organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

N-(Di­phenyl­selenio)di­phenyl­sulfimidium tetra­phenyl­borate

aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: p.f.kelly@lboro.ac.uk

(Received 11 November 2004; accepted 16 December 2004; online 22 January 2005)

The title compound, C24H20NSSe+·C24H20B, exhibits disorder (S/Se scrambling) of the chalcogen sites within the S—N—Se triad. Similar disorder was observed in the bromide salt [Aucott, Bailey, Elsegood, Gilby, Holmes, Kelly, Papageorgiou & Pedrón-Haba (2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]). New J. Chem. pp. 959–966]. The S—N and Se—N bond lengths are 1.6735 (15) and 1.8045 (14) Å, respectively. Whereas the chalcogens in the bromide salt are involved in S⋯Br and Se⋯Br interactions of very similar distances, the scrambled S and Se sites in the title compound are involved in distinct non-bonded inter­actions. The site predominantly occupied by sulfur is involved in C—H⋯S/Se interactions, while the site pre­dominantly occupied by selenium is involved in Se/S⋯π interactions.

Comment

Until our recent investigations extending the chemistry of homochalcogen cationic sulfimide derivatives, such as [Ph2SNSPh2]+, to mixed chalcogen species had not been reported. In synthesizing and fully characterizing [Ph2SNSePh2]Br and [1,4-(PhSNSePh2)2C6H4][BPh4]2, we were able to obtain the first insight into the structure of N-seleniosulfimidium systems, which represent new additions to the general family of mixed S/Se—N compounds (Aucott et al., 2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]).

In the case of [Ph2SNSePh2]Br (Aucott et al., 2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]), X-ray crystallography revealed Se—N and S—N bond lengths of 1.832 (3) and 1.678 (3) Å, respectively, with an S—N—Se angle of 107.61 (15)°, although disorder within the system means that there is some scrambling of the S and Se sites, the refined major occupancy of the disordered chalcogen sites being 83.2 (2)%. This suggests that the true Se—N distance in the system is actually longer than that quoted, which, intriguingly, places the bond within the range normally associated with Se—N single bonds. By way of illustration, an Se—N length of 1.844 (3) Å has been reported for (Me3SiNSN)2Se (Konu et al., 2002[Konu, J., Maaninen, A., Paananen, K., Ingman, P., Laitinen, R. S., Chivers, T. & Valkonen, J. (2002). Inorg. Chem. 41, 1430-1435.]), while single-bond lengths of 1.827 (5) and 1.869 (2) Å have also been observed in OSN–Se–NSO (Haas et al., 1991[Haas, A., Kasprowski, J., Angermund, K., Betz, P., Kruger, C., Tsay, Y.-H. & Werner, S. (1991). Chem. Ber. 124, 1895-1906.]) and (Me3Si)2N–Se–N(SiMe3)2 (Björgvinsson et al., 1990[Björgvinsson, M., Roesky, H. W., Pauer, F., Stalke, D. & Sheldrick, G. M. (1990). Inorg. Chem. 29, 5140-5143.]), respectively.

In the case of [1,4-(PhSNSePh2)2C6H4][BPh4]2 (Aucott et al., 2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]), X-ray crystallography revealed a structure with no disorder (but with an associated reduction in symmetry) and an Se—N bond length of 1.814 (2) Å. This again is long, more akin to an Se—N single bond, albeit shorter than in [Ph2SNSePh2]Br. In order to shed further light on these systems, we have now prepared and crystallized the title compound, (I[link]) (Fig. 1[link]).

[Scheme 1]

Compound (I[link]) crystallizes in a centrosymmetric space group with one complete formula unit in the asymmetric unit. The structure exhibits scrambling of the chalcogen sites, as was observed in the bromide salt [refined occupancies 85.21 (11):14.79 (11)%]. In (I[link]), the Se—N and S—N bond lengths are 1.8045 (14) and 1.6735 (15) Å, respectively, with an S—N—Se angle of 109.71 (8)° (Table 1[link]). The Se—N bond length is clearly shorter and the bond angle wider than was observed in the disordered bromide salt.

There are non-bonded interactions between the cations and anions in both the bromide salt and in (I[link]). In the bromide salt, cation–anion interactions take the form of non-bonded contacts between the Br anion and the chalcogen atoms. There are three interactions: S1⋯Br1 of 3.4550 (8) Å, Se1⋯Br1 of 3.3208 (5) Å and Se1⋯Br1i of 3.3993 (5) Å [symmetry code: (i) 1 − x, 1 − y, −z]. In the following discussion of the intermolecular interactions in (I[link]), only those of the major disorder component will be highlighted (the same interactions apply to the minor disorder component, with Se and S atoms interchanged).

Atom S1 is involved in a C—H⋯S interaction (C36—H36⋯S1), with C⋯S 3.8276 (19) Å, H⋯S 2.92 Å and C—H⋯S 161°. Atom Se1 participates in an Se⋯π interaction with one phenyl ring of the BPh4 anion, with atom Se1 lying 3.1503 (9) Å from the least-squares plane of the aromatic ring containing atoms C43–C48 (Fig. 1[link]). The Se⋯C distances between atom Se1 and the C atoms of the phenyl ring range from 3.3327 (18) (C46) to 3.6239 (16) Å (C43), averaging 3.462 (11) Å.

A search of the Cambridge Structural Database (Version 5.25, November 2003 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) for Se⋯π interactions (with search conditions for an Se atom having contacts in the range 3–4 Å with all six C atoms of a phenyl ring) identified 33 structures containing such interactions. The Se⋯C contact distances (within the search limits) are in the range 3.335–3.999 Å, averaging 3.75 (13) Å, indicating the Se⋯C distances observed in (I[link]) to be relatively short. It is interesting to note that, although six of the structures contain the PPh4+ cation (see, for example, Ansari et al., 1989[Ansari, M. A., Chau, C.-N., Mahler, C. H. & Ibers, J. A. (1989). Inorg. Chem. 28, 650-654.]; Heuer et al., 1988[Heuer, W. B., True, A. E., Swepston, P. N. & Hoffman, B. M. (1988). Inorg. Chem. 27, 1474-1482.]), compound (I[link]) represents the first example of a compound containing close Se⋯π interactions with a BPh4 anion.

[Figure 1]
Figure 1
A view of (I[link]), showing the atom-labelling scheme and the C—H⋯S and Se⋯π cation–anion interactions. Displacement ellipsoids are drawn at the 50% probability level. The minor disorder component and H atoms (except H36) have been omitted for clarity. Non-bonded interactions are shown as dashed lines.

Experimental

A precipitate of [Ph2SNSePh2][BPh4] was prepared by the addition of Na[BPh4] to a solution of [Ph2SNSePh2]Br (Aucott et al., 2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959-966.]) in methanol. Dissolution of the precipitate in CH2Cl2 and crystallization by slow vapour diffusion of diethyl ether into this solution produced X-ray quality colourless crystals of (I[link]).

Crystal data
  • C24H20NSSe+·C24H20B

  • Mr = 752.64

  • Monoclinic, P21/c

  • a = 12.2627 (11) Å

  • b = 27.860 (2) Å

  • c = 12.2402 (11) Å

  • β = 114.438 (2)°

  • V = 3807.1 (6) Å3

  • Z = 4

  • Dx = 1.313 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 16 364 reflections

  • θ = 2.3–28.9°

  • μ = 1.08 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.67 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Thin-slice ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.])Tmin = 0.532, Tmax = 0.782

  • 32 563 measured reflections

  • 9135 independent reflections

  • 7611 reflections with I > 2σ(I)

  • Rint = 0.078

  • θmax = 28.9°

  • h = −16 → 15

  • k = −37 → 37

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.02

  • 9135 reflections

  • 470 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.077P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Se1—N1 1.8045 (14)
Se1—C1 1.9066 (18)
Se1—C7 1.9231 (18)
S1—N1 1.6735 (15)
S1—C13 1.8088 (18)
S1—C19 1.8249 (17)
S1—N1—Se1 109.71 (8) 

Compound (I[link]) exhibits disorder with respect to the positions of the S and Se atoms, and this scrambling was successfully modelled with minor disorder atoms S1X and Se1X occupying identical positions to Se1 and S1, respectively. The anisotropic displacement parameters of the pairs S1/Se1X and Se1/S1X were constrained to be identical. This disorder modelling resulted in a reduction of 0.018 in the value of R1 and in final refined occupancies of 85.21 (11):14.79 (11)%. H atoms were placed in geometrically calculated positions (C—H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The data set was truncated at 2θ = 55°, as only statistically insignificant data were present above this limit.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Until our recent investigations, extending the chemistry of homochalcogen cationic sulfimide derivatives, such as [Ph2SNSPh2]+, to mixed chalcogen species had not been reported. In synthesizing and fully characterizing [Ph2SNSePh2]Br and [1,4-(PhSNSePh2)2C6H4][BPh4]2, we were able to obtain the first insight into the structure of N-seleniosulfimidium systems, which represent new additions to the general family of mixed S/Se—N compounds (Aucott et al., 2004).

In the case of [Ph2SNSePh2]Br (Aucott et al., 2004), X-ray crystallography revealed Se—N and S—N bond lengths of 1.832 (3) and 1.678 (3) Å, respectively, with an S—N—Se angle of 107.61 (15)°, although disorder within the system means that there is some scrambling of the S and Se sites, the refined major occupancy of the disordered chalcogen sites being 83.2 (2)%. This suggests that the true Se—N distance in the system is actually longer than that quoted, which, intriguingly, places the bond within the range normally associated with Se—N single bonds. By way of illustration, an Se—N length of 1.844 (3) Å has been noted for (Me3SiNSN)2Se (Konu et al., 2003), while single-bond lengths of 1.827 (5) and 1.869 (2) Å have also been observed in OSN—Se—NSO (Haas et al., 1991) and (Me3Si)2N—Se—N(SiMe3)2 (Björgvinsson et al., 1990), respectively.

In the case of [1,4-(PhSNSePh2)2C6H4][BPh4]2 (Aucott et al., 2004), X-ray crystallography revealed a structure with no disorder (but with an associated reduction in symmetry) and an Se—N bond length of 1.814 (2) Å. This again is long, more akin to an Se—N single bond, albeit shorter than in [Ph2SNSePh2]Br. In order to shed further light on these systems, we have now prepared and crystallized the title compound, (I) (Fig. 1).

Compound (I) crystallizes in a centrosymmetric space group with one complete formula unit in the asymmetric unit. The structure exhibits scrambling of the chalcogen sites, as was observed in the bromide salt [refined occupancies 85.21 (11): 14.79 (11)%]. In (I), the Se—N and S—N bond lengths are 1.8045 (14) and 1.6735 (15) Å, respectively, with an S—N—Se angle of 109.71 (8)° (Table 1). The Se—N bond length is clearly shorter, and the bond angle is wider, than were observed in the disordered bromide salt.

There are non-bonded interactions between the cations and anions in both the bromide salt and in (I). In the bromide salt, cation–anion interactions take the form of non-bonded contacts between the Br anion and the chalcogen atoms. There are three interactions of 3.4550 (8) Å (S1···Br1), 3.3208 (5) Å (Se1···Br1) and 3.3993 (5) Å [Se1···Br1i; symmetry code: (i) 1 − x, 1 − y, −z]. In the following discussion of the intermolecular interactions in (I), only those of the major disorder component will be highlighted (the same interactions apply to the minor disorder component, with Se and S atoms interchanged).

Atom S1 is involved in a C—H···S interaction (C36—H36···S1), with C···S 3.8276 (19) Å, H···S 2.92 Å and C—H···S 161°. Atom Se1 participates in an Se···π interaction with one phenyl ring of the BPh4 anion, with atom Se1 lying 3.1503 (9) Å from the least-squares plane of the aromatic ring containing atoms C43–C48 (Fig. 1). The Se···C distances between atom Se1 and the C atoms of the phenyl ring range from 3.3327 (18) Å (C46) to 3.6239 (16) Å (C43), averaging 3.462 (11) Å.

A search of the Cambridge Structural Database (Allen, 2002; Fletcher et al., 1996; Version 5.25, November 2003 update) for Se···π interactions (with search conditions for an Se atom having contacts in the range 3–4 Å with all six C atoms of a phenyl ring) identified 33 structures containing such interactions. The Se···C contact distances (within the search limits) range from 3.335–3.999 Å, averaging 3.75 (13) Å, indicating the Se···C distances observed in (I) to be relatively short. It is interesting to note that, although six of the structures contain the PPh4+ cation (for example, Ansari et al., 1989; Heuer et al., 1988), compound (I) represents the first example of a compound containing close Se···π interactions with a BPh4 anion.

Experimental top

A precipitate of [Ph2SNSePh2][BPh4] was prepared by the addition of Na[BPh4] to a solution of [Ph2SNSePh2]Br (Aucott et al., 2004) in methanol. Dissolution of the precipitate in CH2Cl2 and crystallization by slow vapour diffusion of diethyl ether into this solution produced X-ray quality colourless crystals of (I).

Refinement top

Compound (I) was found to exhibit disorder in the positions of the S and Se atoms, and this scrambling was successfully modelled with minor disorder atoms S1X and Se1X occupying identical positions to Se1 and S1, respectively. The anisotropic displacement parameters of S1 and Se1X, and of Se1 and S1X, were constrained to be identical. This gave a 1.8% reduction in the R1 value and final refined occupancies of 85.21 (11): 14.79 (11)%]. H atoms were placed in geometrically calculated positions (C—H 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The data set was truncated at 2θ = 55°, as only statistically insignificant data were present above this limit.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme and the C—H···S and Se···π cation–anion interactions. Displacement ellipsoids are drawn at the 50% probability level. The minor disorder component and H atoms except H36 have been removed for clarity. Non-bonded interactions are shown as dashed lines.
N-(Diphenylselenio)diphenylsulfimidium tetraphenylborate top
Crystal data top
C24H20NSSe+·C24H20BF(000) = 1560
Mr = 752.64Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16364 reflections
a = 12.2627 (11) Åθ = 2.3–28.9°
b = 27.860 (2) ŵ = 1.08 mm1
c = 12.2402 (11) ÅT = 150 K
β = 114.438 (2)°Block, colourless
V = 3807.1 (6) Å30.67 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
9135 independent reflections
Radiation source: sealed tube7611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
thin–slice ω scansθmax = 28.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1615
Tmin = 0.532, Tmax = 0.782k = 3737
32563 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
9135 reflectionsΔρmax = 0.93 e Å3
470 parametersΔρmin = 0.94 e Å3
0 restraints
Crystal data top
C24H20NSSe+·C24H20BV = 3807.1 (6) Å3
Mr = 752.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2627 (11) ŵ = 1.08 mm1
b = 27.860 (2) ÅT = 150 K
c = 12.2402 (11) Å0.67 × 0.26 × 0.24 mm
β = 114.438 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
9135 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7611 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.782Rint = 0.078
32563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.93 e Å3
9135 reflectionsΔρmin = 0.94 e Å3
470 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.289137 (16)0.089958 (7)0.231327 (16)0.02176 (8)0.8521 (11)
S10.33708 (3)0.173346 (13)0.12437 (3)0.02625 (13)0.8521 (11)
Se1X0.33708 (3)0.173346 (13)0.12437 (3)0.02625 (13)0.1479 (11)
S1X0.289137 (16)0.089958 (7)0.231327 (16)0.02176 (8)0.1479 (11)
N10.24581 (13)0.12593 (5)0.09732 (13)0.0253 (3)
C10.27774 (16)0.02817 (6)0.16044 (16)0.0252 (4)
C20.37317 (16)0.00256 (7)0.21357 (17)0.0293 (4)
H20.44000.00640.28480.035*
C30.36941 (19)0.04702 (7)0.1604 (2)0.0369 (5)
H30.43400.06890.19580.044*
C40.2727 (2)0.05938 (7)0.05686 (19)0.0383 (5)
H40.27130.08970.02060.046*
C50.1770 (2)0.02811 (8)0.00483 (19)0.0397 (5)
H50.11080.03700.06700.048*
C60.17750 (18)0.01591 (7)0.05693 (17)0.0326 (4)
H60.11140.03720.02320.039*
C70.13716 (16)0.08872 (6)0.24223 (16)0.0242 (4)
C80.11264 (17)0.05052 (7)0.30142 (17)0.0313 (4)
H80.16710.02450.33030.038*
C90.00699 (18)0.05112 (8)0.31761 (17)0.0363 (5)
H90.01110.02540.35820.044*
C100.07210 (18)0.08918 (7)0.27473 (19)0.0336 (4)
H100.14450.08930.28540.040*
C110.04603 (18)0.12709 (7)0.2163 (2)0.0342 (4)
H110.10020.15320.18790.041*
C120.05967 (17)0.12703 (7)0.19893 (18)0.0295 (4)
H120.07780.15280.15830.035*
C130.23038 (16)0.22171 (6)0.06433 (17)0.0253 (4)
C140.15332 (17)0.22429 (8)0.05694 (17)0.0338 (4)
H140.15850.20150.11240.041*
C150.06907 (19)0.26072 (8)0.0951 (2)0.0421 (5)
H150.01620.26300.17760.051*
C160.0610 (2)0.29370 (8)0.0146 (2)0.0448 (5)
H160.00290.31860.04180.054*
C170.1374 (2)0.29054 (8)0.1052 (2)0.0473 (6)
H170.13110.31320.16040.057*
C180.2237 (2)0.25454 (7)0.14622 (19)0.0374 (5)
H180.27690.25260.22870.045*
C190.38822 (15)0.16907 (6)0.00429 (15)0.0227 (3)
C200.35373 (16)0.13136 (7)0.07619 (17)0.0280 (4)
H200.30320.10670.06980.034*
C210.39442 (17)0.13010 (7)0.16696 (18)0.0320 (4)
H210.36970.10490.22430.038*
C220.47047 (18)0.16536 (7)0.17381 (19)0.0331 (4)
H220.49850.16410.23540.040*
C230.50598 (18)0.20251 (7)0.09136 (19)0.0343 (4)
H230.55880.22650.09630.041*
C240.46483 (16)0.20489 (7)0.00153 (17)0.0288 (4)
H240.48850.23050.05490.035*
B10.69359 (16)0.11931 (7)0.46059 (17)0.0197 (4)
C250.80926 (15)0.10753 (6)0.58713 (16)0.0229 (3)
C260.92322 (16)0.10183 (7)0.58713 (18)0.0281 (4)
H260.92940.10060.51230.034*
C271.02734 (18)0.09786 (7)0.6921 (2)0.0365 (5)
H271.10250.09360.68820.044*
C281.02092 (19)0.10020 (9)0.8026 (2)0.0441 (6)
H281.09170.09820.87470.053*
C290.9104 (2)0.10550 (9)0.80663 (19)0.0441 (5)
H290.90520.10710.88190.053*
C300.80718 (17)0.10846 (8)0.70098 (17)0.0326 (4)
H300.73210.11120.70590.039*
C310.67536 (15)0.07737 (6)0.35999 (16)0.0223 (3)
C320.73561 (17)0.03324 (6)0.38654 (18)0.0283 (4)
H320.78750.02650.46760.034*
C330.72287 (19)0.00113 (7)0.2995 (2)0.0367 (5)
H330.76540.03060.32200.044*
C340.64870 (19)0.00741 (8)0.1806 (2)0.0396 (5)
H340.64270.01530.12050.047*
C350.58347 (18)0.04939 (8)0.15057 (18)0.0363 (5)
H350.53050.05540.06950.044*
C360.59524 (16)0.08301 (7)0.23907 (17)0.0272 (4)
H360.54690.11100.21670.033*
C370.72381 (15)0.17290 (6)0.42128 (16)0.0227 (3)
C380.71012 (17)0.18716 (7)0.30633 (18)0.0329 (4)
H380.68140.16440.24290.039*
C390.7372 (2)0.23370 (8)0.2814 (2)0.0411 (5)
H390.72480.24190.20190.049*
C400.78135 (19)0.26754 (7)0.3709 (2)0.0418 (5)
H400.79980.29910.35410.050*
C410.79829 (19)0.25463 (7)0.4858 (2)0.0396 (5)
H410.82970.27740.54910.048*
C420.76960 (17)0.20851 (7)0.50960 (17)0.0302 (4)
H420.78170.20090.58940.036*
C430.56868 (14)0.12058 (6)0.48057 (14)0.0203 (3)
C440.52693 (15)0.07889 (7)0.51494 (16)0.0260 (4)
H440.57270.05030.52730.031*
C450.42113 (16)0.07756 (8)0.53185 (16)0.0304 (4)
H450.39610.04840.55460.036*
C460.35266 (17)0.11865 (8)0.51555 (16)0.0316 (4)
H460.28140.11810.52840.038*
C470.38977 (16)0.16082 (7)0.48010 (18)0.0323 (4)
H470.34290.18910.46700.039*
C480.49601 (16)0.16141 (7)0.46385 (17)0.0270 (4)
H480.52020.19060.44050.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02034 (12)0.02423 (12)0.02233 (12)0.00008 (7)0.01045 (8)0.00259 (7)
S10.0259 (2)0.0232 (2)0.0344 (2)0.00082 (14)0.01725 (17)0.00347 (14)
Se1X0.0259 (2)0.0232 (2)0.0344 (2)0.00082 (14)0.01725 (17)0.00347 (14)
S1X0.02034 (12)0.02423 (12)0.02233 (12)0.00008 (7)0.01045 (8)0.00259 (7)
N10.0227 (7)0.0283 (8)0.0237 (7)0.0057 (6)0.0083 (6)0.0042 (6)
C10.0291 (9)0.0262 (8)0.0254 (8)0.0010 (7)0.0164 (7)0.0036 (7)
C20.0240 (9)0.0320 (9)0.0337 (10)0.0009 (7)0.0139 (8)0.0030 (8)
C30.0348 (10)0.0322 (10)0.0506 (12)0.0071 (8)0.0246 (10)0.0037 (9)
C40.0517 (13)0.0292 (10)0.0452 (12)0.0027 (9)0.0313 (10)0.0067 (9)
C50.0450 (12)0.0376 (11)0.0331 (10)0.0059 (9)0.0128 (9)0.0079 (8)
C60.0330 (10)0.0317 (10)0.0295 (9)0.0029 (8)0.0092 (8)0.0011 (8)
C70.0219 (8)0.0301 (9)0.0228 (8)0.0028 (7)0.0114 (7)0.0016 (7)
C80.0260 (9)0.0370 (10)0.0306 (9)0.0004 (8)0.0116 (8)0.0082 (8)
C90.0319 (10)0.0481 (12)0.0332 (10)0.0087 (9)0.0181 (8)0.0049 (9)
C100.0276 (10)0.0443 (12)0.0359 (10)0.0071 (8)0.0202 (9)0.0077 (8)
C110.0310 (10)0.0320 (10)0.0469 (12)0.0009 (8)0.0235 (9)0.0049 (8)
C120.0283 (9)0.0251 (9)0.0397 (10)0.0017 (7)0.0186 (8)0.0004 (7)
C130.0220 (8)0.0235 (8)0.0334 (9)0.0020 (7)0.0146 (7)0.0036 (7)
C140.0318 (10)0.0385 (11)0.0310 (10)0.0079 (9)0.0128 (8)0.0018 (8)
C150.0334 (11)0.0500 (13)0.0408 (11)0.0152 (10)0.0132 (9)0.0112 (10)
C160.0401 (12)0.0376 (12)0.0638 (15)0.0156 (9)0.0285 (12)0.0119 (10)
C170.0590 (15)0.0348 (11)0.0565 (14)0.0104 (11)0.0322 (12)0.0039 (10)
C180.0417 (12)0.0339 (10)0.0375 (11)0.0016 (9)0.0173 (9)0.0033 (8)
C190.0205 (8)0.0236 (8)0.0263 (8)0.0023 (6)0.0119 (7)0.0030 (6)
C200.0251 (9)0.0267 (9)0.0364 (10)0.0022 (7)0.0168 (8)0.0027 (7)
C210.0320 (10)0.0330 (10)0.0346 (10)0.0013 (8)0.0173 (8)0.0068 (8)
C220.0341 (10)0.0345 (10)0.0399 (11)0.0035 (8)0.0246 (9)0.0005 (8)
C230.0333 (10)0.0301 (10)0.0480 (12)0.0055 (8)0.0254 (9)0.0001 (8)
C240.0286 (9)0.0244 (9)0.0364 (10)0.0033 (7)0.0163 (8)0.0023 (7)
B10.0189 (9)0.0214 (9)0.0224 (9)0.0011 (7)0.0121 (7)0.0008 (7)
C250.0210 (8)0.0209 (8)0.0277 (9)0.0002 (6)0.0110 (7)0.0032 (7)
C260.0232 (9)0.0289 (9)0.0328 (10)0.0016 (7)0.0123 (8)0.0017 (7)
C270.0208 (9)0.0346 (10)0.0497 (13)0.0014 (8)0.0102 (9)0.0085 (9)
C280.0268 (10)0.0546 (14)0.0375 (11)0.0067 (10)0.0003 (9)0.0154 (10)
C290.0365 (11)0.0648 (15)0.0262 (10)0.0094 (11)0.0082 (9)0.0104 (10)
C300.0251 (9)0.0443 (11)0.0285 (9)0.0040 (8)0.0111 (8)0.0048 (8)
C310.0195 (8)0.0248 (8)0.0278 (9)0.0037 (7)0.0151 (7)0.0016 (7)
C320.0289 (9)0.0241 (9)0.0375 (10)0.0026 (7)0.0194 (8)0.0003 (7)
C330.0372 (11)0.0227 (9)0.0595 (13)0.0053 (8)0.0294 (10)0.0074 (9)
C340.0443 (12)0.0371 (11)0.0502 (13)0.0156 (9)0.0324 (11)0.0200 (9)
C350.0351 (10)0.0462 (12)0.0302 (10)0.0129 (9)0.0160 (8)0.0105 (9)
C360.0220 (9)0.0325 (9)0.0288 (9)0.0038 (7)0.0121 (8)0.0038 (7)
C370.0174 (8)0.0257 (9)0.0277 (9)0.0018 (6)0.0121 (7)0.0027 (7)
C380.0308 (10)0.0372 (11)0.0316 (10)0.0048 (8)0.0139 (8)0.0050 (8)
C390.0407 (11)0.0429 (12)0.0434 (12)0.0032 (10)0.0212 (10)0.0167 (9)
C400.0374 (11)0.0280 (10)0.0660 (15)0.0011 (9)0.0275 (11)0.0116 (10)
C410.0450 (12)0.0252 (10)0.0537 (13)0.0052 (9)0.0255 (11)0.0051 (9)
C420.0346 (10)0.0251 (9)0.0346 (10)0.0010 (8)0.0180 (8)0.0023 (7)
C430.0176 (7)0.0255 (8)0.0185 (7)0.0004 (6)0.0082 (6)0.0013 (6)
C440.0207 (8)0.0324 (9)0.0253 (9)0.0001 (7)0.0099 (7)0.0055 (7)
C450.0242 (9)0.0440 (11)0.0250 (9)0.0051 (8)0.0120 (7)0.0062 (8)
C460.0222 (9)0.0515 (12)0.0262 (9)0.0053 (8)0.0150 (7)0.0086 (8)
C470.0235 (9)0.0364 (10)0.0388 (10)0.0021 (8)0.0146 (8)0.0102 (8)
C480.0239 (9)0.0270 (9)0.0331 (9)0.0009 (7)0.0148 (8)0.0047 (7)
Geometric parameters (Å, º) top
Se1—N11.8045 (14)C24—H240.9500
Se1—C11.9066 (18)B1—C251.643 (3)
Se1—C71.9231 (18)B1—C311.644 (2)
S1—N11.6735 (15)B1—C431.648 (2)
S1—C131.8088 (18)B1—C371.657 (2)
S1—C191.8249 (17)C25—C301.404 (3)
C1—C21.377 (2)C25—C261.406 (2)
C1—C61.394 (3)C26—C271.391 (3)
C2—C31.391 (3)C26—H260.9500
C2—H20.9500C27—C281.388 (3)
C3—C41.374 (3)C27—H270.9500
C3—H30.9500C28—C291.384 (3)
C4—C51.387 (3)C28—H280.9500
C4—H40.9500C29—C301.388 (3)
C5—C61.381 (3)C29—H290.9500
C5—H50.9500C30—H300.9500
C6—H60.9500C31—C321.402 (2)
C7—C121.381 (3)C31—C361.406 (2)
C7—C81.388 (3)C32—C331.392 (3)
C8—C91.389 (3)C32—H320.9500
C8—H80.9500C33—C341.381 (3)
C9—C101.385 (3)C33—H330.9500
C9—H90.9500C34—C351.378 (3)
C10—C111.385 (3)C34—H340.9500
C10—H100.9500C35—C361.394 (3)
C11—C121.397 (3)C35—H350.9500
C11—H110.9500C36—H360.9500
C12—H120.9500C37—C421.402 (3)
C13—C181.384 (3)C37—C381.404 (3)
C13—C141.393 (3)C38—C391.403 (3)
C14—C151.384 (3)C38—H380.9500
C14—H140.9500C39—C401.375 (3)
C15—C161.380 (3)C39—H390.9500
C15—H150.9500C40—C411.382 (3)
C16—C171.379 (3)C40—H400.9500
C16—H160.9500C41—C421.394 (3)
C17—C181.392 (3)C41—H410.9500
C17—H170.9500C42—H420.9500
C18—H180.9500C43—C441.402 (2)
C19—C201.381 (2)C43—C481.407 (2)
C19—C241.392 (2)C44—C451.396 (2)
C20—C211.394 (3)C44—H440.9500
C20—H200.9500C45—C461.385 (3)
C21—C221.381 (3)C45—H450.9500
C21—H210.9500C46—C471.392 (3)
C22—C231.384 (3)C46—H460.9500
C22—H220.9500C47—C481.397 (2)
C23—C241.388 (3)C47—H470.9500
C23—H230.9500C48—H480.9500
N1—Se1—C198.58 (7)C25—B1—C31111.14 (14)
N1—Se1—C798.26 (7)C25—B1—C43110.92 (13)
C1—Se1—C797.16 (7)C31—B1—C43106.23 (13)
N1—S1—C13101.27 (8)C25—B1—C37104.14 (13)
N1—S1—C19102.34 (8)C31—B1—C37113.60 (14)
C13—S1—C1998.82 (8)C43—B1—C37110.91 (13)
S1—N1—Se1109.71 (8)C30—C25—C26115.34 (16)
C2—C1—C6122.29 (17)C30—C25—B1124.65 (15)
C2—C1—Se1117.29 (14)C26—C25—B1119.51 (15)
C6—C1—Se1120.38 (14)C27—C26—C25122.76 (18)
C1—C2—C3118.39 (18)C27—C26—H26118.6
C1—C2—H2120.8C25—C26—H26118.6
C3—C2—H2120.8C28—C27—C26119.71 (19)
C4—C3—C2120.23 (19)C28—C27—H27120.1
C4—C3—H3119.9C26—C27—H27120.1
C2—C3—H3119.9C29—C28—C27119.39 (19)
C3—C4—C5120.65 (19)C29—C28—H28120.3
C3—C4—H4119.7C27—C28—H28120.3
C5—C4—H4119.7C28—C29—C30120.1 (2)
C6—C5—C4120.30 (19)C28—C29—H29119.9
C6—C5—H5119.8C30—C29—H29119.9
C4—C5—H5119.8C29—C30—C25122.63 (19)
C5—C6—C1118.10 (19)C29—C30—H30118.7
C5—C6—H6120.9C25—C30—H30118.7
C1—C6—H6120.9C32—C31—C36114.44 (16)
C12—C7—C8121.98 (17)C32—C31—B1123.67 (16)
C12—C7—Se1119.49 (13)C36—C31—B1121.88 (16)
C8—C7—Se1118.38 (14)C33—C32—C31122.98 (19)
C7—C8—C9118.76 (18)C33—C32—H32118.5
C7—C8—H8120.6C31—C32—H32118.5
C9—C8—H8120.6C34—C33—C32120.30 (19)
C10—C9—C8120.21 (18)C34—C33—H33119.9
C10—C9—H9119.9C32—C33—H33119.9
C8—C9—H9119.9C35—C34—C33118.96 (18)
C9—C10—C11120.28 (18)C35—C34—H34120.5
C9—C10—H10119.9C33—C34—H34120.5
C11—C10—H10119.9C34—C35—C36120.04 (19)
C10—C11—C12120.29 (19)C34—C35—H35120.0
C10—C11—H11119.9C36—C35—H35120.0
C12—C11—H11119.9C35—C36—C31123.07 (18)
C7—C12—C11118.48 (18)C35—C36—H36118.5
C7—C12—H12120.8C31—C36—H36118.5
C11—C12—H12120.8C42—C37—C38114.59 (17)
C18—C13—C14121.34 (18)C42—C37—B1118.69 (15)
C18—C13—S1116.59 (15)C38—C37—B1126.71 (16)
C14—C13—S1121.95 (14)C39—C38—C37122.57 (19)
C15—C14—C13118.67 (19)C39—C38—H38118.7
C15—C14—H14120.7C37—C38—H38118.7
C13—C14—H14120.7C40—C39—C38120.8 (2)
C16—C15—C14120.8 (2)C40—C39—H39119.6
C16—C15—H15119.6C38—C39—H39119.6
C14—C15—H15119.6C39—C40—C41118.43 (19)
C17—C16—C15119.9 (2)C39—C40—H40120.8
C17—C16—H16120.0C41—C40—H40120.8
C15—C16—H16120.0C40—C41—C42120.50 (19)
C16—C17—C18120.7 (2)C40—C41—H41119.7
C16—C17—H17119.7C42—C41—H41119.7
C18—C17—H17119.7C41—C42—C37123.12 (19)
C13—C18—C17118.6 (2)C41—C42—H42118.4
C13—C18—H18120.7C37—C42—H42118.4
C17—C18—H18120.7C44—C43—C48115.18 (16)
C20—C19—C24121.50 (17)C44—C43—B1120.25 (15)
C20—C19—S1121.21 (13)C48—C43—B1124.56 (15)
C24—C19—S1117.28 (13)C45—C44—C43122.92 (18)
C19—C20—C21118.86 (17)C45—C44—H44118.5
C19—C20—H20120.6C43—C44—H44118.5
C21—C20—H20120.6C46—C45—C44120.13 (18)
C22—C21—C20120.26 (18)C46—C45—H45119.9
C22—C21—H21119.9C44—C45—H45119.9
C20—C21—H21119.9C45—C46—C47119.05 (17)
C21—C22—C23120.29 (18)C45—C46—H46120.5
C21—C22—H22119.9C47—C46—H46120.5
C23—C22—H22119.9C46—C47—C48119.91 (18)
C22—C23—C24120.36 (17)C46—C47—H47120.0
C22—C23—H23119.8C48—C47—H47120.0
C24—C23—H23119.8C47—C48—C43122.79 (18)
C23—C24—C19118.71 (17)C47—C48—H48118.6
C23—C24—H24120.6C43—C48—H48118.6
C19—C24—H24120.6
C13—S1—N1—Se1131.24 (9)C37—B1—C25—C30106.80 (19)
C19—S1—N1—Se1127.02 (9)C31—B1—C25—C2658.0 (2)
C1—Se1—N1—S1135.99 (9)C43—B1—C25—C26175.90 (15)
C7—Se1—N1—S1125.42 (9)C37—B1—C25—C2664.74 (19)
N1—Se1—C1—C2131.25 (14)C30—C25—C26—C270.6 (3)
C7—Se1—C1—C2129.22 (14)B1—C25—C26—C27171.66 (17)
N1—Se1—C1—C646.91 (16)C25—C26—C27—C280.9 (3)
C7—Se1—C1—C652.61 (16)C26—C27—C28—C291.3 (3)
C6—C1—C2—C31.0 (3)C27—C28—C29—C300.0 (4)
Se1—C1—C2—C3177.11 (14)C28—C29—C30—C251.6 (4)
C1—C2—C3—C40.5 (3)C26—C25—C30—C291.9 (3)
C2—C3—C4—C50.8 (3)B1—C25—C30—C29169.9 (2)
C3—C4—C5—C60.3 (3)C25—B1—C31—C3211.6 (2)
C4—C5—C6—C11.7 (3)C43—B1—C31—C32109.18 (17)
C2—C1—C6—C52.1 (3)C37—B1—C31—C32128.62 (17)
Se1—C1—C6—C5175.96 (15)C25—B1—C31—C36169.43 (15)
N1—Se1—C7—C1229.99 (16)C43—B1—C31—C3669.82 (19)
C1—Se1—C7—C12129.79 (15)C37—B1—C31—C3652.4 (2)
N1—Se1—C7—C8154.48 (15)C36—C31—C32—C333.6 (3)
C1—Se1—C7—C854.68 (16)B1—C31—C32—C33177.32 (16)
C12—C7—C8—C90.2 (3)C31—C32—C33—C340.3 (3)
Se1—C7—C8—C9175.23 (15)C32—C33—C34—C353.0 (3)
C7—C8—C9—C100.3 (3)C33—C34—C35—C361.6 (3)
C8—C9—C10—C110.5 (3)C34—C35—C36—C312.6 (3)
C9—C10—C11—C120.7 (3)C32—C31—C36—C355.0 (3)
C8—C7—C12—C110.3 (3)B1—C31—C36—C35175.88 (17)
Se1—C7—C12—C11175.03 (14)C25—B1—C37—C4243.5 (2)
C10—C11—C12—C70.6 (3)C31—B1—C37—C42164.59 (15)
N1—S1—C13—C18112.98 (16)C43—B1—C37—C4275.84 (19)
C19—S1—C13—C18142.46 (16)C25—B1—C37—C38135.44 (18)
N1—S1—C13—C1463.08 (17)C31—B1—C37—C3814.4 (2)
C19—S1—C13—C1441.48 (17)C43—B1—C37—C38105.19 (19)
C18—C13—C14—C150.2 (3)C42—C37—C38—C391.6 (3)
S1—C13—C14—C15176.08 (16)B1—C37—C38—C39179.38 (18)
C13—C14—C15—C160.3 (3)C37—C38—C39—C401.4 (3)
C14—C15—C16—C170.0 (4)C38—C39—C40—C410.1 (3)
C15—C16—C17—C180.5 (4)C39—C40—C41—C420.8 (3)
C14—C13—C18—C170.3 (3)C40—C41—C42—C370.5 (3)
S1—C13—C18—C17175.81 (17)C38—C37—C42—C410.7 (3)
C16—C17—C18—C130.6 (3)B1—C37—C42—C41179.77 (17)
N1—S1—C19—C202.88 (16)C25—B1—C43—C4464.4 (2)
C13—S1—C19—C20106.55 (16)C31—B1—C43—C4456.47 (19)
N1—S1—C19—C24178.16 (14)C37—B1—C43—C44179.64 (15)
C13—S1—C19—C2474.48 (15)C25—B1—C43—C48116.55 (18)
C24—C19—C20—C211.7 (3)C31—B1—C43—C48122.55 (17)
S1—C19—C20—C21179.35 (14)C37—B1—C43—C481.3 (2)
C19—C20—C21—C221.7 (3)C48—C43—C44—C450.1 (3)
C20—C21—C22—C230.7 (3)B1—C43—C44—C45179.21 (16)
C21—C22—C23—C240.5 (3)C43—C44—C45—C460.5 (3)
C22—C23—C24—C190.5 (3)C44—C45—C46—C471.2 (3)
C20—C19—C24—C230.6 (3)C45—C46—C47—C481.3 (3)
S1—C19—C24—C23179.59 (14)C46—C47—C48—C430.7 (3)
C31—B1—C25—C30130.51 (18)C44—C43—C48—C470.0 (3)
C43—B1—C25—C3012.6 (2)B1—C43—C48—C47179.06 (16)

Experimental details

Crystal data
Chemical formulaC24H20NSSe+·C24H20B
Mr752.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.2627 (11), 27.860 (2), 12.2402 (11)
β (°) 114.438 (2)
V3)3807.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.67 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.532, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
32563, 9135, 7611
Rint0.078
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.02
No. of reflections9135
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.94

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL and local programs.

Selected geometric parameters (Å, º) top
Se1—N11.8045 (14)S1—N11.6735 (15)
Se1—C11.9066 (18)S1—C131.8088 (18)
Se1—C71.9231 (18)S1—C191.8249 (17)
S1—N1—Se1109.71 (8)
 

Acknowledgements

The authors acknowledge the EPSRC for PDRA support (LMG and SMA) and use of the EPSRC Chemical Database Service at Daresbury Laboratory (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnsari, M. A., Chau, C.-N., Mahler, C. H. & Ibers, J. A. (1989). Inorg. Chem. 28, 650–654.  CSD CrossRef CAS Web of Science Google Scholar
First citationAucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. pp. 959–966.  Web of Science CSD CrossRef Google Scholar
First citationBjörgvinsson, M., Roesky, H. W., Pauer, F., Stalke, D. & Sheldrick, G. M. (1990). Inorg. Chem. 29, 5140–5143.  CSD CrossRef Google Scholar
First citationBruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHaas, A., Kasprowski, J., Angermund, K., Betz, P., Kruger, C., Tsay, Y.-H. & Werner, S. (1991). Chem. Ber. 124, 1895–1906.  CrossRef CAS Web of Science Google Scholar
First citationHeuer, W. B., True, A. E., Swepston, P. N. & Hoffman, B. M. (1988). Inorg. Chem. 27, 1474–1482.  CSD CrossRef CAS Web of Science Google Scholar
First citationKonu, J., Maaninen, A., Paananen, K., Ingman, P., Laitinen, R. S., Chivers, T. & Valkonen, J. (2002). Inorg. Chem. 41, 1430–1435.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds