metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

mer-Tri­iodo­tri­pyridine­indium(III)

CROSSMARK_Color_square_no_text.svg

aInorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England, and bDepartment of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, England
*Correspondence e-mail: tony.downs@chem.ox.ac.uk

(Received 27 January 2005; accepted 1 March 2005; online 18 March 2005)

Crystals of the title compound, [InI3(C5H5N)3], consist of discrete mol­ecules lying on a twofold axis running parallel to the crystallographic b axis. The mol­ecules exhibit meridional octa­hedral stereochemistry, with In—I bond lengths of 2.8390 (6) and 2.8676 (3) Å, and In—N bond lengths of 2.323 (5) and 2.309 (4) Å.

Comment

In an attempt to extend the chemistry of subvalent indium compounds, we have been investigating the feasibility of producing solutions in which an indium(I) halide is acceptably stable to disproportionation at temperatures between 190 and 300 K. One strategy has involved co-condensation of the vapours of the halide and an excess of a potential solvent (e.g. toluene or toluene/ether), followed by warming of the mixture to see whether a solution of practical use in synthesis can be formed. Although ready dissolution without disproportionation is rare, indium(I) iodide has proved to be the halide most prone to dissolve in organic solvents, of which pyridine or pyridine-containing mixtures have been among the most promising. Solutions of indium(I) iodide in a pyridine/m-xylene (2:1) mixture are lastingly stable below 243 K but undergo slow disproportionation at room temperature, giving a mixture of indium metal and triiodo­tripyridineindium(III), (I). Crystallographic studies of (I) at 150 K have afforded a rare structural characterization of a neutral six-­coordinate indium(III) iodide complex.

[Scheme 1]

The orthorhombic crystals of (I)[link] (Fig. 1[link]) consist of neutral mol­ecules with indium in a pseudo-octa­hedral environment and with the meridional stereochemistry suggested in a preliminary report (Small & Worrall, 1982[Small, R. W. H. & Worrall, I. J. (1982). Acta Cryst. B38, 932-934.]) but different from that deduced on the basis of IR measurements (Adams et al., 1968[Adams, D. M., Carty, A. J., Carty, P. & Tuck, D. G. (1968). J. Chem. Soc. A, pp. 162-164.]). Unlike the corresponding chloride (Jeffs et al., 1984[Jeffs, S. E., Small, R. W. H. & Worrall, I. J. (1984). Acta Cryst. C40, 1329-1331.]) and bromide (Small & Worrall, 1982[Small, R. W. H. & Worrall, I. J. (1982). Acta Cryst. B38, 932-934.]) adducts, the iodo compound takes up no additional pyridine mol­ecules of solvation, presumably as a result of the extra bulk of the iodide ligands.

The In—I bond lengths [2.8390 (6) and 2.8676 (3) Å] are comparable to those found in the related complex [InI3(4-MeC5H4N)3], (II) [2.803 (4), 2.848 (4) and 2.893 (4) Å; Brown & Tuck, 1996[Brown, M. A. & Tuck, D. G. (1996). Inorg. Chim. Acta, 247, 135-138.]], there being a less pronounced but still distinct shortening of the unique In—I bond trans to a pyridine ring. For these two neutral six-­coordinate InI3 complexes, the In—I distances occur in the range 2.80–2.90 Å. As expected, the corresponding distances are shorter in similar five-­coordinate complexes (2.66–2.80 Å), and shorter still in four-­coordinate complexes (2.50–2.74 Å), as revealed by the 19 hits in a search of the Cambridge Structural Database (Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The terminal and bridging In—I distances of the In2I6 mol­ecules of solid indium(III) iodide are 2.644 (2) and 2.842 (2) Å, respectively (Kniep et al., 1982[Kniep, R., Blees, P. & Poll, W. (1982). Angew. Chem. Int. Ed. Engl. 21, 386.]).

The In—N bond lengths in (I)[link], with an average of 2.316 Å, are not significantly different from those in (II) (2.31 Å), [InCl3(C5H5N)3]·C5H5N (2.327 Å) and [InBr3(C5H5N)3]·C5H5N (2.30 Å). In every case, the longest In—N bond is that trans to a halogen, viz. 2.323 (5) versus 2.309 (4) Å in (I)[link], 2.34 (2) versus 2.28 (3)/2.30 (3) Å in (II), 2.377 (21) versus 2.302 (7) Å in [InCl3(C5H5N)3]·C5H5N and 2.32 (2) versus 2.28 (3)/2.31 (2) Å in [InBr3(C5H5N)3]·C5H5N, even if the difference is not always statistically significant. Any systematic dependence on the nature of the halogen is, at best, small, although no strict comparison can be made in view of the diversity of the data (most of which relate to crystals at room temperature).

The mol­ecules in (I)[link] each lie on a twofold rotation axis running through the I2—In—N2 group and parallel to the crystallographic b axis. As in (II), the I1—In—I1i and N1—In—N1i angles (symmetry code as in Table 1[link]) depart from linearity, and each pyridine ring is tilted out of the appropriate plane by an average of 40 (2)°, in keeping with both the stronger non-bonded repulsion exerted by atom I2, as compared with N2, and minimization of the inter­action between the iodide and pyridine functions. Analysis of the dimensions of the coordinated pyridine mol­ecules indicate no unusual features. The packing of the mol­ecules of (I)[link] (Fig. 2[link]) gives little evidence of specific inter­actions. At 3.17 Å, for example, the shortest H⋯I distance is consistent with a normal van der Waals contact, although the existence of weak hydrogen bonding is not precluded (Table 2[link]). Likewise, short I⋯I contacts are evidently disfavoured (there are none below 5 Å), which could imply that the I atoms carry a substantial negative charge.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme (ORTEPIII; Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) -x+1, y, [-z+{3\over2}].]
[Figure 2]
Figure 2
A packing diagram of (I)[link], viewed along the a axis, with the b axis aligned vertically. Dotted lines indicate relatively short H⋯I distances, which may be indicative of weak hydrogen bonding. Key: In atoms are vertically hatched, I atoms are horizontally hatched, and N, C and H atoms are unfilled white circles.

Experimental

Crystals of (I)[link] were grown from a solution initially containing InI in pyridine/m-xylene (2:1) over a period of one month at room tem­perature.

Crystal data
  • [InI3(C5H5N)3]

  • Mr = 732.84

  • Orthorhombic, P b c n

  • a = 9.6622 (2) Å

  • b = 14.9139 (4) Å

  • c = 13.9850 (4) Å

  • V = 2015.25 (9) Å3

  • Z = 4

  • Dx = 2.415 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 13 983 reflections

  • θ = 5–28°

  • μ = 5.77 mm−1

  • T = 150 K

  • Block, colourless

  • 0.11 × 0.09 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.53, Tmax = 0.71

  • 13 983 measured reflections

  • 2293 independent reflections

  • 1670 reflections with I > 3σ(I)

  • Rint = 0.038

  • θmax = 27.5°

  • h = −12 → 12

  • k = −19 → 19

  • l = −18 → 18

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.029

  • S = 1.01

  • 1670 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Weighting scheme: part 1, Chebychev polynomial (Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-427.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), [weight] = 1/[A0T0(x) + A1T1(x) + ⋯ + An−1Tn−1(x)], where Ai are the Chebychev coefficients 0.403, 0.231 and 0.196, and x = F/Fmax; robust weighting (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), W = [weight][1 − (ΔF/6σF)2]2

  • (Δ/σ)max = 0.006

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

In1—I1 2.8676 (3) 
In1—I2 2.8390 (6)
In1—N1 2.309 (4)
In1—N2 2.323 (5)
I1—In1—I1i 173.079 (18)
I1—In1—I2 93.460 (9)
I1—In1—N1 89.64 (9)
I2—In1—N1 93.74 (9)
I1—In1—N1i 89.91 (9)
N1—In1—N1i 172.52 (18)
I1—In1—N2 86.540 (9)
I2—In1—N2 179.995
N1—In1—N2 86.26 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H21⋯I1ii 1.00 3.17 3.904 (5) 131
C6—H61⋯I1iii 1.00 3.18 3.946 (4) 135
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x+1, -y+1, -z+1.

H atoms were positioned geometrically and treated using a riding model, with C—H distances assumed to be 1.00 Å. The Uiso(H) values were taken to be 1.2Ueq(C).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CRYSTALS; software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

In an attempt to extend the chemistry of subvalent indium compounds, we have been investigating the feasibility of producing solutions in which an indium(I) halide is acceptably stable to disproportionation at temperatures between 190 and 300 K. One strategy has involved co-condensation of the vapours of the halide and an excess of a potential solvent (e.g. toluene or toluene/ether), followed by warming of the mixture to see whether a solution of practical use in synthesis can be formed. Although ready dissolution without disproportionation is rare, indium(I) iodide has proved to be the halide most prone to dissolve in organic solvents, of which pyridine or pyridine-containing mixtures have been among the most promising. Solutions of indium(I) iodide in a 2:1 pyridine/m-xylene mixture are lastingly stable below 243 K but undergo slow disproportionation at room temperature, giving a mixture of indium metal and triiodotris(pyridine)indium(III). Crystallographic studies of the latter at 150 K have afforded a rare structural characterization of a neutral hexacoordinated indium(III) iodide complex.

The orthorhombic crystals of [InI3(C5H5N)3], (I), consist of neutral molecules with indium in a pseudo-octahedral environment and with the meridional stereochemistry suggested in a preliminary report (Small & Worrall, 1982) but different from that deduced on the basis of IR measurements (Adams et al., 1968). Unlike the corresponding chloride (Jeffs et al., 1984) and bromide (Small & Worrall, 1982) adducts, (I) takes up no additional pyridine molecules of solvation, presumably as a result of the extra bulk of the iodide ligands.

The In—I bond lengths [2.8390 (6) and 2.8676 (3) Å] are comparable to those in the related complex [InI3(4-MeC5H4N)3], (II) [2.803 (4), 2.848 (4) and 2.893 (4) Å; Brown & Tuck, 1996], there being a less pronounced but still distinct shortening of the unique In—I bond trans to the pyridine ring. For these two neutral hexacoordinated InI3 complexes, In—I distances occur therefore in the range 2.80–2.90 Å. As expected, the corresponding distances are shorter in similar pentacoordinated complexes (2.66–2.80 Å), and shorter still in tetracoordinated ones (2.50–2.74 Å), as revealed by the 19 hits in the Cambridge Structural Database (Version 5.26; Allen, 2002). The terminal and bridging In—I distances of the In2I6 molecules of solid indium(III) iodide are 2.644 (2) and 2.842 (2) Å, respectively (Kneep et al., 1982).

The In—N bond lengths in (I), averaging to 2.316 Å, are not significantly different from those in (II) (2.31 Å), [InCl3(C5H5N)3]·C5H5N (2.327 Å) and [InBr3(C5H5N)3]·C5H5N (2.30 Å). In every case, the longest In—N bond is that trans to a halogen, viz. 2.323 (5) versus 2.309 (4) Å in (I), 2.34 (2) versus 2.28 (3)/2.30 (3) Å in (II), 2.377 (21) versus 2.302 (7) Å in [InCl3(C5H5N)3]·C5H5N, and 2.32 (2) versus 2.28 (3)/2.31 (2) Å in [InBr3(C5H5N)3]·C5H5N, even if the difference is not always statistically significant. Any systematic dependence on the nature of the halogen is, at best, small, although no strict comparison can be made in view of the diversity of the data (most of which relate to crystals at room temperature).

The [InI3(C5H5N)3] molecules in (I) each lie on a twofold rotation axis running through the I2—In—N2 bond and parallel to the crystallographic b axis. As in (II), the I1—In—I1i and N1—In—N1i units (symmetry code as in Table 1) depart from linearity, and each pyridine ring is tilted out of the appropriate plane by an average of 40 (2)°, in keeping with the stronger non-bonded repulsion exerted by atom I2 as compared with N2, and minimization of the interaction between the iodide and pyridine functions. By their dimensions, the coordinated pyridine molecules indicate no unusual features. The packing of the molecules of (I) (Fig. 2) gives little evidence of specific interactions. At 3.17 Å, for example, the shortest H···I distance is consistent with a normal van der Waals contact, although the existence of weak hydrogen bonding is not precluded (Table 2). Likewise, short I···I contacts are evidently disfavoured (there are none below 5 Å), which could imply that the I atoms carry a substantial negative charge.

Experimental top

Crystals of (I) were grown from a solution initially containing InI in pyridine/m-xylene (2:1) over a period of one month at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H distances assumed to be 1.00 Å. The Uiso(H) values were taken to be 1.2Ueq(C). A three-term Chebychev polynomial weighting scheme was applied.

Computing details top

Data collection: Collect (Nonius, 2000); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CRYSTALS; software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme (ORTEPIII; Burnett & Johnson, 1996). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of (I), viewed along the a axis, with the b axis aligned vertically. Dotted lines indicate relatively short H···I distances, which may be indicative of weak hydrogen bonding. In atoms: horizontally hatched; I atoms: vertically hatched; N, C and H atoms: white.
mer-Triiodotripyridineindium(III) top
Crystal data top
[InI3(C5H5N)3]Dx = 2.415 Mg m3
Mr = 732.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 13983 reflections
a = 9.6622 (2) Åθ = 5–28°
b = 14.9139 (4) ŵ = 5.77 mm1
c = 13.9850 (4) ÅT = 150 K
V = 2015.25 (9) Å3Block, colourless
Z = 40.11 × 0.09 × 0.06 mm
F(000) = 1336
Data collection top
Nonius KappaCCD
diffractometer
1670 reflections with I > 3.00u(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.53, Tmax = 0.71k = 1919
13983 measured reflectionsl = 1818
2293 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.029 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(ΔF/6*σF)2]2 Ai are: 0.403 0.231 0.196
S = 1.02(Δ/σ)max = 0.006
1670 reflectionsΔρmax = 0.60 e Å3
102 parametersΔρmin = 0.86 e Å3
0 restraints
Crystal data top
[InI3(C5H5N)3]V = 2015.25 (9) Å3
Mr = 732.84Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 9.6622 (2) ŵ = 5.77 mm1
b = 14.9139 (4) ÅT = 150 K
c = 13.9850 (4) Å0.11 × 0.09 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2293 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1670 reflections with I > 3.00u(I)
Tmin = 0.53, Tmax = 0.71Rint = 0.038
13983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.029H-atom parameters constrained
S = 1.02Δρmax = 0.60 e Å3
1670 reflectionsΔρmin = 0.86 e Å3
102 parameters
Special details top

Experimental. Crystal cooling was performed with an Oxford Cryosystems CRYOSTREAM unit.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.50000.38825 (2)0.75000.0176
I10.68422 (3)0.399859 (18)0.589709 (18)0.0239
I20.50000.19789 (2)0.75000.0299
N10.3136 (4)0.3984 (2)0.6472 (2)0.0213
C10.3117 (5)0.3478 (3)0.5668 (3)0.0245
C20.1983 (5)0.3459 (3)0.5060 (3)0.0278
C30.0823 (5)0.3948 (3)0.5306 (3)0.0294
C40.0835 (5)0.4470 (4)0.6123 (3)0.0287
C50.2020 (5)0.4477 (3)0.6682 (3)0.0242
N20.50000.5440 (3)0.75000.0209
C60.4785 (5)0.5902 (3)0.6688 (3)0.0262
C70.4761 (6)0.6827 (3)0.6668 (4)0.0373
C80.50000.7304 (4)0.75000.0404
H110.39460.31070.55070.0294*
H210.20060.30990.44570.0334*
H310.00230.39250.48950.0352*
H410.00090.48350.63060.0344*
H510.20400.48650.72650.0290*
H610.46380.55640.60790.0315*
H710.45710.71510.60550.0448*
H810.50000.79740.75000.0485*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.01875 (19)0.01875 (19)0.01533 (19)0.00000.00157 (15)0.0000
I10.02398 (15)0.02873 (15)0.01895 (14)0.00281 (11)0.00273 (11)0.00098 (11)
I20.0435 (3)0.0190 (2)0.0272 (2)0.00000.00680 (19)0.0000
N10.0198 (17)0.0272 (19)0.0168 (15)0.0005 (15)0.0008 (14)0.0016 (14)
C10.028 (2)0.026 (2)0.0197 (19)0.0001 (18)0.0068 (18)0.0026 (16)
C20.036 (3)0.023 (2)0.025 (2)0.006 (2)0.0053 (19)0.0015 (17)
C30.027 (2)0.032 (2)0.029 (2)0.0053 (19)0.0107 (19)0.010 (2)
C40.022 (2)0.038 (3)0.026 (2)0.0047 (19)0.0029 (19)0.0094 (19)
C50.022 (2)0.025 (2)0.026 (2)0.0025 (17)0.0033 (18)0.0070 (17)
N20.025 (2)0.018 (2)0.020 (2)0.00000.006 (2)0.0000
C60.032 (3)0.027 (2)0.020 (2)0.0027 (18)0.0077 (18)0.0032 (18)
C70.062 (4)0.022 (2)0.029 (3)0.007 (2)0.008 (2)0.0059 (19)
C80.068 (5)0.019 (3)0.034 (4)0.00000.008 (4)0.0000
Geometric parameters (Å, º) top
In1—I12.8676 (3)C3—C41.382 (7)
In1—I1i2.8676 (3)C3—H311.000
In1—I22.8390 (6)C4—C51.386 (6)
In1—N12.309 (4)C4—H411.000
In1—N1i2.309 (4)C5—H511.000
In1—N22.323 (5)N2—C61.343 (5)
N1—C11.354 (5)N2—C6i1.343 (5)
N1—C51.338 (6)C6—C71.381 (6)
C1—C21.387 (6)C6—H611.000
C1—H111.000C7—C81.383 (6)
C2—C31.381 (7)C7—H711.000
C2—H211.000C8—H811.000
I1—In1—I1i173.079 (18)C3—C2—H21120.728
I1—In1—I293.460 (9)C2—C3—C4119.7 (4)
I1i—In1—I293.460 (9)C2—C3—H31120.138
I1—In1—N189.64 (9)C4—C3—H31120.137
I1i—In1—N189.91 (9)C3—C4—C5118.5 (4)
I2—In1—N193.74 (9)C3—C4—H41120.729
I1—In1—N1i89.91 (9)C5—C4—H41120.730
I1i—In1—N1i89.64 (9)N1—C5—C4122.5 (4)
I2—In1—N1i93.74 (9)N1—C5—H51118.738
N1—In1—N1i172.52 (18)C4—C5—H51118.738
I1—In1—N286.540 (9)In1—N2—C6120.8 (3)
I1i—In1—N286.540 (9)In1—N2—C6i120.8 (3)
I2—In1—N2179.995C6—N2—C6i118.4 (5)
N1—In1—N286.26 (9)N2—C6—C7122.2 (4)
N1i—In1—N286.26 (9)N2—C6—H61118.910
In1—N1—C1119.4 (3)C7—C6—H61118.910
In1—N1—C5121.9 (3)C6—C7—C8119.5 (5)
C1—N1—C5118.5 (4)C6—C7—H71120.229
N1—C1—C2122.1 (4)C8—C7—H71120.227
N1—C1—H11118.954C7—C8—C7i118.2 (6)
C2—C1—H11118.955C7—C8—H81120.918
C1—C2—C3118.5 (4)C7i—C8—H81120.918
C1—C2—H21120.729
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···I1ii1.003.173.904 (5)131
C6—H61···I1iii1.003.183.946 (4)135
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[InI3(C5H5N)3]
Mr732.84
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)150
a, b, c (Å)9.6622 (2), 14.9139 (4), 13.9850 (4)
V3)2015.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)5.77
Crystal size (mm)0.11 × 0.09 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.53, 0.71
No. of measured, independent and
observed [I > 3.00u(I)] reflections
13983, 2293, 1670
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.029, 1.02
No. of reflections1670
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.86

Computer programs: Collect (Nonius, 2000), DENZO (Otwinowski & Minor, 1997), DENZO, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CRYSTALS.

Selected geometric parameters (Å, º) top
In1—I12.8676 (3)In1—N12.309 (4)
In1—I22.8390 (6)In1—N22.323 (5)
I1—In1—I1i173.079 (18)N1—In1—N1i172.52 (18)
I1—In1—I293.460 (9)I1—In1—N286.540 (9)
I1—In1—N189.64 (9)I2—In1—N2179.995
I2—In1—N193.74 (9)N1—In1—N286.26 (9)
I1—In1—N1i89.91 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···I1ii1.003.173.904 (5)131
C6—H61···I1iii1.003.183.946 (4)135
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the EPSRC for the award of a research grant including the funding of a postdoctoral assistantship for JAJP.

References

First citationAdams, D. M., Carty, A. J., Carty, P. & Tuck, D. G. (1968). J. Chem. Soc. A, pp. 162–164.  CrossRef Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrown, M. A. & Tuck, D. G. (1996). Inorg. Chim. Acta, 247, 135–138.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJeffs, S. E., Small, R. W. H. & Worrall, I. J. (1984). Acta Cryst. C40, 1329–1331.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKniep, R., Blees, P. & Poll, W. (1982). Angew. Chem. Int. Ed. Engl. 21, 386.  CrossRef Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSmall, R. W. H. & Worrall, I. J. (1982). Acta Cryst. B38, 932–934.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–427.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds