metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

trans-Di-μ-bromo-bis­­[bromo­(tri­ethyl­phosphine-κP)­platinum(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.l.thompson@durham.ac.uk

(Received 1 November 2004; accepted 9 December 2004; online 15 January 2005)

The title compound, [Pt2Br4(C6H15P)2], is a centrosymmetric dinuclear platinum(II) complex consisting of two square-planar platinum centres connected by two bridging Br atoms.

Comment

Bridged chloride complexes of the form [PtCl2(PR3)]2 have been used extensively as starting materials in the synthesis of mononuclear platinum–phosphine complexes, which are formed through cleavage of the bridging Pt—Cl bond (Chatt & Venanzi, 1955[Chatt, J. & Venanzi, L. M. (1955). J. Chem. Soc. pp. 2787-2793.]; Meidine & Nixon, 1988[Meidine, M. F. & Nixon, J. F. (1988). Private communication to K. B. Dillon.]; Dillon & Goodwin, 1992[Dillon, K. B. & Goodwin, H. P. (1992). J. Organomet. Chem. 428, 169-171.], 1994[Dillon, K. B. & Goodwin, H. P. (1994). J. Organomet. Chem. 469, 125-128.]). Similar synthetic methodology can also be applied to bromide analogues (Cornet, 2002[Cornet, S. M. M. (2002). PhD thesis, University of Durham, England.]). However, while the crystal structures of the chloro-bridged complexes [PtCl2(PMe3)]2, [PtCl2(PEt3)]2 and [PtCl2(PPr3)]2 are known (Boag & Ravetz, 1996[Boag, N. M. & Ravetz, M. S. (1996). Acta Cryst. C52, 1942-1943.]; Blake et al., 1989[Blake, A. J., Gould, R. O., Marr, A. M., Rankin, D. W. H. & Schröder, M. (1989). Acta Cryst. C45, 1218-1219.]; Black et al., 1969[Black, M., Mais, R. H. B. & Owston, P. G. (1969). Acta Cryst. B25, 1760-1766.]), structures of complexes exhibiting the central heavy-atom skeleton [PtCl2P]2 are surprisingly rare, with only a handful known (Simms et al., 1987[Simms, B. L., Shang, M., Lu, J., Youngs, W. J. & Ibers, J. A. (1987). Organometallics, 6, 1118-1126.]; Cobley et al., 2000[Cobley, C. J., Ellis, D. D., Orpen, A. G. & Pringle, P. G. (2000). J. Chem. Soc. Dalton Trans. pp. 1101-1107.]).

The title complex, (I[link]), was prepared by the CHCl2-mediated reaction of equimolar quantities of PtBr2 and [PtBr2(PEt3)2]. Given the rarity of crystal structures containing the [PtCl2P]2 fragment, it is unsurprising that (I[link]) is the first structure to be reported containing the [PtBr2P]2 motif.

[Scheme 1]

The chloride complexes [PtCl2(PR3)]2 (where R = CH3, C2H5 and C3H7) and the title compound are closely related, and all four complexes possess an inversion centre in the middle of the dimer, with the PR3 ligands in a trans geometry (Fig. 1[link]). In addition, all four structures are asymmetric around the bridging halide ligands, but this asymmetry is reduced in (I[link]) with respect to the chloride complexes (Table 1[link]). This degree of asymmetry in (I) is presumably due to the relative positions of the Cl, Br and P atoms in the trans influence series and the increased ionic radius of the bromide ligand. These factors also appear to reduce the effect bridging has on the bond lengths, since the bonds to the bridging Br atoms are only 0.023 and 0.122 Å longer than those to the terminal Br atoms, compared with averages of 0.033 and 0.146 Å in [PtCl2(PR3)]2 (where R = CH3, C2H5 and C3H7; Boag & Ravetz, 1996[Boag, N. M. & Ravetz, M. S. (1996). Acta Cryst. C52, 1942-1943.]; Blake et al., 1989[Blake, A. J., Gould, R. O., Marr, A. M., Rankin, D. W. H. & Schröder, M. (1989). Acta Cryst. C45, 1218-1219.]; Black et al., 1969[Black, M., Mais, R. H. B. & Owston, P. G. (1969). Acta Cryst. B25, 1760-1766.], respectively).

[Figure 1]
Figure 1
A view of (I[link]), with selected atoms labelled. Symmetry equivalents related by ([{1\over2}-x, {1\over2}-y, 1-z]) are also shown and are indicated by primes. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.

Experimental

PtBr2 (1.48 g, 4.2 mmol) in PhCN (10 ml) was heated to 373 K to give a bright-orange solution and a yellow precipitate on cooling {cis-[PtBr2(PhCN)2], yield 81%}. PEt3 (1.75 g, 2.18 ml, 14.8 mmol) was then added to a solution of [PtBr2(PhCN)2] (1.77 g, 3.15 mmol) in CH2Cl2 (15 ml) and the mixture stirred for 3 h. Evaporation of the solvent produced a white solid {cis-[PtBr2(PEt3)2], yield 83%}, some of which (1.45 g, 2.45 mmol) was added to a solution of PtBr2 (1.03 g, 2.9 mmol) in (CHCl2)2 and heated to 423 K for 4 h. The yellow crystals of (I[link]) obtained on cooling were recrystallized from CH2Cl2 (yield 79%). Analysis calculated for C12H30Br4P2Pt2: C 15.23, H 3.20%; found: C 15.27, H 3.23%. 31P NMR (CDCl3): δ 10.9 (singlet with Pt satellites, 1JP—Pt = 3701 Hz, 3JP—Pt = 24.4 Hz, 4JP—P = 1.6 Hz). The AA`XX' part of the spectrum was insufficiently resolved for 2JPt—Pt to be evaluated (Kiffen et al., 1975[Kiffen, A. A., Masters, C. & Visser, J. P. (1975). J. Chem. Soc. Dalton Trans. pp. 1311-1315.]).

Crystal data
  • [Pt2Br4(C6H15P)2]

  • Mr = 946.12

  • Monoclinic, C2/c

  • a = 26.522 (6) Å

  • b = 6.8720 (13) Å

  • c = 13.811 (4) Å

  • β = 120.930 (7)°

  • V = 2159.3 (9) Å3

  • Z = 4

  • Dx = 2.910 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7378 reflections

  • θ = 1.9–30.6°

  • μ = 20.48 mm−1

  • T = 120 (2) K

  • Block, clear intense orange

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD 1K area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.058, Tmax = 0.129

  • 10 540 measured reflections

  • 2355 independent reflections

  • 2158 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.0°

  • h = −32 → 33

  • k = −8 → 8

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.046

  • S = 1.11

  • 2355 reflections

  • 94 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0168P)2 + 10.3265P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.75 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I) and the related chloro complexes [PtCl2(PMe3)]2, [PtCl2(PEt3)]2 and [PtCl2(PPr3)]2 (Hal = Cl or Br)

  [PtCl2(PMe3)]2 [PtCl2(PEt3)]2 [PtCl2(PPr3)]2 (I)
Pt—P 2.205 (3) 2.212 (3) 2.230 (9) 2.2266 (11)
Pt—Halterminal 2.281 (3) 2.282 (3) 2.279 (9) 2.4229 (7)
Pt—Halbridging 2.309 (3) 2.318 (3) 2.315 (8) 2.4455 (7)
  2.423 (3) 2.431 (3) 2.425 (8) 2.5451 (6)
Pt—Hal—Pt 96.19 (10) 96.48 (10) 96.4 (3) 96.17 (2)
Hal—Pt—Hal 83.81 (10) 83.52 (9) 83.6 (2) 83.83 (2)

All H atoms were placed geometrically and refined using a riding model (C—H = 0.98 and 0.99 Å), with their Uiso(H) values fixed at 1.2 or 1.5 times Ueq of the parent C atom. Although there are difference density holes larger than 1 e Å−3, they are within 1 Å of the Pt atom.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bridging chloride complexes of the form [PtCl2(PR3)]2 have been used extensively as starting materials in the synthesis of mononuclear platinum–phosphine complexes, which are formed through cleavage of the bridging Pt—Cl bond (Chatt & Venanzi, 1955; Meidine & Nixon, 1988; Dillon & Goodwin, 1992, 1994). Similar synthetic methodology can also be applied to bromo analogues (Cornet 2002). However, while the crystal structures of the chloro-bridged complexes [PtCl2(PMe3)]2, [PtCl2(PEt3)]2 and [PtCl2(PPr3)]2 are known (Boag & Ravetz, 1996; Blake et al., 1989; Black et al., 1969), structures of complexes exhibiting the central heavy-atom skeleton [PtCl2P]2 are suprisingly rare, with only a handful known (Simms et al., 1987; Cobley et al., 2000).

The title complex, (I), was prepared by the (CHCl2)2-mediated reaction of equimolar quantities of PtBr2 and [PtBr2(PEt3)2]. Given the rarity of crystal structures containing the [PtCl2P]2 fragment, it is unsurprizing that (I) is the first structure to be reported containing the [PtBr2P]2 motif.

The chloride complexes [PtCl2(PR3)]2 (where R = CH3, C2H5 and C3H7) and the title compound are closely related and all four complexes sit with an inversion centre in the middle of the dimer, with the PR3 ligands in a trans geometry (Fig. 1). In addition, all four structures are asymmetric around the bridging halide ligands, but this is reduced in (I) with respect to the chloride complexes (Table 1); this behaviour is presumably due the relative positions of the Cl, Br and P atoms in the trans influence series and the increased ionic radius of the bromide ligand. This? also appears to reduce the effect bridging has on the bond lengths, since the bonds to the bridging bromides are only 0.023 and 0.122 Å longer than those to the terminal bromide, compared with averages of 0.033 and 0.146 Å in [PtCl2(PR3)]2 (where R = CH3, C2H5 and C3H7; Boag & Ravetz, 1996; Blake et al., 1989; Black at al., 1969, respectively).

Experimental top

PtBr2 (1.48 g, 4.2 mmol) in PhCN (10 ml) was heated to 373 K to give a bright-orange solution and a yellow precipitate on cooling {cis-[PtBr2(PhCN)]2, yield 81%}. PEt3 (1.75 g, 2.18 ml, 14.8 mmol) was then added to a solution of [PtBr2(PhCN)2] (1.77 g, 3.15 mmol) in CH2Cl2 (15 ml) and stirred for 3 h. Evaporation of the solvent produced a white solid {cis-[PtBr2(PEt3)2], yield 83%}, some of which (1.45 g, 2.45 mmol) was added to a solution of PtBr2 (1.03 g, 2.9 mmol) in (CHCl2)2 and heated to 423 K for four hours. The yellow crystals of (I) obtained on cooling were recrystallized from CH2Cl2 (yield 79%). Analysis calculated for C12H30Pt2Br4P2 (946.09): C 15.23, H 3.20%; found: C 15.27, H 3.23%. 31P NMR (CDCl3): δ 10.9 (singlet with Pt satellites, 1JP—Pt = 3701 Hz, 3JP—Pt = 24.4 Hz, 4JP—P 1.6 Hz). The AA'XX' part of the spectrum was insufficiently resolved for 2JPt—Pt to be evaluated (Kiffen et al., 1975).

Refinement top

All H atoms were placed geometrically and refined using a riding model (C—H = 0.98 and 0.99 Å), with their Uiso(H) values fixed at 1.2 or 1.5 times Ueq of the parent C atom. Although there are difference density holes larger than 1 e Å−3, they are within 1 Å of the Pt atom.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SMART-NT and/or SAINT? (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), with selected atoms labelled. Symmetry equivalents (1/2 − x, 1/2 − y, 1 − z) are also shown and indicated by a prime. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
trans-Di-µ-bromo-bis[bromo(triethylphosphine-κP)platinum(II)] top
Crystal data top
[Pt2Br4(C6H15P)2]F(000) = 1712
Mr = 946.12Dx = 2.910 Mg m3
Monoclinic, C2/cMelting point: not measured K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 26.522 (6) ÅCell parameters from 7378 reflections
b = 6.8720 (13) Åθ = 1.9–30.6°
c = 13.811 (4) ŵ = 20.48 mm1
β = 120.930 (7)°T = 120 K
V = 2159.3 (9) Å3Block, clear intense orange
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
2355 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8 pixels mm-1θmax = 27.0°, θmin = 3.1°
ω scansh = 3233
Absorption correction: multi-scan
SADABS (G.M.Sheldrick, 1998)
k = 88
Tmin = 0.450, Tmax = 1.000l = 1717
10540 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0168P)2 + 10.3265P]
where P = (Fo2 + 2Fc2)/3
2355 reflections(Δ/σ)max = 0.001
94 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.75 e Å3
Crystal data top
[Pt2Br4(C6H15P)2]V = 2159.3 (9) Å3
Mr = 946.12Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.522 (6) ŵ = 20.48 mm1
b = 6.8720 (13) ÅT = 120 K
c = 13.811 (4) Å0.20 × 0.10 × 0.10 mm
β = 120.930 (7)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
2355 independent reflections
Absorption correction: multi-scan
SADABS (G.M.Sheldrick, 1998)
2158 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 1.000Rint = 0.036
10540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0168P)2 + 10.3265P]
where P = (Fo2 + 2Fc2)/3
2355 reflectionsΔρmax = 0.85 e Å3
94 parametersΔρmin = 1.75 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 5 sets of ω scans each set at different ϕ and/or 2θ angles and each scan (15 s exposure) covering 0.3° in ω. Crystal to detector distance 4.51 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.173674 (6)0.33758 (2)0.405282 (12)0.00514 (6)
Br10.082264 (18)0.24997 (7)0.39380 (4)0.01277 (10)
Br20.270073 (17)0.38814 (6)0.42624 (3)0.00937 (10)
P10.12538 (4)0.53020 (16)0.25526 (8)0.0068 (2)
C10.0734 (2)0.6930 (7)0.2632 (4)0.0175 (10)
H1A0.04400.61330.26930.021*
H1B0.09490.77130.33300.021*
C20.0406 (2)0.8323 (7)0.1624 (4)0.0194 (10)
H2A0.01140.90640.17040.029*
H2B0.02080.75710.09210.029*
H2C0.06870.92230.16040.029*
C30.08351 (19)0.3885 (6)0.1265 (4)0.0133 (9)
H3A0.05630.30120.13480.016*
H3B0.05960.47790.06280.016*
C40.1230 (2)0.2655 (7)0.0988 (4)0.0202 (10)
H4A0.09860.17590.03690.030*
H4B0.15090.19090.16560.030*
H4C0.14470.35150.07620.030*
C50.17176 (19)0.6889 (6)0.2284 (3)0.0092 (8)
H5A0.20180.60920.22480.011*
H5B0.14730.75240.15410.011*
C60.2027 (2)0.8466 (7)0.3192 (4)0.0155 (9)
H6A0.22800.92470.30190.023*
H6B0.22660.78480.39320.023*
H6C0.17320.93080.32040.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00558 (9)0.00576 (9)0.00475 (9)0.00104 (5)0.00313 (6)0.00095 (5)
Br10.0081 (2)0.0174 (2)0.0128 (2)0.00237 (16)0.00532 (17)0.00299 (17)
Br20.00831 (19)0.0121 (2)0.0096 (2)0.00340 (15)0.00597 (16)0.00552 (16)
P10.0062 (5)0.0083 (5)0.0058 (5)0.0020 (4)0.0031 (4)0.0019 (4)
C10.017 (2)0.020 (3)0.022 (2)0.0115 (19)0.015 (2)0.005 (2)
C20.020 (2)0.015 (2)0.020 (2)0.0095 (19)0.008 (2)0.0029 (19)
C30.011 (2)0.011 (2)0.011 (2)0.0053 (17)0.0009 (17)0.0018 (17)
C40.026 (3)0.014 (2)0.015 (2)0.001 (2)0.006 (2)0.0034 (19)
C50.010 (2)0.008 (2)0.009 (2)0.0011 (16)0.0049 (17)0.0008 (16)
C60.020 (2)0.011 (2)0.014 (2)0.0041 (18)0.0077 (19)0.0034 (18)
Geometric parameters (Å, º) top
Pt1—P12.2266 (11)C2—H2C0.98
Pt1—Br12.4229 (7)C3—C41.540 (7)
Pt1—Br22.4455 (7)C3—H3A0.99
Pt1—Br2i2.5451 (6)C3—H3B0.99
Br2—Pt1i2.5451 (6)C4—H4A0.98
P1—C51.819 (4)C4—H4B0.98
P1—C31.820 (4)C4—H4C0.98
P1—C11.822 (4)C5—C61.537 (6)
C1—C21.539 (6)C5—H5A0.99
C1—H1A0.99C5—H5B0.99
C1—H1B0.99C6—H6A0.98
C2—H2A0.98C6—H6B0.98
C2—H2B0.98C6—H6C0.98
P1—Pt1—Br190.53 (3)C4—C3—P1112.6 (3)
P1—Pt1—Br295.28 (3)C4—C3—H3A109.1
Br1—Pt1—Br2173.291 (15)P1—C3—H3A109.1
P1—Pt1—Br2i178.38 (3)C4—C3—H3B109.1
Br1—Pt1—Br2i90.288 (19)P1—C3—H3B109.1
Br2—Pt1—Br2i83.826 (18)H3A—C3—H3B107.8
Pt1—Br2—Pt1i96.174 (18)C3—C4—H4A109.5
C5—P1—C3105.0 (2)C3—C4—H4B109.5
C5—P1—C1104.8 (2)H4A—C4—H4B109.5
C3—P1—C1106.6 (2)C3—C4—H4C109.5
C5—P1—Pt1114.85 (14)H4A—C4—H4C109.5
C3—P1—Pt1111.18 (15)H4B—C4—H4C109.5
C1—P1—Pt1113.59 (16)C6—C5—P1113.0 (3)
C2—C1—P1114.9 (3)C6—C5—H5A109.0
C2—C1—H1A108.5P1—C5—H5A109.0
P1—C1—H1A108.5C6—C5—H5B109.0
C2—C1—H1B108.5P1—C5—H5B109.0
P1—C1—H1B108.5H5A—C5—H5B107.8
H1A—C1—H1B107.5C5—C6—H6A109.5
C1—C2—H2A109.5C5—C6—H6B109.5
C1—C2—H2B109.5H6A—C6—H6B109.5
H2A—C2—H2B109.5C5—C6—H6C109.5
C1—C2—H2C109.5H6A—C6—H6C109.5
H2A—C2—H2C109.5H6B—C6—H6C109.5
H2B—C2—H2C109.5
P1—Pt1—Br2—Pt1i178.65 (3)C3—P1—C1—C258.9 (4)
Br2i—Pt1—Br2—Pt1i0.0Pt1—P1—C1—C2178.3 (3)
Br1—Pt1—P1—C5168.94 (16)C5—P1—C3—C460.5 (4)
Br2—Pt1—P1—C514.43 (16)C1—P1—C3—C4171.4 (3)
Br1—Pt1—P1—C372.02 (16)Pt1—P1—C3—C464.3 (3)
Br2—Pt1—P1—C3104.62 (16)C3—P1—C5—C6169.7 (3)
Br1—Pt1—P1—C148.27 (19)C1—P1—C5—C657.5 (4)
Br2—Pt1—P1—C1135.09 (19)Pt1—P1—C5—C667.9 (3)
C5—P1—C1—C252.1 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Pt2Br4(C6H15P)2]
Mr946.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)26.522 (6), 6.8720 (13), 13.811 (4)
β (°) 120.930 (7)
V3)2159.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)20.48
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD 1K area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (G.M.Sheldrick, 1998)
Tmin, Tmax0.450, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10540, 2355, 2158
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.046, 1.11
No. of reflections2355
No. of parameters94
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0168P)2 + 10.3265P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.85, 1.75

Computer programs: SMART-NT (Bruker, 1998), SMART-NT and/or SAINT? (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Table 1. Selected geometrical parameters for I and the related chloro complexes [PtCl2(PMe3)]2, [PtCl2(PEt3)]2 and [PtCl2(PPr3)]2. Hal = Cl or Br. top
[PtCl2(PMe3)]2[PtCl2(PEt3)]2[PtCl2(PPr3)]2I
Pt—P2.205 (3) Å2.212 (3) Å2.230 (9) Å2.2266 (11) Å
Pt—HalTerminal2.281 (3) Å2.282 (3) Å2.279 (9) Å2.4229 (7) Å
Pt—HalBridging2.309 (3) Å2.318 (3) Å2.315 (8) Å2.4455 (7) Å
2.423 (3) Å2.431 (3) Å2.425 (8) Å2.5451 (6) Å
Pt—Hal—Pt96.19 (10)°96.48 (10)°96.4 (3)°96.17 (2)°
Hal—Pt—Hal83.81 (10)°83.52 (9)°83.6 (2)°83.83 (2)°
 

Acknowledgements

The authors thank the EPSRC for postgraduate studentships (SMMC and ALT) and Johnson–Matthey plc for the loan of platinum compounds.

References

First citationBlack, M., Mais, R. H. B. & Owston, P. G. (1969). Acta Cryst. B25, 1760–1766.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlake, A. J., Gould, R. O., Marr, A. M., Rankin, D. W. H. & Schröder, M. (1989). Acta Cryst. C45, 1218–1219.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoag, N. M. & Ravetz, M. S. (1996). Acta Cryst. C52, 1942–1943.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatt, J. & Venanzi, L. M. (1955). J. Chem. Soc. pp. 2787–2793.  CrossRef Web of Science Google Scholar
First citationCobley, C. J., Ellis, D. D., Orpen, A. G. & Pringle, P. G. (2000). J. Chem. Soc. Dalton Trans. pp. 1101–1107.  Web of Science CSD CrossRef Google Scholar
First citationCornet, S. M. M. (2002). PhD thesis, University of Durham, England.  Google Scholar
First citationDillon, K. B. & Goodwin, H. P. (1992). J. Organomet. Chem. 428, 169–171.  CrossRef Web of Science Google Scholar
First citationDillon, K. B. & Goodwin, H. P. (1994). J. Organomet. Chem. 469, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationKiffen, A. A., Masters, C. & Visser, J. P. (1975). J. Chem. Soc. Dalton Trans. pp. 1311–1315.  CrossRef Web of Science Google Scholar
First citationMeidine, M. F. & Nixon, J. F. (1988). Private communication to K. B. Dillon.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSimms, B. L., Shang, M., Lu, J., Youngs, W. J. & Ibers, J. A. (1987). Organometallics, 6, 1118–1126.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds