—C271.214 (2)
P1—C151.807 (1)C7—C81.386 (2)
C8—P1—C21114.40 (7)C7—C8—P1121.1 (1)
C8—P1—C9105.92 (6)C7—C8—H8124 (1)
C8—P1—C15114.83 (6)P1—C8—H8115 (1)
O1—C7—C8122.0 (1)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.99 (3)1.52 (3)2.509 (2)176 (3)
C14—H14···Cg10.92 (2)3.003.72136
C12—H12···Cg1i0.98 (2)2.613.50152
C13—H13···Cg2ii0.98 (2)2.963.69133
C24—H24···Cg3iii0.96 (2)2.983.87155
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y, z.
Selected geometric parameters (Å, º) for (II) top
P1—C81.729 (2)C7—O11.277 (2)
P1—C91.806 (2)C7—C81.388 (2)
P1—C151.810 (2)C30—O31.205 (2)
P1—C211.810 (2)C30—O21.319 (2)
C8—P1—C9114.72 (8)C7—C8—P1118.4 (1)
C8—P1—C15112.28 (7)C7—C8—H8124 (1)
C8—P1—C21106.63 (7)P1—C8—H8118 (1)
O1—C7—C8121.1 (1)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.92 (3)1.64 (3)2.526 (2)161 (3)
C3—H3···Cg1i0.96 (2)2.843.59135
C19—H19···Cg2ii0.99 (2)3.003.79137
C13—H13···Cg2iii0.93 (2)2.733.59156
C18—H18···Cg3iv0.94 (2)2.713.53146
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y, z+2; (iv) x1, y, z.
 

Acknowledgements

ECS thanks the EPSRC for support, and JAKH thanks the EPSRC for a senior research fellowship.

References

First citationAlbanese, J. A., Staley, D. L., Rheingold, A. L. & Burmeister, J. L. (1989). Acta Cryst. C45, 1128–1131.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAntipin, M. Yu. & Struchkov, Yu. T. (1984). Zh. Strukt. Khim. 25, 122–131.  CAS Google Scholar
First citationBaby Mariyatra, M., Kalyanasundari, B., Panchanatheswaran, K. & Goeta, A. E. (2003). Acta Cryst. E59, o255–o257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002a). Acta Cryst. E58, o807–o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002b). Acta Cryst. E58, m694–m696.  CSD CrossRef IUCr Journals Google Scholar
First citationBaby Mariyatra, M., Spencer, E. C., Panchanatheswaran, K. & Howard, J. A. K. (2004a). Acta Cryst. E60, o123–o125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaby Mariyatra, M., Spencer, E. C., Panchanatheswaran, K. & Howard, J. A. K. (2004b). Acta Cryst. E60, o162–o164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART-NT (Version 5.0), SAINT (Version 6.04) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 339. Ithaca: Cornell University Press.  Google Scholar
First citationFalvello, L. R., Fernández, S., Navarro, R., Rueda, A. & Urriolabeitia, E. P. (1998). Inorg. Chem. 37, 6007–6013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFalvello, L. R., Fernández, S., Navarro, R. & Urriolabeitia, E. P. (1996). Inorg. Chem. 35, 3064–3066.  CSD CrossRef CAS Web of Science Google Scholar
First citationFalvello, L. R., Fernández, S., Navarro, R. & Urriolabeitia, E. P. (1997). Inorg. Chem. 36, 1136–1142.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKalyanasundari, B., Baby Mariyatra, M., Panchanatheswaran, K., Spencer, E. C. & Howard, J. A. K. (2004). In preparation.  Google Scholar
First citationKalyanasundari, M. & Panchanatheswaran, K. (1994). Acta Cryst. C50, 1738–1741.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103–109.  CSD CrossRef CAS Web of Science Google Scholar
First citationLaavanya, P. (2002). PhD thesis, Bharathidasan University, India.  Google Scholar
First citationLide, D. R. (1994). CRC Handbook of Chemistry and Physics, 74th ed., pp. 8.43–8.44.E. Boca Raton, Florida, USA: CRC Press.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeziale, A. J. & Ratts, K. W. (1963). J. Am. Chem. Soc. 85, 2790–2795.  CrossRef CAS Web of Science Google Scholar
First citationVicente, J., Chicote, M. T., Saura-Liamas, I., Jones, P. G., Meyer-Bäse, K., Freire, C. & Erdbrügger, C. F. (1988). Organometallics, 7, 997–1006.  CSD CrossRef CAS Web of Science Google Scholar
First citationWilson, A. J. C. (1992). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds