metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Bis­[(di­phenyl­sulfimido)­tri­phenyl­phospho­nium] di-μ-bromo-bis­[di­bromo­palladate(II)]

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: p.f.kelly@lboro.ac.uk

(Received 4 November 2004; accepted 12 November 2004; online 11 December 2004)

The title compound, (C30H25NPS)2[Pd2Br6] or (Ph3PNSPh2)2[Pd2Br6], was crystallized from the reaction of (Ph3PNSPh2)[BPh4] with (PPh4)2[Pd2Br6], giving a salt rather than the intended coordination complex [PdBr3(Ph3PNSPh2)]. The compound crystallizes in the non-centrosymmetric space group Cc with one complete formula unit in the asymmetric unit. One of the two independent cations is disordered. The geometry of the two cations is compared with that of the only previously crystallized example of this cation, viz. its [SbCl6] salt [Reck et al. (1982[Reck, R., Zsolnai, L., Huttner, G., Herzberger, S. & Jochims, J. C. (1982). Chem. Ber. 115, 2981-2996.]). Chem. Ber. 115, 2981–2996]. The bond angles within the P—N—S triad in the two cations in the title compound are narrower than those observed in the literature example, while the S—N bond lengths are slightly longer in the title compound. The P—N bond length in the ordered cation shows excellent agreement with that determined by Reck and co-workers, but the P—N bond lengths are lengthened slightly in the disordered cation. Weak C—H⋯Br interactions create a three-dimensional network, with cations and anions alternating along the crystallographic c direction.

Comment

It has been known for some time that the bromo­sulf­imide Ph2SNBr is capable of undergoing oxidative addition to simple phosphines and sulfides to generate cations such as Ph3PNSPh2+ and Ph2SNSPh2+ (Furukawa et al., 1978[Furukawa, N., Nishikawa, Y., Matsuura, Y., Kakudo, M., Akasaka, T. & Oae, S. (1978). Chem. Lett. pp. 447-450.]). In recent work, we have demonstrated that such reactions may be extended to polyphosphines and selenides, and we have used X-ray crystallography to characterize the novel [1,4-(Ph2PNSPh2)2(C6H4)]2+ and Ph2SNSPh2+ cations (Aucott et al., 2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]). In the light of the relative ease of preparation and stability of such compounds, and given our ability to include a variety of main-group atoms within the basic X—N—Y core, the question of the ability of these cations to act as ligands becomes relevant. The presence of the three potential donor sites is offset by the fact that the units possess a positive charge, which may hamper their ability to coordinate to a metal centre. In order to start to address this question we have undertaken the reaction between (Ph3PNSPh2)[BPh4] and (PPh4)2[Pd2Br6] in order to generate (Ph3PNSPh2)2[Pd2Br6] as the initial product by metathesis. Previous work has shown that the [Pd2Br6]2− anion is a very effective source of the coordinatively unsaturated [PdBr3] unit, which can then coordinate to a range of main-group species (e.g. Kelly et al., 1995[Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1995). J. Chem. Soc. Dalton Trans. pp. 53-59.]). If the Ph3PNSPh2+ cation is capable of acting as a reasonably effective ligand, then previous experience would indicate that subsequent formation of [PdBr3(Ph3PNSPh2)] could be expected, the positive charge on the incoming unit being offset by the fact that the [PdBr3] unit is negatively charged, thereby providing some electrostatic encouragement to the reaction.

[Scheme 1]

Crystallization of the product of the reaction results in orange crystals for which X-ray crystallography reveals the structure (Ph3PNSPh2)2[Pd2Br6], (I[link]), i.e. the simple salt rather than the coordination complex [PdBr3(Ph3PNSPh2)]. The asymmetric unit contains one complete formula unit of (I[link]) (Fig. 1[link]). One of the two independent Ph3PNSPh2+ cations was found to be disordered, and the S and N atoms and the two phenyl rings bonded to atom S2 were modelled as disordered over two sets of positions (see Experimental[link]). The two cations have very similar geometries (Table 1[link]), and compare well with the geometry of the same cation in the structure of (Ph3PNSPh2)[SbCl6]·CH2Cl2 (Table 3[link]) (Reck et al., 1982[Reck, R., Zsolnai, L., Huttner, G., Herzberger, S. & Jochims, J. C. (1982). Chem. Ber. 115, 2981-2996.]). There are small differences between the geometric parameters of the cations in (I[link]) and those in Table 3[link]; clearly the P—N—S bond angle is narrower in both cations present in (I[link]) (including the disordered group) and the S—N bond lengths are slightly longer than that in the literature compound. The P—N bond lengths in the second (disordered) cation in (I[link]) are lengthened compared with the ordered cation in (I[link]) and the literature compound. It should be noted here that restraints were only applied to the geometries of the partially occupied phenyl components of the disordered group, but not to the P—N or S—N bond lengths or to the P—N—S geometry.

Owing to the large number of relatively acidic aryl CH groups, the presence of C—H⋯Br interactions (Table 2[link]) is unsurprising. These interactions have C⋯Br distances in the range ∼3.8–3.9 Å and C—H⋯Br angles greater than 140°; these ranges compare well with the mean value of 3.75 (2) Å for C⋯Br contact distances in Csp2—H⋯Br interactions having C—H⋯Br angles greater than 140° (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond in Structural Chemistry and Biology, pp. 44-68. New York: Oxford University Press Inc.]). These weak interactions create a three-dimensional network, with cations and anions alternating along the crystallographic c direction.

The fact that the cation has not broken into the structure of the bromo-bridged palladium dimer is indicative of the poor donor capabilities of the cation. Of course, this result does not entirely rule out coordination by such species and future work will investigate their reactivity towards other complexes bearing labile ligands. It may prove necessary to use low valent metal reagents such as Pt0, which could induce concomitant reduction of the cations and the formation of anionic species more conducive to coordination, in this case to the resulting PtII centre. Indeed, the question of the nature of the reduction products of such heteronuclear cations is intriguing, and work to assess this process is underway.

[Figure 1]
Figure 1
A view of the components of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms and the minor disorder component have been omitted for clarity.

Experimental

(Ph3PNSPh2)Br was prepared by the reaction of Ph2SNBr with PPh3 in toluene in the same manner as the bisphosphine reactions described by Aucott et al. (2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]). (Ph3PNSPh2)[BPh4] was then precipitated from a methanol solution of (Ph3PNSPh2)Br by addition of Na[BPh4]. (Ph3PNSPh2)[BPh4] and (PPh4)2[Pd2Br6] were reacted in MeCN, producing a precipitate of (PPh4)[BPh4]. The filtrate was evaporated to dryness and redissolved in di­chloro­methane, and the title product was crystallized by diffusion of diethyl ether into this solution.

Crystal data
  • (C30H25NPS)2[Pd2Br6]

  • Mr = 1617.34

  • Monoclinic, Cc

  • a = 12.8250 (13) Å

  • b = 16.2000 (16) Å

  • c = 28.721 (3) Å

  • β = 97.318 (2)°

  • V = 5918.7 (10) Å3

  • Z = 4

  • Dx = 1.815 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12 077 reflections

  • θ = 2.2–28.5°

  • μ = 4.82 mm−1

  • T = 150 (2) K

  • Block, dark orange

  • 0.59 × 0.40 × 0.37 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.104, Tmax = 0.168

  • 24 282 measured reflections

  • 12 979 independent reflections

  • 11 006 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 27.5°

  • h = −16 → 16

  • k = −21 → 21

  • l = −37 → 36

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.01

  • 12 639 reflections

  • 732 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.029P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5943 Friedel pairs

  • Flack parameter = 0.065 (6)

Table 1
Selected geometric parameters (Å, °)

Pd1—Br1 2.4102 (7)
Pd1—Br2 2.4086 (7)
Pd1—Br3 2.4550 (7)
Pd1—Br4 2.4437 (7)
Pd2—Br3 2.4505 (7)
Pd2—Br4 2.4455 (7)
Pd2—Br5 2.4180 (7)
Pd2—Br6 2.4109 (7)
S1—N1 1.616 (4)
S1—C1 1.778 (4)
S1—C7 1.796 (5)
P1—N1 1.609 (4)
P1—C13 1.808 (6)
P1—C19 1.786 (5)
P1—C25 1.787 (5)
P2—N2 1.622 (5)
P2—N2X 1.63 (3)
P2—C43 1.803 (5)
P2—C49 1.797 (6)
P2—C55 1.785 (5)
S2—N2 1.615 (5)
S2—C31 1.789 (5)
S2—C37 1.795 (5)
P1—N1—S1 118.1 (3) 
P2—N2—S2 119.1 (3)

Table 2
Hydrogen-bonding geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Br6i 0.95 3.13 3.909 (6) 140
C17—H17⋯Br2ii 0.95 2.97 3.900 (7) 167
C27—H27⋯Br3iii 0.95 2.93 3.858 (6) 167
C39—H39⋯Br6iv 0.95 2.92 3.827 (8) 161
C59—H59⋯Br4v 0.95 2.93 3.830 (6) 158
Symmetry codes: (i) x-1,y,z; (ii) [x-{\script{1\over 2}},{\script{3\over 2}}-y,z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}},{\script{1\over 2}}+y,z]; (iv) x-1, [1-y, {\script{1\over 2}}+z]; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 3
Selected bond lengths and angle (Å, °) for (Ph2SNPPh3)[SbCl6]·CH2Cl2 (Reck et al., 1982[Reck, R., Zsolnai, L., Huttner, G., Herzberger, S. & Jochims, J. C. (1982). Chem. Ber. 115, 2981-2996.])

S—N 1.596
P—N 1.608
S—C 1.755, 1.761
P—C 1.779, 1.788, 1.797
P—N—S 123.6

The data set for (I) was truncated at 2θ = 55°, as only statistically insignificant data were present above this limit. Atoms N2 and S2 and the phenyl substituents bonded to atom S2 were found to be disordered. These groups were modelled over two sets of positions, giving a refined major occupancy of 88.5 (3)%. The C atoms in the minor component of the disorder model were refined isotropically, with restraints applied to their displacement parameters. Atoms N2X and S2X were refined anisotropically, with restraints applied to their displacement parameters. Restraints were also applied to the geometries of the phenyl substituents in the disordered group. The largest ΔF residual lies 1.03 Å from atom Pd1. H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

It has been known for some time that the bromosulfimide Ph2SNBr is capable of undergoing oxidative addition to simple phosphines and sulfides to generate cations such as Ph3PNSPh2+ and Ph2SNSPh2+ (Furukawa et al., 1978). In recent work, we have demonstrated that such reactions may be extended to polyphosphines and to selenides, and we have used X-ray crystallography to characterize fully the novel [1,4-(Ph2PNSPh2)2(C6H4)]2+ and [Ph2SNSPh2]+ cations (Aucott et al., 2004). In the light of the relative ease of preparation and stability of such compounds, and given our ability to include a variety of main-group atoms within the basic X—N—Y core, the question of their ability to act as ligands becomes relevant. The presence of the three potential donor sites is offset by the fact that the units possess a positive charge, which may hamper their ability to coordinate to a metal centre. In order to start to address this question we have undertaken the reaction between (Ph3PNSPh2)[BPh4] and (PPh4)2[Pd2Br6] in order to generate (Ph3PNSPh2)2[Pd2Br6] as the initial product by metathesis. Previous work has shown that the [Pd2Br6]2− anion is a very effective source of the coordinatively unsaturated [PdBr3] unit, which can then coordinate to a range of main-group species (e.g. Kelly et al., 1995). If the Ph2SNSPh2+ cation is capable of acting as a reasonably effective ligand then previous experience would indicate that subsequent formation of [PdBr3(Ph2SNSPh2)] could be expected, with the positive charge on the incoming unit being offset by the fact that the [PdBr3] unit is negatively charged, thereby providing some electrostatic encouragement to the reaction.

Crystallization of the product of the reaction results in orange crystals for which X-ray crystallography reveals the structure (Ph3PNSPh2)2[Pd2Br6] or, (C30H25NPS)2[Pd2Br6], (I), i.e. the simple salt rather than the coordination complex [PdBr3(Ph3PNSPh2)]. The asymmetric unit contains one complete formula unit of (I) (Fig. 1). One of the two independent [Ph3PNSPh2]+ cations was found to be disordered, and the S and N atoms and the two phenyl rings bonded to atom S2 were modelled as disordered over two sets of positions (see Experimental). The two cations have very similar geometries (Table 1), and also compare well with the geometry of the same cation in the structure of [Ph3PNSPh2][SbCl6]·CH2Cl2 (Table 3) (Reck et al., 1982). There are small differences in the geometries of the cations in (I) compared with those shown in Table 3; clearly the P—N—S bond angle is narrower in both cations present in (I) (including the disordered group) and the S—N bond lengths are slightly longer than seen in the literature compound. The P—N bond lengths in the second (disordered) cation in (I) are lengthened compared with the ordered cation in (I) and the literature compound. It should be noted here that restraints have only been applied to the geometries of the partially occupied Ph rings components of the disordered group, but not to the P—N or S—N bond lengths or to the P—N—S geometry.

Owing to the large number of relatively acidic aryl C—H groups, the presence of C—H···Br interactions (Table 2) is unsurprizing. These interactions have C···Br distances in the range 3.8–3.9 Å and C—H···Br angles greater than 140°; these ranges compare well with the mean value of 3.75 (2) Å for C···Br contact distances in Csp2—H···Br interactions having C—H···Br angles greater than 140° (Desiraju & Steiner, 1999). These weak interactions create a three-dimensional network, with cations and anions alternating along the crystallographic c direction.

The fact that the cation has not broken into the structure of the bromo-bridged palladium dimer is indicative of its poor donor capabilities. Of course this does not entirely rule out coordination by such species and future work will investigate their reactivity towards other complexes bearing labile ligands. ## AUTHOR: Please clarify the next sentence: It may prove necessary to use low valent metal reagents, which could induce concomitant reduction of the cations and the formation of anionic species more conducive to coordination. Indeed, the question of the nature of the reduction products of such heteronuclear cations is intriguing and work to assess this is underway.

Experimental top

(Ph3PNSPh2)Br was prepared by the reaction of Ph2SNBr with PPh3 in toluene in the same manner as the bisphosphine reactions (Aucott et al., 2004). (Ph3PNSPh2)[BPh4] was then precipitated from a methanol solution of (Ph3PNSPh2)Br by addition of Na[BPh4]. (Ph3PNSPh2)[BPh4] and [PPh4]2[Pd2Br6] were reacted in MeCN, producing a precipitate of [PPh4][BPh4]. The filtrate was evaporated to dryness, redissolved in dichloromethane and the title product was crystallized by diethyl ether diffusion into this solution.

Refinement top

The data set was truncated at 2θ = 55°, as only statistically insignificant data were present above this limit. Atoms N2 and S2 and the phenyl rings bonded to S2 were found to be disordered. These groups were modelled over two sets of positions, giving a refined major occupancy of 88.5 (3)%. The C atoms in the minor component of the disorder model were refined isotropically, with restraints applied to their displacement parameters. Atoms N2X and S2X were refined anisotropically, with restraints applied to their displacement parameters. Restraints have also been applied to the geometry of the phenyl rings in the disordered group. The largest ΔF residual of 1.29 e Å−3 lies 1.03 Å from atom Pd1. Aromatic H (C—H = 0.95 Å) atoms were placed in geometric positions and refined using a riding model [with Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms and the minor disorder component have been omitted for clarity.
(I) top
Crystal data top
(C30H25NPS)2[Pd2Br6]F(000) = 3152
Mr = 1617.34Dx = 1.815 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 12077 reflections
a = 12.8250 (13) Åθ = 2.2–28.5°
b = 16.2000 (16) ŵ = 4.82 mm1
c = 28.721 (3) ÅT = 150 K
β = 97.318 (2)°Block, dark orange
V = 5918.7 (10) Å30.59 × 0.40 × 0.37 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
12979 independent reflections
Radiation source: sealed tube11006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω rotation with narrow frames scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.104, Tmax = 0.168k = 2121
24282 measured reflectionsl = 3736
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
12639 reflectionsΔρmax = 1.29 e Å3
732 parametersΔρmin = 0.90 e Å3
519 restraintsAbsolute structure: Flack (1983), 5943 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.065 (6)
Crystal data top
(C30H25NPS)2[Pd2Br6]V = 5918.7 (10) Å3
Mr = 1617.34Z = 4
Monoclinic, CcMo Kα radiation
a = 12.8250 (13) ŵ = 4.82 mm1
b = 16.2000 (16) ÅT = 150 K
c = 28.721 (3) Å0.59 × 0.40 × 0.37 mm
β = 97.318 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
12979 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
11006 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.168Rint = 0.032
24282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.082Δρmax = 1.29 e Å3
S = 1.01Δρmin = 0.90 e Å3
12639 reflectionsAbsolute structure: Flack (1983), 5943 Friedel pairs
732 parametersAbsolute structure parameter: 0.065 (6)
519 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd11.00239 (4)0.64390 (2)0.433146 (18)0.02103 (9)
Pd21.03280 (4)0.61411 (2)0.311737 (18)0.01992 (9)
Br10.88771 (5)0.58759 (4)0.48539 (2)0.03321 (14)
Br21.09863 (5)0.72090 (4)0.49632 (2)0.03064 (14)
Br30.90823 (5)0.57186 (3)0.36521 (2)0.02934 (14)
Br41.11786 (5)0.69452 (4)0.37800 (2)0.03075 (14)
Br50.94835 (5)0.52626 (3)0.25007 (2)0.02818 (13)
Br61.15656 (5)0.66590 (4)0.26231 (2)0.02809 (13)
S10.68188 (10)0.80902 (7)0.23301 (5)0.0185 (3)
P10.53982 (10)0.68618 (8)0.24768 (5)0.0172 (3)
N10.6597 (3)0.7177 (3)0.25220 (15)0.0219 (10)
C10.7563 (3)0.8581 (2)0.28172 (16)0.0198 (11)
C20.7344 (3)0.9409 (2)0.28784 (16)0.0213 (11)
H20.68300.96860.26670.026*
C30.7893 (4)0.9827 (3)0.32564 (17)0.0274 (13)
H30.77441.03920.33080.033*
C40.8654 (4)0.9421 (2)0.35563 (18)0.0277 (12)
H40.90390.97140.38090.033*
C50.8861 (4)0.8593 (3)0.34924 (17)0.0280 (12)
H50.93880.83200.36990.034*
C60.8297 (4)0.8160 (3)0.31252 (16)0.0233 (11)
H60.84120.75870.30860.028*
C70.7767 (4)0.7900 (3)0.19333 (19)0.0218 (11)
C80.7604 (5)0.8310 (4)0.1512 (2)0.0317 (13)
H80.70450.86960.14510.038*
C90.8266 (5)0.8154 (4)0.1179 (2)0.0377 (15)
H90.81620.84290.08850.045*
C100.9085 (5)0.7591 (4)0.1275 (2)0.0348 (14)
H100.95500.74870.10490.042*
C110.9217 (5)0.7181 (4)0.1705 (2)0.0323 (14)
H110.97770.67970.17730.039*
C120.8556 (4)0.7323 (3)0.2028 (2)0.0257 (12)
H120.86340.70280.23170.031*
C130.4656 (4)0.7188 (3)0.19303 (19)0.0232 (12)
C140.3691 (5)0.7560 (4)0.1902 (2)0.0305 (14)
H140.33350.75810.21730.037*
C150.3213 (6)0.7913 (4)0.1476 (3)0.0452 (17)
H150.25410.81660.14560.054*
C160.3751 (6)0.7877 (4)0.1093 (2)0.0475 (19)
H160.34520.81250.08070.057*
C170.4702 (6)0.7496 (4)0.1112 (2)0.0471 (18)
H170.50490.74720.08390.057*
C180.5164 (5)0.7146 (4)0.1522 (2)0.0333 (14)
H180.58240.68750.15320.040*
C190.5508 (4)0.5763 (3)0.25074 (18)0.0204 (11)
C200.6478 (5)0.5399 (3)0.2658 (2)0.0273 (13)
H200.70760.57340.27510.033*
C210.6565 (5)0.4541 (3)0.2670 (2)0.0323 (14)
H210.72260.42920.27700.039*
C220.5698 (5)0.4052 (4)0.2539 (2)0.0370 (15)
H220.57550.34670.25530.044*
C230.4754 (5)0.4420 (4)0.2387 (2)0.0412 (17)
H230.41620.40820.22880.049*
C240.4637 (5)0.5266 (3)0.2375 (2)0.0306 (14)
H240.39690.55060.22770.037*
C250.4716 (4)0.7232 (3)0.29402 (18)0.0193 (11)
C260.4557 (4)0.8084 (3)0.2977 (2)0.0239 (12)
H260.47670.84440.27460.029*
C270.4102 (4)0.8402 (4)0.3344 (2)0.0288 (13)
H270.40170.89820.33690.035*
C280.3767 (4)0.7887 (4)0.3676 (2)0.0295 (13)
H280.34340.81100.39250.035*
C290.3917 (4)0.7038 (4)0.3646 (2)0.0283 (13)
H290.36930.66810.38760.034*
C300.4398 (4)0.6716 (3)0.32778 (19)0.0221 (11)
H300.45080.61380.32580.027*
P20.49777 (10)0.56828 (8)0.51370 (5)0.0202 (3)
S20.35427 (11)0.44673 (8)0.53211 (5)0.0179 (4)0.885 (3)
N20.3774 (4)0.5403 (3)0.51683 (18)0.0206 (10)0.885 (3)
C310.2813 (4)0.4004 (3)0.48158 (18)0.0209 (11)0.885 (3)
C320.2077 (5)0.4452 (3)0.4524 (2)0.0249 (12)0.885 (3)
H320.19630.50200.45810.030*0.885 (3)
C330.1506 (5)0.4049 (3)0.4145 (2)0.0273 (12)0.885 (3)
H330.09990.43430.39380.033*0.885 (3)
C340.1682 (5)0.3221 (3)0.4070 (2)0.0275 (13)0.885 (3)
H340.12840.29470.38140.033*0.885 (3)
C350.2430 (5)0.2783 (3)0.4361 (2)0.0272 (12)0.885 (3)
H350.25440.22150.43040.033*0.885 (3)
C360.3013 (4)0.3177 (3)0.47400 (19)0.0226 (11)0.885 (3)
H360.35340.28860.49410.027*0.885 (3)
C370.2554 (4)0.4619 (3)0.57022 (17)0.0202 (10)0.885 (3)
C380.2680 (4)0.4173 (4)0.61164 (19)0.0252 (11)0.885 (3)
H380.32750.38270.61930.030*0.885 (3)
C390.1916 (4)0.4241 (4)0.64185 (19)0.0296 (12)0.885 (3)
H390.19900.39450.67060.036*0.885 (3)
C400.1047 (4)0.4741 (4)0.6298 (2)0.0272 (12)0.885 (3)
H400.05210.47750.65020.033*0.885 (3)
C410.0936 (4)0.5193 (4)0.5885 (2)0.0256 (11)0.885 (3)
H410.03400.55380.58080.031*0.885 (3)
C420.1703 (5)0.5139 (3)0.55836 (17)0.0215 (11)0.885 (3)
H420.16440.54520.53020.026*0.885 (3)
S2X0.2903 (8)0.5220 (6)0.5170 (4)0.019 (2)0.115 (3)
N2X0.414 (3)0.506 (2)0.5342 (14)0.018 (3)0.115 (3)
C31X0.246 (3)0.431 (2)0.4787 (13)0.023 (2)*0.115 (3)
C32X0.172 (3)0.4482 (17)0.4407 (16)0.026 (2)*0.115 (3)
H32X0.14600.50280.43530.031*0.115 (3)
C33X0.135 (3)0.384 (2)0.4108 (16)0.027 (2)*0.115 (3)
H33X0.07730.39260.38710.032*0.115 (3)
C34X0.183 (4)0.307 (2)0.4157 (17)0.0268 (17)*0.115 (3)
H34X0.15910.26400.39470.032*0.115 (3)
C35X0.265 (4)0.2930 (19)0.4509 (17)0.025 (2)*0.115 (3)
H35X0.29990.24100.45300.030*0.115 (3)
C36X0.297 (3)0.355 (3)0.4832 (13)0.023 (2)*0.115 (3)
H36X0.35280.34560.50780.027*0.115 (3)
C37X0.224 (3)0.501 (3)0.5665 (12)0.0230 (13)*0.115 (3)
C38X0.276 (2)0.450 (3)0.6007 (15)0.0232 (19)*0.115 (3)
H38X0.34300.42760.59730.028*0.115 (3)
C39X0.227 (3)0.432 (3)0.6403 (13)0.027 (2)*0.115 (3)
H39X0.26460.40330.66610.032*0.115 (3)
C40X0.124 (3)0.456 (3)0.6416 (13)0.028 (2)*0.115 (3)
H40X0.08720.43630.66620.033*0.115 (3)
C41X0.073 (2)0.507 (3)0.6074 (15)0.0230 (13)*0.115 (3)
H41X0.00690.53020.61120.028*0.115 (3)
C42X0.121 (3)0.525 (3)0.5675 (13)0.0230 (13)*0.115 (3)
H42X0.08280.55290.54160.028*0.115 (3)
C430.4862 (4)0.6792 (3)0.51151 (19)0.0226 (12)
C440.3890 (4)0.7146 (3)0.49680 (19)0.0242 (12)
H440.32980.68070.48700.029*
C450.3789 (5)0.7996 (3)0.4966 (2)0.0306 (13)
H450.31240.82430.48710.037*
C460.4656 (5)0.8487 (3)0.5102 (2)0.0354 (15)
H460.45890.90710.50950.042*
C470.5625 (5)0.8128 (4)0.5248 (2)0.0391 (16)
H470.62190.84670.53420.047*
C480.5729 (5)0.7282 (4)0.5258 (2)0.0328 (14)
H480.63900.70370.53630.039*
C490.5916 (4)0.5367 (3)0.56226 (18)0.0211 (12)
C500.6936 (5)0.5119 (4)0.5565 (2)0.0319 (14)
H500.71570.51280.52620.038*
C510.7624 (5)0.4862 (4)0.5946 (2)0.0465 (17)
H510.83180.47000.59050.056*
C520.7305 (6)0.4841 (4)0.6385 (2)0.0489 (19)
H520.77780.46630.66480.059*
C530.6307 (6)0.5078 (4)0.6444 (2)0.0445 (17)
H530.60860.50530.67470.053*
C540.5619 (5)0.5350 (4)0.6068 (2)0.0347 (14)
H540.49350.55290.61160.042*
C550.5522 (4)0.5324 (3)0.46318 (18)0.0193 (11)
C560.5860 (4)0.5853 (3)0.4305 (2)0.0244 (12)
H560.57530.64310.43300.029*
C570.6358 (4)0.5541 (4)0.39409 (19)0.0264 (12)
H570.65820.59050.37140.032*
C580.6526 (4)0.4711 (4)0.3908 (2)0.0290 (13)
H580.68770.45040.36610.035*
C590.6193 (4)0.4171 (4)0.4229 (2)0.0282 (13)
H590.63140.35960.42030.034*
C600.5685 (4)0.4469 (3)0.45877 (19)0.0237 (12)
H600.54440.40970.48060.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01828 (19)0.01824 (19)0.0275 (2)0.00010 (16)0.00634 (16)0.00068 (16)
Pd20.01965 (19)0.01595 (19)0.0247 (2)0.00061 (15)0.00510 (16)0.00115 (16)
Br10.0308 (3)0.0386 (3)0.0307 (3)0.0066 (3)0.0059 (3)0.0097 (3)
Br20.0306 (3)0.0325 (3)0.0283 (3)0.0041 (3)0.0018 (3)0.0011 (3)
Br30.0262 (3)0.0292 (3)0.0347 (3)0.0097 (2)0.0120 (2)0.0092 (3)
Br40.0299 (3)0.0310 (3)0.0343 (3)0.0117 (2)0.0159 (3)0.0126 (2)
Br50.0302 (3)0.0251 (3)0.0277 (3)0.0026 (2)0.0024 (2)0.0005 (2)
Br60.0301 (3)0.0293 (3)0.0258 (3)0.0025 (2)0.0074 (2)0.0030 (2)
S10.0165 (6)0.0151 (6)0.0236 (7)0.0025 (5)0.0017 (5)0.0017 (5)
P10.0181 (6)0.0155 (6)0.0178 (7)0.0041 (5)0.0018 (5)0.0016 (5)
N10.024 (2)0.016 (2)0.026 (3)0.0037 (18)0.0007 (19)0.0031 (18)
C10.013 (2)0.023 (3)0.024 (3)0.005 (2)0.007 (2)0.002 (2)
C20.018 (2)0.018 (3)0.029 (3)0.004 (2)0.005 (2)0.001 (2)
C30.028 (3)0.021 (3)0.036 (4)0.009 (2)0.014 (3)0.005 (2)
C40.026 (3)0.029 (3)0.027 (3)0.004 (2)0.000 (2)0.006 (2)
C50.025 (3)0.032 (3)0.025 (3)0.001 (2)0.003 (2)0.000 (2)
C60.026 (3)0.020 (3)0.023 (3)0.002 (2)0.001 (2)0.001 (2)
C70.020 (3)0.015 (2)0.029 (3)0.003 (2)0.003 (2)0.001 (2)
C80.037 (3)0.025 (3)0.033 (4)0.007 (3)0.004 (3)0.008 (2)
C90.047 (4)0.042 (4)0.026 (3)0.006 (3)0.014 (3)0.018 (3)
C100.043 (4)0.033 (3)0.032 (4)0.001 (3)0.016 (3)0.004 (3)
C110.033 (3)0.035 (3)0.028 (3)0.008 (3)0.001 (3)0.002 (3)
C120.030 (3)0.027 (3)0.020 (3)0.008 (2)0.002 (2)0.005 (2)
C130.022 (3)0.024 (3)0.022 (3)0.012 (2)0.001 (2)0.000 (2)
C140.036 (3)0.028 (3)0.026 (3)0.007 (3)0.002 (3)0.002 (2)
C150.048 (4)0.039 (4)0.044 (4)0.003 (3)0.012 (3)0.005 (3)
C160.072 (5)0.040 (4)0.026 (4)0.010 (4)0.013 (4)0.018 (3)
C170.069 (5)0.054 (4)0.018 (4)0.028 (4)0.004 (3)0.001 (3)
C180.036 (3)0.045 (4)0.018 (3)0.012 (3)0.001 (3)0.005 (3)
C190.028 (3)0.015 (2)0.018 (3)0.005 (2)0.003 (2)0.002 (2)
C200.039 (3)0.022 (3)0.020 (3)0.002 (2)0.002 (2)0.001 (2)
C210.043 (4)0.028 (3)0.025 (3)0.006 (3)0.003 (3)0.003 (2)
C220.051 (4)0.021 (3)0.044 (4)0.001 (3)0.024 (3)0.001 (3)
C230.043 (4)0.027 (3)0.058 (5)0.020 (3)0.022 (3)0.007 (3)
C240.024 (3)0.025 (3)0.047 (4)0.007 (2)0.019 (3)0.001 (3)
C250.018 (2)0.022 (3)0.017 (3)0.001 (2)0.003 (2)0.001 (2)
C260.028 (3)0.019 (3)0.024 (3)0.000 (2)0.001 (2)0.003 (2)
C270.028 (3)0.025 (3)0.031 (3)0.002 (2)0.005 (3)0.003 (2)
C280.023 (3)0.039 (3)0.025 (3)0.006 (2)0.002 (2)0.009 (3)
C290.018 (3)0.044 (3)0.024 (3)0.004 (3)0.008 (2)0.005 (3)
C300.021 (3)0.025 (3)0.021 (3)0.002 (2)0.001 (2)0.003 (2)
P20.0189 (7)0.0214 (7)0.0213 (8)0.0077 (5)0.0062 (5)0.0052 (5)
S20.0174 (7)0.0141 (7)0.0222 (8)0.0030 (5)0.0018 (6)0.0017 (5)
N20.021 (2)0.016 (2)0.025 (3)0.0028 (19)0.002 (2)0.006 (2)
C310.018 (2)0.023 (2)0.022 (2)0.0038 (18)0.0041 (18)0.0042 (18)
C320.025 (2)0.025 (2)0.025 (2)0.0028 (18)0.003 (2)0.0009 (18)
C330.028 (2)0.029 (2)0.025 (2)0.0016 (19)0.0001 (18)0.0008 (19)
C340.027 (2)0.030 (2)0.025 (2)0.002 (2)0.0002 (19)0.002 (2)
C350.027 (2)0.028 (2)0.026 (2)0.0022 (19)0.0020 (19)0.0039 (19)
C360.022 (2)0.023 (2)0.022 (2)0.0022 (19)0.0048 (18)0.0020 (18)
C370.0193 (19)0.021 (2)0.020 (2)0.0029 (18)0.0001 (18)0.0009 (18)
C380.025 (2)0.026 (2)0.025 (2)0.0014 (19)0.0045 (19)0.0060 (19)
C390.031 (2)0.032 (2)0.027 (2)0.001 (2)0.007 (2)0.0043 (19)
C400.026 (2)0.029 (2)0.028 (2)0.0040 (19)0.007 (2)0.0010 (19)
C410.025 (2)0.025 (2)0.026 (2)0.0018 (19)0.0021 (19)0.0036 (19)
C420.023 (2)0.020 (2)0.021 (2)0.0040 (18)0.0007 (19)0.0018 (18)
S2X0.018 (4)0.016 (4)0.024 (5)0.002 (3)0.004 (4)0.004 (4)
N2X0.017 (5)0.016 (6)0.023 (6)0.001 (5)0.006 (5)0.002 (6)
C430.025 (3)0.024 (3)0.021 (3)0.009 (2)0.009 (2)0.007 (2)
C440.025 (3)0.022 (3)0.025 (3)0.010 (2)0.001 (2)0.006 (2)
C450.033 (3)0.027 (3)0.032 (3)0.002 (2)0.005 (3)0.001 (2)
C460.050 (4)0.016 (3)0.045 (4)0.007 (3)0.025 (3)0.003 (3)
C470.038 (3)0.027 (3)0.055 (4)0.020 (3)0.015 (3)0.016 (3)
C480.027 (3)0.032 (3)0.042 (4)0.009 (2)0.012 (3)0.012 (3)
C490.033 (3)0.017 (3)0.014 (3)0.010 (2)0.007 (2)0.001 (2)
C500.026 (3)0.050 (4)0.018 (3)0.011 (3)0.002 (2)0.001 (3)
C510.041 (4)0.063 (5)0.034 (4)0.001 (3)0.003 (3)0.004 (3)
C520.067 (5)0.045 (4)0.028 (4)0.012 (4)0.019 (3)0.013 (3)
C530.074 (5)0.044 (4)0.016 (3)0.000 (4)0.007 (3)0.002 (3)
C540.045 (4)0.036 (3)0.023 (3)0.003 (3)0.005 (3)0.000 (3)
C550.016 (2)0.023 (3)0.017 (3)0.004 (2)0.002 (2)0.006 (2)
C560.023 (3)0.024 (3)0.025 (3)0.003 (2)0.003 (2)0.000 (2)
C570.030 (3)0.034 (3)0.015 (3)0.005 (2)0.004 (2)0.008 (2)
C580.024 (3)0.047 (4)0.016 (3)0.006 (3)0.004 (2)0.010 (3)
C590.033 (3)0.027 (3)0.024 (3)0.001 (2)0.000 (2)0.005 (2)
C600.024 (3)0.026 (3)0.020 (3)0.003 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
Pd1—Br12.4102 (7)C31—C361.386 (4)
Pd1—Br22.4086 (7)C32—C331.395 (4)
Pd1—Br32.4550 (7)C32—H320.9500
Pd1—Br42.4437 (7)C33—C341.383 (4)
Pd2—Br32.4505 (7)C33—H330.9500
Pd2—Br42.4455 (7)C34—C351.385 (4)
Pd2—Br52.4180 (7)C34—H340.9500
Pd2—Br62.4109 (7)C35—C361.393 (4)
S1—N11.616 (4)C35—H350.9500
S1—C11.778 (4)C36—H360.9500
S1—C71.796 (5)C37—C381.384 (4)
P1—N11.609 (4)C37—C421.385 (4)
P1—C131.808 (6)C38—C391.393 (4)
P1—C191.786 (5)C38—H380.9500
P1—C251.787 (5)C39—C401.385 (4)
C1—C61.385 (4)C39—H390.9500
C1—C21.388 (4)C40—C411.386 (4)
C2—C31.392 (4)C40—H400.9500
C2—H20.9500C41—C421.394 (4)
C3—C41.383 (4)C41—H410.9500
C3—H30.9500C42—H420.9500
C4—C51.385 (4)S2X—N2X1.62 (4)
C4—H40.9500S2X—C37X1.78 (3)
C5—C61.390 (4)S2X—C31X1.89 (3)
C5—H50.9500C31X—C36X1.386 (5)
C6—H60.9500C31X—C32X1.386 (5)
C7—C81.373 (8)C32X—C33X1.393 (5)
C7—C121.379 (7)C32X—H32X0.9500
C8—C91.381 (8)C33X—C34X1.385 (5)
C8—H80.9500C33X—H33X0.9500
C9—C101.391 (8)C34X—C35X1.385 (5)
C9—H90.9500C34X—H34X0.9500
C10—C111.395 (8)C35X—C36X1.393 (5)
C10—H100.9500C35X—H35X0.9500
C11—C121.354 (8)C36X—H36X0.9500
C11—H110.9500C37X—C42X1.386 (5)
C12—H120.9500C37X—C38X1.386 (5)
C13—C141.370 (8)C38X—C39X1.393 (5)
C13—C181.413 (8)C38X—H38X0.9500
C14—C151.418 (9)C39X—C40X1.385 (5)
C14—H140.9500C39X—H39X0.9500
C15—C161.373 (10)C40X—C41X1.385 (5)
C15—H150.9500C40X—H40X0.9500
C16—C171.362 (10)C41X—C42X1.394 (5)
C16—H160.9500C41X—H41X0.9500
C17—C181.373 (9)C42X—H42X0.9500
C17—H170.9500C43—C481.386 (7)
C18—H180.9500C43—C441.389 (8)
C19—C241.392 (7)C44—C451.384 (7)
C19—C201.394 (8)C44—H440.9500
C20—C211.395 (8)C45—C461.382 (8)
C20—H200.9500C45—H450.9500
C21—C221.378 (9)C46—C471.388 (9)
C21—H210.9500C46—H460.9500
C22—C231.370 (9)C47—C481.376 (8)
C22—H220.9500C47—H470.9500
C23—C241.378 (8)C48—H480.9500
C23—H230.9500C49—C541.382 (8)
C24—H240.9500C49—C501.398 (8)
C25—C301.381 (7)C50—C511.379 (9)
C25—C261.400 (7)C50—H500.9500
C26—C271.367 (8)C51—C521.375 (10)
C26—H260.9500C51—H510.9500
C27—C281.377 (8)C52—C531.366 (10)
C27—H270.9500C52—H520.9500
C28—C291.393 (8)C53—C541.377 (9)
C28—H280.9500C53—H530.9500
C29—C301.392 (8)C54—H540.9500
C29—H290.9500C55—C561.381 (7)
C30—H300.9500C55—C601.409 (7)
P2—N21.622 (5)C56—C571.389 (8)
P2—N2X1.63 (3)C56—H560.9500
P2—C431.803 (5)C57—C581.366 (8)
P2—C491.797 (6)C57—H570.9500
P2—C551.785 (5)C58—C591.378 (8)
S2—N21.615 (5)C58—H580.9500
S2—C311.789 (5)C59—C601.373 (8)
S2—C371.795 (5)C59—H590.9500
C31—C321.385 (4)C60—H600.9500
Br2—Pd1—Br191.25 (3)C36—C31—S2116.4 (4)
Br2—Pd1—Br491.13 (2)C31—C32—C33118.5 (4)
Br1—Pd1—Br4177.15 (3)C31—C32—H32120.8
Br2—Pd1—Br3176.30 (3)C33—C32—H32120.8
Br1—Pd1—Br392.15 (2)C34—C33—C32119.7 (4)
Br4—Pd1—Br385.51 (2)C34—C33—H33120.1
Br6—Pd2—Br592.33 (3)C32—C33—H33120.1
Br6—Pd2—Br490.63 (2)C33—C34—C35121.1 (4)
Br5—Pd2—Br4175.85 (3)C33—C34—H34119.5
Br6—Pd2—Br3175.51 (3)C35—C34—H34119.5
Br5—Pd2—Br391.59 (2)C34—C35—C36120.0 (4)
Br4—Pd2—Br385.57 (2)C34—C35—H35120.0
Pd2—Br3—Pd194.09 (2)C36—C35—H35120.0
Pd1—Br4—Pd294.51 (2)C31—C36—C35118.2 (4)
N1—S1—C1103.9 (2)C31—C36—H36120.9
N1—S1—C7102.8 (2)C35—C36—H36120.9
C1—S1—C7103.7 (2)C38—C37—C42122.1 (4)
N1—P1—C19104.1 (2)C38—C37—S2116.0 (4)
N1—P1—C25112.7 (2)C42—C37—S2121.9 (4)
C19—P1—C25110.0 (2)C37—C38—C39118.6 (4)
N1—P1—C13111.6 (2)C37—C38—H38120.7
C19—P1—C13111.3 (2)C39—C38—H38120.7
C25—P1—C13107.2 (2)C40—C39—C38119.9 (4)
P1—N1—S1118.1 (3)C40—C39—H39120.1
C6—C1—C2121.8 (4)C38—C39—H39120.1
C6—C1—S1122.4 (3)C39—C40—C41120.9 (4)
C2—C1—S1115.8 (3)C39—C40—H40119.5
C1—C2—C3118.6 (3)C41—C40—H40119.5
C1—C2—H2120.7C40—C41—C42119.7 (4)
C3—C2—H2120.7C40—C41—H41120.2
C4—C3—C2120.1 (4)C42—C41—H41120.2
C4—C3—H3120.0C37—C42—C41118.8 (4)
C2—C3—H3120.0C37—C42—H42120.6
C3—C4—C5120.7 (4)C41—C42—H42120.6
C3—C4—H4119.7N2X—S2X—C37X106 (2)
C5—C4—H4119.7N2X—S2X—C31X105.2 (18)
C4—C5—C6119.9 (4)C37X—S2X—C31X100 (2)
C4—C5—H5120.0P2—N2X—S2X117 (2)
C6—C5—H5120.0C36X—C31X—C32X121.8 (7)
C1—C6—C5118.8 (4)C36X—C31X—S2X122 (3)
C1—C6—H6120.6C32X—C31X—S2X115 (3)
C5—C6—H6120.6C31X—C32X—C33X118.4 (6)
C8—C7—C12121.9 (5)C31X—C32X—H32X120.8
C8—C7—S1115.9 (4)C33X—C32X—H32X120.8
C12—C7—S1122.0 (4)C34X—C33X—C32X119.8 (6)
C7—C8—C9118.9 (5)C34X—C33X—H33X120.1
C7—C8—H8120.6C32X—C33X—H33X120.1
C9—C8—H8120.6C35X—C34X—C33X120.8 (6)
C8—C9—C10119.9 (5)C35X—C34X—H34X119.6
C8—C9—H9120.1C33X—C34X—H34X119.6
C10—C9—H9120.1C34X—C35X—C36X119.9 (5)
C9—C10—C11119.4 (5)C34X—C35X—H35X120.1
C9—C10—H10120.3C36X—C35X—H35X120.1
C11—C10—H10120.3C31X—C36X—C35X118.6 (5)
C12—C11—C10120.7 (5)C31X—C36X—H36X120.7
C12—C11—H11119.7C35X—C36X—H36X120.7
C10—C11—H11119.7C42X—C37X—C38X121.9 (7)
C11—C12—C7119.2 (5)C42X—C37X—S2X121 (3)
C11—C12—H12120.4C38X—C37X—S2X116 (3)
C7—C12—H12120.4C37X—C38X—C39X118.5 (6)
C14—C13—C18118.8 (5)C37X—C38X—H38X120.7
C14—C13—P1123.4 (4)C39X—C38X—H38X120.7
C18—C13—P1117.3 (4)C40X—C39X—C38X119.6 (6)
C13—C14—C15121.0 (6)C40X—C39X—H39X120.2
C13—C14—H14119.5C38X—C39X—H39X120.2
C15—C14—H14119.5C39X—C40X—C41X120.7 (7)
C16—C15—C14118.0 (6)C39X—C40X—H40X119.7
C16—C15—H15121.0C41X—C40X—H40X119.7
C14—C15—H15121.0C40X—C41X—C42X119.7 (6)
C17—C16—C15121.7 (6)C40X—C41X—H41X120.1
C17—C16—H16119.1C42X—C41X—H41X120.1
C15—C16—H16119.1C37X—C42X—C41X118.3 (6)
C16—C17—C18120.6 (6)C37X—C42X—H42X120.9
C16—C17—H17119.7C41X—C42X—H42X120.8
C18—C17—H17119.7C48—C43—C44120.5 (5)
C17—C18—C13119.9 (6)C48—C43—P2120.1 (4)
C17—C18—H18120.1C44—C43—P2119.3 (4)
C13—C18—H18120.1C45—C44—C43119.5 (5)
C24—C19—C20119.5 (5)C45—C44—H44120.2
C24—C19—P1120.5 (4)C43—C44—H44120.2
C20—C19—P1119.9 (4)C46—C45—C44120.0 (5)
C19—C20—C21119.7 (5)C46—C45—H45120.0
C19—C20—H20120.2C44—C45—H45120.0
C21—C20—H20120.2C45—C46—C47120.0 (5)
C22—C21—C20120.5 (6)C45—C46—H46120.0
C22—C21—H21119.8C47—C46—H46120.0
C20—C21—H21119.8C48—C47—C46120.3 (5)
C23—C22—C21119.1 (5)C48—C47—H47119.8
C23—C22—H22120.5C46—C47—H47119.8
C21—C22—H22120.5C47—C48—C43119.5 (6)
C22—C23—C24122.0 (6)C47—C48—H48120.2
C22—C23—H23119.0C43—C48—H48120.2
C24—C23—H23119.0C54—C49—C50118.4 (5)
C23—C24—C19119.2 (6)C54—C49—P2119.2 (4)
C23—C24—H24120.4C50—C49—P2122.3 (4)
C19—C24—H24120.4C51—C50—C49120.4 (6)
C30—C25—C26118.9 (5)C51—C50—H50119.8
C30—C25—P1122.4 (4)C49—C50—H50119.8
C26—C25—P1118.5 (4)C52—C51—C50120.0 (7)
C27—C26—C25120.8 (5)C52—C51—H51120.0
C27—C26—H26119.6C50—C51—H51120.0
C25—C26—H26119.6C53—C52—C51119.9 (6)
C26—C27—C28120.4 (5)C53—C52—H52120.0
C26—C27—H27119.8C51—C52—H52120.0
C28—C27—H27119.8C52—C53—C54120.7 (6)
C27—C28—C29119.9 (5)C52—C53—H53119.7
C27—C28—H28120.0C54—C53—H53119.7
C29—C28—H28120.0C53—C54—C49120.5 (6)
C28—C29—C30119.6 (5)C53—C54—H54119.8
C28—C29—H29120.2C49—C54—H54119.8
C30—C29—H29120.2C56—C55—C60119.1 (5)
C25—C30—C29120.4 (5)C56—C55—P2122.6 (4)
C25—C30—H30119.8C60—C55—P2118.1 (4)
C29—C30—H30119.8C55—C56—C57120.0 (5)
N2—P2—C55115.3 (3)C55—C56—H56120.0
N2X—P2—C55115.7 (13)C57—C56—H56120.0
N2—P2—C49115.2 (3)C58—C57—C56120.1 (5)
N2X—P2—C4987.1 (15)C58—C57—H57119.9
C55—P2—C49104.2 (2)C56—C57—H57119.9
N2—P2—C43101.9 (2)C57—C58—C59120.9 (5)
N2X—P2—C43124.8 (13)C57—C58—H58119.6
C55—P2—C43109.6 (2)C59—C58—H58119.6
C49—P2—C43110.8 (2)C60—C59—C58119.7 (5)
N2—S2—C31105.6 (3)C60—C59—H59120.1
N2—S2—C37101.9 (3)C58—C59—H59120.1
C31—S2—C37102.4 (3)C59—C60—C55120.2 (5)
P2—N2—S2119.1 (3)C59—C60—H60119.9
C32—C31—C36122.5 (4)C55—C60—H60119.9
C32—C31—S2121.1 (4)
Br5—Pd2—Br3—Pd1172.73 (2)C32—C31—C36—C351.6 (9)
Br4—Pd2—Br3—Pd14.23 (2)S2—C31—C36—C35177.4 (5)
Br1—Pd1—Br3—Pd2174.12 (2)C34—C35—C36—C310.8 (10)
Br4—Pd1—Br3—Pd24.24 (2)N2—S2—C37—C38135.6 (5)
Br2—Pd1—Br4—Pd2177.31 (2)C31—S2—C37—C38115.3 (5)
Br3—Pd1—Br4—Pd24.25 (2)N2—S2—C37—C4245.8 (5)
Br6—Pd2—Br4—Pd1178.14 (2)C31—S2—C37—C4263.3 (5)
Br3—Pd2—Br4—Pd14.26 (2)C42—C37—C38—C391.0 (9)
C19—P1—N1—S1158.7 (3)S2—C37—C38—C39177.6 (5)
C25—P1—N1—S182.1 (3)C37—C38—C39—C400.7 (10)
C13—P1—N1—S138.5 (4)C38—C39—C40—C411.5 (11)
C1—S1—N1—P1126.0 (3)C39—C40—C41—C420.6 (10)
C7—S1—N1—P1126.1 (3)C38—C37—C42—C411.9 (9)
N1—S1—C1—C636.1 (5)S2—C37—C42—C41176.6 (5)
C7—S1—C1—C671.1 (5)C40—C41—C42—C371.1 (9)
N1—S1—C1—C2142.2 (4)C37X—S2X—N2X—P2143 (3)
C7—S1—C1—C2110.6 (4)C31X—S2X—N2X—P2111 (3)
C6—C1—C2—C31.1 (7)N2—P2—N2X—S2X1.1 (6)
S1—C1—C2—C3179.4 (4)C55—P2—N2X—S2X95 (2)
C1—C2—C3—C41.3 (7)C49—P2—N2X—S2X160 (2)
C2—C3—C4—C51.7 (8)C43—P2—N2X—S2X47 (3)
C3—C4—C5—C60.3 (9)N2X—S2X—C31X—C36X25 (5)
C2—C1—C6—C53.0 (8)C37X—S2X—C31X—C36X85 (4)
S1—C1—C6—C5178.8 (4)N2X—S2X—C31X—C32X145 (3)
C4—C5—C6—C12.6 (8)C37X—S2X—C31X—C32X106 (4)
N1—S1—C7—C8136.2 (4)C36X—C31X—C32X—C33X11 (7)
C1—S1—C7—C8115.8 (4)S2X—C31X—C32X—C33X180 (4)
N1—S1—C7—C1238.3 (5)C31X—C32X—C33X—C34X8 (7)
C1—S1—C7—C1269.8 (5)C32X—C33X—C34X—C35X2 (9)
C12—C7—C8—C91.6 (9)C33X—C34X—C35X—C36X3 (9)
S1—C7—C8—C9176.0 (5)C32X—C31X—C36X—C35X6 (7)
C7—C8—C9—C100.4 (9)S2X—C31X—C36X—C35X175 (4)
C8—C9—C10—C111.0 (10)C34X—C35X—C36X—C31X1 (8)
C9—C10—C11—C120.2 (9)N2X—S2X—C37X—C42X166 (4)
C10—C11—C12—C72.1 (9)C31X—S2X—C37X—C42X85 (4)
C8—C7—C12—C112.9 (9)N2X—S2X—C37X—C38X22 (4)
S1—C7—C12—C11177.0 (4)C31X—S2X—C37X—C38X87 (4)
N1—P1—C13—C14131.0 (4)C42X—C37X—C38X—C39X9 (6)
C19—P1—C13—C14113.1 (5)S2X—C37X—C38X—C39X180 (4)
C25—P1—C13—C147.1 (5)C37X—C38X—C39X—C40X8 (7)
N1—P1—C13—C1841.0 (5)C38X—C39X—C40X—C41X9 (7)
C19—P1—C13—C1874.8 (5)C39X—C40X—C41X—C42X10 (7)
C25—P1—C13—C18164.9 (4)C38X—C37X—C42X—C41X9 (6)
C18—C13—C14—C151.4 (8)S2X—C37X—C42X—C41X179 (4)
P1—C13—C14—C15170.6 (5)C40X—C41X—C42X—C37X10 (6)
C13—C14—C15—C160.5 (9)N2—P2—C43—C48156.0 (5)
C14—C15—C16—C171.9 (10)N2X—P2—C43—C48134.5 (18)
C15—C16—C17—C181.3 (10)C55—P2—C43—C4881.4 (5)
C16—C17—C18—C130.7 (9)C49—P2—C43—C4833.0 (5)
C14—C13—C18—C172.0 (8)N2—P2—C43—C4421.9 (5)
P1—C13—C18—C17170.5 (5)N2X—P2—C43—C4443.4 (19)
N1—P1—C19—C24165.3 (4)C55—P2—C43—C44100.7 (5)
C25—P1—C19—C2473.7 (5)C49—P2—C43—C44144.9 (4)
C13—P1—C19—C2444.9 (5)C48—C43—C44—C450.1 (8)
N1—P1—C19—C2013.6 (5)P2—C43—C44—C45177.8 (4)
C25—P1—C19—C20107.4 (5)C43—C44—C45—C461.1 (9)
C13—P1—C19—C20134.0 (4)C44—C45—C46—C471.1 (9)
C24—C19—C20—C210.5 (8)C45—C46—C47—C480.1 (10)
P1—C19—C20—C21178.5 (4)C46—C47—C48—C430.9 (10)
C19—C20—C21—C220.5 (9)C44—C43—C48—C470.9 (9)
C20—C21—C22—C231.2 (9)P2—C43—C48—C47178.8 (5)
C21—C22—C23—C241.8 (10)N2—P2—C49—C5435.8 (5)
C22—C23—C24—C191.8 (10)N2X—P2—C49—C5447.2 (14)
C20—C19—C24—C231.1 (8)C55—P2—C49—C54163.0 (4)
P1—C19—C24—C23177.8 (5)C43—P2—C49—C5479.2 (5)
N1—P1—C25—C30112.1 (4)N2—P2—C49—C50142.9 (5)
C19—P1—C25—C303.5 (5)N2X—P2—C49—C50131.5 (14)
C13—P1—C25—C30124.7 (4)C55—P2—C49—C5015.6 (5)
N1—P1—C25—C2663.9 (5)C43—P2—C49—C50102.1 (5)
C19—P1—C25—C26179.6 (4)C54—C49—C50—C510.2 (9)
C13—P1—C25—C2659.3 (5)P2—C49—C50—C51178.4 (5)
C30—C25—C26—C270.6 (8)C49—C50—C51—C520.6 (10)
P1—C25—C26—C27175.6 (4)C50—C51—C52—C530.2 (11)
C25—C26—C27—C281.7 (8)C51—C52—C53—C541.1 (11)
C26—C27—C28—C291.7 (8)C52—C53—C54—C491.9 (10)
C27—C28—C29—C300.5 (8)C50—C49—C54—C531.5 (9)
C26—C25—C30—C290.6 (8)P2—C49—C54—C53177.2 (5)
P1—C25—C30—C29176.7 (4)N2—P2—C55—C56118.7 (4)
C28—C29—C30—C250.6 (8)N2X—P2—C55—C56152.1 (17)
C31—S2—N2—P2114.2 (4)C49—P2—C55—C56114.1 (5)
C37—S2—N2—P2139.1 (3)C43—P2—C55—C564.5 (5)
N2X—P2—N2—S222 (3)N2—P2—C55—C6066.5 (5)
C55—P2—N2—S276.2 (4)N2X—P2—C55—C6033.1 (17)
C49—P2—N2—S245.2 (4)C49—P2—C55—C6060.7 (4)
C43—P2—N2—S2165.2 (3)C43—P2—C55—C60179.3 (4)
N2—S2—C31—C3236.9 (6)C60—C55—C56—C570.2 (8)
C37—S2—C31—C3269.4 (5)P2—C55—C56—C57174.6 (4)
N2—S2—C31—C36144.2 (4)C55—C56—C57—C580.9 (8)
C37—S2—C31—C36109.5 (5)C56—C57—C58—C591.0 (8)
C36—C31—C32—C331.0 (9)C57—C58—C59—C600.0 (8)
S2—C31—C32—C33177.8 (5)C58—C59—C60—C551.1 (8)
C31—C32—C33—C340.3 (10)C56—C55—C60—C591.2 (8)
C32—C33—C34—C351.0 (12)P2—C55—C60—C59173.8 (4)
C33—C34—C35—C360.5 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Br6i0.953.133.909 (6)140
C17—H17···Br2ii0.952.973.900 (7)167
C27—H27···Br3iii0.952.933.858 (6)167
C39—H39···Br6iv0.952.923.827 (8)161
C59—H59···Br4v0.952.933.830 (6)158
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z; (iv) x1, y+1, z+1/2; (v) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C30H25NPS)2[Pd2Br6]
Mr1617.34
Crystal system, space groupMonoclinic, Cc
Temperature (K)150
a, b, c (Å)12.8250 (13), 16.2000 (16), 28.721 (3)
β (°) 97.318 (2)
V3)5918.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)4.82
Crystal size (mm)0.59 × 0.40 × 0.37
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.104, 0.168
No. of measured, independent and
observed [I > 2σ(I)] reflections
24282, 12979, 11006
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.01
No. of reflections12639
No. of parameters732
No. of restraints519
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.90
Absolute structureFlack (1983), 5943 Friedel pairs
Absolute structure parameter0.065 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL and local programs.

Selected geometric parameters (Å, º) top
Pd1—Br12.4102 (7)P1—C191.786 (5)
Pd1—Br22.4086 (7)P1—C251.787 (5)
Pd1—Br32.4550 (7)P2—N21.622 (5)
Pd1—Br42.4437 (7)P2—N2X1.63 (3)
Pd2—Br32.4505 (7)P2—C431.803 (5)
Pd2—Br42.4455 (7)P2—C491.797 (6)
Pd2—Br52.4180 (7)P2—C551.785 (5)
Pd2—Br62.4109 (7)S2—N21.615 (5)
S1—N11.616 (4)S2—C311.789 (5)
S1—C11.778 (4)S2—C371.795 (5)
S1—C71.796 (5)S2X—N2X1.62 (4)
P1—N11.609 (4)S2X—C37X1.78 (3)
P1—C131.808 (6)S2X—C31X1.89 (3)
P1—N1—S1118.1 (3)P2—N2X—S2X117 (2)
P2—N2—S2119.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Br6i0.953.133.909 (6)140
C17—H17···Br2ii0.952.973.900 (7)167
C27—H27···Br3iii0.952.933.858 (6)167
C39—H39···Br6iv0.952.923.827 (8)161
C59—H59···Br4v0.952.933.830 (6)158
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z; (iv) x1, y+1, z+1/2; (v) x1/2, y1/2, z.
Selected bond lengths and angle (Å, °) taken from [Ph2SNPPh3][SbCl6]·CH2Cl2 (Reck et al., 1982). top
S—N1.596
P—N1.608
S—C1.755, 1.761
P—C1.779, 1.788, 1.797
P—N—S123.6
 

Acknowledgements

The authors acknowledge the EPSRC for postdoctoral support (LMG) and Johnson Matthey for loans of precious metals.

References

First citationAucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959–966.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond in Structural Chemistry and Biology, pp. 44–68. New York: Oxford University Press Inc.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFurukawa, N., Nishikawa, Y., Matsuura, Y., Kakudo, M., Akasaka, T. & Oae, S. (1978). Chem. Lett. pp. 447–450.  Google Scholar
First citationKelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1995). J. Chem. Soc. Dalton Trans. pp. 53–59.  Google Scholar
First citationReck, R., Zsolnai, L., Huttner, G., Herzberger, S. & Jochims, J. C. (1982). Chem. Ber. 115, 2981–2996.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds