organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Supramolecular structures of three isomeric 2-chloro-N-(nitro­phen­yl)­nicotinamides

CROSSMARK_Color_square_no_text.svg

aComplexo Tecnológico de Medicamentos Farmanguinhos, Av. Comandante Guaranys 447, Jacarepaguá, Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 25 January 2005; accepted 1 February 2005; online 11 March 2005)

Mol­ecules of 2-chloro-N-(2-nitro­phen­yl)nicotinamide, C12H8ClN3O3, are linked by two C—H⋯O hydrogen bonds into a chain of edge-fused [R_{2}^{2}](14) and [R_{4}^{4}](24) rings. In 2-chloro-N-(3-nitro­phen­yl)nicotinamide monohydrate, C12H8ClN3O3·H2O, the mol­ecules are linked by a combination of N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds into a chain of edge-fused rings containing two distinct types of [R_{4}^{4}](16) ring. In 2-chloro-N-(4-nitro­phen­yl)nicotinamide, C12H8ClN3O3, which crystallizes with Z′ = 2 in space group P21/n, the mol­ecules are linked by two N—H⋯N hydrogen bonds into simple [C_{2}^{2}](12) chains.

Comment

We report here the mol­ecular and supramolecular structures of three isomeric 2-chloro-N-(nitro­phen­yl)nicotinamides (Figs. 1[link]–3[link][link]). Of these isomers, the 3-nitro­phen­yl isomer, (II)[link], crystallizes from acetone as a monohydrate, whereas the 2-­nitro­phen­yl isomer, (I)[link], crystallizes from the same solvent in the unsolvated form. The 4-nitro­phen­yl isomer, (III)[link], crystallizes from ethanol with Z′ = 2 (Fig. 3[link]).

In compounds (I)[link] and (II)[link], and in each of the independent mol­ecules of (III)[link], the central amide spacer unit is essentially planar, as demonstrated by the C—C—N—C torsion angles (Tables 1[link], 3[link] and 5[link]). However, the torsion angles describing the conformations of the two rings relative to the spacer unit show some variations, particularly for the heteroaryl rings. The nitroaryl rings do not deviate significantly from the plane of the amide spacer unit, and in each mol­ecule there is a short intra­molecular C—H⋯O contact involving atom C26 in the aryl ring [atom C46 in mol­ecule 2 of compound (III)] and the amide O atom (Tables 2[link], 4[link] and 6[link]); this interaction may have some influence on the conformation. The planes of the nitro groups are all close to the planes of the adjacent aryl rings. The two independent mol­ecules in (III)[link] adopt very similar conformations so that for the selected asymmetric unit the two mol­ecules are nearly enantiomeric (Table 5[link] and Fig. 3[link]).

[Scheme 1]

Within the spacer units, the backbone C—C—N angles are consistently significantly less than 120°, while the C—N—C angles are significantly greater than 120°. There is no evidence from the bond length in the nitro­aniline fragments in compounds (I)[link] and (III)[link] of any bond fixation, such as is typically found in simple 2-nitro- and 4-nitro­anilines. Thus, polarization of types (Ia) and (IIIa) cannot effectively compete with the normal polarization of the amide units in these compounds.

The mol­ecules of (I)[link] are linked into a chain of edge-fused rings by two C—H⋯O hydrogen bonds, involving both the carbon­yl O and one of the nitro O atoms (Table 2[link]). Atom C14 of the heteroaryl ring in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O2 in the mol­ecule at (−1 + x, y, z), so generating by translation a C(9) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [100] direction. At the same time, aryl atom C25 in the mol­ecule at (x, y, z) acts as a donor to carbon­yl atom O1 in the mol­ecule at (−x, 1 − y, 1 − z), so forming a centrosymmetric [R_{2}^{2}](14) ring centred at (0, [{1\over 2}], [{1\over 2}]). The combination of these two motifs then generates a chain of centrosymmetric edge-fused rings along [100], with [R_{2}^{2}](14) rings centred at (n, [{1\over 2}], [{1\over 2}]) (n = zero or integer) and [R_{4}^{4}](24) rings centred at (n + [{1\over 2}], [{1\over 2}], [{1\over 2}]) (n = zero or integer) (Fig. 4[link]). Two chains of this type pass through each unit cell, along the lines (x, 0, 0) and (x, [{1\over 2}], [{1\over 2}]), but there are no direction-specific inter­actions between adjacent chains.

The independent components in (II)[link] are linked by a combination of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds (Table 4[link]) into a chain of edge-fused rings. Water atom O41 acts as a hydrogen-bond donor, via H41, to carbon­yl atom O1 within the asymmetric unit. In addition, amine atom N21 at (x, y, z) acts as a hydrogen-bond donor to water atom O4 at (x, −1 + y, z), so generating by translation a [C_{2}^{2}](6) chain running parallel to the [010] direction, in which O—H⋯O hydrogen bonds alternate with N—H⋯O hydrogen bonds (Fig. 5[link]). Two chains of this type, antiparallel to one another, pass through each unit cell, and these are linked by the O—H⋯N hydrogen bonds. Water atom O41 at (x, y, z) also acts as a hydrogen-bond donor, this time via H42, to ring atom N11 at (1 − x, 1 − y, −z), so generating a centrosymmetric [R_{4}^{4}](16) ring, centred at ([{1\over 2}], [{1\over 2}], 0) (Fig. 5[link]). The combination of these two motifs then generates a chain of centrosymmetric edge-fused rings along the line ([{1\over 2}], y, 0), in which [R_{4}^{4}](16) rings containing O—H⋯O and O—H⋯N hydrogen bonds and centred at ([{1\over 2}], n + [{1\over 2}], 0) (n = zero or integer) alternate with [R_{4}^{4}](16) rings containing N—H⋯O and O—H⋯N hydrogen bonds and centred at ([{1\over 2}], n, 0) (n = zero or integer) (Fig. 5[link]).

The hydrogen-bonded chains in compound (II)[link] are linked by three distinct aromatic ππ stacking inter­actions, all of them centrosymmetric but some of them fairly weak, into a continuous three-dimensional array. The heteroaryl ring in the mol­ecule at (x, y, z) is parallel to the corresponding ring in the mol­ecule at (−x, 1 − y, −z), which itself forms part of the hydrogen-bonded chain along (−[{1\over 2}], y, 0); the inter­planar spacing is 3.546 (2) Å, with a ring-centroid separation of 3.795 (2) Å, corresponding to a ring offset of 1.352 (2) Å. This inter­action thus links the [010] chains into (001) sheets. In a similar fashion, the aryl rings of the mol­ecules at (x, y, z) and (1 − x, −y, 1 − z), where the latter forms part of the hydrogen-bonded chain along ([{1\over 2}], y, 1), are also parallel, with an inter­planar spacing of 3.707 (2) Å, a ring-centroid separation of 3.917 (2) Å and a ring offset of 1.264 (2) Å. Finally, the aryl rings of the mol­ecules at (x, y, z) and (−x, −y, 1 − z), which forms part of the hydrogen-bonded chain along (−[{1\over 2}], y, 1), are also parallel, with an inter­planar spacing of 3.384 (2) Å, a ring-centroid separation of 3.793 (2) Å and a ring offset of 1.715 (2) Å. These latter inter­actions connect the (001) sheets, so linking all of the hydrogen-bonded chains into a continuous framework.

The two independent mol­ecules in (III)[link] are linked into simple chains by two N—H⋯N hydrogen bonds (Table 6[link]). Amide atom N21 acts as a hydrogen-bond donor to ring atom N31 within the asymmetric unit; similarly, amide atom N41 at (x, y, z) acts as a donor to ring atom N11 at (−1 + x, y, z), so generating by translation a [C_{2}^{2}](12) chain running parallel to the [100] direction (Fig. 6[link]). There are number of short C—H⋯O contacts within this chain (Table 6[link]), although it is doubtful if any of them could be regarded as a hydrogen bond; it is likely that these contacts are simply adventitious consequences of the N—H⋯N hydrogen bonds. Two [C_{2}^{2}](12) chains, antiparallel to one another, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains.

It is thus striking that modest changes in the geometric position of a single substituent are associated with significant changes in crystallization characteristics, in the direction-specific inter­molecular inter­actions manifested and hence in the overall supramolecular structures; none of these changes is readily predicta­ble.

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular components of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The two independent mol­ecules of (III)[link], showing the atom-labelling schemes for (a) mol­ecule 1 and (b) mol­ecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of (I)[link], showing the formation of a chain of edge-fused rings along [100]. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 5]
Figure 5
A stereoview of part of the crystal structure of (II)[link], showing the formation of a chain of edge-fused rings along [010]. For clarity, H atoms bonded to C atoms have been omitted.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of (III)[link], showing the formation of a [C_{2}^{2}](12) chain along [100]. For clarity, H atoms bonded to C atoms have been omitted.

Experimental

For the synthesis of each of compounds (I)–(III), a solution of 2-chloro­nicotino­yl chloride (5.68 mmol), the appropriate nitro­aniline (5.78 mmol) and triethyl­amine (12 mmol) in anhydrous tetra­hydro­furan (30 ml) was stirred at ambient temperature for 8 h; water (20 ml) and eth­yl acetate (20 ml) were added, and the organic layer was separated. This was washed with a saturated aqueous Na(HCO3) solution (2 × 20 ml), dried over sodium sulfate and the solvent removed. The resulting solids were purified by chromatography on alumina, with eth­yl acetate and hexane (7:3 v/v) as eluant. Compounds (I)[link] and (II)[link] were recrystallized from acetone [m.p. 430–432 and 428–429 K (darkens at 407 K)], while compound (III)[link] was recrystallized from ethanol (m.p. 479–481 K).

Compound (I)

Crystal data
  • C12H8ClN3O3

  • Mr = 277.66

  • Monoclinic, P 21 /c

  • a = 6.9964 (1) Å

  • b = 22.4244 (4) Å

  • c = 7.2085 (1) Å

  • β = 93.0910 (11)°

  • V = 1129.30 (3) Å3

  • Z = 4

  • Dx = 1.633 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2580 reflections

  • θ = 3.4–27.5°

  • μ = 0.35 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.54 × 0.44 × 0.36 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.835, Tmax = 0.886

  • 13 129 measured reflections

  • 2580 independent reflections

  • 2355 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 27.5°

  • h = −9 → 9

  • k = −29 → 28

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.19

  • 2580 reflections

  • 174 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0562P)2 + 0.4042P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.47 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.078 (6)

Table 1
Selected geometric parameters (Å, °) for (I)

N21—C21 1.4052 (17)
C22—N22 1.4618 (18)
N21—C17—C13 114.40 (12)
C17—N21—C21 127.03 (12)
C12—C13—C17—N21 −62.93 (18)
C13—C17—N21—C21 178.88 (13)
C17—N21—C21—C22 −157.61 (14)
C21—C22—N22—O2 −15.1 (2)

Table 2
Hydrogen-bond parameters and short intramolecular contacts (Å, °) for (I)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O2 0.88 2.01 2.6416 (16) 128
C14—H14⋯O2i 0.95 2.49 3.4084 (17) 162
C25—H25⋯O1ii 0.95 2.53 3.2921 (18) 137
C26—H26⋯O1 0.95 2.30 2.8771 (18) 119
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1.

Compound (II)

Crystal data
  • C12H8ClN3O3·H2O

  • Mr = 295.68

  • Triclinic, [P{\overline 1}]

  • a = 7.5607 (4) Å

  • b = 7.6518 (3) Å

  • c = 12.6775 (5) Å

  • α = 81.177 (3)°

  • β = 84.367 (2)°

  • γ = 61.172 (2)°

  • V = 634.69 (5) Å3

  • Z = 2

  • Dx = 1.547 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2891 reflections

  • θ = 3.3–27.6°

  • μ = 0.32 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.926, Tmax = 0.938

  • 12 769 measured reflections

  • 2891 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.028

  • θmax = 27.6°

  • h = −9 → 9

  • k = −9 → 9

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.08

  • 2891 reflections

  • 183 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.074P)2 + 0.1161P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.43 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)

N21—C21 1.4122 (18)
C23—N23 1.465 (2)
N21—C17—C13 114.31 (13)
C17—N21—C21 127.89 (13)
C12—C13—C17—N21 −123.99 (17)
C13—C17—N21—C21 −174.38 (15)
C17—N21—C21—C22 −178.35 (16)
C22—C23—N23—O2 3.2 (2)

Table 4
Hydrogen-bond parameters and short intramolecular contacts (Å, °) for (II)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O4iii 0.88 2.03 2.907 (2) 173
O4—H41⋯O1 0.85 2.07 2.916 (2) 173
O4—H42⋯N11iv 0.88 2.06 2.935 (2) 170
C26—H26⋯O1 0.95 2.25 2.864 (2) 121
Symmetry codes: (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Compound (III)

Crystal data
  • C12H8ClN3O3

  • Mr = 277.66

  • Monoclinic, P 21 /n

  • a = 7.2385 (2) Å

  • b = 24.5094 (6) Å

  • c = 13.5018 (4) Å

  • β = 92.834 (2)°

  • V = 2392.44 (11) Å3

  • Z = 8

  • Dx = 1.542 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5494 reflections

  • θ = 2.9–27.6°

  • μ = 0.33 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.945, Tmax = 0.968

  • 5494 measured reflections

  • 5494 independent reflections

  • 3366 reflections with I > 2σ(I)

  • Rint = 0.079

  • θmax = 27.6°

  • h = −9 → 9

  • k = −31 → 30

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.143

  • S = 1.00

  • 5494 reflections

  • 343 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.073P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.44 e Å−3

Table 5
Selected geometric parameters (Å, °) for (III)

N21—C21 1.410 (3) 
C24—N24 1.467 (3)
N41—C41 1.412 (3)
C44—N44 1.471 (3)
N21—C17—C13 114.8 (2)
C17—N21—C21 127.75 (19)
N41—C37—C33 114.6 (2)
C37—N41—C41 127.63 (19)
C12—C13—C17—N21 78.1 (3)
C13—C17—N21—C21 173.29 (19)
C17—N21—C21—C22 −179.8 (2)
C25—C24—N24—O13 −8.1 (3)
C32—C33—C37—N41 −71.5 (3)
C33—C37—N41—C41 −173.4 (2)
C37—N41—C41—C42 173.6 (2)
C43—C44—N44—O22 5.2 (3)

Table 6
Hydrogen-bond parameters and short intramolecular contacts (Å, °) for (III)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N31 0.92 2.08 2.999 (3) 178
N41—H41⋯N11i 0.95 2.14 3.067 (3) 164
C22—H22⋯O11i 0.95 2.58 3.117 (3) 116
C23—H23⋯O11i 0.95 2.37 3.011 (3) 124
C26—H26⋯O11 0.95 2.25 2.861 (3) 121
C43—H43⋯O21i 0.95 2.57 3.166 (3) 121
C46—H46⋯O21 0.95 2.27 2.874 (3) 121
Symmetry code: (i) x-1, y, z.

For isomers (I)[link] and (III)[link], the space groups P21/c and P21/n were uniquely assigned from the systematic absences. Crystals of compound (II)[link] are triclinic; space group P[\overline{1}] was selected and confirmed by the successful structure analysis. All H atoms were located from difference maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.95 Å and Uiso(H) values of 1.2Ueq(C). H atoms bonded to N atoms were allowed to ride at the positions located from the difference maps, with N—H distances of 0.88–0.95 Å and Uiso(H) values of 1.2Ueq(N). H atoms bonded to atom O4 in (II)[link] were allowed to ride at the positions located from the difference maps, with O—H distances of 0.85 and 0.88 Å and individual isotropic displacement parameters.

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); mol­ecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the molecular and supramolecular structures of the three isomeric 2-chloro-N-(nitrophenyl)nicotinamides (Figs. 1–3). Of these isomers, the 3-nitrophenyl isomer, (II), crystallizes from acetone as a monohydrate, whereas the 2-nitrophenyl isomer, (I), crystallizes from the same solvent in unsolvated form. The 4-nitrophenyl isomer, (III), crystallizes from ethanol with Z' = 2 (Fig. 3).

In compounds (I) and (II), and in each of the independent molecules of (III), the central amide spacer unit is essentially planar, as demonstrated by the C—C—N—C torsional angles (Tables 1, 3 and 5). However, the torsion angles describing the conformations of the two rings relative to the spacer unit show some variations, particularly for the heteroaryl rings. The nitroaryl rings do not deviate significantly from the plane of the amide spacer unit, and in each molecule there is a short intramolecular C—H···O contact involving atom C26 in the aryl ring [C46 in molecule 2 of compound (III)] and the amide O atom (Tables 2, 4 and 6), which may have some influence of this conformation. The planes of the nitro groups are all close to the planes of the adjacent aryl rings. The two independent molecules in (III) adopt very similar conformations so that for the selected asymmetric unit the two molecules are nearly enantiomeric (Table 5 and Fig. 3).

Within the spacer units, the backbone C—C—N angles are consistently significantly less than 120°, while the C—N—C angles are significantly greater than 120°. There is no evidence from the bond length in the nitroaniline fragments in compounds (I) and (III) for any bond fixation, such as is typically found in simple 2-nitro- and 4-nitroanilines. Thus polarization of types (Ia) and (IIIa) cannot effectively compete with the normal polarization of the amide units in these compounds.

The molecules of (I) are linked into a chain of edge-fused rings by two C—H···O hydrogen bonds, involving both the carbonyl O and one of the nitro O atoms (Table 2). Atom C14 of the heteroaryl ring in the molecule at (x, y, z) acts as a hydrogen-bond donor to nitro atom O2 in the molecule at (−1 + x, y, z), so generating by translation a C(9) chain (Bernstein et al., 1995) running parallel to the [100] direction. At the same time, aryl atom C25 in the molecule at (x, y, z) acts as a donor to carbonyl atom O1 in the molecule at (−x, 1 − y, 1 − z), so forming a centrosymmetric R22(14) ring centred at (0,1/2, 1/2). The combination of these two motifs then generates a chain of centrosymmetric edge-fused rings along [100], with R22(14) rings centred at (n,1/2, 1/2) (n = zero or integer) and R44(24) rings centred at (n + 1/2, 1/2, 1/2) (n = zero or integer) (Fig. 4). Two chains of this type pass through each unit cell, along the lines (x, 0, 0) and (x,1/2, 1/2), but there are no direction-specific interactions between adjacent chains.

The independent components in (II) are linked by a combination of O—H···O, O—H···N and N—H···O hydrogen bonds (Table 4) into a chain of edge-fused rings. Water atom O41 acts as a hydrogen-bond donor, via H41, to carbonyl atom O1 within the asymmetric unit. In addition, amine atom N21 at (x, y, z) acts as a hydrogen-bond donor to water atom O4 at (x, −1 + y, z), so generating by translation a C22(6) chain running parallel to the [010] direction, in which O—H···O hydrogen bonds alternate with N—H···O hydrogen bonds (Fig. 5). Two chains of this type, antiparallel to one another, pass through each unit cell, and these are linked by the O—H···N hydrogen bonds. Water atom O41 at (x, y, z) also acts as hydrogen-bond donor, this time via H42, to ring atom N11 at (1 − x, 1 − y, −z), so generating a centrosymmetric R44(16) ring, centred at (1/2, 1/2, 0) (Fig. 5). The combination of these two motifs then generates a chain of centrosymmetric edge-fused rings along the line (1/2, y, 0), in which R44(16) rings containing O—H···O and O—H···N hydrogen bonds and centred at (1/2, n + 1/2, 0) (n = zero or integer) alternate with R44(16) rings containing N—H···O and O—H···N hydrogen bonds and centred at (1/2, n, 0) (n = zero or integer) (Fig. 5).

The hydrogen-bonded chains in compound (II) are linked by three distinct aromatic ππ stacking interactions, all of them centrosymmetric but some of them fairly weak, into a continuous three-dimensional array. The heteroaryl ring in the molecule at (x, y, z) is parallel to the corresponding ring in the molecule at (−x, 1 − y, −z), which itself forms part of the hydrogen-bonded chain along (−0.5, y, 0); the interplanar spacing is 3.546 (2) Å, with a ring-centroid separation of 3.795 (2) Å, corresponding to a ring offset of 1.352 (2) Å. This interaction thus links the [010] chains into (001) sheets. In a similar fashion, the aryl rings of the molecules at (x, y, z) and (1 − x, −y, 1 − z), where the latter forms part of the hydrogen-bonded chain along (1/2, y, 1), are also parallel, with an interplanar spacing of 3.707 (2) Å, a ring-centroid separation of 3.917 (2) Å and a ring offset of 1.264 (2) Å. Finally, the aryl rings of the molecules at (x, y, z) and (−x, −y, 1 − z), which forms part of the hydrogen-bonded chain along (−0.5, y, 1), are also parallel, with an interplanar spacing of 3.384 (2) Å, a ring-centroid separation of 3.793 (2) Å and a ring offset of 1.715 (2) Å. These latter interactions connect the (001) sheets, so linking all of the hydrogen-bonded chains into a continuous framework.

The two independent molecules in (III) are linked into simple chains by two N—H···N hydrogen bonds (Table 6). Amide atom N21 acts as a hydrogen-bond donor to ring atom N31 within the asymmetric unit; similarly, amide atom N41 at (x, y, z) acts as a donor to ring atom N11 at (−1 + x, y, z), so generating by translation a C22(12) chain running parallel to the [100] direction (Fig. 6). There are number of short C—H···O contacts within this chain (Table 6), although it is doubtful if any of them could be regarded as a hydrogen bond; it is likely that these contacts are simply adventitious consequences of the N—H···N hydrogen bonds. Two C22(12) chains, antiparallel to one another, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

It is thus striking that modest changes in the geometric position of a single substituent are associated with significant changes in crystallization characteristics, in the direction-specific intermolecular interactions manifested, and hence in the overall supramolecular structures; none of these changes is readily predictable.

Experimental top

For the synthesis of each of compounds (I)–(III), a solution of 2-chloronicotinoyl chloride (5.68 mmol), the appropriate nitroaniline (5.78 mmol) and triethylamine (12 mmol) in anhydrous tetrahydrofuran (30 ml) was stirred at ambient temperature for 8 h; water (20 ml) and ethyl acetate (20 ml) were added, and the organic layer was separated. This was washed with saturated aqueous Na[HCO3] solution (2 × 20 ml) and dried over sodium sulfate, and then the solvent was removed. The resulting solids were purified by chromatography on alumina, with ethyl acetate and hexane (7:3, v/v) as eluant. Compounds (I) and (II) were recrystallized from acetone [m.p. 430–432 and 428–429 K (darkens at 407 K)]; compound (III) was recrystallized from ethanol (m.p. 479–481 K).

Refinement top

For isomers (I) and (III), the space groups P21/c and P21/n were uniquely assigned from the systematic absences. Crystals of compound (II) are triclinic; space group P1 was selected, and confirmed by the successful structure analysis. All H atoms were located from difference maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.95 Å and Uiso(H) values of 1.2Ueq(C). H atoms bonded to N atoms were allowed to ride at the positions located from the difference maps, with N—H distances of 0.88–0.95 Å and Uiso(H) values of 1.2Ueq(N). H atoms bonded to atom O4 in (II) were allowed to ride at the positions located from the difference maps, with O—H distances of 0.85 and 0.88 Å and individual isotropic displacement parameters.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular components of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The two independent molecules of (III), showing the atom-labelling scheme: (a) molecule 1 and (b) molecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a chain of edge-fused rings along [100]. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (II), showing the formation of a chain of edge-fused rings along [010]. For clarity, H atoms bonded to C atoms have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (III), showing the formation of a C22(12) chain along [100]. For clarity, H atoms bonded to C atoms have been omitted.
(I) 2-Chloro-N-(2-nitrophenyl)nicotinamide top
Crystal data top
C12H8ClN3O3F(000) = 568
Mr = 277.66Dx = 1.633 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2580 reflections
a = 6.9964 (1) Åθ = 3.4–27.5°
b = 22.4244 (4) ŵ = 0.35 mm1
c = 7.2085 (1) ÅT = 120 K
β = 93.0910 (11)°Block, colourless
V = 1129.30 (3) Å30.54 × 0.44 × 0.36 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2580 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2928
Tmin = 0.835, Tmax = 0.886l = 99
13129 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.4042P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
2580 reflectionsΔρmax = 0.57 e Å3
174 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.078 (6)
Crystal data top
C12H8ClN3O3V = 1129.30 (3) Å3
Mr = 277.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9964 (1) ŵ = 0.35 mm1
b = 22.4244 (4) ÅT = 120 K
c = 7.2085 (1) Å0.54 × 0.44 × 0.36 mm
β = 93.0910 (11)°
Data collection top
Nonius KappaCCD
diffractometer
2580 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2355 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.886Rint = 0.029
13129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.19Δρmax = 0.57 e Å3
2580 reflectionsΔρmin = 0.47 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52679 (5)0.284888 (15)0.46820 (5)0.02029 (15)
O10.08692 (16)0.40079 (5)0.48472 (16)0.0251 (3)
O20.68027 (16)0.36970 (4)0.86260 (16)0.0239 (3)
O30.89794 (16)0.43787 (5)0.86521 (19)0.0323 (3)
N110.27639 (18)0.20372 (5)0.53499 (17)0.0185 (3)
N210.34113 (17)0.39216 (5)0.69864 (17)0.0172 (3)
N220.73074 (17)0.42201 (5)0.84092 (17)0.0180 (3)
C120.3039 (2)0.26202 (6)0.53946 (18)0.0154 (3)
C130.1696 (2)0.30406 (6)0.59056 (18)0.0149 (3)
C140.0066 (2)0.28190 (6)0.6405 (2)0.0180 (3)
C150.0387 (2)0.22109 (7)0.6399 (2)0.0199 (3)
C160.1063 (2)0.18371 (6)0.5865 (2)0.0205 (3)
C170.1949 (2)0.37087 (6)0.58400 (19)0.0162 (3)
C210.3999 (2)0.45183 (6)0.71937 (18)0.0151 (3)
C220.5865 (2)0.46698 (6)0.78843 (18)0.0150 (3)
C230.6440 (2)0.52602 (6)0.81192 (19)0.0180 (3)
C240.5170 (2)0.57156 (6)0.7690 (2)0.0195 (3)
C250.3328 (2)0.55773 (6)0.6999 (2)0.0190 (3)
C260.2747 (2)0.49912 (6)0.67514 (19)0.0174 (3)
H140.10430.30850.67480.022*
H150.15730.20530.67520.024*
H160.08420.14190.58630.025*
H210.40550.36570.76690.021*
H230.77070.53490.85750.022*
H240.55480.61200.78630.023*
H250.24530.58910.66910.023*
H260.14820.49090.62750.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0150 (2)0.0220 (2)0.0240 (2)0.00086 (12)0.00233 (14)0.00109 (12)
O10.0258 (6)0.0176 (5)0.0305 (6)0.0031 (4)0.0114 (5)0.0001 (4)
O20.0228 (6)0.0141 (5)0.0340 (6)0.0022 (4)0.0050 (5)0.0004 (4)
O30.0134 (6)0.0306 (6)0.0526 (8)0.0006 (4)0.0006 (5)0.0048 (5)
N110.0195 (6)0.0160 (6)0.0194 (6)0.0020 (5)0.0036 (5)0.0017 (4)
N210.0176 (6)0.0124 (6)0.0209 (6)0.0009 (4)0.0043 (5)0.0004 (4)
N220.0156 (6)0.0201 (6)0.0184 (6)0.0016 (5)0.0010 (5)0.0013 (5)
C120.0144 (7)0.0174 (7)0.0142 (6)0.0002 (5)0.0026 (5)0.0002 (5)
C130.0155 (7)0.0147 (6)0.0139 (6)0.0007 (5)0.0030 (5)0.0011 (5)
C140.0161 (7)0.0198 (7)0.0178 (7)0.0005 (5)0.0004 (5)0.0025 (5)
C150.0180 (7)0.0223 (7)0.0190 (7)0.0047 (5)0.0010 (5)0.0010 (5)
C160.0249 (8)0.0151 (6)0.0208 (7)0.0024 (6)0.0044 (6)0.0006 (5)
C170.0163 (7)0.0152 (6)0.0169 (6)0.0011 (5)0.0005 (5)0.0021 (5)
C210.0179 (7)0.0131 (6)0.0141 (6)0.0005 (5)0.0010 (5)0.0007 (5)
C220.0159 (7)0.0155 (6)0.0136 (6)0.0021 (5)0.0015 (5)0.0002 (5)
C230.0186 (7)0.0186 (7)0.0167 (6)0.0038 (5)0.0016 (5)0.0007 (5)
C240.0261 (8)0.0142 (6)0.0181 (7)0.0029 (5)0.0016 (6)0.0000 (5)
C250.0240 (8)0.0144 (7)0.0186 (7)0.0027 (5)0.0001 (6)0.0008 (5)
C260.0170 (7)0.0164 (7)0.0187 (6)0.0006 (5)0.0017 (5)0.0003 (5)
Geometric parameters (Å, º) top
N11—C121.3215 (18)N21—H210.88
N11—C161.343 (2)C21—C261.4011 (19)
C12—C131.3945 (19)C21—C221.414 (2)
C12—Cl11.7453 (14)C22—C231.3914 (19)
C13—C141.394 (2)C22—N221.4618 (18)
C13—C171.5096 (18)N22—O31.2262 (17)
C14—C151.382 (2)N22—O21.2373 (16)
C14—H140.95C23—C241.378 (2)
C15—C161.386 (2)C23—H230.95
C15—H150.95C24—C251.392 (2)
C16—H160.95C24—H240.95
C17—O11.2141 (17)C25—C261.3843 (19)
C17—N211.3664 (18)C25—H250.95
N21—C211.4052 (17)C26—H260.95
C12—N11—C16116.98 (13)C26—C21—N21121.40 (13)
N11—C12—C13125.17 (13)C26—C21—C22116.89 (12)
N11—C12—Cl1114.49 (11)N21—C21—C22121.71 (12)
C13—C12—Cl1120.31 (11)C23—C22—C21121.81 (13)
C14—C13—C12116.41 (13)C23—C22—N22115.72 (12)
C14—C13—C17117.95 (12)C21—C22—N22122.47 (12)
C12—C13—C17125.51 (13)O3—N22—O2122.24 (12)
C15—C14—C13119.78 (14)O3—N22—C22118.47 (12)
C15—C14—H14120.1O2—N22—C22119.28 (12)
C13—C14—H14120.1C24—C23—C22119.94 (14)
C14—C15—C16118.47 (14)C24—C23—H23120.0
C14—C15—H15120.8C22—C23—H23120.0
C16—C15—H15120.8C23—C24—C25119.29 (13)
N11—C16—C15123.18 (13)C23—C24—H24120.4
N11—C16—H16118.4C25—C24—H24120.4
C15—C16—H16118.4C26—C25—C24121.15 (13)
O1—C17—N21125.81 (13)C26—C25—H25119.4
O1—C17—C13119.77 (13)C24—C25—H25119.4
N21—C17—C13114.40 (12)C25—C26—C21120.93 (13)
C17—N21—C21127.03 (12)C25—C26—H26119.5
C17—N21—H21116.5C21—C26—H26119.5
C21—N21—H21116.5
C16—N11—C12—C131.0 (2)C17—N21—C21—C2623.4 (2)
C16—N11—C12—Cl1179.28 (10)C17—N21—C21—C22157.61 (14)
N11—C12—C13—C140.0 (2)C26—C21—C22—C230.1 (2)
Cl1—C12—C13—C14178.22 (10)N21—C21—C22—C23178.94 (12)
N11—C12—C13—C17175.73 (13)C26—C21—C22—N22179.63 (12)
Cl1—C12—C13—C172.45 (18)N21—C21—C22—N220.6 (2)
C12—C13—C14—C150.9 (2)C23—C22—N22—O314.27 (19)
C17—C13—C14—C15177.02 (13)C21—C22—N22—O3166.17 (13)
C13—C14—C15—C160.9 (2)C23—C22—N22—O2164.44 (13)
C12—N11—C16—C151.0 (2)C21—C22—N22—O215.1 (2)
C14—C15—C16—N110.1 (2)C21—C22—C23—C240.6 (2)
C14—C13—C17—O157.32 (19)N22—C22—C23—C24178.99 (12)
C12—C13—C17—O1118.39 (16)C22—C23—C24—C250.9 (2)
C14—C13—C17—N21121.36 (14)C23—C24—C25—C260.5 (2)
C12—C13—C17—N2162.93 (18)C24—C25—C26—C210.1 (2)
O1—C17—N21—C212.5 (2)N21—C21—C26—C25178.59 (13)
C13—C17—N21—C21178.88 (13)C22—C21—C26—C250.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O20.882.012.6416 (16)128
C14—H14···O2i0.952.493.4084 (17)162
C25—H25···O1ii0.952.533.2921 (18)137
C26—H26···O10.952.302.8771 (18)119
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
(II) 2-Chloro-N-(3-nitrophenyl)nicotinamide monohydrate top
Crystal data top
C12H8ClN3O3·H2OZ = 2
Mr = 295.68F(000) = 304
Triclinic, P1Dx = 1.547 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5607 (4) ÅCell parameters from 2891 reflections
b = 7.6518 (3) Åθ = 3.3–27.6°
c = 12.6775 (5) ŵ = 0.32 mm1
α = 81.177 (3)°T = 120 K
β = 84.367 (2)°Block, colourless
γ = 61.172 (2)°0.2 × 0.2 × 0.2 mm
V = 634.69 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
2891 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.3°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.926, Tmax = 0.938l = 1616
12769 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.074P)2 + 0.1161P]
where P = (Fo2 + 2Fc2)/3
2891 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C12H8ClN3O3·H2Oγ = 61.172 (2)°
Mr = 295.68V = 634.69 (5) Å3
Triclinic, P1Z = 2
a = 7.5607 (4) ÅMo Kα radiation
b = 7.6518 (3) ŵ = 0.32 mm1
c = 12.6775 (5) ÅT = 120 K
α = 81.177 (3)°0.2 × 0.2 × 0.2 mm
β = 84.367 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2318 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.938Rint = 0.028
12769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2891 reflectionsΔρmin = 0.43 e Å3
183 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58252 (7)0.28229 (7)0.09351 (4)0.05063 (18)
O10.2316 (3)0.4034 (2)0.26846 (10)0.0603 (4)
O20.3065 (3)0.4763 (2)0.56158 (12)0.0656 (4)
O30.2362 (3)0.3722 (2)0.71615 (10)0.0633 (4)
N110.3821 (2)0.2690 (2)0.05734 (11)0.0429 (4)
N210.2574 (2)0.09090 (19)0.30122 (10)0.0361 (3)
N230.2669 (2)0.3479 (2)0.61966 (11)0.0412 (3)
C120.3844 (3)0.2642 (2)0.04717 (12)0.0354 (4)
C130.2435 (3)0.2419 (2)0.11982 (12)0.0353 (4)
C140.0934 (3)0.2215 (3)0.07740 (14)0.0434 (4)
C150.0853 (3)0.2292 (3)0.03172 (14)0.0482 (4)
C160.2316 (3)0.2545 (3)0.09540 (13)0.0479 (4)
C170.2453 (3)0.2537 (2)0.23712 (12)0.0384 (4)
C210.2457 (2)0.0631 (2)0.41391 (11)0.0320 (3)
C220.2681 (2)0.1225 (2)0.46136 (12)0.0337 (3)
C230.2491 (2)0.1538 (2)0.57115 (12)0.0348 (3)
C240.2096 (3)0.0094 (3)0.63625 (13)0.0455 (4)
C250.1907 (4)0.1725 (3)0.58779 (14)0.0518 (5)
C260.2090 (3)0.2107 (3)0.47781 (13)0.0429 (4)
O40.2818 (2)0.7597 (2)0.20376 (11)0.0545 (4)
H140.00430.20220.12350.052*
H150.01810.21740.06190.058*
H160.22520.26200.17050.057*
H210.27430.01020.26900.043*
H220.29580.22570.41910.040*
H240.19600.03450.71160.055*
H250.16450.27430.63070.062*
H260.19650.33680.44620.052*
H410.25960.66150.22650.090 (9)*
H420.38300.73890.15720.085 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0545 (3)0.0588 (3)0.0478 (3)0.0348 (2)0.0055 (2)0.0018 (2)
O10.1161 (13)0.0478 (8)0.0343 (6)0.0540 (8)0.0103 (7)0.0075 (5)
O20.1015 (12)0.0409 (7)0.0608 (9)0.0413 (8)0.0081 (8)0.0041 (6)
O30.0969 (12)0.0604 (9)0.0399 (7)0.0483 (8)0.0010 (7)0.0115 (6)
N110.0582 (9)0.0431 (8)0.0307 (7)0.0280 (7)0.0019 (6)0.0019 (6)
N210.0528 (8)0.0319 (7)0.0271 (6)0.0233 (6)0.0003 (6)0.0028 (5)
N230.0466 (8)0.0394 (8)0.0405 (8)0.0251 (7)0.0033 (6)0.0048 (6)
C120.0454 (9)0.0300 (7)0.0315 (8)0.0195 (7)0.0015 (6)0.0001 (6)
C130.0474 (9)0.0297 (7)0.0287 (7)0.0190 (7)0.0001 (6)0.0011 (6)
C140.0488 (10)0.0458 (9)0.0401 (9)0.0271 (8)0.0000 (7)0.0022 (7)
C150.0564 (11)0.0509 (10)0.0430 (9)0.0291 (9)0.0113 (8)0.0028 (8)
C160.0708 (13)0.0487 (10)0.0293 (8)0.0323 (9)0.0066 (8)0.0020 (7)
C170.0533 (10)0.0357 (8)0.0295 (8)0.0248 (7)0.0020 (7)0.0025 (6)
C210.0369 (8)0.0338 (8)0.0272 (7)0.0187 (6)0.0028 (6)0.0008 (6)
C220.0384 (8)0.0311 (8)0.0331 (8)0.0182 (7)0.0001 (6)0.0029 (6)
C230.0376 (8)0.0340 (8)0.0345 (8)0.0201 (7)0.0044 (6)0.0040 (6)
C240.0683 (12)0.0504 (10)0.0267 (8)0.0360 (9)0.0035 (7)0.0003 (7)
C250.0875 (15)0.0485 (10)0.0332 (9)0.0426 (10)0.0004 (9)0.0079 (7)
C260.0670 (12)0.0379 (9)0.0329 (8)0.0326 (8)0.0026 (7)0.0017 (7)
O40.0750 (10)0.0460 (7)0.0529 (8)0.0375 (7)0.0173 (7)0.0160 (6)
Geometric parameters (Å, º) top
Cl1—C121.7336 (17)C21—C221.391 (2)
N11—C121.321 (2)C21—C261.394 (2)
N11—C161.337 (2)C22—C231.381 (2)
C12—C131.395 (2)C22—H220.95
C13—C141.385 (2)C23—C241.380 (2)
C13—C171.505 (2)C23—N231.465 (2)
C14—C151.382 (2)N23—O21.222 (2)
C14—H140.95N23—O31.2251 (18)
C15—C161.377 (3)C24—C251.378 (3)
C15—H150.95C24—H240.95
C16—H160.95C25—C261.387 (2)
C17—O11.224 (2)C25—H250.95
C17—N211.347 (2)C26—H260.95
N21—C211.4122 (18)O4—H410.8492
N21—H210.88O4—H420.8845
C12—N11—C16117.10 (15)C22—C21—C26119.57 (14)
N11—C12—C13124.66 (16)C22—C21—N21116.55 (13)
N11—C12—Cl1115.73 (13)C26—C21—N21123.86 (14)
C13—C12—Cl1119.60 (12)C23—C22—C21118.65 (14)
C14—C13—C12116.42 (14)C23—C22—H22120.7
C14—C13—C17121.49 (15)C21—C22—H22120.7
C12—C13—C17121.96 (15)C24—C23—C22123.02 (14)
C15—C14—C13120.17 (16)C24—C23—N23118.97 (14)
C15—C14—H14119.9C22—C23—N23117.99 (14)
C13—C14—H14119.9O2—N23—O3123.00 (15)
C16—C15—C14118.00 (17)O2—N23—C23118.44 (14)
C16—C15—H15121.0O3—N23—C23118.53 (14)
C14—C15—H15121.0C25—C24—C23117.42 (15)
N11—C16—C15123.61 (16)C25—C24—H24121.3
N11—C16—H16118.2C23—C24—H24121.3
C15—C16—H16118.2C24—C25—C26121.60 (16)
O1—C17—N21124.71 (14)C24—C25—H25119.2
O1—C17—C13120.95 (14)C26—C25—H25119.2
N21—C17—C13114.31 (13)C25—C26—C21119.71 (15)
C17—N21—C21127.89 (13)C25—C26—H26120.1
C17—N21—H21116.1C21—C26—H26120.1
C21—N21—H21116.1H41—O4—H42117.9
C16—N11—C12—C131.1 (2)C17—N21—C21—C22178.35 (16)
C16—N11—C12—Cl1179.74 (13)C17—N21—C21—C263.2 (3)
N11—C12—C13—C140.7 (2)C26—C21—C22—C231.3 (2)
Cl1—C12—C13—C14177.87 (12)N21—C21—C22—C23177.24 (14)
N11—C12—C13—C17175.17 (15)C21—C22—C23—C240.3 (3)
Cl1—C12—C13—C176.2 (2)C21—C22—C23—N23178.16 (14)
C12—C13—C14—C151.7 (2)C24—C23—N23—O2178.33 (17)
C17—C13—C14—C15174.18 (16)C22—C23—N23—O23.2 (2)
C13—C14—C15—C160.9 (3)C24—C23—N23—O33.6 (2)
C12—N11—C16—C152.0 (3)C22—C23—N23—O3174.91 (16)
C14—C15—C16—N111.0 (3)C22—C23—C24—C250.6 (3)
C14—C13—C17—O1118.0 (2)N23—C23—C24—C25179.00 (17)
C12—C13—C17—O157.7 (2)C23—C24—C25—C260.4 (3)
C14—C13—C17—N2160.3 (2)C24—C25—C26—C210.5 (3)
C12—C13—C17—N21123.99 (17)C22—C21—C26—C251.4 (3)
O1—C17—N21—C213.8 (3)N21—C21—C26—C25176.98 (18)
C13—C17—N21—C21174.38 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O4i0.882.032.907 (2)173
O4—H41···O10.852.072.916 (2)173
O4—H42···N11ii0.882.062.935 (2)170
C26—H26···O10.952.252.864 (2)121
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
(III) 2-Chloro-N-(4-nitrophenyl)nicotinamide top
Crystal data top
C12H8ClN3O3F(000) = 1136
Mr = 277.66Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5494 reflections
a = 7.2385 (2) Åθ = 2.9–27.6°
b = 24.5094 (6) ŵ = 0.33 mm1
c = 13.5018 (4) ÅT = 120 K
β = 92.834 (2)°Block, colourless
V = 2392.44 (11) Å30.2 × 0.1 × 0.1 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
5494 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3130
Tmin = 0.945, Tmax = 0.968l = 1717
5494 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
5494 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C12H8ClN3O3V = 2392.44 (11) Å3
Mr = 277.66Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.2385 (2) ŵ = 0.33 mm1
b = 24.5094 (6) ÅT = 120 K
c = 13.5018 (4) Å0.2 × 0.1 × 0.1 mm
β = 92.834 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3366 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.968Rint = 0.079
5494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
5494 reflectionsΔρmin = 0.44 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl120.93279 (9)0.69680 (2)0.66272 (4)0.02873 (18)
O111.0754 (3)0.83940 (7)0.74087 (16)0.0480 (6)
O120.2074 (3)0.99261 (6)0.58346 (13)0.0319 (4)
O130.4593 (2)1.04072 (6)0.58583 (12)0.0287 (4)
N111.0557 (3)0.66161 (7)0.83516 (14)0.0217 (4)
N210.7716 (3)0.81689 (7)0.75206 (13)0.0196 (4)
N240.3761 (3)0.99758 (7)0.59832 (14)0.0238 (5)
C121.0031 (3)0.70646 (9)0.78670 (16)0.0197 (5)
C131.0065 (3)0.75853 (9)0.82673 (17)0.0211 (5)
C141.0703 (4)0.76385 (9)0.92505 (18)0.0249 (6)
C151.1218 (3)0.71762 (9)0.97860 (18)0.0234 (5)
C161.1114 (3)0.66747 (9)0.93093 (17)0.0225 (5)
C170.9547 (4)0.80889 (9)0.76783 (18)0.0231 (5)
C210.6817 (3)0.86260 (8)0.70840 (16)0.0187 (5)
C220.4896 (3)0.86073 (8)0.70096 (16)0.0205 (5)
C230.3897 (3)0.90496 (8)0.66402 (16)0.0196 (5)
C240.4841 (3)0.95029 (8)0.63428 (16)0.0209 (5)
C250.6744 (3)0.95342 (9)0.64081 (16)0.0221 (5)
C260.7754 (3)0.90911 (8)0.67751 (16)0.0208 (5)
Cl320.42948 (9)0.69468 (2)0.66056 (4)0.03089 (19)
O210.5793 (3)0.54792 (7)0.73644 (15)0.0400 (5)
O220.2799 (3)0.39905 (8)0.54869 (15)0.0512 (6)
O230.0226 (3)0.35435 (7)0.53995 (14)0.0524 (6)
N310.5494 (3)0.72622 (7)0.83614 (15)0.0242 (5)
N410.2759 (3)0.57478 (7)0.72771 (14)0.0214 (4)
N440.1105 (4)0.39612 (9)0.55726 (16)0.0404 (6)
C320.4996 (3)0.68234 (9)0.78379 (17)0.0210 (5)
C330.5028 (3)0.62914 (9)0.81950 (17)0.0218 (5)
C340.5620 (3)0.62221 (9)0.91846 (18)0.0280 (6)
C350.6082 (4)0.66748 (10)0.97554 (19)0.0287 (6)
C360.5993 (3)0.71837 (9)0.93195 (18)0.0252 (6)
C370.4570 (4)0.57985 (9)0.75576 (18)0.0248 (6)
C410.1888 (3)0.53077 (8)0.67670 (17)0.0213 (5)
C420.0027 (3)0.53272 (9)0.66533 (17)0.0230 (5)
C430.1021 (4)0.48949 (9)0.62399 (17)0.0283 (6)
C440.0050 (4)0.44408 (9)0.59327 (17)0.0290 (6)
C450.1850 (4)0.44203 (9)0.60068 (18)0.0313 (6)
C460.2844 (4)0.48558 (9)0.64170 (18)0.0276 (6)
H141.07840.79880.95520.030*
H151.16330.72021.04630.028*
H161.14540.63570.96790.027*
H210.70040.78970.77810.024*
H220.42680.82890.72130.025*
H230.25840.90400.65930.023*
H250.73570.98550.62040.027*
H260.90670.91030.68170.025*
H340.57060.58670.94650.034*
H350.64530.66361.04360.034*
H360.63010.74930.97180.030*
H410.18670.59740.75730.026*
H420.06640.56420.68630.028*
H430.23330.49080.61680.034*
H450.24810.41080.57770.038*
H460.41570.48480.64600.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl120.0339 (4)0.0296 (3)0.0221 (3)0.0024 (3)0.0040 (3)0.0013 (2)
O110.022 (12)0.0402 (10)0.0830 (15)0.0017 (9)0.0082 (10)0.0358 (11)
O120.0296 (12)0.0295 (9)0.0360 (11)0.0089 (8)0.0043 (9)0.0025 (8)
O130.0431 (12)0.0152 (8)0.0278 (10)0.0015 (8)0.0014 (8)0.0011 (7)
N110.0213 (12)0.0192 (9)0.0246 (11)0.0012 (8)0.0022 (9)0.0010 (8)
N210.0194 (12)0.0159 (9)0.0236 (11)0.0022 (8)0.0023 (9)0.0041 (8)
N240.0329 (14)0.0200 (10)0.0185 (10)0.0050 (9)0.0002 (9)0.0013 (8)
C120.0140 (13)0.0236 (12)0.0216 (12)0.0005 (10)0.0030 (10)0.0002 (10)
C130.0168 (13)0.0212 (11)0.0259 (13)0.0007 (10)0.0052 (10)0.0034 (10)
C140.0308 (16)0.0173 (11)0.0267 (13)0.0013 (10)0.0033 (11)0.0031 (10)
C150.0257 (15)0.0227 (12)0.0219 (12)0.0003 (10)0.0011 (10)0.0007 (10)
C160.0222 (14)0.0206 (11)0.0245 (13)0.0012 (10)0.0002 (10)0.0050 (10)
C170.0231 (15)0.0191 (11)0.0272 (13)0.0001 (10)0.0037 (11)0.0034 (10)
C210.0223 (14)0.0145 (10)0.0193 (12)0.0014 (9)0.0000 (10)0.0002 (9)
C220.0227 (15)0.0160 (11)0.0229 (12)0.0018 (10)0.0033 (10)0.0003 (9)
C230.0195 (14)0.0204 (11)0.0187 (11)0.0028 (10)0.0003 (10)0.0017 (9)
C240.0280 (15)0.0156 (11)0.0189 (12)0.0052 (10)0.0010 (10)0.0003 (9)
C250.0274 (15)0.0175 (11)0.0216 (12)0.0009 (10)0.0035 (11)0.0025 (9)
C260.0199 (14)0.0190 (11)0.0235 (12)0.0020 (10)0.0022 (10)0.0016 (10)
Cl320.0333 (4)0.0331 (3)0.0260 (3)0.0046 (3)0.0020 (3)0.0083 (3)
O210.0231 (11)0.0329 (10)0.0639 (14)0.0050 (8)0.0024 (9)0.0160 (9)
O220.0585 (16)0.0476 (12)0.0461 (13)0.0264 (11)0.0118 (11)0.0019 (10)
O230.0890 (18)0.0268 (10)0.0423 (12)0.0114 (11)0.0113 (11)0.0117 (9)
N310.0204 (12)0.0223 (10)0.0301 (12)0.0031 (8)0.0032 (9)0.0039 (9)
N410.0218 (12)0.0164 (9)0.0262 (11)0.0022 (8)0.0033 (9)0.0013 (8)
N440.070 (2)0.0267 (12)0.0239 (12)0.0172 (13)0.0011 (12)0.0025 (10)
C320.0126 (13)0.0255 (12)0.0250 (13)0.0004 (10)0.0018 (10)0.0041 (10)
C330.0150 (13)0.0220 (11)0.0286 (13)0.0001 (10)0.0029 (10)0.0028 (10)
C340.0280 (16)0.0218 (12)0.0339 (14)0.0027 (10)0.0005 (12)0.0061 (11)
C350.0262 (16)0.0318 (13)0.0276 (13)0.0023 (11)0.0034 (11)0.0024 (11)
C360.0185 (14)0.0251 (12)0.0320 (14)0.0020 (10)0.0006 (11)0.0015 (11)
C370.0238 (15)0.0203 (12)0.0303 (14)0.0010 (11)0.0019 (11)0.0012 (10)
C410.0278 (15)0.0183 (11)0.0181 (12)0.0012 (10)0.0029 (10)0.0028 (9)
C420.0272 (15)0.0200 (11)0.0217 (13)0.0016 (10)0.0015 (10)0.0019 (10)
C430.0350 (17)0.0292 (13)0.0205 (13)0.0066 (12)0.0009 (11)0.0035 (11)
C440.0451 (19)0.0234 (12)0.0184 (13)0.0117 (12)0.0018 (12)0.0006 (10)
C450.051 (2)0.0196 (12)0.0243 (14)0.0033 (12)0.0070 (12)0.0022 (10)
C460.0294 (16)0.0250 (12)0.0289 (14)0.0035 (11)0.0062 (11)0.0000 (11)
Geometric parameters (Å, º) top
N11—C121.326 (3)N31—C321.327 (3)
N11—C161.343 (3)N31—C361.340 (3)
C12—C131.386 (3)C32—C331.390 (3)
C12—Cl121.741 (2)C32—Cl321.742 (2)
C13—C141.390 (3)C33—C341.393 (3)
C13—C171.506 (3)C33—C371.510 (3)
C14—C151.385 (3)C34—C351.383 (3)
C14—H140.95C34—H340.95
C15—C161.388 (3)C35—C361.379 (3)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—O111.219 (3)C37—O211.220 (3)
C17—N211.346 (3)C37—N411.352 (3)
N21—C211.410 (3)N41—C411.412 (3)
N21—H210.9237N41—H410.9536
C21—C221.390 (3)C41—C421.387 (3)
C21—C261.400 (3)C41—C461.400 (3)
C22—C231.382 (3)C42—C431.383 (3)
C22—H220.95C42—H420.95
C23—C241.375 (3)C43—C441.391 (3)
C23—H230.95C43—H430.95
C24—C251.378 (3)C44—C451.375 (4)
C24—N241.467 (3)C44—N441.471 (3)
N24—O121.234 (3)N44—O221.228 (3)
N24—O131.233 (2)N44—O231.234 (3)
C25—C261.387 (3)C45—C461.387 (3)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C12—N11—C16116.86 (18)C32—N31—C36116.83 (19)
N11—C12—C13124.9 (2)N31—C32—C33125.2 (2)
N11—C12—Cl12115.14 (16)N31—C32—Cl32115.27 (16)
C13—C12—Cl12119.93 (17)C33—C32—Cl32119.55 (18)
C12—C13—C14117.2 (2)C32—C33—C34116.5 (2)
C12—C13—C17123.4 (2)C32—C33—C37123.6 (2)
C14—C13—C17119.33 (19)C34—C33—C37119.83 (19)
C15—C14—C13119.3 (2)C35—C34—C33119.4 (2)
C15—C14—H14120.3C35—C34—H34120.3
C13—C14—H14120.3C33—C34—H34120.3
C14—C15—C16118.4 (2)C36—C35—C34118.9 (2)
C14—C15—H15120.8C36—C35—H35120.6
C16—C15—H15120.8C34—C35—H35120.6
N11—C16—C15123.2 (2)N31—C36—C35123.1 (2)
N11—C16—H16118.4N31—C36—H36118.4
C15—C16—H16118.4C35—C36—H36118.4
O11—C17—N21125.3 (2)O21—C37—N41125.8 (2)
O11—C17—C13119.8 (2)O21—C37—C33119.6 (2)
N21—C17—C13114.8 (2)N41—C37—C33114.6 (2)
C17—N21—C21127.75 (19)C37—N41—C41127.63 (19)
C17—N21—H21113.5C37—N41—H41119.8
C21—N21—H21118.6C41—N41—H41110.7
C22—C21—C26120.2 (2)C42—C41—C46119.8 (2)
C22—C21—N21116.32 (19)C42—C41—N41116.6 (2)
C26—C21—N21123.4 (2)C46—C41—N41123.5 (2)
C23—C22—C21120.3 (2)C43—C42—C41121.0 (2)
C23—C22—H22119.9C43—C42—H42119.5
C21—C22—H22119.9C41—C42—H42119.5
C24—C23—C22118.7 (2)C42—C43—C44118.2 (2)
C24—C23—H23120.6C42—C43—H43120.9
C22—C23—H23120.6C44—C43—H43120.9
C23—C24—C25122.4 (2)C45—C44—C43121.8 (2)
C23—C24—N24118.1 (2)C45—C44—N44119.7 (2)
C25—C24—N24119.5 (2)C43—C44—N44118.4 (3)
O12—N24—O13123.31 (19)O22—N44—O23123.6 (2)
O12—N24—C24118.87 (19)O22—N44—C44118.9 (2)
O13—N24—C24117.8 (2)O23—N44—C44117.5 (3)
C24—C25—C26119.1 (2)C44—C45—C46119.9 (2)
C24—C25—H25120.4C44—C45—H45120.1
C26—C25—H25120.4C46—C45—H45120.1
C25—C26—C21119.3 (2)C45—C46—C41119.2 (2)
C25—C26—H26120.3C45—C46—H46120.4
C21—C26—H26120.3C41—C46—H46120.4
C16—N11—C12—C131.9 (4)C36—N31—C32—C332.9 (4)
C16—N11—C12—Cl12179.80 (17)C36—N31—C32—Cl32178.23 (17)
N11—C12—C13—C140.1 (4)N31—C32—C33—C340.5 (4)
Cl12—C12—C13—C14177.70 (18)Cl32—C32—C33—C34179.39 (18)
N11—C12—C13—C17176.7 (2)N31—C32—C33—C37175.8 (2)
Cl12—C12—C13—C171.1 (3)Cl32—C32—C33—C373.1 (3)
C12—C13—C14—C151.8 (4)C32—C33—C34—C351.9 (4)
C17—C13—C14—C15178.5 (2)C37—C33—C34—C35178.3 (2)
C13—C14—C15—C161.4 (4)C33—C34—C35—C361.9 (4)
C12—N11—C16—C152.3 (4)C32—N31—C36—C352.9 (4)
C14—C15—C16—N110.7 (4)C34—C35—C36—N310.6 (4)
C12—C13—C17—O11103.9 (3)C32—C33—C37—O21110.5 (3)
C14—C13—C17—O1172.7 (3)C34—C33—C37—O2165.7 (3)
C12—C13—C17—N2178.1 (3)C32—C33—C37—N4171.5 (3)
C14—C13—C17—N21105.4 (3)C34—C33—C37—N41112.3 (3)
O11—C17—N21—C214.6 (4)O21—C37—N41—C414.4 (4)
C13—C17—N21—C21173.29 (19)C33—C37—N41—C41173.4 (2)
C17—N21—C21—C22179.8 (2)C37—N41—C41—C42173.6 (2)
C17—N21—C21—C262.7 (3)C37—N41—C41—C463.9 (4)
C26—C21—C22—C230.7 (3)C46—C41—C42—C433.1 (3)
N21—C21—C22—C23176.54 (19)N41—C41—C42—C43174.5 (2)
C21—C22—C23—C240.5 (3)C41—C42—C43—C440.5 (3)
C22—C23—C24—C250.6 (3)C42—C43—C44—C451.7 (3)
C22—C23—C24—N24178.02 (19)C42—C43—C44—N44174.8 (2)
C23—C24—N24—O129.6 (3)C45—C44—N44—O22178.2 (2)
C25—C24—N24—O12172.9 (2)C43—C44—N44—O225.2 (3)
C23—C24—N24—O13169.4 (2)C45—C44—N44—O233.8 (3)
C25—C24—N24—O138.1 (3)C43—C44—N44—O23172.8 (2)
C23—C24—C25—C260.8 (3)C43—C44—C45—C461.4 (4)
N24—C24—C25—C26178.19 (19)N44—C44—C45—C46175.1 (2)
C24—C25—C26—C210.9 (3)C44—C45—C46—C411.1 (4)
C22—C21—C26—C250.9 (3)C42—C41—C46—C453.3 (3)
N21—C21—C26—C25176.1 (2)N41—C41—C46—C45174.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N310.922.082.999 (3)178
N41—H41···N11i0.952.143.067 (3)164
C22—H22···O11i0.952.583.117 (3)116
C23—H23···O11i0.952.373.011 (3)124
C26—H26···O110.952.252.861 (3)121
C43—H43···O21i0.952.573.166 (3)121
C46—H46···O210.952.272.874 (3)121
Symmetry code: (i) x1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC12H8ClN3O3C12H8ClN3O3·H2OC12H8ClN3O3
Mr277.66295.68277.66
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21/n
Temperature (K)120120120
a, b, c (Å)6.9964 (1), 22.4244 (4), 7.2085 (1)7.5607 (4), 7.6518 (3), 12.6775 (5)7.2385 (2), 24.5094 (6), 13.5018 (4)
α, β, γ (°)90, 93.0910 (11), 9081.177 (3), 84.367 (2), 61.172 (2)90, 92.834 (2), 90
V3)1129.30 (3)634.69 (5)2392.44 (11)
Z428
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.350.320.33
Crystal size (mm)0.54 × 0.44 × 0.360.2 × 0.2 × 0.20.2 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.835, 0.8860.926, 0.9380.945, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
13129, 2580, 2355 12769, 2891, 2318 5494, 5494, 3366
Rint0.0290.0280.079
(sin θ/λ)max1)0.6510.6510.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.19 0.044, 0.129, 1.08 0.051, 0.143, 1.00
No. of reflections258028915494
No. of parameters174183343
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.470.27, 0.430.29, 0.44

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
N21—C211.4052 (17)C22—N221.4618 (18)
N21—C17—C13114.40 (12)C17—N21—C21127.03 (12)
C12—C13—C17—N2162.93 (18)C17—N21—C21—C22157.61 (14)
C13—C17—N21—C21178.88 (13)C21—C22—N22—O215.1 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O20.882.012.6416 (16)128
C14—H14···O2i0.952.493.4084 (17)162
C25—H25···O1ii0.952.533.2921 (18)137
C26—H26···O10.952.302.8771 (18)119
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
N21—C211.4122 (18)C23—N231.465 (2)
N21—C17—C13114.31 (13)C17—N21—C21127.89 (13)
C12—C13—C17—N21123.99 (17)C17—N21—C21—C22178.35 (16)
C13—C17—N21—C21174.38 (15)C22—C23—N23—O23.2 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O4i0.882.032.907 (2)173
O4—H41···O10.852.072.916 (2)173
O4—H42···N11ii0.882.062.935 (2)170
C26—H26···O10.952.252.864 (2)121
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
Selected geometric parameters (Å, º) for (III) top
N21—C211.410 (3)N41—C411.412 (3)
C24—N241.467 (3)C44—N441.471 (3)
N21—C17—C13114.8 (2)N41—C37—C33114.6 (2)
C17—N21—C21127.75 (19)C37—N41—C41127.63 (19)
C12—C13—C17—N2178.1 (3)C32—C33—C37—N4171.5 (3)
C13—C17—N21—C21173.29 (19)C33—C37—N41—C41173.4 (2)
C17—N21—C21—C22179.8 (2)C37—N41—C41—C42173.6 (2)
C25—C24—N24—O138.1 (3)C43—C44—N44—O225.2 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N310.922.082.999 (3)178
N41—H41···N11i0.952.143.067 (3)164
C22—H22···O11i0.952.583.117 (3)116
C23—H23···O11i0.952.373.011 (3)124
C26—H26···O110.952.252.861 (3)121
C43—H43···O21i0.952.573.166 (3)121
C46—H46···O210.952.272.874 (3)121
Symmetry code: (i) x1, y, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds