organic compounds
The 2:1 adducts of (benzoylmethylene)triphenylphosphorane with fumaric and terephthalic acids
aDepartment of Chemistry, Durham University, Durham DH1 3LE, England, and bDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
*Correspondence e-mail: j.a.k.howard@dur.ac.uk
Co-crystals of the ylide (benzoylmethylene)triphenylphosphorane (BPPY) with either fumaric acid, viz. (benzoylmethylene)triphenylphosphorane–fumaric acid (2/1), C26H21OP·0.5C4H4O4, or terephthalic acid, viz. (benzoylmethylene)triphenylphosphorane–terephthalic acid (2/1), C26H21OP·0.5C8H6O4, have a stoichiometric ratio of 2:1 between the ylide and the corresponding dicarboxylic acid. In both adducts, the acid component lies across a centre of inversion. In neither case is the ylide protonated by the organic acid; instead the H atoms of the non-ionized dicarboxylic acid molecules participate in the formation of strong O—H⋯O hydrogen bonds with the benzoyl O atom of the ylide species. These structures are the first reported examples of co-crystals containing non-protonated BPPY.
Comment
Resonance-stabilized phosphorus ylides are a class of compounds that have attracted considerable interest in the field of synthetic organometallic chemistry. Their popularity arises from their high stability, their reactivity towards a diverse range of metal salts and their ability to be tailored chemically to allow a variety of coordination modes to be accessed (Falvello et al., 1996, 1997, 1998; Kalyanasundari et al., 1995, 2004; Vicente et al., 1988).
The manner of protonation of the resonance-stabilized ylide (benzoylmethylene)triphenylphosphorane (BPPY) has been the focus of our most recent studies. A search of the Cambridge Structural Database (Version 5.25; Allen, 2002) for the BPPY moiety yielded six cases of protonated BPPY (only structures in which BPPY featured as a discrete i.e. uncomplexed, were considered). All six structures exhibited C-protonation (Antipin & Struchkov, 1984; Baby Mariyatra et al., 2002a,b, 2003; Albanese et al., 1989); no examples of O-protonated BPPY were found. These results are surprising, as PM3 calculations of the proton affinities for the ylide C and the benzoyl O atoms give values that differ by only 13 kJ mol−1 (Laavanya, 2002), implying that although C-protonation is energetically more favourable both O- and C-protonation of BPPY are feasible.
In our previous work, we have observed that the C-protonated cation of BPPY is produced by the action of picric and maleic acids (Baby Mariyatra et al., 2004a,b). In order to investigate the influence of organic dicarboxylic acids on the mode of protonation of BPPY, the reactions of this ylide with fumaric and terephthalic acid, yielding compounds (I) and (II), respectively, have been undertaken. The first-step pKa value in aqueous solution is 3.03 for fumaric acid and 3.51 for terephthalic acid, and the second-step values are 4.44 and 4.82, respectively (Lide, 1994). These figures suggest that both of these acids are sufficiently strong to protonate BPPY (pKa of 6.0; Speziale & Ratts, 1963).
Figs. 1 and 2 display the molecular structures of (I) and (II), respectively. In both cases, the dicarboxylic acid molecule resides on a site of inversion symmetry, and consequently each of the asymmetric units of (I) and (II) comprises a single BPPY molecule and half an acid molecule.
Tables 1 and 3 list selected geometries for (I) and (II), respectively. The inequality of the O2—C27 and O3—C27 bond lengths in (I), and the O2—C30 and O3—C30 bond lengths in (II), is indicative of the dicarboxylic acid molecules in both co-crystals existing in the un-ionized form.
The O1—C7 bond lengths are longer than the value of 1.210 Å expected for ). These facts are strongly suggestive of resonance delocalization within the ylide molecules. The torsion angles surrounding atom C8 in both structures signify that the environment about this carbanion is distorted trigonal planar. These bond lengths and angles provide conclusive evidence of the presence of unprotonated BPPY in the structures of (I) and (II). Corroborating evidence for the absence of the phosphonium cation has been provided by the 1H NMR spectra of (I) and (II).
and the C7—C8 distances are greater than the expected C=C distance (1.331 Å; Wilson, 1992In both cases, the P1—C8 and O1—C7 bonds are slightly elongated with respect to the equivalent bonds in the parent ylide, where the P—C bond lengths are 1.716 (5) and 1.725 (4) Å, and the O—C bond lengths are 1.265 (7) and 1.247 (7) Å (two ylide molecules in the ). The presence of an exceptionally strong hydrogen bond between the O atoms of the benzoyl groups and an acid H atom of the relevant acid molecule in (I) and (II) (Tables 2 and 4) may account for this disparity.
Kalyanasundari & Panchanatheswaran, 1994The non-bonded P1⋯O1 distances [2.991 (1) Å in (I) and 2.907 (1) Å in (II)] are considerably shorter than the sum of the van der Waals radii of phosphorus and oxygen (3.3 Å; Dunitz, 1979), indicating the presence of strong intramolecular interactions between the charged P+ and O− centres of the ylide molecules; these interactions explain the observed cis orientation about the partial C=C double bond in (I) and (II).
A strong hydrogen bond exists between the O2—H2A donor group of the fumaric acid molecule and atom O1 of the ylide molecule (see Table 2). This bond and its symmetry equivalent at (1 − x, 1 − y, 1 − z) link the fumaric acid and ylide molecules, as shown in Fig. 3.
The secondary interactions for (I) include several C—H⋯π contacts (Table 2). Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C21–C26, C15–C20 and C1–C6. Two π–π interactions complete the complex network of secondary interactions present in the crystal packing of (I) (Fig. 4). Both interactions are 3.99 Å in length, and the β angles are 28 and 23° for the Cg3⋯Cg2iv and Cg2⋯Cg3v interactions, respectively [symmetry codes: (iv) ; (v) ].
Table 4 provides details of all the secondary interactions observed in the of (II). The strong O2—H1⋯O1vi hydrogen bond and its symmetry equivalent O2xi—H1xi⋯O1x generate a unit comprising a single terephthalic acid molecule and two BPPY molecules (symmetry codes as in Fig. 5). The similarity of this unit to that observed in (I) (Fig. 3) is immediately apparent.
The structure of (II) is further stabilized by several C—H⋯π interactions (Table 4).
In conclusion, the co-crystals (I) and (II) of BPPY with fumaric acid and terephthalic acid, respectively, are the first reported examples in which BPPY remains unprotonated. We attribute this phenomenon to the preferential formation of a strong O—H⋯O hydrogen bond between the benzoyl O atom of the ylide molecule and the acid H atom of the relevant un-ionized dicarboxylic acid group. These short strong hydrogen bonds result in the formation of units with a 2:1 stoichiometric ratio of BPPY to dicarboxylic acid.
Experimental
Crystals of (I) were prepared by stirring BPPY and fumaric acid together in a 1:2 molar ratio in 95% ethanol. Colourless diffraction-quality crystals were obtained on allowing the solution to stand for a week (m.p. 423–425 K). Crystals of (II) were prepared by refluxing BPPY in 95% ethanol with terephthalic acid in a 1:2 molar ratio for 20 h. On cooling the solution to room temperature, colourless crystals of diffraction quality were obtained (m.p. 498–500 K).
Compound (I)
Crystal data
|
Refinement
|
|
Compound (II)
Crystal data
|
Refinement
|
|
|
All H atoms were located in difference Fourier maps, and their positional and Uiso parameters were refined. The refined C—H distances for (I) are in the range 0.920 (17)–0.995 (19) Å; for (II), the range is 0.92 (2)–0.99 (2) Å. The secondary interaction analysis was performed using a combination of MERCURY (Bruno et al., 2002) and PLATON (Spek, 2003).
For both compounds, data collection: SMART-NT (Bruker, 1998); cell SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S0108270104023674/gd1343sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270104023674/gd1343Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270104023674/gd1343IIsup3.hkl
Crystals of (I) were prepared by stirring BPPY and fumaric acid together in a 1:2 molar ratio in 95% ethanol. Colourless diffraction-quality crystals were obtained on allowing the solution to stand for a week (m.p. 423–425 K). Crystals of (II) were prepared by refluxing BPPY in 95% ethanol with terephthalic acid in a 1:2 molar ratio for 20 h. On cooling the solution to room temperature, colourless crystals of diffraction quality were obtained (m.p. 498–500 K).
All non-H atoms were refined with anisotropic displacement parameters. All H atoms were located in difference Fourier maps, and their positional and Uiso parameters were refined. The refined C—H distances for (I) are in the range 0.920 (17)–0.995 (19) Å. For (II), the range is 0.92 (2)–0.99 (2) Å. The secondary interaction analysis was performed using a combination of Mercury (Bruno et al., 2002) and PLATON (Spek, 2003).
For both compounds, data collection: SMART (Bruker, 1998); cell
SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.Fig. 1. The molecular structure of the cocrystal, (I), of BPPY with fumaric acid. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-generated atoms C28A, C27A, 02 A and H2AA have been included for completeness (symmetry code: 1 − x, 1 − y,1 − z). | |
Fig. 2. The molecular structure of the cocrystal, (II), of BPPY with terephthalic acid. Displacement ellipsoids are drawn at the 50% probability level. The symmetry-generated atoms C28A, C27A, C29A, O2A, O3A and H1A have been included for completeness (symmetry code: 1 − x, 1 − y,1 − z). | |
Fig. 3. The unit formed by the O2—H2A···O1 bond in (I) and its symmetry equivalent at (1 − x, 1 − y, 1 − z) (symmetry code iv). | |
Fig. 4. The π–π interactions present in the crystal structure of (I). [See Table 2 for symmetry codes; (v) −x, 0.5 + y, 0.5 − z.] | |
Fig. 5. The unit form by the O2—H1···O1i bond and its symmetry equivalent O2vi—H1vi···O1v. [Symmetry codes: (i) 0.5 + x, 0.5 − y, z − 0.5; (v) 0.5 − x, −0.5 + y, 0.5 − z; (vi) 1 − x, −y, −z.] |
C26H21OP·0.5C4H4O4 | F(000) = 920 |
Mr = 438.43 | Dx = 1.294 Mg m−3 |
Monoclinic, P21/c | Melting point: 424 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.0883 (6) Å | Cell parameters from 984 reflections |
b = 9.7883 (5) Å | θ = 2.4–27.5° |
c = 17.9970 (9) Å | µ = 0.15 mm−1 |
β = 102.500 (2)° | T = 120 K |
V = 2250.98 (19) Å3 | Block, colourless |
Z = 4 | 0.39 × 0.27 × 0.22 mm |
Bruker SMART CCD 6K area-detector diffractometer | 5164 independent reflections |
Radiation source: fine-focus sealed tube | 4281 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8 pixels mm-1 | θmax = 27.5°, θmin = 1.6° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | k = −11→12 |
Tmin = 0.756, Tmax = 0.968 | l = −23→23 |
17181 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0512P)2 + 0.8208P] where P = (Fo2 + 2Fc2)/3 |
5164 reflections | (Δ/σ)max < 0.001 |
381 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C26H21OP·0.5C4H4O4 | V = 2250.98 (19) Å3 |
Mr = 438.43 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.0883 (6) Å | µ = 0.15 mm−1 |
b = 9.7883 (5) Å | T = 120 K |
c = 17.9970 (9) Å | 0.39 × 0.27 × 0.22 mm |
β = 102.500 (2)° |
Bruker SMART CCD 6K area-detector diffractometer | 5164 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 4281 reflections with I > 2σ(I) |
Tmin = 0.756, Tmax = 0.968 | Rint = 0.033 |
17181 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 1.02 | Δρmax = 0.41 e Å−3 |
5164 reflections | Δρmin = −0.36 e Å−3 |
381 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.15578 (3) | 0.29489 (4) | 0.116942 (19) | 0.01919 (10) | |
O1 | 0.26748 (8) | 0.28033 (10) | 0.28037 (5) | 0.0240 (2) | |
O2 | 0.39840 (9) | 0.36099 (11) | 0.39512 (6) | 0.0321 (3) | |
H2A | 0.345 (2) | 0.332 (3) | 0.3504 (17) | 0.079 (8)* | |
O3 | 0.33980 (9) | 0.57307 (12) | 0.36341 (6) | 0.0346 (3) | |
C1 | 0.36392 (10) | 0.07388 (13) | 0.27647 (8) | 0.0207 (3) | |
C2 | 0.37744 (11) | 0.04920 (15) | 0.35455 (8) | 0.0249 (3) | |
H2 | 0.3391 (13) | 0.0998 (18) | 0.3831 (10) | 0.027 (4)* | |
C3 | 0.44652 (12) | −0.05154 (16) | 0.38948 (9) | 0.0303 (3) | |
H3 | 0.4539 (14) | −0.0720 (19) | 0.4445 (11) | 0.038 (5)* | |
C4 | 0.50331 (12) | −0.12699 (16) | 0.34732 (10) | 0.0319 (3) | |
H4 | 0.5498 (16) | −0.198 (2) | 0.3708 (12) | 0.041 (5)* | |
C5 | 0.49199 (11) | −0.10129 (16) | 0.27023 (10) | 0.0307 (3) | |
H5 | 0.5312 (16) | −0.153 (2) | 0.2408 (11) | 0.042 (5)* | |
C6 | 0.42279 (11) | −0.00159 (15) | 0.23484 (9) | 0.0247 (3) | |
H6 | 0.4166 (13) | 0.0192 (18) | 0.1821 (11) | 0.030 (4)* | |
C7 | 0.28756 (10) | 0.18112 (14) | 0.23947 (8) | 0.0198 (3) | |
C8 | 0.23982 (10) | 0.16899 (14) | 0.16312 (8) | 0.0219 (3) | |
H8 | 0.2484 (13) | 0.0898 (18) | 0.1320 (10) | 0.028 (4)* | |
C9 | 0.10647 (11) | 0.23261 (14) | 0.02154 (7) | 0.0215 (3) | |
C10 | 0.17593 (12) | 0.17661 (17) | −0.01932 (8) | 0.0285 (3) | |
H10 | 0.2505 (16) | 0.167 (2) | 0.0042 (11) | 0.040 (5)* | |
C11 | 0.13933 (12) | 0.13232 (17) | −0.09370 (9) | 0.0301 (3) | |
H11 | 0.1874 (14) | 0.0918 (19) | −0.1210 (11) | 0.036 (5)* | |
C12 | 0.03405 (12) | 0.14494 (15) | −0.12742 (8) | 0.0275 (3) | |
H12 | 0.0073 (14) | 0.1153 (19) | −0.1801 (11) | 0.036 (5)* | |
C13 | −0.03549 (12) | 0.19860 (15) | −0.08729 (9) | 0.0285 (3) | |
H13 | −0.1103 (15) | 0.2057 (18) | −0.1094 (11) | 0.035 (5)* | |
C14 | 0.00079 (11) | 0.24256 (15) | −0.01250 (8) | 0.0247 (3) | |
H14 | −0.0461 (13) | 0.2814 (17) | 0.0127 (10) | 0.024 (4)* | |
C15 | 0.21684 (10) | 0.45832 (14) | 0.10913 (8) | 0.0214 (3) | |
C16 | 0.22401 (11) | 0.51085 (16) | 0.03789 (8) | 0.0269 (3) | |
H16 | 0.1928 (13) | 0.4625 (17) | −0.0081 (10) | 0.027 (4)* | |
C17 | 0.27617 (12) | 0.63307 (17) | 0.03339 (9) | 0.0314 (3) | |
H17 | 0.2823 (14) | 0.6684 (19) | −0.0157 (11) | 0.034 (5)* | |
C18 | 0.32162 (12) | 0.70341 (16) | 0.09927 (10) | 0.0316 (3) | |
H18 | 0.3594 (16) | 0.787 (2) | 0.0937 (11) | 0.043 (5)* | |
C19 | 0.31347 (11) | 0.65289 (15) | 0.17001 (9) | 0.0280 (3) | |
H19 | 0.3450 (15) | 0.7014 (19) | 0.2178 (11) | 0.037 (5)* | |
C20 | 0.26091 (11) | 0.53168 (15) | 0.17519 (8) | 0.0242 (3) | |
H20 | 0.2561 (13) | 0.4959 (18) | 0.2240 (10) | 0.028 (4)* | |
C21 | 0.04178 (10) | 0.32295 (14) | 0.15598 (7) | 0.0202 (3) | |
C22 | −0.00575 (11) | 0.45062 (15) | 0.15439 (8) | 0.0222 (3) | |
H22 | 0.0272 (13) | 0.5299 (18) | 0.1397 (10) | 0.026 (4)* | |
C23 | −0.10330 (11) | 0.46180 (16) | 0.17353 (8) | 0.0250 (3) | |
H23 | −0.1343 (13) | 0.5530 (18) | 0.1714 (9) | 0.028 (4)* | |
C24 | −0.15317 (11) | 0.34601 (16) | 0.19273 (8) | 0.0269 (3) | |
H24 | −0.2207 (14) | 0.3555 (18) | 0.2041 (10) | 0.030 (4)* | |
C25 | −0.10496 (12) | 0.21935 (16) | 0.19535 (9) | 0.0281 (3) | |
H25 | −0.1388 (15) | 0.137 (2) | 0.2096 (11) | 0.038 (5)* | |
C26 | −0.00729 (11) | 0.20790 (15) | 0.17754 (8) | 0.0241 (3) | |
H26 | 0.0256 (13) | 0.1199 (19) | 0.1801 (10) | 0.030 (4)* | |
C27 | 0.39633 (11) | 0.49353 (15) | 0.40497 (8) | 0.0257 (3) | |
C28 | 0.47073 (11) | 0.54169 (16) | 0.47523 (8) | 0.0255 (3) | |
H28 | 0.4751 (13) | 0.6381 (18) | 0.4814 (10) | 0.027 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01824 (17) | 0.02249 (18) | 0.01583 (17) | 0.00028 (12) | 0.00146 (13) | −0.00248 (12) |
O1 | 0.0236 (5) | 0.0254 (5) | 0.0207 (5) | 0.0016 (4) | 0.0001 (4) | −0.0053 (4) |
O2 | 0.0333 (6) | 0.0298 (6) | 0.0273 (5) | 0.0021 (4) | −0.0068 (5) | −0.0083 (4) |
O3 | 0.0350 (6) | 0.0322 (6) | 0.0304 (6) | −0.0001 (5) | −0.0065 (5) | 0.0003 (5) |
C1 | 0.0173 (6) | 0.0205 (6) | 0.0225 (6) | −0.0035 (5) | 0.0006 (5) | −0.0007 (5) |
C2 | 0.0227 (6) | 0.0274 (7) | 0.0232 (7) | −0.0024 (5) | 0.0020 (6) | −0.0009 (5) |
C3 | 0.0279 (7) | 0.0303 (8) | 0.0291 (8) | −0.0051 (6) | −0.0016 (6) | 0.0070 (6) |
C4 | 0.0228 (7) | 0.0273 (8) | 0.0423 (9) | 0.0006 (6) | −0.0004 (6) | 0.0079 (6) |
C5 | 0.0229 (7) | 0.0273 (8) | 0.0418 (9) | 0.0020 (6) | 0.0072 (6) | 0.0007 (7) |
C6 | 0.0213 (6) | 0.0254 (7) | 0.0268 (7) | −0.0014 (5) | 0.0042 (6) | −0.0004 (5) |
C7 | 0.0164 (6) | 0.0223 (7) | 0.0202 (6) | −0.0021 (5) | 0.0029 (5) | −0.0013 (5) |
C8 | 0.0204 (6) | 0.0236 (7) | 0.0202 (6) | 0.0015 (5) | 0.0014 (5) | −0.0038 (5) |
C9 | 0.0233 (6) | 0.0232 (7) | 0.0167 (6) | −0.0001 (5) | 0.0017 (5) | −0.0009 (5) |
C10 | 0.0232 (7) | 0.0397 (8) | 0.0222 (7) | 0.0001 (6) | 0.0042 (6) | −0.0057 (6) |
C11 | 0.0332 (8) | 0.0360 (9) | 0.0219 (7) | −0.0004 (6) | 0.0078 (6) | −0.0055 (6) |
C12 | 0.0381 (8) | 0.0240 (7) | 0.0178 (7) | −0.0032 (6) | 0.0005 (6) | −0.0018 (5) |
C13 | 0.0270 (7) | 0.0301 (8) | 0.0232 (7) | 0.0011 (6) | −0.0057 (6) | −0.0023 (6) |
C14 | 0.0231 (7) | 0.0283 (7) | 0.0213 (7) | 0.0031 (5) | 0.0018 (6) | −0.0026 (6) |
C15 | 0.0174 (6) | 0.0243 (7) | 0.0222 (7) | 0.0012 (5) | 0.0035 (5) | −0.0009 (5) |
C16 | 0.0272 (7) | 0.0309 (8) | 0.0221 (7) | −0.0014 (6) | 0.0047 (6) | 0.0001 (6) |
C17 | 0.0332 (8) | 0.0329 (8) | 0.0298 (8) | −0.0016 (6) | 0.0105 (6) | 0.0038 (6) |
C18 | 0.0293 (8) | 0.0269 (8) | 0.0399 (9) | −0.0047 (6) | 0.0102 (7) | −0.0010 (6) |
C19 | 0.0247 (7) | 0.0266 (7) | 0.0314 (8) | −0.0008 (6) | 0.0031 (6) | −0.0035 (6) |
C20 | 0.0220 (6) | 0.0258 (7) | 0.0238 (7) | 0.0011 (5) | 0.0029 (5) | −0.0015 (5) |
C21 | 0.0185 (6) | 0.0252 (7) | 0.0158 (6) | 0.0003 (5) | 0.0014 (5) | −0.0024 (5) |
C22 | 0.0241 (6) | 0.0234 (7) | 0.0183 (6) | 0.0000 (5) | 0.0033 (5) | 0.0005 (5) |
C23 | 0.0252 (7) | 0.0279 (7) | 0.0212 (7) | 0.0062 (6) | 0.0032 (5) | 0.0007 (5) |
C24 | 0.0207 (7) | 0.0378 (8) | 0.0222 (7) | 0.0020 (6) | 0.0046 (5) | 0.0002 (6) |
C25 | 0.0261 (7) | 0.0294 (8) | 0.0287 (7) | −0.0040 (6) | 0.0060 (6) | 0.0018 (6) |
C26 | 0.0253 (7) | 0.0227 (7) | 0.0241 (7) | 0.0004 (5) | 0.0046 (6) | 0.0007 (5) |
C27 | 0.0238 (7) | 0.0303 (8) | 0.0219 (7) | −0.0012 (5) | 0.0024 (6) | −0.0032 (6) |
C28 | 0.0247 (7) | 0.0274 (8) | 0.0232 (7) | −0.0030 (5) | 0.0024 (6) | −0.0048 (6) |
P1—C8 | 1.739 (1) | C12—H12 | 0.980 (19) |
P1—C21 | 1.803 (1) | C13—C14 | 1.395 (2) |
P1—C9 | 1.805 (1) | C13—H13 | 0.976 (19) |
P1—C15 | 1.807 (1) | C14—H14 | 0.920 (17) |
O1—C7 | 1.280 (2) | C15—C20 | 1.4018 (19) |
O2—C27 | 1.311 (2) | C15—C16 | 1.403 (2) |
O2—H2A | 0.99 (3) | C16—C17 | 1.388 (2) |
O3—C27 | 1.214 (2) | C16—H16 | 0.963 (18) |
C1—C6 | 1.397 (2) | C17—C18 | 1.389 (2) |
C1—C2 | 1.3988 (19) | C17—H17 | 0.968 (19) |
C1—C7 | 1.5020 (18) | C18—C19 | 1.391 (2) |
C2—C3 | 1.392 (2) | C18—H18 | 0.97 (2) |
C2—H2 | 0.934 (18) | C19—C20 | 1.385 (2) |
C3—C4 | 1.385 (2) | C19—H19 | 0.991 (19) |
C3—H3 | 0.995 (19) | C20—H20 | 0.960 (18) |
C4—C5 | 1.386 (2) | C21—C26 | 1.393 (2) |
C4—H4 | 0.96 (2) | C21—C22 | 1.3934 (19) |
C5—C6 | 1.389 (2) | C22—C23 | 1.397 (2) |
C5—H5 | 0.96 (2) | C22—H22 | 0.952 (18) |
C6—H6 | 0.957 (18) | C23—C24 | 1.388 (2) |
C7—C8 | 1.386 (2) | C23—H23 | 0.977 (17) |
C8—H8 | 0.977 (18) | C24—C25 | 1.387 (2) |
C9—C14 | 1.3897 (19) | C24—H24 | 0.955 (18) |
C9—C10 | 1.399 (2) | C25—C26 | 1.388 (2) |
C10—C11 | 1.390 (2) | C25—H25 | 0.98 (2) |
C10—H10 | 0.98 (2) | C26—H26 | 0.959 (18) |
C11—C12 | 1.386 (2) | C27—C28 | 1.4953 (19) |
C11—H11 | 0.963 (19) | C28—C28i | 1.324 (3) |
C12—C13 | 1.382 (2) | C28—H28 | 0.951 (18) |
C8—P1—C21 | 114.40 (7) | C9—C14—C13 | 120.14 (14) |
C8—P1—C9 | 105.92 (6) | C9—C14—H14 | 121.2 (10) |
C21—P1—C9 | 105.46 (6) | C13—C14—H14 | 118.6 (10) |
C8—P1—C15 | 114.83 (6) | C20—C15—C16 | 119.38 (13) |
C21—P1—C15 | 108.23 (6) | C20—C15—P1 | 119.68 (11) |
C9—P1—C15 | 107.34 (6) | C16—C15—P1 | 120.90 (11) |
C27—O2—H2A | 111.3 (16) | C17—C16—C15 | 120.00 (14) |
C6—C1—C2 | 118.89 (13) | C17—C16—H16 | 119.7 (10) |
C6—C1—C7 | 121.55 (12) | C15—C16—H16 | 120.3 (10) |
C2—C1—C7 | 119.56 (12) | C16—C17—C18 | 120.17 (15) |
C3—C2—C1 | 120.29 (14) | C16—C17—H17 | 120.0 (11) |
C3—C2—H2 | 120.0 (10) | C18—C17—H17 | 119.8 (11) |
C1—C2—H2 | 119.7 (10) | C17—C18—C19 | 120.11 (15) |
C4—C3—C2 | 120.22 (15) | C17—C18—H18 | 117.6 (12) |
C4—C3—H3 | 119.4 (11) | C19—C18—H18 | 122.3 (12) |
C2—C3—H3 | 120.4 (11) | C20—C19—C18 | 120.25 (14) |
C3—C4—C5 | 119.86 (14) | C20—C19—H19 | 118.1 (11) |
C3—C4—H4 | 120.6 (12) | C18—C19—H19 | 121.6 (11) |
C5—C4—H4 | 119.5 (12) | C19—C20—C15 | 120.07 (14) |
C4—C5—C6 | 120.30 (15) | C19—C20—H20 | 120.4 (10) |
C4—C5—H5 | 120.3 (12) | C15—C20—H20 | 119.5 (10) |
C6—C5—H5 | 119.4 (12) | C26—C21—C22 | 120.01 (13) |
C5—C6—C1 | 120.42 (14) | C26—C21—P1 | 117.13 (10) |
C5—C6—H6 | 120.7 (11) | C22—C21—P1 | 122.16 (11) |
C1—C6—H6 | 118.8 (11) | C21—C22—C23 | 119.54 (13) |
O1—C7—C8 | 122.0 (1) | C21—C22—H22 | 120.6 (10) |
O1—C7—C1 | 118.37 (12) | C23—C22—H22 | 119.8 (10) |
C8—C7—C1 | 119.58 (12) | C24—C23—C22 | 120.09 (14) |
C7—C8—P1 | 121.1 (1) | C24—C23—H23 | 122.8 (10) |
C7—C8—H8 | 124 (1) | C22—C23—H23 | 117.1 (10) |
P1—C8—H8 | 115 (1) | C25—C24—C23 | 120.21 (14) |
C14—C9—C10 | 119.59 (13) | C25—C24—H24 | 121.0 (11) |
C14—C9—P1 | 120.84 (11) | C23—C24—H24 | 118.8 (10) |
C10—C9—P1 | 119.55 (10) | C24—C25—C26 | 119.94 (14) |
C11—C10—C9 | 120.05 (14) | C24—C25—H25 | 120.9 (11) |
C11—C10—H10 | 119.4 (12) | C26—C25—H25 | 119.2 (11) |
C9—C10—H10 | 120.5 (12) | C25—C26—C21 | 120.16 (13) |
C12—C11—C10 | 119.78 (14) | C25—C26—H26 | 119.1 (10) |
C12—C11—H11 | 120.7 (11) | C21—C26—H26 | 120.7 (10) |
C10—C11—H11 | 119.5 (11) | O3—C27—O2 | 125.40 (13) |
C13—C12—C11 | 120.66 (13) | O3—C27—C28 | 121.16 (14) |
C13—C12—H12 | 118.7 (11) | O2—C27—C28 | 113.43 (13) |
C11—C12—H12 | 120.7 (11) | C28i—C28—C27 | 123.46 (18) |
C12—C13—C14 | 119.76 (14) | C28i—C28—H28 | 121.4 (10) |
C12—C13—H13 | 122.0 (11) | C27—C28—H28 | 115.1 (10) |
C14—C13—H13 | 118.3 (11) | ||
C6—C1—C2—C3 | −1.7 (2) | C8—P1—C15—C20 | −63.51 (13) |
C7—C1—C2—C3 | 178.84 (12) | C21—P1—C15—C20 | 65.66 (12) |
C1—C2—C3—C4 | 0.8 (2) | C9—P1—C15—C20 | 179.04 (11) |
C2—C3—C4—C5 | 0.6 (2) | C8—P1—C15—C16 | 114.28 (12) |
C3—C4—C5—C6 | −1.0 (2) | C21—P1—C15—C16 | −116.55 (12) |
C4—C5—C6—C1 | 0.0 (2) | C9—P1—C15—C16 | −3.18 (13) |
C2—C1—C6—C5 | 1.3 (2) | C20—C15—C16—C17 | 1.3 (2) |
C7—C1—C6—C5 | −179.25 (13) | P1—C15—C16—C17 | −176.54 (11) |
C6—C1—C7—O1 | −152.84 (13) | C15—C16—C17—C18 | 0.2 (2) |
C2—C1—C7—O1 | 26.64 (18) | C16—C17—C18—C19 | −1.1 (2) |
C6—C1—C7—C8 | 28.28 (19) | C17—C18—C19—C20 | 0.6 (2) |
C2—C1—C7—C8 | −152.25 (13) | C18—C19—C20—C15 | 0.9 (2) |
O1—C7—C8—P1 | 4.27 (19) | C16—C15—C20—C19 | −1.8 (2) |
C1—C7—C8—P1 | −176.89 (10) | P1—C15—C20—C19 | 176.03 (11) |
C21—P1—C8—C7 | −60.94 (13) | C8—P1—C21—C26 | −40.91 (13) |
C9—P1—C8—C7 | −176.64 (11) | C9—P1—C21—C26 | 75.07 (12) |
C15—P1—C8—C7 | 65.10 (13) | C15—P1—C21—C26 | −170.31 (10) |
C8—P1—C9—C14 | 135.22 (12) | C8—P1—C21—C22 | 148.72 (11) |
C21—P1—C9—C14 | 13.58 (14) | C9—P1—C21—C22 | −95.31 (12) |
C15—P1—C9—C14 | −101.66 (13) | C15—P1—C21—C22 | 19.31 (13) |
C8—P1—C9—C10 | −46.33 (14) | C26—C21—C22—C23 | −0.9 (2) |
C21—P1—C9—C10 | −167.97 (12) | P1—C21—C22—C23 | 169.22 (10) |
C15—P1—C9—C10 | 76.79 (13) | C21—C22—C23—C24 | −1.1 (2) |
C14—C9—C10—C11 | 0.5 (2) | C22—C23—C24—C25 | 2.0 (2) |
P1—C9—C10—C11 | −177.95 (12) | C23—C24—C25—C26 | −1.0 (2) |
C9—C10—C11—C12 | 0.6 (2) | C24—C25—C26—C21 | −0.9 (2) |
C10—C11—C12—C13 | −1.3 (2) | C22—C21—C26—C25 | 1.9 (2) |
C11—C12—C13—C14 | 1.0 (2) | P1—C21—C26—C25 | −168.70 (11) |
C10—C9—C14—C13 | −0.8 (2) | O3—C27—C28—C28i | 175.71 (19) |
P1—C9—C14—C13 | 177.61 (12) | O2—C27—C28—C28i | −3.2 (3) |
C12—C13—C14—C9 | 0.1 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1 | 0.99 (3) | 1.52 (3) | 2.509 (2) | 176 (3) |
C14—H14···Cg1 | 0.92 (2) | 3.00 | 3.72 | 136 |
C12—H12···Cg1ii | 0.98 (2) | 2.61 | 3.50 | 152 |
C13—H13···Cg2iii | 0.98 (2) | 2.96 | 3.69 | 133 |
C24—H24···Cg3iv | 0.96 (2) | 2.98 | 3.87 | 155 |
Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x, y+3/2, −z+1/2; (iv) −x, −y, −z. |
C26H21OP·0.5C8H6O4 | F(000) = 972 |
Mr = 463.46 | Dx = 1.291 Mg m−3 |
Monoclinic, P21/n | Melting point: 499 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0900 (6) Å | Cell parameters from 948 reflections |
b = 17.9737 (9) Å | θ = 2.8–27.3° |
c = 13.1613 (7) Å | µ = 0.15 mm−1 |
β = 92.048 (2)° | T = 120 K |
V = 2385.3 (2) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.25 × 0.12 mm |
Bruker SMART CCD 6K area-detector diffractometer | 5463 independent reflections |
Radiation source: fine-focus sealed tube | 4288 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 8 pixels mm-1 | θmax = 27.5°, θmin = 1.9° |
ω scans | h = −13→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | k = −23→21 |
Tmin = 0.940, Tmax = 0.983 | l = −17→16 |
18211 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.111 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0387P)2 + 1.0579P] where P = (Fo2 + 2Fc2)/3 |
5463 reflections | (Δ/σ)max = 0.001 |
403 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C26H21OP·0.5C8H6O4 | V = 2385.3 (2) Å3 |
Mr = 463.46 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.0900 (6) Å | µ = 0.15 mm−1 |
b = 17.9737 (9) Å | T = 120 K |
c = 13.1613 (7) Å | 0.30 × 0.25 × 0.12 mm |
β = 92.048 (2)° |
Bruker SMART CCD 6K area-detector diffractometer | 5463 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 4288 reflections with I > 2σ(I) |
Tmin = 0.940, Tmax = 0.983 | Rint = 0.039 |
18211 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.111 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.44 e Å−3 |
5463 reflections | Δρmin = −0.27 e Å−3 |
403 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.09257 (4) | 0.05436 (2) | 0.71012 (3) | 0.01656 (11) | |
C1 | 0.33402 (15) | 0.13224 (9) | 0.49083 (12) | 0.0189 (3) | |
C2 | 0.37333 (16) | 0.20261 (9) | 0.45790 (13) | 0.0220 (3) | |
H2 | 0.3422 (17) | 0.2460 (10) | 0.4919 (13) | 0.018 (4)* | |
C3 | 0.45588 (17) | 0.20968 (10) | 0.37613 (13) | 0.0262 (4) | |
H3 | 0.4796 (19) | 0.2588 (11) | 0.3544 (15) | 0.029 (5)* | |
C4 | 0.50052 (17) | 0.14705 (11) | 0.32640 (14) | 0.0284 (4) | |
H4 | 0.559 (2) | 0.1529 (11) | 0.2686 (15) | 0.029 (5)* | |
C5 | 0.46312 (18) | 0.07680 (11) | 0.35881 (13) | 0.0276 (4) | |
H5 | 0.493 (2) | 0.0322 (12) | 0.3221 (16) | 0.033 (5)* | |
C6 | 0.38014 (16) | 0.06933 (9) | 0.44016 (12) | 0.0219 (3) | |
H6 | 0.3561 (19) | 0.0225 (11) | 0.4609 (15) | 0.027 (5)* | |
C7 | 0.24066 (15) | 0.12721 (8) | 0.57705 (12) | 0.0180 (3) | |
C8 | 0.21723 (16) | 0.05936 (9) | 0.62356 (12) | 0.0192 (3) | |
H8 | 0.260 (2) | 0.0158 (11) | 0.6075 (15) | 0.029 (5)* | |
C9 | 0.13250 (16) | 0.09662 (8) | 0.83188 (12) | 0.0185 (3) | |
C10 | 0.23301 (16) | 0.15013 (9) | 0.83917 (13) | 0.0228 (3) | |
H10 | 0.2821 (19) | 0.1634 (10) | 0.7795 (15) | 0.023 (5)* | |
C11 | 0.26251 (18) | 0.18462 (10) | 0.93167 (14) | 0.0257 (4) | |
H11 | 0.331 (2) | 0.2200 (11) | 0.9359 (15) | 0.029 (5)* | |
C12 | 0.19370 (19) | 0.16559 (10) | 1.01722 (14) | 0.0282 (4) | |
H12 | 0.214 (2) | 0.1894 (12) | 1.0817 (17) | 0.040 (6)* | |
C13 | 0.09436 (19) | 0.11226 (10) | 1.01027 (13) | 0.0273 (4) | |
H13 | 0.0484 (19) | 0.0994 (11) | 1.0672 (16) | 0.027 (5)* | |
C14 | 0.06388 (17) | 0.07749 (9) | 0.91848 (13) | 0.0238 (3) | |
H14 | −0.007 (2) | 0.0395 (12) | 0.9128 (15) | 0.032 (5)* | |
C15 | −0.06206 (15) | 0.09309 (8) | 0.66028 (12) | 0.0182 (3) | |
C16 | −0.16209 (17) | 0.11541 (9) | 0.72397 (13) | 0.0233 (3) | |
H16 | −0.1490 (19) | 0.1149 (10) | 0.7982 (16) | 0.027 (5)* | |
C17 | −0.28252 (18) | 0.14004 (10) | 0.68204 (14) | 0.0270 (4) | |
H17 | −0.348 (2) | 0.1548 (11) | 0.7269 (16) | 0.031 (5)* | |
C18 | −0.30315 (17) | 0.14351 (9) | 0.57738 (14) | 0.0257 (4) | |
H18 | −0.3827 (19) | 0.1626 (10) | 0.5477 (14) | 0.024 (5)* | |
C19 | −0.20305 (17) | 0.12233 (9) | 0.51410 (13) | 0.0239 (3) | |
H19 | −0.217 (2) | 0.1253 (11) | 0.4392 (17) | 0.035 (6)* | |
C20 | −0.08320 (17) | 0.09651 (9) | 0.55514 (12) | 0.0211 (3) | |
H20 | −0.014 (2) | 0.0816 (11) | 0.5110 (15) | 0.028 (5)* | |
C21 | 0.06361 (15) | −0.04351 (8) | 0.73310 (11) | 0.0178 (3) | |
C22 | −0.05286 (17) | −0.07811 (9) | 0.69852 (12) | 0.0215 (3) | |
H22 | −0.1223 (18) | −0.0492 (9) | 0.6688 (13) | 0.015 (4)* | |
C23 | −0.06747 (18) | −0.15489 (9) | 0.70885 (13) | 0.0256 (4) | |
H23 | −0.150 (2) | −0.1799 (12) | 0.6856 (17) | 0.040 (6)* | |
C24 | 0.03421 (18) | −0.19636 (9) | 0.75375 (13) | 0.0254 (4) | |
H24 | 0.023 (2) | −0.2502 (12) | 0.7627 (15) | 0.034 (5)* | |
C25 | 0.14995 (17) | −0.16218 (9) | 0.78929 (14) | 0.0251 (4) | |
H25 | 0.218 (2) | −0.1899 (12) | 0.8219 (16) | 0.036 (6)* | |
C26 | 0.16525 (16) | −0.08581 (9) | 0.77951 (12) | 0.0214 (3) | |
H26 | 0.246 (2) | −0.0618 (10) | 0.8043 (14) | 0.024 (5)* | |
C27 | 0.46622 (18) | 0.05034 (10) | 0.07495 (13) | 0.0258 (4) | |
H27 | 0.4424 (19) | 0.0853 (11) | 0.1239 (15) | 0.027 (5)* | |
C28 | 0.54177 (17) | 0.07348 (9) | −0.00534 (13) | 0.0236 (3) | |
C29 | 0.57538 (19) | 0.02301 (10) | −0.08039 (14) | 0.0281 (4) | |
H29 | 0.628 (2) | 0.0397 (11) | −0.1369 (16) | 0.032 (5)* | |
C30 | 0.58964 (18) | 0.15223 (9) | −0.01359 (13) | 0.0257 (4) | |
O1 | 0.18317 (11) | 0.18648 (6) | 0.60581 (9) | 0.0221 (3) | |
O2 | 0.56381 (13) | 0.19272 (7) | 0.06691 (9) | 0.0285 (3) | |
H1 | 0.605 (3) | 0.2385 (16) | 0.066 (2) | 0.064 (8)* | |
O3 | 0.64555 (17) | 0.17524 (7) | −0.08662 (11) | 0.0431 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0177 (2) | 0.01564 (19) | 0.0164 (2) | 0.00082 (15) | 0.00153 (14) | 0.00079 (14) |
C1 | 0.0159 (7) | 0.0225 (8) | 0.0183 (8) | −0.0006 (6) | −0.0003 (6) | 0.0028 (6) |
C2 | 0.0194 (8) | 0.0216 (8) | 0.0251 (8) | −0.0007 (6) | −0.0009 (6) | 0.0041 (7) |
C3 | 0.0223 (8) | 0.0299 (9) | 0.0265 (9) | −0.0047 (7) | −0.0003 (7) | 0.0090 (7) |
C4 | 0.0222 (9) | 0.0410 (10) | 0.0224 (9) | −0.0040 (7) | 0.0054 (7) | 0.0042 (7) |
C5 | 0.0258 (9) | 0.0337 (9) | 0.0238 (9) | 0.0001 (7) | 0.0062 (7) | −0.0035 (7) |
C6 | 0.0223 (8) | 0.0226 (8) | 0.0210 (8) | −0.0002 (6) | 0.0020 (6) | 0.0015 (6) |
C7 | 0.0163 (7) | 0.0189 (7) | 0.0188 (8) | −0.0007 (6) | −0.0004 (6) | −0.0003 (6) |
C8 | 0.0205 (8) | 0.0173 (7) | 0.0201 (8) | 0.0015 (6) | 0.0041 (6) | 0.0005 (6) |
C9 | 0.0204 (8) | 0.0173 (7) | 0.0177 (7) | 0.0027 (6) | −0.0007 (6) | −0.0005 (6) |
C10 | 0.0214 (8) | 0.0216 (8) | 0.0253 (9) | 0.0004 (6) | 0.0003 (7) | 0.0006 (6) |
C11 | 0.0248 (9) | 0.0224 (8) | 0.0295 (9) | −0.0018 (7) | −0.0044 (7) | −0.0035 (7) |
C12 | 0.0375 (10) | 0.0247 (8) | 0.0219 (9) | 0.0030 (7) | −0.0052 (7) | −0.0044 (7) |
C13 | 0.0378 (10) | 0.0258 (9) | 0.0185 (8) | 0.0012 (7) | 0.0057 (7) | 0.0007 (7) |
C14 | 0.0280 (9) | 0.0213 (8) | 0.0223 (8) | −0.0018 (7) | 0.0018 (7) | 0.0009 (6) |
C15 | 0.0207 (8) | 0.0159 (7) | 0.0181 (7) | 0.0004 (6) | 0.0007 (6) | −0.0001 (6) |
C16 | 0.0242 (8) | 0.0253 (8) | 0.0203 (8) | 0.0035 (7) | 0.0012 (7) | −0.0002 (6) |
C17 | 0.0228 (9) | 0.0297 (9) | 0.0288 (9) | 0.0070 (7) | 0.0044 (7) | −0.0006 (7) |
C18 | 0.0210 (8) | 0.0236 (8) | 0.0320 (9) | 0.0037 (7) | −0.0045 (7) | 0.0025 (7) |
C19 | 0.0281 (9) | 0.0211 (8) | 0.0222 (8) | 0.0007 (7) | −0.0039 (7) | 0.0017 (6) |
C20 | 0.0239 (8) | 0.0207 (8) | 0.0189 (8) | 0.0008 (6) | 0.0021 (6) | 0.0006 (6) |
C21 | 0.0208 (8) | 0.0163 (7) | 0.0166 (7) | 0.0003 (6) | 0.0036 (6) | 0.0002 (6) |
C22 | 0.0223 (8) | 0.0218 (8) | 0.0205 (8) | −0.0006 (6) | 0.0006 (6) | 0.0008 (6) |
C23 | 0.0276 (9) | 0.0227 (8) | 0.0265 (9) | −0.0063 (7) | −0.0006 (7) | −0.0002 (7) |
C24 | 0.0303 (9) | 0.0173 (8) | 0.0289 (9) | −0.0017 (7) | 0.0056 (7) | 0.0006 (6) |
C25 | 0.0249 (9) | 0.0222 (8) | 0.0284 (9) | 0.0044 (7) | 0.0014 (7) | 0.0056 (7) |
C26 | 0.0207 (8) | 0.0208 (8) | 0.0228 (8) | −0.0004 (6) | 0.0015 (6) | 0.0011 (6) |
C27 | 0.0317 (9) | 0.0222 (8) | 0.0235 (8) | −0.0040 (7) | 0.0026 (7) | −0.0045 (7) |
C28 | 0.0263 (8) | 0.0207 (8) | 0.0236 (8) | −0.0036 (6) | −0.0024 (7) | −0.0009 (6) |
C29 | 0.0340 (10) | 0.0254 (9) | 0.0254 (9) | −0.0063 (7) | 0.0062 (7) | −0.0019 (7) |
C30 | 0.0311 (9) | 0.0217 (8) | 0.0242 (9) | −0.0043 (7) | −0.0009 (7) | −0.0018 (7) |
O1 | 0.0260 (6) | 0.0172 (5) | 0.0233 (6) | 0.0027 (4) | 0.0031 (5) | 0.0009 (4) |
O2 | 0.0381 (7) | 0.0196 (6) | 0.0277 (7) | −0.0080 (5) | 0.0023 (5) | −0.0036 (5) |
O3 | 0.0690 (10) | 0.0290 (7) | 0.0321 (8) | −0.0188 (7) | 0.0154 (7) | −0.0036 (6) |
P1—C8 | 1.729 (2) | C15—C20 | 1.394 (2) |
P1—C9 | 1.806 (2) | C16—C17 | 1.389 (2) |
P1—C15 | 1.810 (2) | C16—H16 | 0.98 (2) |
P1—C21 | 1.810 (2) | C17—C18 | 1.387 (3) |
C1—C2 | 1.399 (2) | C17—H17 | 0.94 (2) |
C1—C6 | 1.401 (2) | C18—C19 | 1.385 (2) |
C1—C7 | 1.503 (2) | C18—H18 | 0.94 (2) |
C2—C3 | 1.390 (2) | C19—C20 | 1.387 (2) |
C2—H2 | 0.958 (18) | C19—H19 | 0.99 (2) |
C3—C4 | 1.385 (3) | C20—H20 | 0.97 (2) |
C3—H3 | 0.96 (2) | C21—C22 | 1.392 (2) |
C4—C5 | 1.389 (3) | C21—C26 | 1.399 (2) |
C4—H4 | 0.99 (2) | C22—C23 | 1.395 (2) |
C5—C6 | 1.389 (2) | C22—H22 | 0.946 (18) |
C5—H5 | 0.99 (2) | C23—C24 | 1.384 (3) |
C6—H6 | 0.92 (2) | C23—H23 | 0.99 (2) |
C7—O1 | 1.277 (2) | C24—C25 | 1.386 (3) |
C7—C8 | 1.388 (2) | C24—H24 | 0.98 (2) |
C8—H8 | 0.92 (2) | C25—C26 | 1.388 (2) |
C9—C14 | 1.398 (2) | C25—H25 | 0.94 (2) |
C9—C10 | 1.399 (2) | C26—H26 | 0.97 (2) |
C10—C11 | 1.389 (2) | C27—C29i | 1.386 (2) |
C10—H10 | 0.973 (19) | C27—C28 | 1.389 (2) |
C11—C12 | 1.387 (3) | C27—H27 | 0.94 (2) |
C11—H11 | 0.94 (2) | C28—C29 | 1.392 (2) |
C12—C13 | 1.388 (3) | C28—C30 | 1.501 (2) |
C12—H12 | 0.97 (2) | C29—C27i | 1.386 (2) |
C13—C14 | 1.385 (2) | C29—H29 | 0.98 (2) |
C13—H13 | 0.93 (2) | C30—O3 | 1.205 (2) |
C14—H14 | 0.99 (2) | C30—O2 | 1.319 (2) |
C15—C16 | 1.394 (2) | O2—H1 | 0.92 (3) |
C8—P1—C9 | 114.72 (8) | C16—C15—P1 | 121.74 (12) |
C8—P1—C15 | 112.28 (7) | C20—C15—P1 | 118.43 (12) |
C9—P1—C15 | 108.78 (7) | C17—C16—C15 | 119.66 (16) |
C8—P1—C21 | 106.63 (7) | C17—C16—H16 | 118.9 (11) |
C9—P1—C21 | 107.02 (7) | C15—C16—H16 | 121.4 (12) |
C15—P1—C21 | 106.98 (7) | C18—C17—C16 | 120.46 (16) |
C2—C1—C6 | 118.66 (15) | C18—C17—H17 | 121.8 (13) |
C2—C1—C7 | 118.72 (14) | C16—C17—H17 | 117.7 (13) |
C6—C1—C7 | 122.60 (14) | C19—C18—C17 | 119.86 (16) |
C3—C2—C1 | 120.46 (16) | C19—C18—H18 | 118.6 (12) |
C3—C2—H2 | 120.1 (10) | C17—C18—H18 | 121.5 (12) |
C1—C2—H2 | 119.4 (10) | C18—C19—C20 | 120.15 (16) |
C4—C3—C2 | 120.35 (16) | C18—C19—H19 | 120.4 (12) |
C4—C3—H3 | 121.1 (12) | C20—C19—H19 | 119.5 (12) |
C2—C3—H3 | 118.5 (12) | C19—C20—C15 | 120.12 (16) |
C3—C4—C5 | 119.80 (16) | C19—C20—H20 | 120.1 (12) |
C3—C4—H4 | 119.5 (12) | C15—C20—H20 | 119.7 (12) |
C5—C4—H4 | 120.7 (12) | C22—C21—C26 | 119.81 (15) |
C6—C5—C4 | 120.15 (17) | C22—C21—P1 | 121.27 (12) |
C6—C5—H5 | 120.1 (12) | C26—C21—P1 | 118.73 (12) |
C4—C5—H5 | 119.7 (12) | C21—C22—C23 | 120.08 (16) |
C5—C6—C1 | 120.58 (16) | C21—C22—H22 | 119.6 (10) |
C5—C6—H6 | 119.3 (12) | C23—C22—H22 | 120.4 (10) |
C1—C6—H6 | 120.1 (12) | C24—C23—C22 | 119.68 (16) |
O1—C7—C8 | 121.1 (1) | C24—C23—H23 | 119.5 (13) |
O1—C7—C1 | 118.50 (13) | C22—C23—H23 | 120.8 (13) |
C8—C7—C1 | 120.45 (14) | C23—C24—C25 | 120.56 (16) |
C7—C8—P1 | 118.4 (1) | C23—C24—H24 | 119.9 (12) |
C7—C8—H8 | 124 (1) | C25—C24—H24 | 119.5 (12) |
P1—C8—H8 | 118 (1) | C24—C25—C26 | 120.15 (16) |
C14—C9—C10 | 119.50 (15) | C24—C25—H25 | 120.9 (13) |
C14—C9—P1 | 121.26 (12) | C26—C25—H25 | 119.0 (13) |
C10—C9—P1 | 119.23 (12) | C25—C26—C21 | 119.71 (15) |
C11—C10—C9 | 119.95 (16) | C25—C26—H26 | 120.3 (11) |
C11—C10—H10 | 119.9 (11) | C21—C26—H26 | 120.0 (11) |
C9—C10—H10 | 120.2 (11) | C29i—C27—C28 | 119.98 (16) |
C12—C11—C10 | 120.25 (16) | C29i—C27—H27 | 121.1 (12) |
C12—C11—H11 | 120.5 (12) | C28—C27—H27 | 118.9 (12) |
C10—C11—H11 | 119.3 (12) | C27—C28—C29 | 119.94 (16) |
C11—C12—C13 | 119.90 (16) | C27—C28—C30 | 121.63 (15) |
C11—C12—H12 | 120.7 (13) | C29—C28—C30 | 118.43 (15) |
C13—C12—H12 | 119.4 (13) | C27i—C29—C28 | 120.08 (16) |
C14—C13—C12 | 120.43 (16) | C27i—C29—H29 | 120.4 (12) |
C14—C13—H13 | 119.5 (13) | C28—C29—H29 | 119.5 (12) |
C12—C13—H13 | 120.1 (12) | O3—C30—O2 | 124.26 (16) |
C13—C14—C9 | 119.96 (16) | O3—C30—C28 | 122.85 (16) |
C13—C14—H14 | 121.1 (12) | O2—C30—C28 | 112.89 (15) |
C9—C14—H14 | 119.0 (12) | C30—O2—H1 | 112.3 (16) |
C16—C15—C20 | 119.73 (15) | ||
C6—C1—C2—C3 | 0.4 (2) | C8—P1—C15—C20 | 23.26 (15) |
C7—C1—C2—C3 | −177.77 (15) | C9—P1—C15—C20 | 151.33 (12) |
C1—C2—C3—C4 | −0.2 (3) | C21—P1—C15—C20 | −93.39 (13) |
C2—C3—C4—C5 | −0.3 (3) | C20—C15—C16—C17 | 0.8 (2) |
C3—C4—C5—C6 | 0.6 (3) | P1—C15—C16—C17 | −175.59 (13) |
C4—C5—C6—C1 | −0.4 (3) | C15—C16—C17—C18 | −0.9 (3) |
C2—C1—C6—C5 | −0.1 (2) | C16—C17—C18—C19 | 0.0 (3) |
C7—C1—C6—C5 | 178.00 (15) | C17—C18—C19—C20 | 1.1 (3) |
C2—C1—C7—O1 | 11.6 (2) | C18—C19—C20—C15 | −1.2 (2) |
C6—C1—C7—O1 | −166.45 (15) | C16—C15—C20—C19 | 0.3 (2) |
C2—C1—C7—C8 | −168.82 (15) | P1—C15—C20—C19 | 176.75 (12) |
C6—C1—C7—C8 | 13.1 (2) | C8—P1—C21—C22 | −110.36 (14) |
O1—C7—C8—P1 | 8.3 (2) | C9—P1—C21—C22 | 126.42 (13) |
C1—C7—C8—P1 | −171.30 (11) | C15—P1—C21—C22 | 9.96 (15) |
C9—P1—C8—C7 | −74.53 (14) | C8—P1—C21—C26 | 64.58 (14) |
C15—P1—C8—C7 | 50.33 (15) | C9—P1—C21—C26 | −58.64 (14) |
C21—P1—C8—C7 | 167.19 (12) | C15—P1—C21—C26 | −175.10 (12) |
C8—P1—C9—C14 | −159.29 (13) | C26—C21—C22—C23 | −0.9 (2) |
C15—P1—C9—C14 | 74.03 (15) | P1—C21—C22—C23 | 174.00 (13) |
C21—P1—C9—C14 | −41.23 (15) | C21—C22—C23—C24 | 0.1 (3) |
C8—P1—C9—C10 | 21.47 (16) | C22—C23—C24—C25 | 0.5 (3) |
C15—P1—C9—C10 | −105.21 (14) | C23—C24—C25—C26 | −0.4 (3) |
C21—P1—C9—C10 | 139.54 (13) | C24—C25—C26—C21 | −0.4 (2) |
C14—C9—C10—C11 | −1.0 (2) | C22—C21—C26—C25 | 1.0 (2) |
P1—C9—C10—C11 | 178.26 (13) | P1—C21—C26—C25 | −174.01 (13) |
C9—C10—C11—C12 | 0.8 (3) | C29i—C27—C28—C29 | 0.1 (3) |
C10—C11—C12—C13 | −0.4 (3) | C29i—C27—C28—C30 | −179.51 (17) |
C11—C12—C13—C14 | 0.4 (3) | C27—C28—C29—C27i | −0.1 (3) |
C12—C13—C14—C9 | −0.6 (3) | C30—C28—C29—C27i | 179.53 (17) |
C10—C9—C14—C13 | 0.9 (2) | C27—C28—C30—O3 | −173.53 (18) |
P1—C9—C14—C13 | −178.31 (13) | C29—C28—C30—O3 | 6.8 (3) |
C8—P1—C15—C16 | −160.36 (13) | C27—C28—C30—O2 | 6.4 (2) |
C9—P1—C15—C16 | −32.28 (15) | C29—C28—C30—O2 | −173.26 (16) |
C21—P1—C15—C16 | 83.00 (14) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1···O1ii | 0.92 (3) | 1.64 (3) | 2.526 (2) | 161 (3) |
C3—H3···Cg1ii | 0.96 (2) | 2.84 | 3.59 | 135 |
C19—H19···Cg2iii | 0.99 (2) | 3.00 | 3.79 | 137 |
C13—H13···Cg2iv | 0.93 (2) | 2.73 | 3.59 | 156 |
C18—H18···Cg3v | 0.94 (2) | 2.71 | 3.53 | 146 |
Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2; (iii) x, y, z+1; (iv) x, y, z+2; (v) x−1, y, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C26H21OP·0.5C4H4O4 | C26H21OP·0.5C8H6O4 |
Mr | 438.43 | 463.46 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/n |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 13.0883 (6), 9.7883 (5), 17.9970 (9) | 10.0900 (6), 17.9737 (9), 13.1613 (7) |
β (°) | 102.500 (2) | 92.048 (2) |
V (Å3) | 2250.98 (19) | 2385.3 (2) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.15 | 0.15 |
Crystal size (mm) | 0.39 × 0.27 × 0.22 | 0.30 × 0.25 × 0.12 |
Data collection | ||
Diffractometer | Bruker SMART CCD 6K area-detector diffractometer | Bruker SMART CCD 6K area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.756, 0.968 | 0.940, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17181, 5164, 4281 | 18211, 5463, 4288 |
Rint | 0.033 | 0.039 |
(sin θ/λ)max (Å−1) | 0.650 | 0.649 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.104, 1.02 | 0.041, 0.111, 1.03 |
No. of reflections | 5164 | 5463 |
No. of parameters | 381 | 403 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.41, −0.36 | 0.44, −0.27 |
Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXTL.
P1—C8 | 1.739 (1) | O1—C7 | 1.280 (2) |
P1—C21 | 1.803 (1) | O2—C27 | 1.311 (2) |
P1—C9 | 1.805 (1) | O3—C27 | 1.214 (2) |
P1—C15 | 1.807 (1) | C7—C8 | 1.386 (2) |
C8—P1—C21 | 114.40 (7) | C7—C8—P1 | 121.1 (1) |
C8—P1—C9 | 105.92 (6) | C7—C8—H8 | 124 (1) |
C8—P1—C15 | 114.83 (6) | P1—C8—H8 | 115 (1) |
O1—C7—C8 | 122.0 (1) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1 | 0.99 (3) | 1.52 (3) | 2.509 (2) | 176 (3) |
C14—H14···Cg1 | 0.92 (2) | 3.00 | 3.72 | 136 |
C12—H12···Cg1i | 0.98 (2) | 2.61 | 3.50 | 152 |
C13—H13···Cg2ii | 0.98 (2) | 2.96 | 3.69 | 133 |
C24—H24···Cg3iii | 0.96 (2) | 2.98 | 3.87 | 155 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y+3/2, −z+1/2; (iii) −x, −y, −z. |
P1—C8 | 1.729 (2) | C7—O1 | 1.277 (2) |
P1—C9 | 1.806 (2) | C7—C8 | 1.388 (2) |
P1—C15 | 1.810 (2) | C30—O3 | 1.205 (2) |
P1—C21 | 1.810 (2) | C30—O2 | 1.319 (2) |
C8—P1—C9 | 114.72 (8) | C7—C8—P1 | 118.4 (1) |
C8—P1—C15 | 112.28 (7) | C7—C8—H8 | 124 (1) |
C8—P1—C21 | 106.63 (7) | P1—C8—H8 | 118 (1) |
O1—C7—C8 | 121.1 (1) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1···O1i | 0.92 (3) | 1.64 (3) | 2.526 (2) | 161 (3) |
C3—H3···Cg1i | 0.96 (2) | 2.84 | 3.59 | 135 |
C19—H19···Cg2ii | 0.99 (2) | 3.00 | 3.79 | 137 |
C13—H13···Cg2iii | 0.93 (2) | 2.73 | 3.59 | 156 |
C18—H18···Cg3iv | 0.94 (2) | 2.71 | 3.53 | 146 |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x, y, z+1; (iii) x, y, z+2; (iv) x−1, y, z. |
Acknowledgements
ECS thanks the EPSRC for support, and JAKH thanks the EPSRC for a senior research fellowship.
References
Albanese, J. A., Staley, D. L., Rheingold, A. L. & Burmeister, J. L. (1989). Acta Cryst. C45, 1128–1131. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Antipin, M. Yu. & Struchkov, Yu. T. (1984). Zh. Strukt. Khim. 25, 122–131. CAS Google Scholar
Baby Mariyatra, M., Kalyanasundari, B., Panchanatheswaran, K. & Goeta, A. E. (2003). Acta Cryst. E59, o255–o257. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002a). Acta Cryst. E58, o807–o809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002b). Acta Cryst. E58, m694–m696. CSD CrossRef IUCr Journals Google Scholar
Baby Mariyatra, M., Spencer, E. C., Panchanatheswaran, K. & Howard, J. A. K. (2004a). Acta Cryst. E60, o123–o125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baby Mariyatra, M., Spencer, E. C., Panchanatheswaran, K. & Howard, J. A. K. (2004b). Acta Cryst. E60, o162–o164. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART-NT (Version 5.0), SAINT (Version 6.04) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 339. Ithaca: Cornell University Press. Google Scholar
Falvello, L. R., Fernández, S., Navarro, R., Rueda, A. & Urriolabeitia, E. P. (1998). Inorg. Chem. 37, 6007–6013. Web of Science CSD CrossRef PubMed CAS Google Scholar
Falvello, L. R., Fernández, S., Navarro, R. & Urriolabeitia, E. P. (1996). Inorg. Chem. 35, 3064–3066. CSD CrossRef CAS Web of Science Google Scholar
Falvello, L. R., Fernández, S., Navarro, R. & Urriolabeitia, E. P. (1997). Inorg. Chem. 36, 1136–1142. CSD CrossRef PubMed CAS Web of Science Google Scholar
Kalyanasundari, B., Baby Mariyatra, M., Panchanatheswaran, K., Spencer, E. C. & Howard, J. A. K. (2004). In preparation. Google Scholar
Kalyanasundari, M. & Panchanatheswaran, K. (1994). Acta Cryst. C50, 1738–1741. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Wen, H. (1995). J. Organomet. Chem. 491, 103–109. CSD CrossRef CAS Web of Science Google Scholar
Laavanya, P. (2002). PhD thesis, Bharathidasan University, India. Google Scholar
Lide, D. R. (1994). CRC Handbook of Chemistry and Physics, 74th ed., pp. 8.43–8.44.E. Boca Raton, Florida, USA: CRC Press. Google Scholar
Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Speziale, A. J. & Ratts, K. W. (1963). J. Am. Chem. Soc. 85, 2790–2795. CrossRef CAS Web of Science Google Scholar
Vicente, J., Chicote, M. T., Saura-Liamas, I., Jones, P. G., Meyer-Bäse, K., Freire, C. & Erdbrügger, C. F. (1988). Organometallics, 7, 997–1006. CSD CrossRef CAS Web of Science Google Scholar
Wilson, A. J. C. (1992). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer Academic Publishers. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Resonance-stabilized phosphorus ylides are a class of compounds that have attracted considerable interest in the field of synthetic organometallic chemistry. Their popularity arises from their high stability, their reactivity towards a diverse range of metal salts and their ability to be tailored chemically to allow for a variety of coordination modes to be accessed (Falvello et al., 1996, 1997, 1998; M. Kalyanasundari et al., 1995; Vicente et al., 1988; B. Kalyanasundari et al., 2004).
The manner of protonation of the resonance-stabilized ylide benzoylmethylenetriphenylphosphorane (BPPY) has been the focus of our most recent studies. A search of the Cambridge Structural Database (Version 5.25; Allen, 2002) for the BPPY moiety yielded six cases of protonated BPPY (only structures in which BPPY featured as a discrete molecular entity, i.e. un-complexed, were considered). All six structures exhibited C-protonation (Antipin et al., 1984; Baby Mariyatra, Kalyanasundari et al., 2002; Baby Mariyatra, Panchanatheswaran & Goeta, 2002a,2002b; Albanese et al., 1989); no examples of O-protonated BPPY were found. These results are surprising, as PM3 calculations of the proton affinities for the ylide C and the benzoyl O atoms give values that differ by only 13 kJ mol−1 (Laavanya, 2002), implying that although C-protonation is energetically more favourable, both O– and C-protonation of BPPY are feasible.
In our previous work, we have observed that the C-protonated cation of BPPY is produced by the action of picric and maleic acid (Baby Mariyatra, Spencer et al., 2004a,2004b). In order to investigate the influence of organic dicarboxylic acids on the mode of protonation of BPPY, the reactions of this ylide with fumaric and terephthalic acid, yieldng compounds (I) and (II), respectively, have been undertaken. The first-step pKa values in aqueous solution are 3.03 for fumaric acid and 3.51 for terephthalic acid, and the second-step values are 4.44 and 4.82, respectively (Lide, 1994). These figures suggest that both these acids are sufficiently strong to protonate BPPY (pKa of 6.0) (Speziale et al., 1963).
Figs. 1 and 2 display the molecular structures of (I) and (II), respectively. In both case the dicarboxylic acid molecule resides on a site of inversion symmetry, and consequently each of the asymmetric units of (I) and (II) comprises a single BPPY molecule and half an acid molecule.
Tables 1 and 3 list selected bond geometries for (I) and (II), respectively. The inequality of the O2—C27 and O3—C27 bond lengths in (I), and the O2—C30 and O3—C30 bond lengths in (II), is indicative of the dicarboxylic acid molecules in both cocrystals existing in the un-ionized form.
The O1—C7 bond lengths are longer than the 1.210 Å expected for ketones, and the C7—C8 distances are greater than the expected C=C distance of 1.331 Å (Wilson, 1992). These facts are strongly suggestive of resonance delocalization within the ylide molecules. The torsion angles surrounding atom C8 in both structures signify that the environment about this carbanion is distorted trigonal planar. These bond lengths and angles provide conclusive evidence of the presence of unprotonated BPPY in the structures of (I) and (II). Corroborating evidence for the absence of the phosphonium cation has been provided by the 1H NMR spectra of (I) and (II).
In both cases, the P1—C8 and O1—C7 bonds are slightly elongated with respect to the equivalent bonds in the parent ylide, where the P—C bond lengths are 1.716 (5) and 1.725 (4) Å, and the O—C bond lengths are 1.265 (7) and 1.247 (7) Å (two ylide molecules in the asymmetric unit; Kalyanasundari & Panchanatheswaran, 1994). The presence of an exceptionally strong hydrogen bond between the O atoms of the benzoyl groups and an acid H atom of relevant acid molecule (Tables 2 and 4) may account for this disparity.
The non-bonded P1···O1 distances of 2.991 (1) [in (I)] and 2.907 (1) Å [in (II)] are considerably shorter than the sum of the van der Waals radii of phosphorus and oxygen (3.3 Å; Dunitz, 1979), indicating the presence of strong intramolecular interactions between the charged P+ and O− centres of the ylide molecules; this explains the observed cis orientation about the partial C=C double bond in (I) and (II).
A strong hydrogen bond exists between the O2/H2A donor group of the fumaric acid molecule and atom O1 of the ylide molecule (see Table 2). This bond and its symmetry equivalent at (1 − x, 1 − y, 1 − z) link the fumaric acid and ylide molecules as demonstrated in Fig.3.
The secondary interactions for (I) include several C—H···π contacts, the details of which are listed in Table 2. Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C9–C14??, C15–C20 and C1–C6. Two π–π interactions complete the complex network of secondary interactions present in the crystal packing of (I) (Fig.4). Both interactions are 3.994 Å in length and the β angles are 28.09 and 22.59° for the Cg3···Cg2iii and Cg2···Cg3v interactions, respectively.
Table 4 provides details of all the secondary interactions observed in the crystal structure of (II). The strong O2—H1···O1v hydrogen bond and its symmetry equivalent (O2vi—H1vi···O1v) generate a unit comprising a single terephthalic acid molecule and two BPPY molecules (Fig. 6). The similarity of this unit to that observed in (I) (Fig.3) is immediately apparent.
The structure of (II) is further stabilized by several C—H···π interactions, details of which are provided in Table 4. Cg1, Cg2 and Cg3 are the centroids of the rings defined by atoms C9—C14, C21–C26 and C1–C6, respectively.
In conclusion, the cocrystals, (I) and (II), of benzoylmethylenetriphenylphosphorane (BPPY) with fumaric acid and terephthalic acid, respectively, are the first reported examples in which the BPPY ligand remains unprotonated. We attribute this phenomenon to the preferential formation of a strong O—H···O hydrogen bond between the benzoyl O atom of the ylide molecule and the acid H atom of the relevant un-ionized dicarboxylic acid group. These short strong hydrogen bonds result in the formation of units with a 2:1 stoichiometric ratio of BPPY to dicarboxylic acid.