organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Tris­[4-(4-nitro­phenyl)-3-aza-3-butenyl]­amine: π-stacked chains of hydrogen-bonded R[_{\bf 2}^{\bf 2}](26) dimers

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 8 December 2004; accepted 14 December 2004; online 15 January 2005)

In the title compound {alternative name: N′-(4-nitro­benzyl­idene)-N,N-bis­[2-(4-nitro­benzyl­idene­amino)­ethyl]-1,2-ethanedi­amine}, C27H27N7O6, the three independent NCH2CH2N=CHC6H4NO2 fragments all exhibit different conformations, resulting from the different direction-specific intra- and intermolecular interactions experienced. The mol­ecules are linked by a single C—H⋯O hydrogen bond into centrosymmetric [R_2^2](26) dimers, which are linked by ππ stacking interactions into [111] chains and, more weakly, into (01[\overline 1]) sheets.

Comment

In a continuation of our studies on the molecular and supramolecular structures in nitro­phenyl­imines, we now report our findings on the title compound, (I[link]). In the mol­ecules of (I[link]), the three crystallographically independent NCH2CH2N=CHC6H4NO2 fragments all adopt different conformations, as shown by the leading torsion angles (Table 1[link]). In particular, the N10—Cn9 and Cn8—Nn7 bonds (n = 1–3) are antiperiplanar when n = 1, but synclinal when n = 2 and n = 3, while the Cn9—Cn8 and Nn7—Cn7 bonds are anticlinal when n = 1 and n = 2, but synperiplanar when n = 3. In addition, the dihedral angles between the Cn1–Cn6 aryl rings and the corresponding nitro groups are 15.5 (2), 7.8 (2) and 0.8 (2)° for n = 1–3, respectively.

The central atom, N10, has a pyramidal configuration (Table 1[link] and Fig. 1[link]), as expected, and there is a single intramolecular C—H⋯N hydrogen bond (Table 2[link]), with amine atom C37 as a donor and atom N10 as an acceptor in an S(6) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); this interaction probably has a significant influence on the conformation of the N10/C39/C38/N37/C37 fragment. In addition, the C21–C26 and C31–C36 aryl rings within the mol­ecule make a dihedral angle of only 2.0 (2)°; the interplanar spacing is ca 3.64 Å and the ring-centroid separation is 3.931 (2) Å, corresponding to a ring offset of ca 1.48 Å. Despite the fairly large interplanar spacing, this weak intramolecular interaction may have some influence on the overall conformation.

[Scheme 1]

The mol­ecules of (I[link]) are linked weakly into centrosymmetric dimers by a single C—H⋯O hydrogen bond (Table 2[link]) and a single ππ stacking interaction links these dimers into a chain. Methyl­ene atom C29 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor, via atom H29B, to nitro atom O32 in the mol­ecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric [R_2^2](26) ring centred at ([1\over2], [1\over2], [1\over2]) (Fig. 2[link]). The C11–C16 aryl rings in the mol­ecules at (x, y, z) and (−x, −y, −z) are strictly parallel, with an interplanar spacing of 3.428 (2)°; the ring-centroid separation is 3.549 (2) Å, corresponding to a ring offset of 0.919 (2) Å. Propagation by inversion of these two interactions then generates a chain running parallel to the [111] direction (Fig. 2[link]).

Just one chain passes through each unit cell; the only possible direction-specific interaction between adjacent chains is a second ππ stacking interaction, this time intermolecular, between the C21–C26 and C31–C36 rings in the mol­ecules at (x, y, z) and (1 [\pm]x, y, z). Again, the dihedral angle between the rings is only 2.0 (2)°, with an interplanar spacing now of ca 3.46 Å; the ring-centroid separation is 3.924 (2) Å, corresponding to a ring offset of ca 1.85 Å, so this interaction is possibly weaker than the intramolecular stacking interaction. The effect of this interaction is to link [111] chains into (01[\overline1]) sheets.

Thus, the three independent NCH2CH2N=CHC6H4NO2 fragments all participate in a different range of direction-specific non-covalent interactions. When n = 1, the aryl rings are involved in intermolecular ππ stacking, when n = 3, there is an intramolecular C—H⋯N hydrogen bond, while the two fragments with n = 2 and 3 participate not only in intermolecular C—H⋯O hydrogen bonding but also in both intra- and intermolecular stacking interactions. Accordingly, it would not be expected that these three limbs of the mol­ecule should adopt similar conformations.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I[link]), showing the formation of a π-stacked [111] chain of hydrogen-bonded [R_2^2](26) dimers. For clarity, H atoms not involved in the motif shown have been omitted.

Experimental

A solution of 4-nitro­benz­aldehyde (0.9 g, 6 mmol) and tris(2-amino­ethyl)­amine (0.29 g, 2 mmol) in methanol (25 ml) was heated under reflux for 2 h. The solution was filtered hot, the filtrate was evaporated and the solid residue was recrystallized from ethanol to yield compound (I[link]) (m.p. 416–418 K; darkens at 410–411 K). IR: 1642, 1602, 1517, 1346 cm−1. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in 1,2-di­chloro­ethane.

Crystal data
  • C27H27N7O6

  • Mr = 545.56

  • Triclinic, [P\overline 1]

  • a = 7.8020 (2) Å

  • b = 12.5233 (5) Å

  • c = 13.8920 (6) Å

  • α = 83.5872 (18)°

  • β = 89.022 (2)°

  • γ = 72.611 (2)°

  • V = 1287.01 (8) Å3

  • Z = 2

  • Dx = 1.408 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5891 reflections

  • θ = 3.1–27.6°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.20 × 0.09 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.996

  • 26 427 measured reflections

  • 5891 independent reflections

  • 3714 reflections with I > 2σ(I)

  • Rint = 0.08

  • θmax = 27.6°

  • h = −10 → 9

  • k = −16 → 16

  • l = −18 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.124

  • S = 1.04

  • 5891 reflections

  • 362 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0568P)2 + 0.0732P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0089 (18)

Table 1
Selected geometric parameters (°)

C19—N10—C29 111.74 (11)
C29—N10—C39 112.10 (12)
C39—N10—C19 111.24 (12)
C19—N10—C29—C28 74.96 (17)
C29—N10—C39—C38 67.46 (17)
C39—N10—C19—C18 76.85 (17)
N10—C19—C18—N17 171.04 (13)
N10—C29—C28—N27 55.99 (18)
N10—C39—C38—N37 66.70 (19)
C19—C18—N17—C17 −128.34 (16)
C29—C28—N27—C27 −108.10 (16)
C39—C38—N37—C37 −1.3 (2)
C18—N17—C17—C11 178.49 (13)
C28—N27—C27—C21 175.43 (14)
C38—N37—C37—C31 178.49 (14)
N17—C17—C11—C12 −175.56 (15)
N27—C27—C21—C22 −174.65 (16)
N37—C37—C31—C32 −170.11 (16)
C13—C14—N14—O11 −15.3 (2)
C23—C24—N24—O21 −8.4 (3)
C33—C34—N34—O31 0.4 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29B⋯O32i 0.99 2.60 3.540 (2) 159
C37—H37⋯N10 0.95 2.53 3.138 (2) 122
Symmetry code: (i) 1-x,1-y,1-z.

Crystals of compound (I[link]) are triclinic; space group [P\overline1] was selected and confirmed by the successful structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic and aliphatic CH) or 0.99 Å (CH2) and Uiso(H) values of 1.2Ueq(C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

In continuation of our studies on the molecular and supramolecular structures in nitrophenylimines, we now report our findings on the title compound, (I). In the molecules of (I), the three crystallographically independent NCH2CH2N=CHC6H4NO2 fragments all adopt different conformations, as shown by the leading torsion angles (Table 1). In particular, the N10—Cn9 and Cn8—Nn7 bonds (n = 1–3) are antiperiplanar when n = 1, but synclinal for both n = 2 and n = 3, while the Cn9—Cn8 and Nn7—Cn7 bonds are anticlinal when n = 1 and n = 2, but synperiplanar when n = 3. In addition, the dihedral angles between the Cn1–Cn6 aryl rings and the corresponding nitro groups are 15.5 (2), 7.8 (2) and 0.8 (2)° for n = 1–3, respectively.

The central atom, N10, has a pyramidal configuration (Table 1), as expected, and there is a single intramolecular C—H···N hydrogen bond (Table 2), with amine atom C37 as donor and atom N10 as acceptor in an S(6) motif (Bernstein et al., 1995); this interaction probably has a significant influence on the conformation of the N10/C39/C38/N37/C37 fragment. In addition, the C21–C26 and C31–C36 aryl rings within the molecule make a dihedral angle of only 2.0 (2)°; the interplanar spacing is ca 3.64 Å, and the ring-centroid separation is 3.931 (2) Å, corresponding to a ring offset of ca 1.48 Å. Despite the fairly large interplanar spacing, this weak intramolecular interaction may have some influence on the overall conformation.

The molecules of (I) are linked weakly into centrosymmetric dimers by a single C—H···O hydrogen bond (Table 2) and a single ππ stacking interaction links these dimers into a chain. Methylene atom C29 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H29B, to nitro atom O32 in the molecule at (1 − x, 1 − y, 1 − z), so forming a centrosymmetric R22(26) ring centred at (1/2, 1/2, 1/2) (Fig. 2). The C11–C16 aryl rings in the molecules at (x, y, z) and (-x, −y, −z) are strictly parallel, with an interplanar spacing of 3.428 (2)°; the ring-centroid separation is 3.549 (2) Å, corresponding to a ring offset of 0.919 (2) Å. Propagation by inversion of these two interactions then generates a chain running parallel to the [111] direction (Fig. 2).

Just one chain passes through each unit cell; the only possible direction-specific interaction between adjacent chains is a second ππ stacking interaction, this time intermolecular, between the C21–C26 and C31–C36 rings in the molecules at (x, y, z) and (1 ± x, y, z). Again the dihedral angle between the rings is only 2.0 (2)°, with an interplanar spacing now of ca 3.46 Å; the ring-centroid separation is 3.924 (2) Å, corresponding to a ring offset of ca 1.85 Å, so this interaction is possibly weaker than the intramolecular stacking interaction. The effect of this interaction is to link [111] chains into (01–1) sheets.

Thus the three independent NCH2CH2N=CHC6H4NO2 fragments all participate in a different range of direction-specific non-covalent interactions. When n = 1, the aryl rings are involved in intermolecular π···π stacking; when n = 3, there is an intramolecular C—H···N hydrogen bond, while the two fragments with n = 2 and 3 participate not only in intermolecular C—H···O hydrogen bonding but also in both intra- and intermolecular stacking interactions. Accordingly, it would not be expected that these three limbs of the molecule should adopt similar conformations.

Experimental top

A solution of 4-nitrobenzaldehyde (0.9 g, 6 mmol) and tris(2-aminoethyl)amine, N(CH2CH2NH2)3 (0.29 g, 2 mmol), in methanol (25 ml) was heated under reflux for 2 h; the solution was filtered hot, the filtrate was evaporated and the solid residue was recrystallized from ethanol to yield compound (I) (m.p. 416–418 K; darkens at 410–411 K). IR: 1642, 1602, 1517, 1346 cm−1. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in 1,2-dichloroethane.

Refinement top

Crystal of compound (I) are triclinic: space group P-1 was selected, and confirmed by the successful structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 Å (aromatic and aliphatic CH) or 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Stereoview of part of the crystal structure of compound (I), showing the formation of a π-stacked [111] chain of hydrogen-bonded R22(26) dimers. For clarity, H atoms not involved in the motif shown have been omitted.
Tris[4-(4-nitrophenyl)-3-aza-3-butenyl]amine top
Crystal data top
C27H27N7O6Z = 2
Mr = 545.56F(000) = 572
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8020 (2) ÅCell parameters from 5891 reflections
b = 12.5233 (5) Åθ = 3.1–27.6°
c = 13.8920 (6) ŵ = 0.10 mm1
α = 83.5872 (18)°T = 120 K
β = 89.022 (2)°Plate, orange
γ = 72.611 (2)°0.20 × 0.09 × 0.04 mm
V = 1287.01 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
5891 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.08
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.977, Tmax = 0.996l = 1817
26427 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.0732P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5891 reflectionsΔρmax = 0.24 e Å3
362 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (18)
Crystal data top
C27H27N7O6γ = 72.611 (2)°
Mr = 545.56V = 1287.01 (8) Å3
Triclinic, P1Z = 2
a = 7.8020 (2) ÅMo Kα radiation
b = 12.5233 (5) ŵ = 0.10 mm1
c = 13.8920 (6) ÅT = 120 K
α = 83.5872 (18)°0.20 × 0.09 × 0.04 mm
β = 89.022 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3714 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.996Rint = 0.08
26427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
5891 reflectionsΔρmin = 0.22 e Å3
362 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.14641 (17)0.28778 (11)0.07882 (10)0.0457 (4)
O120.0595 (2)0.16591 (12)0.20336 (10)0.0566 (4)
O210.4627 (2)0.01656 (13)0.66805 (11)0.0645 (5)
O220.4846 (2)0.16844 (13)0.71936 (11)0.0613 (4)
O310.9532 (3)0.04366 (12)0.64009 (12)0.0740 (5)
O320.94378 (19)0.19154 (12)0.70732 (10)0.0523 (4)
N100.24909 (16)0.49233 (11)0.14451 (9)0.0232 (3)
N140.12691 (18)0.19402 (13)0.12215 (11)0.0315 (4)
N170.32739 (17)0.22701 (12)0.02761 (11)0.0292 (3)
N240.4352 (2)0.11912 (15)0.65962 (12)0.0431 (4)
N270.02316 (17)0.48288 (12)0.30892 (10)0.0280 (3)
N340.9099 (2)0.14538 (13)0.64024 (12)0.0406 (4)
N370.53931 (17)0.52233 (12)0.29041 (10)0.0287 (3)
C110.27778 (19)0.04781 (14)0.01678 (12)0.0250 (4)
C120.2630 (2)0.05033 (14)0.06968 (13)0.0289 (4)
C130.2153 (2)0.13072 (14)0.02430 (13)0.0287 (4)
C140.18322 (19)0.11124 (13)0.07416 (12)0.0252 (4)
C150.1988 (2)0.01525 (14)0.12921 (13)0.0297 (4)
C160.2472 (2)0.06392 (14)0.08307 (12)0.0271 (4)
C170.32195 (19)0.13281 (14)0.06855 (13)0.0281 (4)
C180.3686 (2)0.30337 (14)0.08880 (13)0.0306 (4)
C190.2282 (2)0.41863 (14)0.07335 (12)0.0258 (4)
C210.1542 (2)0.30965 (15)0.40992 (12)0.0281 (4)
C220.2066 (2)0.19299 (15)0.41728 (14)0.0358 (4)
C230.2970 (2)0.12981 (16)0.49947 (14)0.0383 (5)
C240.3352 (2)0.18580 (15)0.57335 (13)0.0325 (4)
C250.2852 (2)0.30187 (15)0.56829 (13)0.0313 (4)
C260.1927 (2)0.36310 (15)0.48608 (13)0.0308 (4)
C270.0610 (2)0.37721 (16)0.32134 (13)0.0295 (4)
C280.0562 (2)0.53831 (15)0.21550 (12)0.0286 (4)
C290.0810 (2)0.58175 (14)0.15663 (12)0.0256 (4)
C310.6448 (2)0.34655 (14)0.39083 (12)0.0264 (4)
C320.6897 (2)0.23063 (15)0.39648 (13)0.0343 (4)
C330.7773 (2)0.16399 (15)0.47776 (14)0.0368 (5)
C340.8142 (2)0.21619 (14)0.55403 (12)0.0293 (4)
C350.7699 (2)0.33155 (14)0.55189 (12)0.0287 (4)
C360.6846 (2)0.39620 (14)0.46897 (12)0.0281 (4)
C370.5584 (2)0.41843 (15)0.30179 (13)0.0298 (4)
C380.4579 (2)0.59222 (14)0.20125 (12)0.0276 (4)
C390.3992 (2)0.53747 (14)0.12041 (12)0.0254 (4)
H120.28580.06230.13760.035*
H130.20510.19760.06030.034*
H150.17670.00420.19720.036*
H160.25970.12980.11970.033*
H170.34760.11600.13610.034*
H18A0.48890.31100.07310.037*
H18B0.37070.27220.15760.037*
H19A0.23940.45440.00730.031*
H19B0.10680.40920.07860.031*
H220.18030.15620.36570.043*
H230.33210.04990.50520.046*
H250.31330.33840.61950.038*
H260.15470.44300.48140.037*
H270.02850.33960.27210.035*
H28A0.16410.60190.22530.034*
H28B0.09350.48440.18000.034*
H29A0.02840.61600.09200.031*
H29B0.10790.64130.18950.031*
H320.66010.19630.34410.041*
H330.81120.08420.48110.044*
H350.79680.36550.60520.034*
H360.65260.47600.46540.034*
H370.51680.38510.25240.036*
H38A0.54480.63040.17360.033*
H38B0.35120.65160.22000.033*
H39A0.36470.59390.06280.030*
H39B0.50310.47550.10270.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0569 (8)0.0305 (8)0.0545 (9)0.0217 (6)0.0144 (7)0.0013 (7)
O120.0938 (11)0.0473 (9)0.0373 (9)0.0338 (8)0.0228 (8)0.0015 (7)
O210.0938 (12)0.0396 (10)0.0474 (10)0.0045 (8)0.0058 (8)0.0057 (8)
O220.0872 (11)0.0605 (11)0.0376 (9)0.0264 (9)0.0234 (8)0.0038 (8)
O310.1299 (15)0.0261 (9)0.0518 (10)0.0025 (9)0.0255 (10)0.0012 (7)
O320.0745 (10)0.0410 (9)0.0342 (8)0.0051 (7)0.0184 (7)0.0049 (7)
N100.0214 (6)0.0257 (8)0.0238 (8)0.0073 (6)0.0023 (5)0.0060 (6)
N140.0320 (8)0.0295 (9)0.0342 (9)0.0105 (6)0.0042 (7)0.0046 (7)
N170.0288 (7)0.0265 (8)0.0334 (9)0.0077 (6)0.0018 (6)0.0089 (7)
N240.0514 (10)0.0411 (11)0.0333 (10)0.0107 (8)0.0014 (8)0.0017 (8)
N270.0262 (7)0.0343 (9)0.0256 (8)0.0111 (6)0.0021 (6)0.0062 (7)
N340.0530 (10)0.0289 (10)0.0329 (10)0.0029 (7)0.0038 (8)0.0004 (8)
N370.0272 (7)0.0300 (9)0.0280 (8)0.0070 (6)0.0024 (6)0.0030 (7)
C110.0182 (8)0.0269 (10)0.0293 (10)0.0048 (7)0.0015 (7)0.0060 (8)
C120.0295 (9)0.0317 (10)0.0232 (9)0.0058 (7)0.0037 (7)0.0025 (8)
C130.0288 (9)0.0237 (9)0.0326 (10)0.0074 (7)0.0018 (7)0.0005 (8)
C140.0206 (8)0.0231 (9)0.0312 (10)0.0049 (7)0.0037 (7)0.0047 (8)
C150.0328 (9)0.0319 (10)0.0244 (10)0.0091 (8)0.0024 (7)0.0040 (8)
C160.0278 (8)0.0250 (9)0.0290 (10)0.0089 (7)0.0000 (7)0.0022 (8)
C170.0215 (8)0.0317 (11)0.0291 (10)0.0039 (7)0.0018 (7)0.0063 (8)
C180.0304 (9)0.0290 (10)0.0338 (11)0.0091 (7)0.0046 (7)0.0084 (8)
C190.0258 (8)0.0302 (10)0.0223 (9)0.0088 (7)0.0038 (7)0.0056 (7)
C210.0259 (8)0.0347 (10)0.0270 (10)0.0129 (7)0.0033 (7)0.0075 (8)
C220.0424 (10)0.0354 (11)0.0346 (11)0.0161 (8)0.0016 (8)0.0123 (9)
C230.0467 (11)0.0293 (11)0.0412 (12)0.0148 (9)0.0002 (9)0.0038 (9)
C240.0368 (10)0.0343 (11)0.0265 (10)0.0118 (8)0.0015 (8)0.0008 (8)
C250.0344 (9)0.0363 (11)0.0262 (10)0.0132 (8)0.0000 (7)0.0087 (8)
C260.0346 (9)0.0287 (10)0.0315 (10)0.0118 (8)0.0007 (8)0.0068 (8)
C270.0257 (8)0.0403 (12)0.0280 (10)0.0160 (8)0.0004 (7)0.0100 (9)
C280.0238 (8)0.0375 (10)0.0250 (10)0.0088 (7)0.0023 (7)0.0060 (8)
C290.0241 (8)0.0269 (9)0.0246 (9)0.0051 (7)0.0031 (7)0.0041 (7)
C310.0243 (8)0.0302 (10)0.0269 (10)0.0113 (7)0.0012 (7)0.0036 (8)
C320.0425 (10)0.0322 (11)0.0324 (11)0.0152 (8)0.0027 (8)0.0098 (9)
C330.0474 (11)0.0250 (10)0.0385 (12)0.0109 (8)0.0013 (9)0.0049 (9)
C340.0333 (9)0.0261 (10)0.0268 (10)0.0071 (7)0.0008 (7)0.0011 (8)
C350.0289 (9)0.0310 (10)0.0261 (10)0.0077 (7)0.0020 (7)0.0056 (8)
C360.0268 (8)0.0246 (9)0.0332 (10)0.0073 (7)0.0001 (7)0.0053 (8)
C370.0300 (9)0.0343 (11)0.0285 (10)0.0127 (8)0.0047 (7)0.0080 (8)
C380.0252 (8)0.0296 (10)0.0287 (10)0.0093 (7)0.0034 (7)0.0029 (8)
C390.0232 (8)0.0284 (9)0.0248 (9)0.0083 (7)0.0009 (7)0.0027 (7)
Geometric parameters (Å, º) top
N10—C391.4641 (19)C29—H29B0.99
N10—C191.468 (2)C22—C231.385 (3)
N10—C291.4693 (19)C22—H220.95
C11—C161.393 (2)C23—C241.389 (3)
C11—C121.394 (2)C23—H230.95
C11—C171.472 (2)C24—C251.382 (2)
C17—N171.263 (2)C24—N241.470 (2)
C17—H170.95N24—O221.219 (2)
N17—C181.454 (2)N24—O211.230 (2)
C18—C191.524 (2)C25—C261.384 (2)
C18—H18A0.99C25—H250.95
C18—H18B0.99C26—H260.95
C19—H19A0.99C31—C321.381 (2)
C19—H19B0.99C31—C361.393 (2)
C12—C131.387 (2)C31—C371.487 (2)
C12—H120.95C37—N371.257 (2)
C13—C141.376 (2)C37—H370.95
C13—H130.95N37—C381.468 (2)
C14—C151.387 (2)C38—C391.522 (2)
C14—N141.466 (2)C38—H38A0.99
N14—O121.2223 (19)C38—H38B0.99
N14—O111.2260 (19)C39—H39A0.99
C15—C161.382 (2)C39—H39B0.99
C15—H150.95C32—C331.383 (3)
C16—H160.95C32—H320.95
C21—C221.387 (2)C33—C341.382 (2)
C21—C261.395 (2)C33—H330.95
C21—C271.480 (2)C34—C351.378 (2)
C27—N271.259 (2)C34—N341.475 (2)
C27—H270.95N34—O311.217 (2)
N27—C281.456 (2)N34—O321.2218 (19)
C28—C291.527 (2)C35—C361.386 (2)
C28—H28A0.99C35—H350.95
C28—H28B0.99C36—H360.95
C29—H29A0.99
C19—N10—C29111.74 (11)C28—C29—H29B109.1
C29—N10—C39112.10 (12)H29A—C29—H29B107.8
C39—N10—C19111.24 (12)C23—C22—C21120.32 (17)
C16—C11—C12119.36 (15)C23—C22—H22119.8
C16—C11—C17121.76 (15)C21—C22—H22119.8
C12—C11—C17118.87 (15)C22—C23—C24118.61 (17)
N17—C17—C11123.28 (16)C22—C23—H23120.7
N17—C17—H17118.4C24—C23—H23120.7
C11—C17—H17118.4C25—C24—C23122.53 (17)
C17—N17—C18116.94 (15)C25—C24—N24118.66 (16)
N17—C18—C19110.28 (13)C23—C24—N24118.80 (17)
N17—C18—H18A109.6O22—N24—O21123.57 (17)
C19—C18—H18A109.6O22—N24—C24118.36 (17)
N17—C18—H18B109.6O21—N24—C24118.06 (17)
C19—C18—H18B109.6C24—C25—C26117.77 (16)
H18A—C18—H18B108.1C24—C25—H25121.1
N10—C19—C18111.72 (12)C26—C25—H25121.1
N10—C19—H19A109.3C25—C26—C21121.23 (17)
C18—C19—H19A109.3C25—C26—H26119.4
N10—C19—H19B109.3C21—C26—H26119.4
C18—C19—H19B109.3C32—C31—C36119.32 (16)
H19A—C19—H19B107.9C32—C31—C37120.85 (15)
C13—C12—C11120.76 (16)C36—C31—C37119.82 (15)
C13—C12—H12119.6N37—C37—C31121.42 (15)
C11—C12—H12119.6N37—C37—H37119.3
C14—C13—C12118.35 (16)C31—C37—H37119.3
C14—C13—H13120.8C37—N37—C38121.08 (15)
C12—C13—H13120.8N37—C38—C39119.45 (14)
C13—C14—C15122.44 (15)N37—C38—H38A107.5
C13—C14—N14118.67 (15)C39—C38—H38A107.5
C15—C14—N14118.88 (15)N37—C38—H38B107.5
O12—N14—O11122.66 (15)C39—C38—H38B107.5
O12—N14—C14118.46 (15)H38A—C38—H38B107.0
O11—N14—C14118.87 (14)N10—C39—C38114.66 (13)
C16—C15—C14118.58 (16)N10—C39—H39A108.6
C16—C15—H15120.7C38—C39—H39A108.6
C14—C15—H15120.7N10—C39—H39B108.6
C15—C16—C11120.51 (16)C38—C39—H39B108.6
C15—C16—H16119.7H39A—C39—H39B107.6
C11—C16—H16119.7C31—C32—C33120.61 (16)
C22—C21—C26119.53 (16)C31—C32—H32119.7
C22—C21—C27120.37 (16)C33—C32—H32119.7
C26—C21—C27120.09 (16)C34—C33—C32118.45 (17)
N27—C27—C21122.25 (16)C34—C33—H33120.8
N27—C27—H27118.9C32—C33—H33120.8
C21—C27—H27118.9C35—C34—C33122.82 (16)
C27—N27—C28116.65 (15)C35—C34—N34118.57 (15)
N27—C28—C29109.44 (12)C33—C34—N34118.59 (16)
N27—C28—H28A109.8O31—N34—O32123.41 (16)
C29—C28—H28A109.8O31—N34—C34118.00 (16)
N27—C28—H28B109.8O32—N34—C34118.58 (15)
C29—C28—H28B109.8C34—C35—C36117.48 (16)
H28A—C28—H28B108.2C34—C35—H35121.3
N10—C29—C28112.50 (13)C36—C35—H35121.3
N10—C29—H29A109.1C35—C36—C31121.29 (16)
C28—C29—H29A109.1C35—C36—H36119.4
N10—C29—H29B109.1C31—C36—H36119.4
C19—N10—C29—C2874.96 (17)C17—C11—C16—C15177.36 (14)
C29—N10—C39—C3867.46 (17)C26—C21—C27—N274.3 (2)
C39—N10—C19—C1876.85 (17)C39—N10—C29—C28159.38 (13)
N10—C19—C18—N17171.04 (13)C26—C21—C22—C230.2 (3)
N10—C29—C28—N2755.99 (18)C27—C21—C22—C23178.72 (15)
N10—C39—C38—N3766.70 (19)C21—C22—C23—C240.6 (3)
C19—C18—N17—C17128.34 (16)C22—C23—C24—C250.6 (3)
C29—C28—N27—C27108.10 (16)C22—C23—C24—N24178.47 (16)
C39—C38—N37—C371.3 (2)C25—C24—N24—O226.7 (2)
C18—N17—C17—C11178.49 (13)C23—C24—N24—O22172.43 (17)
C28—N27—C27—C21175.43 (14)C25—C24—N24—O21172.54 (17)
C38—N37—C37—C31178.49 (14)C23—C24—C25—C260.3 (3)
N17—C17—C11—C12175.56 (15)N24—C24—C25—C26179.39 (15)
N27—C27—C21—C22174.65 (16)C24—C25—C26—C211.2 (2)
N37—C37—C31—C32170.11 (16)C22—C21—C26—C251.2 (2)
C13—C14—N14—O1115.3 (2)C27—C21—C26—C25177.76 (15)
C23—C24—N24—O218.4 (3)C36—C31—C37—N378.6 (2)
C33—C34—N34—O310.4 (3)C19—N10—C39—C38166.61 (13)
C16—C11—C17—N173.2 (2)C36—C31—C32—C331.6 (3)
C29—N10—C19—C18157.03 (13)C37—C31—C32—C33177.08 (16)
C16—C11—C12—C131.1 (2)C31—C32—C33—C341.8 (3)
C17—C11—C12—C13177.68 (14)C32—C33—C34—C351.0 (3)
C11—C12—C13—C140.1 (2)C32—C33—C34—N34179.14 (16)
C12—C13—C14—C150.7 (2)C35—C34—N34—O31177.79 (18)
C12—C13—C14—N14177.98 (13)C35—C34—N34—O321.2 (2)
C13—C14—N14—O12163.48 (16)C33—C34—N34—O32179.42 (17)
C15—C14—N14—O1215.3 (2)C33—C34—C35—C360.1 (3)
C15—C14—N14—O11165.92 (15)N34—C34—C35—C36178.22 (15)
C13—C14—C15—C160.5 (2)C34—C35—C36—C310.1 (2)
N14—C14—C15—C16178.25 (14)C32—C31—C36—C350.6 (2)
C14—C15—C16—C110.6 (2)C37—C31—C36—C35178.05 (15)
C12—C11—C16—C151.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29B···O32i0.992.603.540 (2)159
C37—H37···N100.952.533.138 (2)122
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H27N7O6
Mr545.56
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.8020 (2), 12.5233 (5), 13.8920 (6)
α, β, γ (°)83.5872 (18), 89.022 (2), 72.611 (2)
V3)1287.01 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.09 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.977, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
26427, 5891, 3714
Rint0.08
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.124, 1.04
No. of reflections5891
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond and torsion angles (º) top
C19—N10—C29111.74 (11)C39—N10—C19111.24 (12)
C29—N10—C39112.10 (12)
C19—N10—C29—C2874.96 (17)C18—N17—C17—C11178.49 (13)
C29—N10—C39—C3867.46 (17)C28—N27—C27—C21175.43 (14)
C39—N10—C19—C1876.85 (17)C38—N37—C37—C31178.49 (14)
N10—C19—C18—N17171.04 (13)N17—C17—C11—C12175.56 (15)
N10—C29—C28—N2755.99 (18)N27—C27—C21—C22174.65 (16)
N10—C39—C38—N3766.70 (19)N37—C37—C31—C32170.11 (16)
C19—C18—N17—C17128.34 (16)C13—C14—N14—O1115.3 (2)
C29—C28—N27—C27108.10 (16)C23—C24—N24—O218.4 (3)
C39—C38—N37—C371.3 (2)C33—C34—N34—O310.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29B···O32i0.992.603.540 (2)159
C37—H37···N100.952.533.138 (2)122
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds